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Abstract

We couple occlusion modeling and multi-frame motion
estimation to compute dense, temporally extended point tra-
Jectories in video with significant occlusions. Our approach
combines robust spatial regularization with spatially and
temporally global occlusion labeling in a variational, La-
grangian framework with subspace constraints. We track
points even through ephemeral occlusions. Experiments
demonstrate accuracy superior to the state of the art while
tracking more points through more frames.

1. Introduction

Until recently, most work on video motion analysis fo-
cused on extracting optical flow fields from consecutive
pairs of frames. Borrowing terms from fluid mechanics,
a set of motions computed from a sequence of successive
frame pairs can be seen as an Eulerian representation of
overall flow. In contrast, the Lagrangian approach asso-
ciates each world point explicitly with its entire image tra-
jectory over time. These extended trajectories provide cru-
cial information for video segmentation and analysis.

In this paper, we show how to compute dense Lagrangian
trajectories over extended sequences and in the presence of
significant occlusions. We also reconstruct the motion of
points that undergo ephemeral occlusions that occur when,
say, a car drives behind a telephone pole or a walking per-
son’s torso is partially occluded by a swinging arm.

In principle, integration over time can convert an Eule-
rian representation (optical flow) to a Lagrangian one (tra-
jectories), but this can cause small flow errors to integrate
into large trajectory drifts. Also, occlusions are hard to de-
tect from pairs of frames, and computed trajectories may
then jump undetected from occluded to occluding object.

In contrast, our Lagrangian approach yields long-range
motion and allows more reliable detection of occlusions.
Evidence from many frames better distinguishes brightness
changes caused by occlusion from those due to noise. Also,
long-term constraints can be imposed on trajectories to both

regularize the solution and help bridge trajectories through
ephemeral occlusions. Specifically, we assume — as is of-
ten done in recent literature — that trajectories are close to
a low-dimensional subspace for which we estimate a basis.
We then employ variational methods to solve for the best-fit
coefficients of the motion trajectories in this basis.

A point can become occluded only when another point
occludes it. Consequently, explicit knowledge of trajec-
tories allows casting occlusion detection as the choice of
which of several competing trajectories is chosen to “own”
a given pixel in the video. Ownership labels are assigned as
part of our optimization and in turn label points along each
trajectory as either visible or invisible. If occlusions are of
short duration, even the invisible parts of a trajectory can be
estimated so that a point that disappears and reappears can
be recognized to be the same point.

In summary, occlusion detection and multi-frame motion
estimation are strongly coupled problems and addressing
one helps solve the other in fundamental ways. Our ex-
periments show the benefits of our approach, which include
dense point tracking, interpolation of motion through occlu-
sions, and detailed motion segmentation.

2. Related work

Most optical flow papers since Horn and Schunck [12]
have used variational methods to minimize an energy func-
tional that rewards fit to data and a smooth field, with robust
norms replacing quadratic ones in modern approaches (see
Sun et al. [21] for an overview of current best practices).

Focusing on the most closely related approaches for
brevity, Sundaram et al. [23] integrate the optical flow fields
computed by Brox and Malik [7] over time to convert from
an Eulerian representation to Lagrangian trajectories. Both
their motion estimation and their occlusion detection are
based on consecutive frame pairs, and time integration is
post facto. Sand and Teller [19] add a refinement step on the
computed trajectories, and terminate these based, again, on
local information. Because of their Eulerian approach, both
Sundaram et al. and Sand and Teller only track points that
are never occluded — a rare occurrence in general video.



Expansion of point trajectories into a low-dimensional
basis underlies most recent work on multi-frame motion es-
timation. Early methods based on rank constraints from
single [24] or multiple [9] rigid motions or even on non-
rigid motion [5] assume that point trajectories are precom-
puted. More recent methods use rank constraints to solve
directly for optical flow in rigid scenes [14], or sample tra-
jectory space to solve for non-rigid motion [25], but do so
sparsely in space. Garg et al. [10] use subspace constraints,
and Volz et al. [26] use parametric methods for very short,
5-frame sequences. Some optical flow methods parameter-
ize individual flow fields using basis flow fields that are ei-
ther pre-defined [17] or learned from a training set of flow
fields [4]. These optical flow methods parameterize motion
in space, rather than in time; the parametric form is used
to make the spatial smoothness assumption more realistic
not to leverage temporal consistency to improve trajectory
accuracy. All these methods ignore occlusions.

