
Fingerspelling Recognition through
Classification of Letter-to-Letter Transitions

Susanna Ricco and Carlo Tomasi

Department of Computer Science
Duke University

Durham, NC 27708
{sricco, tomasi}@cs.duke.edu

Abstract. We propose a new principle for recognizing fingerspelling se-
quences from American Sign Language (ASL). Instead of training a sys-
tem to recognize the static posture for each letter from an isolated frame,
we recognize the dynamic gestures corresponding to transitions between
letters. This eliminates the need for an explicit temporal segmentation
step, which we show is error-prone at speeds used by native signers. We
present results from our system recognizing 82 different words signed by
a single signer, using more than an hour of training and test video. We
demonstrate that recognizing letter-to-letter transitions without tempo-
ral segmentation is feasible and results in improved performance.

1 Introduction

The native language of the Deaf Community in the United States is American
Sign Language (ASL), which defines a vocabulary of gestures corresponding to
frequently used words. When no standard sign exists for a desired word, signers
use fingerspelling, spelling out the word using gestures that correspond to the
letters in the English alphabet. Unlike word-level signs, fingerspelling gestures
use a single hand, and most do not require motion. Instead, different letters
are primarily distinguished by the positions of the signer’s fingers, called the
handshape.

The näıve approach to fingerspelling recognition is to learn to recognize each
letter’s handshape in isolation before tackling letters in sequence. We believe a
more reliable system recognizes transitions between letters rather than the letters
themselves. This approach avoids the need to select which frames to classify
into letters, a process that is error-prone at conversational speed. In addition,
emphasis on transitions leverages information about the shape of a signer’s hand
as a letter is being formed to differentiate between letters that are easily confused
in static frames. The näıve solution discards this helpful information.

In this work, we present a system that recognizes transitions between finger-
spelled letters. In Sect. 2, we review previous work on fingerspelling recognition.
These existing recognition systems rely on an initial time segmentation process
to identify a single isolated frame for each letter to be recognized. In Sect. 3,
we demonstrate situations where proposed time segmentation techniques fail,



necessitating the shift to letter-to-letter transitions. In Sect. 4, we describe a
system that uses traditional techniques from word-level ASL and speech recog-
nition to model the transitions. Section 5 illustrates the technique on an example
vocabulary. The results show that modeling transitions between letters improves
recognition performance when prior temporal segmentation is not assumed.

2 Related Work

The automatic translation of ASL into written English has been an active area
of research in computer vision for over a decade. Traditionally, researchers have
considered recognition of word-level gestures and fingerspelled letters to be iso-
lated problems and have developed separate techniques to address the two. The
two independent systems could eventually be combined to translate sequences
containing both word-level and fingerspelled signs by segmenting the video into
word-level or fingerspelled only segments using a binary classifier [1] and running
the appropriate system on the extracted segments.

Most systems designed to recognize word-level gestures use Hidden Markov
Models (HMMs) to model each hand’s location and velocity over time. Tech-
niques differ mainly in the degree to which handshape information is considered.
Some methods [2, 3] use only very basic handshape information, if any; others [4]
use a complete description of the bending angles at 18 joints in the hand, which
are measured using an instrumented glove such as a CyberGlove.

In contrast, existing fingerspelling recognition systems classify static hand-
shapes in isolation. The complexity in the handshapes that must be differenti-
ated led some researchers [5, 6] to use joint bending angles from a CyberGlove as
the input features. Unfortunately, these gloves are both intrusive and expensive.
Hernandez-Rebollar et al. [7] built their own instrumented glove in an attempt to
provide a low-cost option. Other researchers [8–11] focused on improving vision-
based methods to create systems that are relatively inexpensive and require only
passive sensing. These systems have performed well in restricted environments.
Birk et al. [12] report recognition rates as high as 99.7% for a single signer when
presented with isolated images of each letter.

A related and active area of research is the recovery of arbitrary 3D hand
poses from a single image [13]. In theory, one could construct a fingerspelling
recognition system by taking a single image of the signer’s hand, inferring the
corresponding 3D hand pose, and then matching this pose to the static poses
defined for each letter. Like traditional systems, however, a technique relying on
pose reconstruction still uses an isolated image of a letter as the input to be
recognized.

