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Abstract

We describe a variation of the iterative closest point
(ICP) algorithm for aligning two point sets under a set of
transformations. Our algorithm is superior to previous al-
gorithms because (1) in determining the optimal alignment,
it identifies and discards likely outliers in a statistically ro-
bust manner, and (2) it is guaranteed to converge to a lo-
cally optimal solution. To this end, we formalize a new
distance measure, fractional root mean squared distance
(FRMSD), which incorporates the fraction of inliers into the
distance function. Our framework can easily incorporate
most techniques and heuristics from modern registration al-
gorithms. We experimentally validate our algorithm against
previous techniques on 2 and 3 dimensional data exposed to
a variety of outlier types.

1 Introduction

Aligning an input data set to a model data set is funda-
mental to many important problems such as scanned model
reconstruction [12], structural biochemistry [19], and med-
ical imaging [8]. The input data and the model data are typ-
ically given as a set of points. A point set may arise from
laser scans of a 3D or 2D model, coordinates of atoms in
a protein, positions of a lesions from a medical patient, or
some other sparse representation of data. However, the rel-
ative positions of these point sets is not known, making the
task of registering them nontrivial.

A popular approach to solving this problem is known
as the iterative closest point (ICP) algorithm [1, 3] which
alternates between finding the optimal correspondence be-
tween points, and finding the optimal transformation of one
point set onto the other. As both steps reduce the dis-
tance between the point sets, this process converges, but
only to a local minimum. The effectiveness, simplicity,
and generality of this algorithm has led to many varia-
tions [16, 15, 4, 5, 6, 19]. For instance, the set of legal
transformations can be just translations, all rigid motions,
or all affine transformations. Other versions replace the

optimal correspondence between points by aligning each
data point to the closest point on an implicit surface of the
model data [3]. Or the traditional squared distance can be
replaced with a more efficient and stable approximation to
the squared distance function [11]. A slightly outdated, but
excellent survey [16] evaluates many techniques.

Others have attempted to solve the global registration
problem [13, 7], where for any initial alignment they at-
tempt to find the optimal alignment between two point sets.
This is often done in two steps. First find a rough global
alignment by corresponding certain distinguishable feature
points. Second refine the alignment with ICP.

However, all of these algorithms are vulnerable to point
sets with outliers. Outliers may result from deformation of
a deformable model, measurement error, spurious data that
was ignored or missed in the model, partial matches because
the point sets represent overlapping but not identical pieces
of the same object, or interesting changes in the underlying
object between time steps or among comparable objects. In
short, outliers are unavoidable. Because ICP will find cor-
respondences for all points, and then find the optimal trans-
formation for the entire point set, the outliers will skew the
alignment. Many heuristics have been suggested [5, 4] in-
cluding only aligning points within a set threshold [20, 17],
but most of these techniques are not guaranteed to converge,
and thus can possibly go into an infinite loop, or require an
expensive check to prevent this. If the fraction f of points
which are outliers is known, then Trimmed ICP (TrICP) [4]
can be used to find the optimal alignment of the most rel-
evant fraction f of points. However, this fraction is rarely
known a priori. If an alignment is given then RANSAC type
methods [2] can be used to determine a good threshold for
determining these outliers. There are also many ad hoc solu-
tions to this problem. However, if the outliers are excluded
from the data set in a particular alignment, then the align-
ment is no longer optimal, since those outliers which were
removed influenced how the points were initially aligned.

Our contributions. Our solution to these problems is to
incorporate the fraction of points which are outliers into the
problem statement and into the function being optimized.
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To this end, this paper makes the following contributions:

• We formalize a new distance measure between point
sets which accounts for outliers: FRMSD (Section 2).

• We provide an algorithm, Fractional ICP, to optimize
FRMSD (Section 3) which we prove to converge to a
local optimum in the correspondence, transformation,
and fraction of outliers (Section 3.2).

• We give mathematical intuition for why FRMSD aligns
data points which are more likely to be inliers than out-
liers (Section 4 and Section 5).

• Finally, we empirically demonstrate that Fractional
ICP identifies the correct alignment while simultane-
ously determining the outliers (Section 6).