If addressed at all, occlusions are either handled indi-
rectly through robust metrics [7, 15, 26] or, when mod-
eled explicitly [2, 13, 20, 21, 28, 29], they are detected
from spatially and temporally local information. One ex-
ception [22] encourages space and time smoothness in a
layer-labeling framework, but without enforcing temporal
consistency. Another is the work by Apostoloff and Fitzgib-
bon [1], who detect occlusions by classifying larger space-
time patches. But, they do not estimate motion and assume
locally linear, primarily horizontal flow.

In contrast, we combine robust (non-parametric) spatial
regularization with explicit reasoning about occlusions in
a variational, Lagrangian framework with subspace con-
straints to solve for trajectories directly from video data. We
learn new basis trajectories for each sequence and reason
globally about occlusions.

3. Variational trajectories with occlusions

Let p be the location of a point in a reference frame of a
video clip. To introduce our technique, we assume that there
is one such frame selected and that it occurs at ¢ = 0. We
will relax this restriction later. We assume that the trajectory
the point follows through the sequence can be described in
terms of a small number of basis trajectories ¢y (t):

K
x(p,t) =p+ > cx(P)pk(t) with @x(0)=0. (1)
k=1

Consistently with the Lagrangian view, we abbreviate no-
tation for the image intensity function I(x(p,t),t) along
the trajectory originating at point p to I(p, ). If the image
intensity along a trajectory is constant, I(p,t) = I(p,0)
whenever the point is visible. A visibility flag v(p,t) €
{0,1} indicates if the point is occluded (0) or visible (1)
at time t. We cast solving for the unknown coefficients

c = (c1(p),...,ckx(p)) in equation (1) and the visibility
flag v(p, t) as the following problem:

arg ncnyn (MEp(c,v)+ Es(c) + MEy(v)) . (2)

The data term E'p penalizes intensity changes in visible
intervals using the robust function ¥(s) = v/s% + €2:

Eole) = [ [ vlo.) ¥ (1. = 100.0)) dpat.
3)

The total-variation smoothness term

Es(c) = /Q S o) [Vack @)y dp (@)
k

where g(p) = (|V2I(p,0)]l2 +1)"" adds weighted, in-
homogeneous spatial regularization. The symbol V, is the
gradient in the first k£ coordinates.

The third term, Ey (v), imposes soft constraints on the
visibility field v through two penalties,

Ev(v) = /Q /T (v(p. 1) — O (p, 1))? dpdt
Epv (v)
+ / / WYsr(p, )1 dpdt . (5)
QJT

Esv(v)

Section 4.3 shows how to compute a per-trajectory visi-
bility estimate (%), Epy (v) anchors the global estimate
v to (9. Egy(v) encourages visibility to be smooth in
space and time. The matrix W = diag([w; w2 ws]) levies
different penalties for different trajectories and times. Be-
cause neighboring trajectories in the reference frame may
no longer be close spatial neighbors at a later time, the two
spatial penalties decrease as distance between initial neigh-
bors increases. The temporal weight ws aligns visibility
changes with brightness changes. (See Section 4.3.)

Connection to two-frame optical flow. Our formulation
subsumes two-frame methods by letting 1 (¢) = (¢, 0) and
p2(t) = (0,t). The two frames are at times ¢ = 0 and
t = 1, and the two flow components are u = ¢; and v = cs.

Finding a trajectory basis. The basis functions ¢y (t)
can be either given or inferred from the data. If a sparse
set of points can be tracked using a frame-to-frame tracker
throughout the sequence, a basis can be found by PCA. Oth-
erwise, the problem of finding a basis becomes one of low-
rank matrix completion [8]. In this work, we tracked points
visible throughout the video with standard methods [ 16] and
automatically selected K by adding principal components
until the basis represents the sparse tracks with a maximum
error of two pixels. A rigid object requires at most K = 4



basis trajectories under orthographic or weak-perspective
projection [24]. Similarly, a few basis trajectories often suf-
fice to represent the motion of non-rigid objects over many
frames [5]. Thus, K is often small in practice.

Using multiple reference frames. The Lagrangian for-
mulation requires that each trajectory be associated with a
unique identifier. Using the position in the first frame of
the sequence provides such an identifier for any point visi-
ble in the first frame, but not for points that are not visible.
We therefore use additional reference frames to identify ini-
tially occluded points. In our experiments, we use the first
and last frames for reference. We solve for motion inde-
pendently for each reference frame but couple them during
occlusion estimation as described in Section 4.3.