To find the necessary single frame, researchers apply a threshold to the total
motion in the image. Recognition is performed on low-motion frames. Different
techniques are used to measure the motion of the signer, ranging from the total
energy in the difference between two consecutive frames [10] to the velocity of the
hand directly measured using the instrumented gloves [6]. Motion-thresholding
techniques work well as long as signers pause as they sign each letter. How-



ever, they begin to fail when this assumption breaks down and individual letters
become hidden in the smooth flow of high-speed fingerspelling gestures.

To our knowledge, Goh and Holden’s fingerspelling recognition system [14]
is the only current technique that does not require an explicit segmentation into
individual letters prior to recognition. This system is trained to recognize finger-
spelling using the Australian Sign Language (Auslan) alphabet, with individual
HMMs for each Auslan letter chained together using an explicit grammar to
form word-level HMMs. A new sequence is classified as the word whose HMM
maximizes the probability of the observations, consisting of coarse descriptions
of handshape and the velocities of points along the boundary of the silhouette.
They report a best word-level accuracy of 88.61% on a test set of 4 examples of
20 different words.

3 The Case for Transitions

The assumption that signers pause at each letter is consistently violated at
conversational speed. Proficient signers commonly fingerspell at 40-45 words per
minute (WPM), and it is impossible to pause at every letter at this speed. At 45
WPM, many letters are not formed exactly, but are combined with neighboring
letters in fluid motions. Even if a signer does pass through the exact handshape
defined for a letter, the aliasing resulting from a comparatively low frame rate
can cause this handshape to be missed.

Our experiments show that thresholding methods fail to accurately identify
letters at conversational speed. We took clips from interpreter training videos [15]
of native signers and identified frames to classify using a method similar to the
one described by Lamar et al. [10], which measures motion in each frame by
image differencing. In the first version, we select all frames with motion below a
set threshold; in the second, we select only frames corresponding to local minima
of motion that fall below the threshold. Figure 1(a) shows 30 frames from a man
signing rpreter (part of interpreter), with frames corresponding to local minima
below a set threshold surrounded by red boxes. The seven frames that best
represent the seven signed letters as determined by a human expert are outlined
in blue.

The threshold misses the first three (r, p, and r in frames 4, 8, and 12) and last
(r in frame 30) letters completely. Frame 18 is incorrectly identified as a letter
frame; it is actually the midpoint of the transitional motion from the letter e
to t, where the signer changes the direction of motion of the index finger. Also
note that the handshapes selected by the expert for r and e in frames 12 and 15
do not exactly match the handshapes defined in the ASL manual alphabet for
these letters.1 The signer never forms the exact handshapes during his smooth
motion from the p in frame 8 to the t in frame 20. This would cause errors in
recognition for a system trained on the defined static poses for each letter, even
if these frames were selected for classification.

1 An introduction to the ASL manual alphabet can be found at
http://www.lifeprint.com/asl101/fingerspelling/abc.htm.



(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 

 

Straight threshold

Requiring local minima

(b)

Fig. 1. The last 30 frames (left-to-right, top-to-bottom, in (a)) from the word inter-
preter with the closest frame to each of the seven letters outlined in blue. The four
frames outlined in red (numbers 15, 18, 20, and 26) are those selected using a fixed
threshold on the motion in the frame. ROC curves (b) show the effect of varying the
threshold. Selecting all frames below the threshold (solid black) identifies too many
incorrect frames; selecting only local minima below the threshold (dashed red) is inca-
pable of finding letters where the signer does not pause. (Figure best viewed in color.)

The receiver operating characteristic (ROC) curves in Fig. 1(b) show the
effect of varying the threshold. The dashed line corresponds to an algorithm that
selects only local minima. Because some letters actually occur at local maxima,
not minima, this algorithm can never identify all the letters, no matter what the
threshold. The solid line corresponds to an algorithm that selects every frame
with motion below the threshold. This algorithm eventually finds all the letter
frames but includes almost all transition frames as well. Clips of different words
from a number of different signers show similar poor performance. In fact, we
observed that the more common a specific combination of letters was, the less
likely it was for those letters to occur at local minima.

Human experts recognize the difficulty in trying to extract individual letters
from continuous fingerspelling, often teaching students to look for the “shape of
the word” instead of picking out each letter. Research has shown young deaf chil-
dren also use this method, initially perceiving fingerspelled words as single units
rather than as sequences of individual letters [16]. We adopt a similar approach,
recognizing motions between letters and eliminating the need for an initial time
segmentation step. As an added benefit, looking at the motion between letters
can help differentiate between letters whose static handshapes appear similar.
Figure 2 shows consecutive frames from the fingerspelled words at and an, which
have similar final handshapes but contain distinguishing transitional motions.

