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ABSTRACT

Supervised learning uses a training set of labeled examples to
compute a classifier which is a mapping from feature vectors
to class labels. The success of a learning algorithm is evalu-
ated by its ability to generalize, i.e., to extend this mapping
accurately to new data that is commonly referred to as the test
data. Good generalization depends crucially on the quality
of the training set. Because collecting labeled data is labori-
ous, training sets are typically small. Furthermore, it is often
difficult to represent all possible observation scenarios during
training, so that the statistics of the training set end up differ-
ing from those of the test data, a problem known as the sample
selection bias. To address sample selection bias, we introduce
a Semi-Supervised Fisher Linear Discriminant (SFLD) that
utilizes additional, unlabeled data to improve generalization
for both small and biased training sets. We characterize the
conditions under which SFLD helps, and illustrate its benefits
through experiments on digit and car recognition applications.

Index Terms— Sample Selection Bias, Generalization,
Classification, Fisher Linear Discriminant

1. INTRODUCTION

The goal of a classification algorithm is to learn a mapping
from feature vectors x ∈ X that describe data points to tar-
get values y ∈ Y that designate the class of the data points.
The merit of any classification algorithm is evaluated based
on how well it predicts the target values of previously unseen
data which is measured by the generalization error, i.e., the
expected classification error over the underlying distribution
D of the data. This is called the generalization problem in
machine learning [3].

In this work, we investigate the quality of the labeled
training data, and its effect on the generalization error. There
are two main aspects of the training data quality that de-
termine how well it can represent D: (i) sample size, i.e.,
number of data points in the training set; and (ii) sampling
process, that is, the process for collecting or generating the
training data. There is an extensive collection of past work
in the literature such as [7] that studied the small sample size

problem. Here, we specifically focus on the sampling pro-
cess, which is the less visited aspect of training set quality.
Sampling process can vary for different datasets leading to
sample selection bias. More formally, a dataset has sample
selection bias if it is not drawn randomly from the under-
lying distribution D. Therefore, the training set may fail
to represent the general population which would then cause
degradation in the generalization performance.

There are many examples of semi-supervised learning in
the literature that make use of unlabeled data to overcome the
issues arising from the scarcity of labeled data [2], [4], [9],
[5]. Most of these methods implicitly assume that the training
data is an unbiased, random sample from the underlying dis-
tribution D. There is also an active research area that specifi-
cally addresses sample selection bias. For instance, in statis-
tics sample selection bias has been studied under the missing
data problem [11], [12], which categorizes the type of the bias
based on the mechanism that causes the missing data. This
bias categorization has also been adopted in machine learning
with particular attention on the type of bias that is caused by
the features. Most of the related work in this area propose
using techniques that are essentially based on either impor-
tance sampling [15] or expectation-maximization (EM) [14]
methods.

It is not straightforward to determine the presence of bias
in a real dataset without knowing the actual experimental
setup or the data collection process thoroughly. Most real
datasets are complex enough that the distinctions between
different conditions under which datasets are generated may
become hard to characterize. Therefore, a successful semi-
supervised algorithm should not depend on assumptions re-
lating to the sampling process. Ideally, a successful semi-
supervised algorithm should be able to maintain the level of
performance of a supervised learner when the labeled sam-
ples are plentiful and representative; improve performance
when the labeled samples are few yet representative; and also
improve performance when the labeled samples are biased,
without human supervision or modification of tuning param-
eters. In accordance with the above description, we propose
a semi-supervised Fisher linear discriminant (SFLD) unlike
the existing methods as it does not require distinguishing



the type of the bias or even the presence thereof. Therefore,
SFLD attempts to incorporate the information from the avail-
able unlabeled samples to the learning process to improve
classification accuracy when the labeled data is sparse or is
biased. Section 2 describes SFLD criterion and the procedure
for optimization using unlabeled data. Section 3 provides
experimental results from the digit and car datasets to il-
lustrate superior performance of SFLD compared to other
semi-supervised methods. In Section 4, we conclude by
discussing SFLD and potential future improvements to it.

2. OPTIMIZING SFLD USING UNLABELED DATA

We propose a new optimization criterion based on extending
the original Fisher criterion to also incorporate the unlabeled
data points for learning a classifier. In the context of binary
classification where C = {c0, c1} refers to the two distinct
categories, it is known that Fisher Linear Discriminant (FLD)
[6] finds a weight vector w that optimizes the class separation
criterion J(w) = wT SBw

wT SW w
in the labeled data where SB =

(µ0 − µ1)(µ0 − µ1)T is the between class covariance matrix
and SW =

∑
x∈c1

(x−µ1)(x−µ1)T +
∑

x∈c0
(x−µ0)(x−

µ0)T is the within class covariance matrix. Our goal is to
extend this criterion so that a potential class separation in the
unlabeled data can also be recovered.