4. Solution method

To approximately solve (2) from an initial solution
c(® 1) we alternate between solving for trajectory coeffi-
cients ¢ with visibility v fixed and solving for visibility with
trajectories fixed. The next three sections describe the op-
timization method, how we find ¢(?), and how we compute
both (%) for initialization and v during optimization.

4.1. Minimization

We approximately solve the minimization problem (2)
by alternating between solving for trajectories with visibil-
ity fixed and solving for visibility with trajectories fixed:

arg mcin (M Ep(c,v) + Es(c)) (6)
arg myin (MEp(c,v) + By (v)) . (7

The terms E'p and the penalty E'py in By are differentiable
in the unknowns, while Eg and Egy, are sums of L, terms.
Thus, both problems can be written in the form

argmin [F(w), + H(u) ®)

where both the components of F and the scalar function H
are convex, and H is differentiable. The L, and L» terms in
problems of this form can be separated [27] by introducing
an auxiliary vector d = F(u) so that the problem becomes

arg mi(ril |d|l; + H(u) suchthat d =F(u). (9

The so-called Split Bregman method further defines the dis-
crepancy b = d — F(u) and solves problem (9) by the
efficient and numerically stable Algorithm 1, where

shrink(z,v) = % max(|z] — 7, 0) . (10)

The only expensive computation is the first line in the
while loop; in both problems (6) and (7) this leads to the

Algorithm 1 The Split Bregman algorithm [ ! |]. The shrink
operator is defined in equation (10).

Input: Start point u(®) € R™ and tolerance ¢ > 0
b® =0, d® =0
while & = 0 or [[u® — u*~V|| > ¢ do
ut D) = arg min,, H(u) + A|d*®) — F(u) — b2
forj =1— mdo
k+1 . k
d§ 1) — shrink (Fj(u) + b§» ), 1/(2)\))
end for
b+ = b*) 4 F(uk+D) — -+
end while

minimization of a differentiable function. Specifically, we
solve the non-linear Euler-Lagrange equations for problem
(6) by nested fixed point iterations [6]. The matrix of the re-
sulting sparse, symmetric linear system is NM K x NM K
for M x N image frames and K trajectory basis functions,
and we solve that by Gauss-Seidel iterations.

During these iterations, we enhance non-local smooth-
ness by replacing the trajectory coefficients with the results
of a weighted median filter in the outer fixed point itera-
tions as suggested by Sun et al. [21]. We use a 15 x 15 local
neighborhood and weight pixels with a Gaussian function
of spatial distance, deviation from intensity in the reference
frame, and distance between visibility states.

We solve problem (7) by relaxing the domain for v from
{0,1} to [0, 1] and round the solution at 1/2. We solve the
Euler-Lagrange system of linear equations for the relaxed
version by Gauss-Seidel.

4.2. Trajectory initialization

We use sparse tracks from a KLT tracker to compute an
initial value ¢(©) for the coefficients ¢ in equation (1). The
sparse tracks define a set of candidate motions that may be
used. At each pixel in a reference frame, we score candi-
date motions with a cost that measures variations of inten-
sity in a tube along each motion and within a few frames
from the reference frame. We use tubes at a variety of
scales and select the motion with the lowest intensity vari-
ation at the finest scale at which we can distinguish candi-
dates, assigning coefficients according to this labeling. Re-
gions that are occluded within a few frames will tend to have
very large costs for the selected motion because brightness
constancy is violated at occlusions. We mark regions with
lowest variation greater than two standard deviations above
the mean as unreliable. Finally, we transform per-pixel mo-
tion estimates into piecewise-constant regions by applying
a weighted median filter. Weights are zero for unreliable
pixels. Recent work [18] on extracting regions from point
trajectories may provide a more principled initialization.



4.3. Visibility estimation

Visibility estimation is composed of two steps: (1) find-
ing an initial per-trajectory estimate (%) and (2) smoothing
the local estimate across trajectories using equation (7) to
produce a global estimate v.