4 Recognizing Transitions

In this section, we describe a system that recognizes the gestures corresponding
to motions between consecutive letters. We model the motion using an HMM



Fig. 2. Hand silhouettes from consecutive frames of the fingerspelled words at (left) or
an (right). The final handshapes (letters t and n) appear similar, but handshapes are
clearly different during the transition. In at, only the index finger must move to all for
correct placement of the thumb. In an, the index and middle fingers must both move.

with an observation model defined over part-based features extracted from single-
camera video of an unadorned signer. Because we recognize changes in handshape
over time using an HMM, our approach is related to the handshape channel
model used by Vogler and Mexatas [17] to recognize word-level signs involving
changes in handshape. Our method differs in that it is glove-free. The use of
similar recognition techniques is intentional because it allows the two systems
to be combined into one that would recognize both aspects of ASL.

4.1 Handshape Representation

We use a part-based method to represent handshape. Part-based methods are
sparse representations that match regions of the image to codewords in a speci-
fied dictionary. Typically, codewords are learned from training data or provided
by a human expert. We learn codewords that capture important information
about the position of each finger but that can be easily computed from images
recorded by a single camera.

Extracting Hand Silhouettes. Before learning parts, we extract the silhou-
ette of the signer’s dominant hand from each frame. Our train and test sets are
constructed so that skin can be accurately detecting using an intensity thresh-
old. In realistic environments, a more robust skin detection algorithm [18] would
be needed. After locating the region corresponding to the dominant hand and
arm based on its position in the frame, we discard the portion corresponding to
the arm by finding the wrist, a local minimum in the horizontal thickness of the
region. Our algorithm deals with slight errors in wrist detection by learning to
include small unremoved arm pieces in the dictionary of parts. Finally, extracted
silhouettes from each frame (examples shown in Fig. 2) are translated so that
their centroids align and are stored as 201×201-pixel binary masks.

Unsupervised Learning of a Dictionary of Parts. These silhouettes can be
partitioned into a small number of mostly convex parts. Each part is defined by
its shape and location relative to the centroid of the silhouette. The largest part
corresponds to the palm and any bent fingers occluding it. The remainder of the
silhouette consists of disconnected parts corresponding to extended or partially
extended groups of fingers or to sections of the arm that were not properly



removed. In Fig. 3(b), the silhouette from Fig. 3(a) has been broken into parts.
The outline of each piece is shown.

(a) (b) (c) (d)

Fig. 3. A hand silhouette (a) is broken into parts, indicated by their outlines in (b).
The reconstruction of this silhouette using the dictionary of parts in (d) is shown
in (c). This dictionary was learned from the training set described in Sect. 5. Each
part is displayed using the corresponding binary mask, with multiple non-overlapping
non-palm parts drawn in the same image to conserve space. We successfully learn
semantically meaningful palms and groups of fingers in an unsupervised fashion.

We extract parts from silhouettes using morphological operations. The palm
part is extracted by performing a sequence of erosions and dilations. After a
few erosions, the appendages disappear, indicated by the convexity of the shape
exceeding a fixed threshold. The dilations return the shape, corresponding to
the palm, to its original size but do not regrow the removed appendages. No
morphological operations are performed on the non-palm parts, which remain
when the extracted palm is subtracted from the original silhouette. All parts
are represented by binary masks with dimensions equal to the size of the input
silhouette (201×201 pixels). The location of the non-zero region encodes the
location of the part relative to the centroid of the hand.

The final dictionary contains parts representing the most frequently occur-
ring pieces. After extracting pieces from a training set, we cluster the palm
pieces and the non-palm pieces separately using k-means clustering. To increase
clustering speed, we reduce the dimensionality of each piece using PCA. We
include the medioids of each returned cluster in our dictionary. Increasing the
size of the dictionary improves the expressiveness of the representation but de-
creases computational efficiency and requires more training data. The dictionary
learned from our training set (see Sect. 5) is shown in Fig. 3(d). Each connected
component (20 palms and 40 non-palms) is a separate part.