2 Fractional RMS Distance

Consider two point sets D,M ∈ Rd. The goal of this pa-
per is to align an input data set D to a model data set M un-
der some class of transformations, T . We assume that these
point sets are quite similar and there exists a strong cor-
respondence between most points in the data. There may,
however, be outliers, points in either set which are not close
to any point in the other set. Let µ : D → M match each
point of D to the closest point of M .

Definition 2.1. [RMSD ] The root mean squared distance
(or RMSD) is defined:

RMSD(D,M,µ) =
√

1
|D|

∑
p∈D

||p− µ(p)||2

Problem 2.1. [minimizing RMSD ] Compute the transfor-
mation T ∈ T to minimize:

min
T ∈ T

√
1
|D|

∑
p∈D

||T (p)− µ(p)||2.

Problem 2.1 is algorithmically difficult because as T
varies, so does the optimal matching µ. Also, RMSD is
quite susceptible to outliers because the squared distance
gives a large weight to outliers. To counteract this, a spe-
cific fraction f ∈ [0, 1] of points from D can be used in the
alignment and in the distance measure between the point
sets. These f |D| points can be chosen to solve Problem
2.1 by selecting the points which have the smallest resid-
ual distance r = ||p − µ(p)||. Let Df = {p ∈ D |
|Df | = bf |D|c and RMSD(Df ,M) is minimized}. But
what fraction of points should be used? We can always
make RMSD(Df ,M) = 0 by setting f = 1/|D| and align-
ing any single point exactly to another point. So RMSD by
itself is no longer a viable measure. For this reason, we
propose the following distance measure.

Definition 2.2. [FRMSD ] The fractional root mean
squared distance (or FRMSD) is defined as follows:

FRMSD(D,M, f, µ) =
1
fλ

√√√√ 1
|Df |

∑
p∈Df

||p− µ(p)||2

We will empirically and mathematically justify a value
of λ in Section 6.4 and Section 5. For brevity we sometimes
drop µ and just write RMSD(D,M) or FRMSD(D,M, f).

Problem 2.2. [minimize FRMSD ] Compute the transfor-
mation T ∈ T and fraction f ∈ [0, 1] to minimize:

min
T ∈ T

f ∈ [0, 1]

1
fλ

√√√√ 1
|Df |

∑
p∈Df

||T (p)− µ(p)||2.

Intuitively, the 1
fλ term serves to balance the RMSD term.

3 Fractional ICP

Fractional ICP or FICP, detailed in Algorithm 3, finds a
local minimum for FRMSD.

Algorithm 3.1 FICP(D,M)
1: Compute µ0 = arg min

µ0:D→M
RMSD(D,M,µ0).

2: Compute f0 ∈ [0, 1] minning FRMSD(D,M, f0, µ0).
3: i← 0.
4: repeat
5: Compute Dfi

minimizing RMSD(Dfi
,M, µi) such

that Dfi
⊆ D and |Dfi

| = bfi|D|c.
6: Compute T ∈ T minimizing RMSD(Dfi ,M, µi).

D ← T (D).
7: i← i + 1.
8: Compute µi : D →M minning RMSD(D,M,µi).
9: Compute fi ∈ [0, 1] minning FRMSD(D,M, fi, µi).

10: until (ui = ui−1 and fi = fi−1)

In practice, the comparison on line 10 of Algorithm 3
can be replaced be checking whether the FRMSD(D,M, f)
value decreases by less than some threshold.

3.1 Implementation

An implementation of ICP has two basic operations:
computing the matching (which can be done efficiently with
a kd-tree, a d2-tree [11], or with point-to-surface align-
ment [3, 16]) and computing the transformation (which
can also be solved efficiently with a variety of approaches
[10, 9, 19]). Extending such an implementation to FICP
requires two more simple operations.
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Computing the subset Df . The set Df = {p ∈ D |
|Df | = bf |D|c, RMSD(Df ,M) is minimized} is defined
by the bf |D|c points with the smallest residual distances
r = ||p − µ(p)||. This observation implies the follow-
ing algorithm. Compute and sort all residual distances and
let Df be the f |D| points with the smallest residual dis-
tances. The runtime is bounded by the sorting which takes
O(|D| log |D|) time.