Local estimate. Let p, identify a trajectory from reference
frame r. We measure violations of brightness constancy for
this trajectory at time ¢ by

D(pr7t) = A(pr,tﬂf) +A(pr7t,7”) (11)

where
Aprt, 1) /// (€7 — ) |I(x(pr,7) + £,7)
I(x(p,,t") + &,t')| d€dr (12)

and w(¢,7) = exp[—(||€||*> + 72)/0?]/o. The value
A(p;,t,t) measures Gaussian-weighted, absolute image
differences between the current image patch, centered at
x(pr,t) and time ¢, and the volume of image values ob-
tained by transporting the current patch through the motion
x(py, t) over a small time interval centered at ¢. The value
A(p;,t,r) is similar, but compares the volume to the ref-
erence patch, centered at p, = x(p,,r) and time r. We
found including both terms improved performance.

If the point p,. is visible at time ¢, we expect D(p,,t)
to be low and high otherwise. Crucially, if p, is occluded,
there must be some other trajectory q that is visible at time
t and hides p,; we expect D(q,t) < D(p,,t). Here, tra-
jectories based in different reference frames are coupled;
trajectories in one reference frame may be the occluders of
trajectories in a different reference frame. Let P(x,t) be
the set of all trajectories (from any reference frame) passing
within a fixed neighborhood of a pixel (x,¢), and let

pp(x,t) =arg min D(p,,t) (13)

prEP(x,t)
denote the best-fitting, controlling trajectory at this pixel.

The sets P(x,t) for all points in the video can be com-
puted in linear time with a single pass along each trajectory.
On a second pass along each trajectory, we compare the ref-
erence location of the current trajectory, p,, to the location
of the controlling trajectory, x(p:., 7). When the two loca-
tions are distant, the trajectory p, is likely occluded by p}.
at time ¢. In our implementation, we make the visibility de-
cision more robust by declaring an occlusion of trajectory
P at time ¢t when the median distance of the & best-fitting
trajectories at x(p.., t) is more than a few pixels.

The technique above overestimates occlusions at shear
boundaries because it accumulates intensity differences
across the discontinuity. Let Dy(p,,t) denote D(p,,t)
without spatial integration. Visibility estimation improves
if we set v(9)(p,.,t) to 1 when Dy(p,.,t) < D(pZ.,t).

Our procedure for visibility estimation meshes inti-
mately with Lagrangian motion estimation. Accumulating
evidence over multiple frames makes it easier to distinguish
intensity changes due to noise from those due to occlu-
sions. Furthermore, occlusions are only declared when an
occluder, p;., can be found; this avoids the trivial mini-
mizer of equation (2). In practice, the distance between the
occluder x(p.,r) and the occluded p, increases rapidly
with ¢, simplifying the visibility decision.

Global estimate. With v(©) computed, we can solve prob-
lem (7). The weights in Egy of equation (5) are w; =

2

o = [(52) 41
crease the penalty for spatial discontinuities if trajectories
have diverged by frame ¢. The remaining weight encour-
ages jumps in v(p, t) to align with brightness changes (in-
flection points of Dg) along a trajectory. The solution to
problem (7) will have real values for v; we round at 1/2 to
recover binary values.

ox(p.t) ||?

~1/2
B, + 1> for 7 = 1,2 and P = (pl,pQ) and

—-1/2
. The two spatial weights de-

5. Experiments

Although valuable for two-frame optical flow, the Mid-
dlebury benchmark [3] is not well-suited to evaluating long-
range motion estimation. Our approach interpolates trajec-
tories through temporary occlusions, but the eight frames
of the Middlebury sequences do not allow enough time for
occluded regions to reappear. Also, the benchmark does
not give ground truth correspondences over the full eight
frames. For benchmarks with longer sequences, ground
truth is available either only for points that are never oc-
cluded [23] or only in the first and last frame [19].

To demonstrate our ability to maintain dense correspon-
dences across temporary occlusions, we validate our work
on three sequences (see Table 1) for which we provide two
types of ground truth: either spatially sparse and tempo-
rally dense — obtained by manually tracking a few points
throughout the video — or temporally sparse and spatially
dense — obtained by hand-segmenting every tenth frame,
plus the first and the last. For hand-tracked points, we
also provide a true visibility flag v*(p,t) in every frame.
We compare our results to those by Sundaram et al. [23]
(‘LDOF’ below) using code provided by the authors.

In all experiments, we use A\; = Ao = 1 with pixel inten-
sities in [0, 255]. We run 20 iterations alternating between
solving for motion with visibility fixed and solving for visi-
bility with motion fixed and complete 30 Bregman iterations
within each component optimization. We observed small
variations in the results if these parameters are changed
within reason.