Reconstruction from Parts. Given a learned dictionary, we compute repre-
sentations of novel hand silhouettes by reconstructing the new shape as closely as
possible while simultaneously using as few parts as possible. We first extract the
palm part from the novel silhouette using morphological operations and select
the part from the palm section of the dictionary that minimizes the total number
of incorrect pixels. Next, we greedily add parts from the remaining (non-palm)
portion of the dictionary until adding parts no longer improves the reconstruc-



tion. At each iteration, we tentatively add each unused part to the reconstruction
by increasing the value of all pixels inside its mask by one, selecting the part
which most reduces the total number of incorrect pixels in the reconstruction. To
improve the invariance of the representation we search over a small set of affine
transformations when finding the best fitting part. At termination, we return a
bit-vector indicating which parts make up the final reconstruction. Figure 3(c)
shows the reconstruction of the silhouette from Fig. 3(a) that uses five parts
from the dictionary in Fig. 3(d).

Our reconstruction procedure is reminiscent of the matching pursuit algo-
rithm [19]. However, our technique forces the reconstruction coefficients to be
binary rather than real-valued and our dictionary of parts does not form an
over-complete basis.

4.2 Hidden Markov Model

We train separate HMMs to recognize the transition between each pair of letters.
To recognize fingerspelling sequences without knowing when each transition be-
gins, we chain together the individual HMMs (called subunits). In this section,
we describe the topology of the resulting HMM, the observation model, and the
training and recognition processes. Rabiner’s tutorial [20] provides a good review
of HMMs and the related algorithms referenced here.

HMM Topology and Observation Model. Each subunit is a five-state Bakis
topology HMM [21] (see Fig. 4). Observations in the first and last states usu-
ally correspond to the handshapes of the two letters. Observations in the three
internal states capture configurations appearing during the transition. Skip tran-
sitions accommodate transitional motions performed at varying rate and phase
relative to video sampling times. In the complete HMM, we connect subunits
together using a bigram language model over letter transitions, introducing tran-
sitions between final and initial states of the subunits that form trigrams.

With our representation of handshape, each frame contains one palm and
any combination of the non-palms. Thus, with a dictionary containing P palm
parts and F non-palm parts, there are P ⋅2F possible observations at each frame.
It is too costly to try to learn or store the exact distribution over all possible
observations. Instead, we approximate with the factored distribution

P(p, f1, . . . , fF ) = P(p)

F∏
i=1

P(fi∣p) , (1)

which requires only (P−1)+P ⋅F parameters for each state. The P−1 parameters
define a multinomial distribution over palm parts. The remaining parameters
define P ⋅ F binomial distributions over the existence or non-existence of each
non-palm part conditioned on the palm used.



state 1,
p = 0.446361

a

state 2,
p = 0.130859

state 3,
p = 0.257694

state 4,
p = 0.234508

state 5,
p = 0.217248

t

state 1,
p = 0.446361

a

state 2,
p = 0.130859

state 3,
p = 0.257694

state 4,
p = 0.234508

state 5,
p = 0.217248

t

state 1,
p = 0.446361

a

state 2,
p = 0.130859

state 3,
p = 0.257694

state 4,
p = 0.234508

state 5,
p = 0.217248

t

state 1,
p = 0.446361

a

state 2,
p = 0.130859

state 3,
p = 0.257694

state 4,
p = 0.234508

state 5,
p = 0.217248

t

state 1,
p = 0.446361

a

state 2,
p = 0.130859

state 3,
p = 0.257694

state 4,
p = 0.234508

state 5,
p = 0.217248

t

From other
subunits

0.3730

0.6048 0.5724 0.3707 0.6461

To other 
subunits

0.3148 0.3939 0.3539 0.4822

0.0223 0.1128 0.2354state 1,
p = 0.446361

a

state 2,
p = 0.130859

state 3,
p = 0.257694

state 4,
p = 0.234508

state 5,
p = 0.217248

t

state 1,
p = 0.446361

a

state 2,
p = 0.130859

state 3,
p = 0.257694

state 4,
p = 0.234508

state 5,
p = 0.217248

t

state 1,
p = 0.446361

a

state 2,
p = 0.130859

state 3,
p = 0.257694

state 4,
p = 0.234508

state 5,
p = 0.217248

t

state 1,
p = 0.446361

a

state 2,
p = 0.130859

state 3,
p = 0.257694

state 4,
p = 0.234508

state 5,
p = 0.217248

t

state 1,
p = 0.446361

a

state 2,
p = 0.130859

state 3,
p = 0.257694

state 4,
p = 0.234508

state 5,
p = 0.217248

t

Fig. 4. A letter-to-letter transition HMM trained to recognize the a→t transition.
Edges correspond to transitions with non-zero probability. States model handshapes
found at different points during the transitional motion. The most likely observation
is displayed to represent each state.