Computing the fraction. There are only |D| fractions
which we need to consider. Consider the sorted order
of the point set D by each point’s residual distance r =
||p − µ(p)||. Each prefix of this ordering represents a dis-
tinct fraction. If we maintain the value

∑
p∈Df

||p−µ(p)||2

for each Df we can compute FRMSD(D,M, f) in constant
time for a given fraction f . We can also update Df to a
point set of size |Df | + 1 in constant time by adding the
next point in the sorted order to Df . If the ith prefix yields
the smallest value of FRMSD, then f is set to i/|D|. So this
computation takes O(|D|) time.

3.2 Convergence of Algorithm

FICP converges to a local minimum of FRMSD(D,M, f)
in a sense that if all but one of transformations, match-
ings, or fractions is fixed, then the value of the remain-
ing variable cannot be changed to decrease the value of
FRMSD(D,M, f).

Theorem 3.1. For any two points sets D,M ∈
Rd, Algorithm 3 converges to a local minimum of
FRMSD(T (D),M, f, µ) over (f, T, µ) ∈ [0, 1]×T ×{D →
M}.

Proof Sketch: Algorithm 3 only changes the value of
(f, T, µ) when computing the optimal transformation T
(line 7), computing the optimal matching µ (line 8), or
computing the optimal fraction f (line 9). None of these
steps can increase the value of FRMSD(D,M, fi, µi), be-
cause staying at the current value would retain the value of
FRMSD(D,M, f, µ), but each can potentially decrease it.
(Full proof appears in longer version [14].)

4 Data Generation Model

In order to formalize the expected mathematical prop-
erties of the FRMSD measure and the FICP algorithm, we
now state some fairly general assumptions about the input
data. All data on which FICP is used need not have these
exact properties, but we hope that these properties are gen-
eral enough that whatever differences exist in the alternative
data will not significantly affect the following analysis and
the resulting conclusions.

We assume that data points are generated from model
points by the following abstract procedure:

1. Generate a set MI of model points that will have cor-
responding data points

2. For every model point m ∈ MI , let p = T−1(m + n)
be the corresponding data point, where T is a transfor-
mation in the set T and n is isotropic Gaussian noise
with standard deviation σ. The set of data points p cor-
responding to MI is denoted as DI .

3. Generate a random set DO of data outliers.

4. Generate a random set MO of model outliers out of a
spatial Poisson process.

We let D = DI ∪DO and M = MI ∪MO. Let pI be the
fraction of data inliers relative to all data points. The Pois-
son process for model outliers is a minimally informative
prior. We let the density of this process be ω points per unit
volume.

The probability density of the squared magnitude z =
‖n‖2 of the correspondence noise is a chi square density in
d dimensions:

gχ2(d)(z) =
zd/2−1

2d/2σdΓ(d/2)
e−

z
2σ2

where

Γ(x) =
∫ ∞

0

tx−1 e−t dt

is the gamma function. The expected number of model out-
liers in a region of space with volume V is equal to ωV .

Suppose now that the correct geometric transformation
T ∈ T is applied to data point p to obtain the transformed
data point

q = T (p) = m + n.

If q and m correspond, their distance statistics are chi
square. If q and m do not correspond, the situation is more
complex: Either point (or both) could be an outlier, or they
could be non-corresponding inliers. We do not know the
distance statistics for model inliers. In the remainder of this
section, we assume that the probability that a data inlier
is nearest to a non-corresponding model inlier is negligi-
ble. Under this assumption, the probability density of the
distance r from q to the nearest outlier, given that model
outliers are from a spatial Poisson process with density ω
points per unit volume, can be shown to be

w(r) = ω S(d) rd−1 e−ω S(d) rd/d for r ≥ 0

where

S(d) =
2πd/2

Γ(d/2)
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is the surface of the unit sphere in d dimensions.
So far we have not specified the units of measure. Since

σ is a distance and ω is a distance raised to power −d (den-
sity per unit volume), the parameter σω1/d is dimension-
less. As long as σ and ω are properly scaled to each other,
the analysis that follows is independent of σ.

5 The Value of λ

In this Section we justify a particular choice for the
value of λ used in the definition of the fractional root mean
squared distance (FRMSD).