Sequence Size K Avg. disp. Maxdisp. #LDOF trajectories # Full LDOF
Checkerboards 100 x 100 x 15 1 3.1 28.0 1962 (19.6%) 1106 (11.1%)
Flowerbed 120 x 175 x29 2 33.7 78.6 10894 (51.9%) 5959 (28.4%)
Marple 175 x225x25 5 101.9 140.8 22440 (57.0%) 5050 (12.8%)

Table 1: Details on the three test sequences. K is the number of basis trajectories automatically selected by our algorithm
and indicates complexity of motion. Average and maximum displacement (disp.) measure the amount of motion between the
first and last frames of the sequence. Values are distances in pixels. Remaining columns report the number of pixels in the
first frame with an LDOF trajectory of any length, or a full LDOF trajectory.

First frame Last frame

Checkerboards

Flowerbed

Marple

Interpolated (Flow)

Interpolated (LDOF)

Interpolated (Ours)

Figure 1: Warping last frame of sequence back to first frame using correspondences between the first and last frame. Last
three columns show interpolation results based on integrated optical flow (middle), LDOF (middle-right), and our method
(right). Black regions either lack correspondences (Flow, LDOF) or are determined to be occluded (Ours). Our algorithm
maintains correspondence across temporary occlusions and so can correctly interpolate previously occluded background
regions. The correct answer matches the image in column 1, but with points not visible in column 2 painted black.

5.1. Performance metrics

To evaluate the accuracy of estimated locations and oc-
clusions, we compute dense error metrics over all trajecto-
ries. We also investigate the accuracy of both terms in detail
using the sparse, hand-tracked, ground truth trajectories.

Dense metrics. It is prohibitively expensive to label corre-
spondences for every point in our image sequences. Instead,
we measure dense positional accuracy of our estimated tra-
jectories using normalized interpolation error. Correspon-
dences provided by trajectories allow us to warp any frame
to a reference frame. The last column of Figure | shows the
interpolated images when the last frame is warped to the
first frame for each sequence. Black pixels in the interpo-
lated frame are those flagged as occluded in the final frame
and are discounted when computing intensity differences.

We compare the performance of our algorithm to two
alternative methods. The first is a naive conversion from
an Eulerian framework to a Lagrangian framework (labeled
‘Flow’ in figures and tables), where correspondences be-
tween frames are computed by simply integrating and inter-
polating successive flow fields without any occlusion rea-
soning. We use the LDOF flow fields [7] — the same flow
fields used in the LDOF tracker. This technique provides
correspondences for every pixel in the first frame, as long as
its interpolated trajectory remains in the field of view. How-
ever, these correspondences are wildly inaccurate for tem-
porarily occluded regions. The second competing method
is the full LDOF tracker [23], which adds occlusion reason-
ing to the naive alternative. The tracker returns correspon-
dences for most but not all points in the first frame, but ter-
minates trajectories at detected occlusions and near motion
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Figure 2: Detected occluders for each sequence at con-
sensus best threshold (2 frames) and ROC curves varying
threshold for each sequence. Black pixels are detected oc-
cluder regions; blue contours outline ground truth occluder
regions. Results shown correspond to overall precision of
0.92 and recall of 0.90. View in color.

boundaries. When interpolating, we ignore pixels with no
correspondence reported. Quantitative results for all three
methods are given in Panel 1 of Table 2.

We measure our occlusion accuracy by classifying tra-
jectories as occluders or non-occluders. Because our al-
gorithm provides interpolated positions for occluded tra-
jectories during the occlusion, we can mark the regions in
the video when these occlusions occur. Setting a thresh-
old on the number of frames during which a visible trajec-
tory (v(p, t) = 1) passes through a marked region classifies
points as occluders. We use the ground truth segmentation
of the first frame to measure our performance in terms of
precision and recall. Alternative methods do not provide the
information needed to extract occluders in a similar fashion,
so we do not report results for those techniques on this met-
ric. Figure 2 shows example occluder detections for each
sequence, as well as ROC curves showing the tradeoff be-
tween true and false positives for the sequences.