Training. The subunits are trained independently using isolated sequences cor-
responding to the desired letter pair. Given a clip of continuous fingerspelling,
we hand-label a single frame for each letter signed. (These frames are the ones
previous methods use for recognition.) We then use all the frames between the
two labeled frames as an example of a given transition. During training, we
ensure that each sequence ends in the final state of the subunit by adding a non-
emitting state reachable only from the final emitting state. The parameters of
each subunit HMM are estimated using the standard Baum-Welch algorithm [20].
Initial observation models are learned by assuming that the true path for each
training sequence traverses all five states and remains in each state for 1

5 of the
total number of frames. The state transitions are initialized to be uniform over
those allowed by our topology. Figure 4 shows the learned HMM for the a→t
transition. Each state is represented by its most probable observation.

Recognition. To recognize a sequence of letters we compute the Viterbi path [20]
through the full HMM. Our recognized sequence of letters follows from the se-
quence of subunits the path traverses. The path traverses a subunit only if it
reaches one of the final two states, which keeps us from recognizing a letter pair
when only the first letter of the pair is actually signed.

5 Results

To construct a challenging test vocabulary, we built a third-order letter-level
model of English words (from Joyce’s Ulysses), and included the 50 most com-
mon letter pairs. These 50 digrams account for 48% of all letter pairs, and
contain 18 different letters. We then listed all trigrams (a total of 186) contain-
ing these 50 digrams that occurred with a frequency of at least 10−4. We built
an 82-word vocabulary (listed in Fig. 5) containing each trigram at least once.
The perplexity, 2H (where H is entropy [22]), of this vocabulary is 5.53 per di-
gram. By comparison, the perplexity of an equivalent model built from the 1,000
most common English words is 10.31. Our reduced perplexity results from the
prevalence of vowels in the top 50 digrams.



Our training set consists of 15 frame-per-second video of 10 examples of
each word (29,957 frames total); a separate testing set contains 10 additional
examples of each word (28,923 frames). Training and test data amount to about
65 minutes of video. Each frame is originally 640 × 480 pixels, with the hand
occupying a region no larger than 200 × 200 pixels. We learn the dictionary of
parts using unlabeled frames from the training set and train the HMMs using
labeled frames. No portion of the training set was used to test the performance of
any algorithm. After blind review of this paper, these data will be made available
online.

alas, andes, aroma, atoned, beating, bed, below, berate, bestowal, chased, cheat,
cheng, chinese, chisel, chow, coma, conde, contend, coral, corinth, courant, delores,
easter, eden, elitist, eraser, halo, handed, hang, hare, healed, helen, hero, hinder,
hither, home, hour, lane, larine, latest, lathered, line, long, male, marathon, master,
mate, meander, medea, mentor, merited, near, rarest, realist, releases, rise, roman,
ron, row, sealer, sentinel, serene, teal, testing, that, then, these, this, thor, tithed,
tome, urease, urine, velour, venerate, vera, vest, wales, wand, war, wasteland, water

Fig. 5. The 82-word vocabulary.

5.1 Competing Algorithms

To isolate the effect of recognizing letter transitions from choices of handshape
representation and probabilistic model, we compare our performance to two al-
ternate systems (Alt1 and Alt2), both of which share our handshape represen-
tation and observation model. Both Alt1 and Alt2 use an HMM with one state
corresponding to each letter, with observation models trained on isolated in-
stances of the corresponding letters. The HMM for Alt1 contains a single state
modeling all non-letter handshapes. In the Alt2 HMM, we form 18 identical
copies of the non-letter state, one for each letter state. The replicated non-letter
states permit transitions between only those pairs of letters that occur in our
vocabulary. In both systems, recognition is performed by computing the Viterbi
path and discarding the frames assigned to the non-letter state(s).