As shown in Section 3.1, the FICP algorithm selects a
fraction f of data-model matches in increasing order of their
residual distances r = ‖p− µ(p)‖. Because of this, choos-
ing a fraction f is equivalent to choosing a maximum al-
lowed value r∗ for the residual distance r. Since we would
like the FICP algorithm to favor inliers over outliers, it
makes sense to require r∗ to be defined in such a way that
data points that are r∗ away from a model point are equally
likely to be inliers as they are to be outliers. Let us call
such a value of r∗ the critical distance. We then ask the
following question: Is there a value of λ in the definition
of the FRMSD for which the value of f chosen by the FICP
algorithm corresponds to the critical distance?

To answer this question, we first express r∗ as a func-
tion of the model parameters (Section 5.1), and determine
the function that relates an arbitrary distance r to the cor-
responding fraction f (Section 5.2). We then write an esti-
mate of the FRMSD under an ergodicity assumption (Section
5.3). This estimate is itself a function of f , and therefore of
r. The FICP algorithm maximizes the FRMSD with respect
to f , that is, finds a zero for the derivative of the FRMSD

with respect to f . Setting the value of f where this zero is
achieved to f(r∗) yields an equation for λ, whose solution
set justifies our choice for this parameter (Section 5.4).

Our analysis holds for outlier densities ω that are be-
low a certain value ωmax, which is inversely proportional
to the standard deviation σ of the noise that affects the data
points. If outliers exceed this density, then matching data
and model points based on minimum distance is too unreli-
able to yield good results.

5.1 The Critical Distance

The volume of a sphere of radius r in d dimensions is

Vs(r) =
S(d)

d
rd

where S(d) was defined in Section 4. The volume of the
shell between radii r and r + δr is

δVs =
S(d)

d

[
(r + δr)d − rd

]
≈ S(d) rd−1 δr .

This approximation is asymptotically exact as δr → 0.
The probability mass in the same shell for an isotropic

Gaussian distribution with zero mean and standard devia-
tion σ is

δGs = 2r gχ2(d)(r2) δr =
S(d)

(2π)d/2 σ

( r

σ

)d−1

e−
1
2 ( r

σ )2

δr

as δr → 0 (the term 2r derives from the Jacobian of the
transformation z = r2, since the χ2 density is defined for
the square of a distance) .

Assume that the center of the shell above is at the trans-
formed data point q defined in Section 4. As explained in
Section 4, if q and m correspond, their distance statistics
are chi squared, and the likelihood of a particular radius r
is δGs/δr. Otherwise, the distance statistics are approxi-
mately described by a spatial Poisson process with density
ω. Then, the critical distance is determined by the equation

ω δVs = δGs

that is,

e−
1
2 ( r

σ )2

= ω σd (2π)d/2 . (5.1)

The left-hand side of equation (5.1) is strictly positive
and monotonically decreasing in r and the right-hand side
is constant, so the equation admits a solution if and only if

0 < ω ≤ ωmax =
1

(
√

2π σ)d
.

If the outliers exceed this maximum density ωmax, the crit-
ical distance shrinks to zero: any model point around any
given data point q is more likely to be an outlier than it is
to be the model point corresponding to q. Of course, when
there are no model outliers (ω = 0) the concept of critical
distance loses its significance.

Equation (5.1) can be solved for r to yield the desired
value of r∗ as a function of the model parameters:

r∗

σ
=

√
−2 loge((

√
2π σ)dω) =

√
2 loge

ωmax

ω
.

5.2 Relationship between f and r

With probability pI , the data point q has a correspond-
ing model point (inlier). In this event, if rI is the distance
from this model point and rO is the distance from the near-
est model outlier point, the complement of the cumulative
probability function of the distance r to the nearest model
point (either inlier or outlier) is

1− F (r) = 1− P[min(rI , rO) < r] = P[min(rI , rO) ≥ r]
=P[rI ≥ r ∩ rO ≥ r] = P[rI ≥ r] P[rO ≥ r]
=(1− P[rI ≤ r]) (1− P[rO ≤ r]) = (1− FI(r)) (1− FO(r))
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where FI(r) and FO(r) are respectively the probability that
the matching model point and the nearest model outlier are
at most r units away from q. From Section 4, these proba-
bilities are as follows:

FI(r) =
∫ r2

0

gχ2(d)(ζ) dζ and FO(r) =
∫ r

0

w(ρ) dρ .

Then, if q has a corresponding model point, the density of
its distance from the nearest model point is

φc(r) =
dF (r)

dr
= − d

dr
(1− F (r))

= 2r gχ2(d)(r2) (1− FO(r)) + (1− FI(r))w(r) .