Metrics based on spatially sparse ground truth. For a
more detailed investigation of the positional accuracy of our
trajectories and the temporal fidelity of our occlusion esti-
mate, we use a sparse set of hand-tracked ground truth tra-
jectories, approximately uniformly spaced in the first frame
of the sequence. We measure the mean and maximum dis-
tance between our computed and ground truth trajectories
whenever v*(p,t) = v(p,t) = 1 (visible). We measure
performance on two sets of tracks: all labeled tracks also
tracked for at least one frame by the LDOF tracker, and the
set of labeled tracks for which the LDOF tracker returns a
full trajectory. Our algorithm always returns a full trajec-
tory. We compare our results to trajectories returned by the
naive Flow method and the full LDOF tracker. For compet-
ing algorithms, we measure distance between ground truth

Figure 3: Explicit handling of occlusions is crucial. Left-
most column: first (top) and last (bottom) frame of the
Checkerboards sequence. Remaining four columns show
color-coding of coefficients for the single basis trajectory at
each pixel, using either the first or last frame as reference.
From left to right: true coefficients, initialization, coeffi-
cients without explicit occlusions, and coefficients with oc-
clusions. Ignoring occlusions results in large motion errors
in occluded regions. View in color.

and estimated trajectories in any frame where v*(p,t) = 1
and the algorithm returns correspondences. This is a smaller
set for the LDOF tracker than for either our method or the
Flow method.

We measure occlusion detection performance using pre-
cision and recall statistics that compare true (v*(p, t)) and
computed (v(p, t)) visibility values. This is essentially the
reverse of our dense occluder detection metric. For our
method, an occlusion is a change from v(p,t) = 1 to
v(p,t) = 0 and a disocclusion is the reverse. For the LDOF
tracker, we consider a terminated LDOF trajectory to be an
occlusion detection. LDOF cannot detect disocclusions be-
cause it considers different trajectory segments for the same
point to be trajectories for distinct points. The naive Flow
method does not detect occlusions. Results for the posi-
tional accuracy and occlusion detection of the competing
algorithms are shown in Panels 2 and 3 of Table 2.

5.2. Remarks

We now report observations and details about our exper-
iments with each sequence. See Table | for details on the
sequences and the density of trajectories returned by LDOF.

Checkerboards. We include a synthetic sequence to illus-
trate the necessity of explicit occlusion detection. We esti-
mate trajectories twice, with the same parameters and ini-
tialization each time. The first time, we estimate occlusions
using the procedure in Section 4.3. The second time, we
set v(p, t) = 1 for all p and ¢, relying solely on the robust
data term to discount intensity changes due to occlusion.
Figure 3 shows that trajectories in the occluded region are
recovered accurately when occlusions are handled, but ex-
hibit significant errors when they are not.

Our algorithm with occlusion handling outperforms
competing methods in every metric. Like our method, the
Flow method returns a trajectory for every point in the



Panel 1 Panel 2 Panel 3
Mean (maximum) position error Occlusion detection
Sequence Method NE all labeled full only Precision | Recall F-meas.

Ours 0.306 0.001 (0.05) 0.001 (0.02) 1.000 0.951 0.975

Checkerboards | LDOF 0.337 0.567  (23.3) 0.208 (13.6) 0.500 0.839 0.626
Flow 3.247 1.424  (26.3) 0.208 (13.5) — — —

Ours 1.583 0.644 (4.6) 0.725 (4.6) 0.980 0.877 0.926

Flowerbed LDOF 1.476 0.760 (5.6) 0.845 (5.6) 0.634 0.959 0.763
Flow 6.427 4.013  (50.5) 0.848 (5.7) — — —

Ours 1.645 1.295 (7.0) 1.672 (6.3) 0.982 0.935 0.958

Marple LDOF 2.106 1.331 (6.4) 1.801 (6.4) 0.535 1.000 0.697
Flow 13.511 15.933 (157.7) 1.804 (6.5) — — —

Table 2: Performance comparison between our method (“Ours”), the Large-Displacement Optical Flow tracking method [23]
(“LDOF”), and simple temporal integration of LDOF [7] flow fields (“Flow”). Better values are highlighted in yellow.
Panel 1: Normalized interpolation error (NE) measures dense trajectory accuracy. Differences are measured between
the first frame and successive frames warped back to the first frame. Our method maintains accuracy while returning more
correspondences across more frames (note the decrease in the amount of black in images in the last column of Figure 1). The
large values for the Flow method are the result of undetected occlusions.