5.2 Performance Comparison

We classified isolated digrams and entire words using our method (L2L) and the
comparison methods that recognize letters only (Alt1 and Alt2). Figure 6(a)
shows the distribution of recognition performance for the three algorithms over
the isolated digrams. To quantify the severity of a recognition error on a word,
we compute the letter error rate (LER) for each word by computing the ratio
of the number of incorrect letters (insertions, deletions, or substitutions) to the
total number of letters recognized. The per letter performance for that word



Table 1. Performance of Alt2 and L2L with and without a dictionary, averaged over
the entire test set (10 examples each of 82 different words). Most recognition errors in
L2L without a dictionary are single letter substitutions or missing final letters.

Alt2 Alt2+dict L2L L2L+dict

Digrams correct 53.44% 60.61% 69.64% 72.85%
Words recognized with no incorrect letters 31.83% 86.59% 57.32% 92.68%

Per letter performance on full words 76.97% 90.86% 86.85% 94.75%

is then 1 − LER. Figure 6(b) shows the distribution of per letter performance
over our test words. L2L outperforms the alternative techniques on both isolated
digrams and full words.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20
Digrams

Alt1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

Alt2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

L2L

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

15

30

45

Words

Alt1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

15

30

45

Alt2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

15

30

45

L2L

(b)

Fig. 6. A comparison of the performance of the proposed method to the two alterna-
tives. All graphs show a count distribution of the fraction of letters recognized correctly.
(a) Counts over 50 isolated digrams. (b) Counts over 82 different words. Top row: Alt1;
middle row: Alt2; bottom row: L2L (our method). L2L recognizes a larger percentage
of digrams and words with increased accuracy.

Adding an explicit dictionary to both Alt2 and L2L will improve performance
by restricting the space of possible words. Table 1 contains a summary of recog-
nition performance of both techniques with and without a dictionary. While
adding a dictionary improves the performance of both Alt2 and L2L, model-
ing transitions results in better recognition accuracy than modeling letters in
isolation with or without the help of a dictionary.



6 Discussion

We have introduced a principle for fingerspelling recognition that bypasses the
difficult task of identifying an isolated frame for each letter and no longer ig-
nores the dynamic nature of fingerspelling sequences. Our experiments show
that modeling transitions between letters instead of isolated static handshapes
for each letter improves recognition accuracy. Modeling transitions results in
a recognition system that leverages information available while a letter is be-
ing formed to disambiguate between letters whose handshapes appear similar in
single-camera video. Additionally, because the letter transition model includes
multiple HMM states for each letter depending on the surrounding context, it
can learn differences in handshape caused by coarticulation [23].

The benefit of modeling transitions is most apparent when no dictionary
is used to aid recognition. While dictionaries are commonly used in deployed
speech or word-level ASL recognition, we believe a system that does not rely
on an explicit dictionary is more suited to fingerspelling recognition. Signers use
fingerspelled signs exactly when the word they need is uncommon enough to not
have a word-level sign. Thus, a deployed system would be most useful when it
could correctly interpret uncommon words such as proper nouns that are likely
not to be included in a reasonably-sized dictionary constructed during training.

The largest drawback to modeling and recognizing transitions between letters
instead of isolated letters is the increase in the number of classes from 26 to
262. Although this increases the need for training data, it does not pose an
insurmountable obstacle. For example, a hybrid method that models interesting
transitions in detail but uninformative transitions at the level of Alt2 would
help manage the complexity of the resulting system. Additionally, techniques
commonly employed in speech recognition such as tying similar states together
could be used to make it possible to train the HMM with a reasonable amount
of training data.

Our goal in this paper was not to demonstrate a deployable fingerspelling
recognition system, but rather a useful principle for analysis. Much work remains
before we reach a practical system, including generalizing to the full alphabet
and multiple signers, dealing with cluttered environments, and interfacing with a
word-level recognition system. Nonetheless, our demonstration of the feasibility
of modeling transitions between letters represents a step toward a system that
will recognize native ASL.