The intuition behind SFLD is to move the original FLD
line w in a direction such that the new decision boundary
passes through a gap within the unlabeled points while keep-
ing the separation in the labeled data points high, albeit not
maximum as in FLD. Here, w is initialized to maximize the
original Fisher criterion JL(w) = wT SLB

w

wT SLW
w

on the labeled
data where the subscript L stands for the labeled dataset. The
new SFLD criterion J(w) = λJL(w) + (1 − λ)JU (w) is
a convex combination of JL(w) and JU (w) where the term
JU (w) serves for exploring a separation in the unlabeled set
and λ is the tradeoff parameter that controls the degree to
which JU (w) is optimized versus JL(w). Moreover, we de-
fine JU (w) to be:

JU (w) =
wT ŜUB

w

wT ŜUW w
=

(µ̂−U − µ̂+U )2

(σ̂2
−U + σ̂2

+U )
(1)

where µ̂ and σ̂ denote the maximum likelihood estimates
of the class conditional parameters and ŜUB and ŜUW are
the between and within class scatters for the unlabeled
data. These estimates are found using the unlabeled dataset
{(xUk

)}k=1,...,NU
and the predicted labels {(ŷUk

)}k=1,...,NU

inferred by w. To maximize J(w), we propose a gradient
ascent based iterative optimization method. Since the label
estimates {(ŷUk

)}k=1,...,NU are based on the current w, each
iteration has the following two steps: (1) Predict the labels
according to the current w and update µ̂ and σ̂ of each class
according to the current predicted labels; (2) Update w in the
direction of the gradient of J(w).

Since this optimization scheme is based on shifting the
original w until a gap in the unlabeled data is found, w is ini-
tialized to w(0), the original vector that maximizes the Fisher
criterion JL(w) for the labeled training data. At each itera-
tion i, first the labels of the unlabeled data are estimated using
w(i−1), and these estimated labels {(ŷUk

)}(i)k=1,...,NU
are used

to update the class conditional parameters µ̂(i) and σ̂(i) of the
unlabeled data. For an unlabeled feature vector xU , the label
ŷ
(i)
U assigned at iteration i is estimated as:

ŷ
(i)
U =

{
1 if w(i−1)T

xU ≥ 0,
0 otherwise

(2)

Using these predicted labels, the maximum likelihood es-
timates µ̂(i) and σ̂(i) for the class conditional parameters of
the positive and negative classes of the unlabeled data can be
computed.

In the second step of iteration i, the new vector w(i) is
computed by updating w(i−1) in the gradient direction g(i−1).
Thus, w(i) = w(i−1) + α(i)g(i−1). Here, the optimal step
length α(i) is determined automatically. We set α(i) to the
α that maximizes J(w(i)) = J(w(i−1) + α(i)g(i−1)) when
w(i−1) and g(i−1) are held constant. This maximization is
performed by finding the roots of the quadratic polynomial
that maximizes the above expression.

Another parameter that has a role in maximizing J(w) is
λ, the tradeoff parameter that balances the effect of the labeled
and unlabeled datasets on the optimization function. This pa-
rameter can have a significant influence on the step size α.
Therefore, instead of setting λ arbitrarily, we decided that

JU (w(0))
JL(w(0))+JU (w(0))

can be a simple and useful measure for bal-
ancing the effects of the labeled and unlabeled data. Finally,
when the difference between w(i) and w(i−1) falls below a
certain threshold, w is no longer updated.

3. RESULTS

To illustrate how classification is affected by using training
and test sets that are collected under different conditions, we
will use the car detection example with datasets obtained from
LabelMe [13] and UIUC [1] databases. These two databases
are similar in the sense that they both have images that contain
a side view of a car cropped inside a rectangular bounding
box. On the other hand, one obvious difference between the
two databases is the scale and resolution of the car images.

Figure 1 shows two cases in which both test sets are con-
structed using the UIUC database, with different training set
formations. The diagram on the left refers to the case where
the training set is formed using only LabelMe; whereas the di-
agram on the right refers to the case where the training set is
formed using a combination of LabelMe and UIUC databases.
The reference line in the diagram is used to indicate the line
found by FLD whose direction vector is denoted as w. This
line is used for projecting the data onto a one dimensional



subspace while maximizing the separation criterion J(w) of
FLD. In each diagram, the top of the reference line corre-
sponds to the training set whereas the bottom one corresponds
to the test set. The colored bars represent two standard devia-
tions of the projected data centered symmetrically around the
mean of each of the classes. The blue bars correspond to the
positive (car) class, and the red bars correspond to the nega-
tive (non-car) class. The training class-conditional means are
denoted by µ+R and µ−R, whereas the test means are de-
noted by µ+S and µ−S for the positive and negative classes
respectively as the subscripts + and− refer to the classes and
R and S refer to the training and test sets. The dashed line
indicates the decision boundary that minimizes classification
error on the training set. It is clear from Figure 1 (a) that when
training and test datasets are obtained from different image
sources such as LabelMe and UIUC, the subspace with max-
imum separation for the training set is far from separating the
classes for the test set. This is visible from the significantly
overlapping red and blue bars in Figure 1 (a). By contrast, the
overlap between the two classes for the test set is significantly
reduced in Figure 1 (b) compared to the first case since there
are also images from the UIUC database in this training set.
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Fig. 1. Projection of car data when FLD is trained using
(a) only the LabelMe dataset; (b) the union of LabelMe and
UIUC datasets. The bars above the reference line show the
training set and the ones below show the test set (UIUC) pro-
jections.