Panel 2: Positional accuracy is measured by the mean and maximum error in pixels between computed and ground truth
trajectories. We measure error on hand-labeled trajectories that are tracked by LDOF for at least one frame (all labeled), and
on the subset of those tracks for which LDOF returns a complete trajectory (full only).

Panel 3: Occlusion detection performance measures precision and recall for occlusions. Our method uses a fixed threshold
of 1/2 on v(p, t). LDOF track terminations are considered to be occlusion detections. LDOF cannot detect disocclusions,
while we do by tracking through occlusions. We achieve competitive recall and superior precision, resulting in increased

F-measure. The Flow method does not detect occlusions.

first frame, but its accuracy suffers from lack of occlu-
sion modeling. As Table 2 shows, the performance of the
Flow method is unacceptable on this and the other two se-
quences. LDOF performs surprisingly poorly on this se-
quence because its estimated optical flow fields are over-
smooth. Missing motion discontinuities result in tracks on
the background dragging along with the foreground and
accumulating large positional error by the end of the se-
quence. Our algorithm returns much more accurate motion
discontinuities, resulting in much better positional accuracy.

Our only error on this sequence is a row of missed oc-
clusions between the first and second frame at the occlud-
ing edge of each checkerboard. By the second frame, not
enough motion has accumulated for the distance between
the occluded and occluding trajectory in the reference frame
to be significant. The LDOF method aggressively termi-
nates trajectories near shear motion discontinuities (vertical
edges of the checkerboards), resulting in a large number of
false positives and a poor precision score. At the same time,
recall suffers because many points near the occluding edge
are incorrectly assigned to the foreground motion.

Flowerbed. In this well-known sequence, a foreground tree
sweeps over a large portion of the background. We main-
tain tracks across these transient occlusions and accurately
identify occlusions and disocclusions. We outperform the

LDOF tracker on every sparse metric, both for occlusion
detection and positional accuracy. We have slightly higher
normalized interpolation error because we interpolate dif-
ficult disoccluded regions that the LDOF tracker ignores.
When restricted to pixels in common, our normalized inter-
polation error is 1.19 (compared to 1.476 for LDOF). The
majority of our mistakes are occlusions that are detected one
frame too late or disocclusions that are detected one frame
too early. Our recall performance is still good in spite of
these errors. Furthermore, our ability to detect disocclu-
sions vastly improves our precision numbers compared to
LDOF, resulting in overall better performance on the task.
Our causal occlusion reasoning allows us to accurately seg-
ment the tree from the background (Figure 2).

Marple. This sequence contains challenging non-rigid mo-
tion and occlusions due to the motion of the arm and body
in the foreground. The woman occludes the majority of the
background in at least one frame. As a result, full trajecto-
ries from LDOF are restricted almost entirely to the interior
of the woman’s body. With non-rigid motions, we lack the-
oretical guarantees that the low-rank assumption is valid.
With its non-parametric representation, LDOF would be
able to represent motions of any rank exactly. Nonetheless,
a few basis trajectories suffice to reconstruct the motion in
this sequence, and we outperform LDOF on all metrics ex-



cept the maximum positional error. LDOF again achieves
better recall but much poorer precision resulting in worse
occlusion detection performance overall. We detect occlu-
sions and disocclusions accurately to within a single frame.

Our results on this sequence demonstrate the benefits of
using all frames in the sequence with the Lagrangian ap-
proach. The LDOF method constructs trajectories from op-
tical flow fields generated from successive pairs of frames,
without any temporally global reasoning. As a result, its tra-
jectories are susceptible to drift and errors caused by image
noise or motion blur. By integrating intensity information
along the entire trajectory through all frames, our results are
less affected by these transient sources of error.

6. Discussion

Our approach to motion estimation models trajectories
in a subspace and handles pixel visibility explicitly. We
recover fully dense, accurate trajectories across ephemeral
occlusions and leverage global information for visibility es-
timation. Our experiments demonstrate that explicitly han-
dling occlusions is crucial for trajectory accuracy and that
our method is superior to the present state of the art.

We currently compute a motion basis from points that are
visible throughout the video. We are working to build use-
ful motion bases from incomplete trajectories. We are also
exploring ways to select reference frames automatically and
enforce consistency across reference frames. We also plan
to improve efficiency. It currently takes about 20 minutes
to solve for the 15-frame trajectories of the Checkerboards
sequence. Mapping on the GPU will reduce computation
time dramatically, as many steps of our algorithm can be
performed in parallel.
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