With probability pO = 1− pI , the data point q is instead
an outlier. Then, it has no corresponding model point, so
the probability that the nearest model point is at most r units
away is simply FO(r). In summary, the probability density
of the distance between a data point q and its nearest model
point µ(q) is

φ(r) = pI φc(r) + pO w(r)

and the average fraction of model points within r units from
a data point is

f(r) =
∫ r

0

φ(ρ) dρ = pI

∫ r

0

φc(ρ) dρ + pO FO(r) .

The derivative of f with respect to r is φ(r).

5.3 Ergodic Estimate of the FRMSD

An estimate of the fractional root mean squared distance
(FRMSD) can be obtained by assuming ergodically that the
sample moment included in the definition of FRMSD is close
to the corresponding statistical moment:

1
f |D|

∑
p∈Df

‖p− µ(p)‖2 ≈ Ep∈Df
[‖p− µ(p)‖2] .

We can then write

FRMSD2(D,M, f) =
1

f2λ

1
f |D|

∑
p∈Df

‖p− µ(p)‖2

≈ 1
f2λ

Ep∈Df
[‖p− µ(p)‖2] =

1
f2λ

∫ r

0

ρ2 φ(ρ) dρ .

5.4 Stationary Point of the FRMSD Esti-
mate

At the minimum of FRMSD(D,M, f), the derivative of
FRMSD2(D,M, f) with respect to f is zero. Differentiation
of the expression at the end of Section 5.3 yields

d

df
FRMSD2(D,M, f)

−2λ

f2λ+1

∫ r

0

ρ2 φ(ρ) dρ +
r2

f2λ
φ(r)

dr

df
.

Since (
dr

df

)−1

=
df

dr
= φ(r) ,

the last addend simplifies to r2/f2λ, and

f2λ d

df
FRMSD2(D,M, f) = −2λ

f

∫ r

0

ρ2 φ(ρ) dρ + r2 .

Zeroing this derivative and setting r = r∗ and f = f(r∗)
yields the following equation for λ:

λ =
1
2

(r∗)2
∫ r∗

0
φ(ρ) dρ∫ r∗

0
ρ2 φ(ρ) dρ

.

Figure 1 plots the values of λ in two and three dimen-
sions as a function of the relative model outlier density
ω/ωmax and for various values of the data inlier fraction
pI .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

ω/ωmax

λ

d = 2

d = 3

Figure 1. Theoretical value of λ in the def-
inition of the FRMSD in two (upper bundle)
and three (lower bundle) dimensions as a
function of the relative model outlier density
ω/ωmax. Curves in each bundle correspond to
pI = {0.5, 0.6, 0.7, 0.8, 0.9} from the bottom up.
Dependency on pI is weak.

Since the noise standard deviation σ acts merely as an
overall scale factor, these plots do not depend on σ. It is
apparent from the figure that λ depends weakly on the frac-
tion pI of data inliers. The knees of the plots are at about
λ = 1.3 and λ = 0.95 for d = 2 and d = 3 dimensions,
respectively, corresponding to ω/ωmax = 0.2. These knee
values are selected as general-purpose values for the defini-
tion of FRMSD in two and three dimensions.

6 Experiments

The main advantage of FICP over other variants of ICP is
that it automatically determines the outlier set via a fraction=
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f and reaches a optimum in terms of the correspondence,
the transformation, and the fraction of outliers. In doing so,
it takes less time than algorithms which have no guarantees,
despite searching a larger parameter space.

We deal empirically with the issue of the parameter λ
used in the definition of FRMSD. We observe that FRMSD is
robust to the choice of λ within a broad range. However the
radius of convergence and efficiency of FICP is improved
when λ is set to a slightly higher values than those deter-
mined optimal for identifying outliers in Section 5. Intu-
itively, a smaller value of λ is more likely to classify correct
correspondences as outliers when the alignment is not close,
and thus get stuck in local minimum. For higher values of λ
these types of local minimum seem less prevalent. So for all
performance studies we set λ = 3, unless otherwise speci-
fied. For this value FICP has an expanded radius of conver-
gence and tends to find very similar alignments as when λ is
set according to the analysis in Section 5. After converging,
we recommend setting λ = 1.3 for d = 2 or λ = .95 for
d = 3 to identify outliers more agressively. This final phase
should take very few additional iterations of the algorithm,
since, as we demonstrate, moderately modifying the value
of λ has small effects on the FRMSD and f values returned.