We also verified that SFLD is able to significantly im-
prove classification accuracy when the training and test sets
are not similar. Here, car and digit recognition applications
are used as examples for comparing the performance of SFLD
with some other prominent works in this area.

(a) LabelMe example (b) UIUC example

Fig. 2. Examples from car databases

(a) MNIST Digit 4 (b) USPS Digit 4

Fig. 3. Examples from digit databases

For the car recognition example, we used the same image
databases that we used for the diagrams in Figure 1. There-
fore, the LabelMe database is used as the labeled training set,
and the UIUC database is used as the unlabeled data for form-
ing the test set. Examples of car images from these databases
are shown in Figure 2. For the digit recognition example, the
task is to distinguish the digit 4 from the digit 9 since we fo-
cus on binary classification in this work. We picked the digits
4 and 9 as they are somewhat similar in shape, thus it is rela-
tively more challenging to classify them. The datasets that we
use here are selected from the National Institute of Standards
and Technology (MNIST) [10] and the US Postal (USPS) [8]
digit databases, which are used as the labeled training set and
the unlabeled set respectively. Figure 3 shows several digit
images from these databases.

Table 1 summarizes the classification errors for the car
and digit recognition applications when the test set is a sub-
set of the unlabeled data, and the rest of the unlabeled data
is used for optimizing SFLD. Thus, the unlabeled data that
is used for optimization is different than the unlabeled data
that is used for testing. Here, we compare our method to the
original Fisher linear discriminant (FLD), transductive Sup-
port Vector Machine (tSVM) [9], and the weighted Fisher
linear discriminant (WFLD) where tSVM and WFLD meth-
ods also use unlabeled data for improving classification accu-
racy. The weights in WFLD correspond to the density ratios
p(x|s = 0)/p(x|s = 1) which is a standard weight used in
the sample selection bias literature [15].

These error rates are obtained from the average of five
random partitions of the unlabeled data, where 30% of the
unlabeled data is used for testing. It is clear that for both digit
and car recognition, there is significant improvement in clas-
sification performance when SFLD is used for utilizing the
information from the unlabeled data. Moreover, both tSVM
and WFLD fail to improve the classification error on these
recognition tasks where the labeled training data and the un-
labeled data are substantially different. Semi-supervised tech-
niques that are based on reweighing, such as WFLD, are only
viable when the labeled and unlabeled data overlap signifi-
cantly. Otherwise, the density ratios p(x|s = 0)/p(x|s = 1)
can not be estimated reliably. Therefore, the dissimilarity be-
tween the labeled and unlabeled datasets that are used here
can account for the failure of WFLD. On the other hand,
tSVM takes as input the ratio between the number of points in



Method Test Dataset Error Rate
SFLD USPS Digit 10.48 %
FLD USPS Digit 20.87 %
tSVM USPS Digit 20.42 %
WFLD USPS Digit 32.62 %
SFLD UIUC Car 11.40 %
FLD UIUC Car 18.29 %
tSVM, r = 0.15 UIUC Car 26.09 %
tSVM, r = 0.5 UIUC Car 11.75 %
WFLD UIUC Car 23.35 %

Table 1. Classification accuracies when the test set is a hold-
out sample from the unlabeled dataset

two classes, in order to avoid an unbalanced split. This is one
of the undesirable properties of the tSVM scheme as it is of-
ten not realistic to know this ratio a priori. The convention is
to use the same ratio obtained from the training set, however
this can be misleading especially when there is sample selec-
tion bias. According to our experiments, this parameter can
have a significant impact on performance. In the digit recog-
nition example, when the more accurate class ratio r = 0.5
is given, tSVM and our method performs similarly; whereas
when r = 0.15, there is significant drop in the performance
of tSVM.

4. DISCUSSION

This work investigated the effect of using training and test sets
that were collected under different conditions on the classifi-
cation performance. In this context, car and digit recognition
tasks were used to illustrate how the information from the la-
beled training data can be insufficient for locating the deci-
sion boundary in the test data. In order to simulate different
conditions for data collection, we used training datasets that
were obtained from a different image database than the test
datasets.

We proposed the semi-supervised Fisher linear discrim-
inant (SFLD) to utilize the information from the relatively
more abundant unlabeled data in order to bridge the gap be-
tween the insufficient labeled data and the test data. In digit
and car recognition, SFLD successfully improved classifica-
tion accuracies by locating the region in the test data where
there is more prominent class separation. However, it should
be noted that there are also several assumptions for SFLD to
succeed. One of the main restrictions is the requirement of
linear separability as FLD is the classifier that we build on.
Therefore, extending a similar idea to non-linear classifiers
would be an interesting study in the future. Kernel methods
can provide insight here by making data linearly separable in
higher dimensions, possibly evoking more challenges at the
same time. Also, since SFLD is an iterative method, it can
possibly converge to a local maximum. Transforming the fea-

ture space to eliminate regions where within class gaps exist
can help alleviate this problem.
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