References

1. Tsechpenakis, G., Metaxas, D., Neidle, C.: Learning-based dynamic coupling of dis-
crete and continuous trackers. Computer Vision and Image Understanding 104(2-
3) (2006) 140–156

2. Starner, T., Pentland, A., Weaver, J.: Real-Time American Sign Language Recog-
nition Using Desk and Wearable Computer Based Video. IEEE Transactions on
Pattern Analysis and Machine Intelligence 20(12) (1998) 1371–1375



3. Vogler, C., Metaxas, D.: A Framework for Recognizing the Simultaneous Aspects
of American Sign Language. Computer Vision and Image Understanding 81(3)
(2001) 358–384

4. Fang, G., Gao, W., Chen, X., Wang, C., Ma, J.: Signer-independent Continu-
ous Sign Language Recognition Based on SRN/HMM. IEEE ICCV Workshop on
Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time (2001)
90–95

5. Allen, J., Asselin, P., Foulds, R.: American Sign Language Finger Spelling Recog-
nition System. IEEE 29th Annual Northeast Bioengineering Conference (2003)
285–286

6. Oz, C., Leu, M.: Recognition of Finger Spelling of American Sign Language with
Artificial Neural Network Using Position/Orientation Sensors and Data Glove. 2nd
International Symposium on Neural Networks (2005) 157–164

7. Hernandez-Rebollar, J., Lindeman, R., Kyriakopoulos, N.: A Multi-Class Pattern
Recognition System for Practical Finger Spelling Translation. 4th International
Conference on Multimodal Interfaces (2002) 185–190

8. Dreuw, P., Keysers, D., Deselaers, T., Ney, H.: Gesture Recognition Using Im-
age Comparison Methods. Sixth International Workshop on Gesture in Human-
Computer Interaction and Simulation (2005) 124–128

9. Feris, R., Turk, M., Raskar, R., Tan, K., Ohashi, G.: Exploiting Depth Disconti-
nuities for Vision-Based Fingerspelling Recognition. IEEE Workshop on Real-time
Vision for Human-Computer Interaction (2004)

10. Lamar, M., Bhuiyan, M., Iwata, A.: Hand Alphabet Recognition using Morphologi-
cal PCA and Neural Networks. International Joint Conference on Neural Networks
(1999) 2839–2844

11. Tomasi, C., Petrov, S., Sastry, A.: 3D Tracking = Classification + Interpolation.
International Conference on Computer Vision (2003) 1441–1448

12. Birk, H., Moeslund, T., Madsen, C.: Real-Time Recognition of Hand Alphabet
Gestures Using Principal Component Analysis. 10th Scandinavian Conference on
Image Analysis (1997) 261–268

13. Athitsos, V., Sclaroff, S.: Estimating 3D Hand Pose from a Cluttered Image. IEEE
Conference on Computer Vision and Pattern Recognition (2003) 432–439

14. Goh, P., Holden, E.: Dynamic Fingerspelling Recognition using Geometric and
Motion Features. International Conference on Image Processing (2006) 2741–2744

15. Videos used in experiments include clips from the John A. Logan College Inter-
preter Training Program (www.jalc.edu/ipp) and the DVDs Fast Expressive Fin-
gerspelling Practice, Fingerspelled Stories from 10 to 45 words per minute (both
available from www.drsign.com), and Fingerspelling: Expressive and Receptive Flu-
ency (available from www.dawnsign.com).

16. Padden, C.: Learning to fingerspell twice: Young signing children’s acquisition of
fingerspelling. In Marschark, M., Schick, B., Spencer, P., eds.: Advances in Sign
Language Development by Deaf Children. Oxford University Press, New York
(2006) 189–201

17. Vogler, C., Metaxas, D.: Handshapes and Movements: Multiple-Channel American
Sign Language Recognition. 5th International Workshop on Gesture and Sign
Language Based Human-Computer Interaction (2003) 247–258

18. Jones, M., Rehg, J.: Statistical Color Models with Application to Skin Detection.
International Journal of Computer Vision 46(1) (2002) 81–96

19. Mallat, S., Zhang, Z.: Matching Pursuit in a Time-Frequency Dictionary. IEEE
Transactions on Signal Processing 41(12) (1993) 3397–3415



20. Rabiner, L.: A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE 77(2) (1989) 257–286

21. Bakis, R.: Continuous speech recognition via centisecond acoustic states. Journal
fo the Acoustical Society of America 59(S1) (1976) S97

22. Jelinek, F., Mercer, R., Bahl, L., Baker, J.: Perplexity–a measure of the difficulty
of speech recognition tasks. Journal of the Acoustical Society of America 62(S1)
(1977) S63

23. Jerde, T., Soechting, J., Flanders, M.: Coarticulation in Fluent Fingerspelling.
Journal of Neuroscience 23(6) (2003) 2383