6.1 Data Sets

We use the SQUID fish contour database [18] from the
University of Surrey, UK. This database has 1100 2D con-
tours of fish and each contour has 500 to 3000 points. The
size of this data set allows us to average results over a very
large set of experiments.

We also perform some experiments on a limited num-
ber of 3D models. In particular we use the bunny (35,947
points) and the happy Buddha (144,647 points) data set
from the Stanford 3D Scanning Repository.

We synthetically introduce outliers into the data sets in 3
ways. We always begin by creating two copies M and D,
to represent the model and the input data, of the particular
data set. A parameter pI fraction of the final set D are left
undisturbed as data inliers.

• Occlusion: We randomly choose a ball B and remove
all of the points from M within B. This represents
cases where the model set is only partially observed
because of occlusions, where two overlapping views
of the same object do not exactly align, or where the
input data D has grown since the model was formed.

• Deform: We randomly choose a ball B and shift ran-
domly the points D∩B. This represents the case where
D is deformed slightly between time steps.

• New data: We add a set of points to D. These points
are placed uniformly at random within a bounding box

of D. This represents outliers caused by some sort of
data retrieval noise or from spurious or new data.

Finally, we independently add Gaussian noise to each point
p ∈ D.

We perform many tests on synthetic data because we
know that a good match exists and it is thus easy to quantify
the performance on our algorithm.

Additionally, we perform tests on real scanned data. We
align pairs of scanned images of the dragon model (drag-
onStandRight) from the Stanford 3D Scanning Repository
from views 24◦ or 48◦ apart. Because the different views
observe different portions of the model, there are many
points which have no good alignment in both the model and
data set. These are outliers.

6.2 Performance

For each data set and type of outliers described above,
we perform the following set of tests. Results are averaged
over all SQUID data sets or 10 random rotations for 3D
models. We first rotate D by θ degrees where θ is from the
set {5◦, 10◦, 25◦, 50◦}. The axis of rotation is chosen ran-
domly for the 3D data. We then run ICP, TrICP searching
for f with the golden section search [4], and FICP, mini-
mizing over all rigid motions. We report the total number
of iterations of each, the run time, and the final values of
RMSD, FRMSD, and f . We vary the input so that pI is ei-
ther {.75, .88, .95}. We expect that optimally f should be
near pI since in our data ω/ωmax is small. All experiments
were performed on a 3 GHz Pentium IV processor with 1
Gb SD-RAM.

Tables 1, 2, 3, and 4 show a sample of these results.
TrICP and FICP return similar values of RMSD and FRMSD

on average while also determining reasonable values for f .
However, FICP is about 6× to 11× faster than TrICP using
the golden section search.

Alg. pI time (s) # iter. RMSD FRMSD f
ICP .75 0.335 24.5 9.454 9.454 1.000

TrICP .75 1.356 117.9 0.217 0.541 0.744
FICP .75 0.178 13.6 0.178 0.424 0.749

Table 1. SQUID: Occlusion outliers, rotated 5◦.

Alg. pI time (s) # iter. RMSD FRMSD f
ICP .75 0.461 26.7 5.820 5.820 1.000

TrICP .75 1.578 92.9 0.176 0.399 0.768
FICP .75 0.264 13.7 0.175 0.388 0.766

Table 2. SQUID: New Data outliers, rotated 5◦.

Observe in Figure 2 how in the alignment of the bunny
data set, the non-deformed points (red points on back side,
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Alg. pI time (s) # iter. RMSD FRMSD f
ICP .88 29.6 48.0 0.4530 0.4530 1.000

TrICP .88 147.1 224.3 0.0052 0.0077 0.880
FICP .88 13.7 15.9 0.0052 0.0077 0.880

Table 3. bunny: Deform outliers, rotated 5◦

Alg. pI time (s) # iter. RMSD FRMSD f
ICP .88 109.2 28.2 0.2975 0.2975 1.000

TrICP .88 485.4 120.5 0.0012 0.0018 0.880
FICP .88 81.4 15.7 0.0012 0.0017 0.880

Table 4. Buddha: Deform outliers, rotated 5◦

blue points are not visible because they lie exactly behind
the red points) are aligned almost exactly by the FICP algo-
rithm while the deformed points (shifted from visible blue
points in front) are ignored. Such an alignment allows one
to easily identify the portion of the data which has been de-
formed, and by how much it has been deformed. Without a
proper registration to the model, the unaligned points have
no point of comparison to gauge their deformation. The
alignment is skewed when ICP is used and it is not helpful
in determining which points are deformed.

Figure 2. bunny: M in blue (top left) and D in
red (top right) with Deform noise with pI = .75.
Registered using FICP (bottom left) and ICP
(bottom right).

6.3 Funnel of Convergence

We measure the radius of convergence of each algorithm
by calculating the percentage of cases from the SQUID data

set that converge to an FRMSD value within .01 and f value
within .01 of the alignment between the same sets with no
initial rotation. Table 5 shows the results when New Data
outliers with pI = .88 are added to the data set D. The re-
sults for the other types of noise are simlar. For 3D data sets
we chose σ proportionally smaller, so these convergence
rates are all slightly larger. Note that FICP with λ = 3
performs much better than when λ = 1.3.

Alg. λ 5◦ 10◦ 25◦ 50◦

ICP - 0.999 0.997 0.994 0.962
TrICP 3 0.875 0.870 0.853 0.816
FICP 3 0.952 0.945 0.909 0.875
FICP 1.3 0.857 0.473 0.141 0.060

Table 5. Percentage of SQUID data sets con-
verging per initial rotation.

ICP has a larger radius of convergence than FICP, be-
cause it searches a much smaller parameter space. FICP
has a larger radius of convergence than TrICP even though
they search the same parameter space.

6.4 Validating λ

We empirically justify that FRMSD is not sensitive to the
choice of λ. We run FICP with λ set to {1, 1.3, 2, 3, 4, 5}.
We plot the averaged results on the SQUID data set when
Occlusion noise is added with pI = .75 and D is initially
rotated 0◦ and 5◦ in Table 6 and Table 7, respectively. Al-
tering λ does not dramatically affect the converged solution,
but can affect the radius of convergence. The output is sim-
ilar for different types of noise. On 3D data, FICP performs
slightly better than 2D data for smaller λ.

Alg. λ time (s) # iter. RMSD FRMSD f
FICP 1 0.142 10.38 0.158 0.225 0.701
FICP 1.3 0.069 3.81 0.170 0.248 0.749
FICP 2 0.059 3.06 0.170 0.303 0.750
FICP 3 0.061 3.17 0.170 0.404 0.750
FICP 4 0.062 3.21 0.171 0.538 0.751
FICP 5 0.063 3.30 0.172 0.717 0.751

Table 6. FICP, varying λ, with D rotated 0◦.

6.5 Aligning Scanned Model Data

We aligned the dragon scans 24◦ and 48◦ apart with ICP,
TrICP, and FICP. See longer version [14] for tables. For
most alignments both FICP and TrICP realize an alignment
with a much lower FRMSD value than ICP, with FICP, occa-
sionally, noticeably outperforming TrICP. FICP is usually
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Alg. λ time (s) # iter. RMSD FRMSD f
FICP 1 0.733 37.23 0.298 1.503 0.274
FICP 1.3 0.488 36.44 0.219 0.563 0.660
FICP 2 0.244 17.00 0.176 0.329 0.740
FICP 3 0.198 13.59 0.178 0.424 0.749
FICP 4 0.194 13.28 0.184 0.570 0.751
FICP 5 0.200 13.66 0.299 0.875 0.756

Table 7. FICP, varying λ, with D rotated 5◦.

about as fast as ICP, and is consistently about 5× to 10×
faster than TrICP.

Figure 3 shows the alignment of the scan at 0◦ aligned
with the scan at 48◦ using ICP and FICP. Notice how when
the scans are aligned with ICP, the points in the dragon’s tail
are slightly misaligned, whereas with FICP, the alignment is
much better.

Figure 3. Dragon scans at 0◦ and 48◦ with M
in blue and D in red, registered using FICP
(top left) and ICP (top right). Zoomed images
of the alignment around dragon’s tail with
FICP (bot. left) and ICP (bot. right) demon-
strate the skew in the alignment due to ICP.
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