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Abstract

Dense motion of image points over many video frames
can provide important information about the world. How-
ever, occlusions and drift make it impossible to compute
long motion paths by merely concatenating optical flow vec-
tors between consecutive frames. Instead, we solve for en-
tire paths directly, and flag the frames in which each is
visible. As in previous work, we anchor each path to a
unique pixel which guarantees an even spatial distribution
of paths. Unlike earlier methods, we allow paths to be an-
chored in any frame. By explicitly requiring that at least one
visible path passes within a small neighborhood of every
pixel, we guarantee complete coverage of all visible points
in all frames. We achieve state-of-the-art results on real
sequences including both rigid and non-rigid motions with
significant occlusions.

1. Introduction
The goal of long-range, high-density motion estimation

in video analysis is to compute the life of every point in
a dense sampling of the visible surfaces in the scene. The
image projection of a scene point moves along a path in the
image plane. Sometimes the point is visible, and sometimes
it is occluded by some object in the world or by the bound-
aries of the image. In a dense motion estimate, at least one
path passes through every pixel of the sequence.

Dense, long-range motion estimation supports a number
of applications. The computed paths can propagate to mul-
tiple frames any annotations or edits made in a single frame,
thereby easing video labeling and editing. If visible paths
can be extrapolated into regions where they are occluded,
the occluding object can be removed from the video by
painting the pixels it occupies with the extrapolated colors.
Videos can be segmented into separate objects by clustering
paths into coherent groups. The shapes and appearance of
the resulting tube-like regions can support the detection and
recognition of objects and activities.

Image motion information is either poor or altogether

(a) Our approach.

(b) Lagrangian motion [15].

Figure 1: Top: Result of transporting all gray levels in the
25-frame marple7 sequence to frame 13 by the image mo-
tion computed with our method. The camera pans to follow
Miss Marple as she walks from right to left. Pixels inside
the red rectangle are native to frame 13. We find motion in
all regions visible in any frame. Lagrangian motion (b) only
computes paths for points visible in the first or last frame.
The missing crate under the window is behind Miss Marple
in the last frame and off-screen in the first. The missing por-
tion of the wall to the right of the mailbox is behind Miss
Marple in the first frame and off-screen in the last. Details
on the right highlight regions where incorrect estimates in
Lagrangian motion create artifacts which we avoid.

unavailable where the scene has little or no visual texture—
the so-called aperture problem. As a consequence,
regularization—or priors in probabilistic parlance—must be
employed to extrapolate motion information from textured
to poorly textured regions. To this end, we assume that (i)
image paths live in a low-dimensional space, (ii) appearance
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remains approximately constant along the visible portion of
a path, and (iii) exactly one world point is visible at ev-
ery image point. The first assumption is exactly satisfied
with rigid motion, and approximately satisfied in many cir-
cumstances. The second assumption is pervasive in motion
analysis, and the third excludes semi-transparent objects.

Summary of Contributions

Our formulation is related to the concept of La-
grangian Motion Estimation (LME) proposed by Ricco and
Tomasi [15]. Like them—and several others—we assume
that paths belong to a low-dimensional subspace. We also
anchor each path to a single pixel in the sequence, so as
keep paths from bunching up. Similarly to LME, we also
describe path visibility with a binary, per-frame flag, and
cast motion estimation as energy minimization.

However, our method differs in important ways from
LME. First, we do not have fixed “reference frames” to an-
chor paths into. In LME, this limitation restricts estimated
paths to only those that are visible in either the first or last
frame of the video. Paths born after the first frame or that
die before the last are never found in LME, while we find
paths wherever they are visible. Figure 1 illustrates this.

Second, we minimize the energy function by direct non-
linear optimization rather than by solving Euler-Lagrange
PDEs. The greater flexibility of our method allows for both
anchors in any frame—a generalization that seems inher-
ently infeasible in the LME approach—and more realistic
regularization functionals leading to more accurate paths.
The details in the right column of Figure 1 show an exam-
ple where the reconstructed image found with our method
does not exhibit the artifacts visible in the LME results.

Third, we formulate the computation of the visibility flag
as a Maximum a Posteriori (MAP) Markov Random Field
(MRF) estimation problem, for which an efficient solution
method is available. This formulation allows for the explicit
enforcement of the constraint that there must be exactly one
visible path at every pixel. In contrast, LME’s real-valued
relaxation method for this combinatorial optimization prob-
lem approximates the target function, and leaves pixels un-
explained.

2. Related work
Decades of research into motion estimation has focused

primarily on the computation of optical flow fields between
consecutive frames. Here, we consider approaches that
compute longer paths.

Sundaram et al. [18] concatenate flow fields found by
Large Displacement Optical Flow (LDOF) [4] into longer
paths, each computed independently of the others. Their
paths start in regions with sufficient texture, but cover more
image regions than feature trackers like KLT [13] do. Paths
end at detected occlusion and motion boundaries, found by

comparing flow fields computed forward and backward in
time. Sand and Teller [17] start with concatenated optical
flow vectors but refine these post facto by optimizing a cost
function with multiframe data and smoothness terms. High-
cost paths end at suspected occlusions, and new ones are
started to fill gaps.

Early formulations for temporal regularization penalize
changes in image velocity in both time and space [21].
Structure-from-motion methods regularize more globally
by assuming rigid motion—a restrictive assumption—for
which image paths can be proven [19] to lie in a space of
low and known dimension. This work has been extended to
multiple rigid motions [8] and to non-rigid motion [3, 1].
These techniques precompute paths with frame-to-frame
trackers, and de-noise them post facto by projection into
a low-dimensional subspace.

More recent methods apply subspace constraints dur-
ing path estimation to track points that are difficult for a
frame-to-frame tracker to follow. Early approaches applied
subspace constraints during optical flow estimation to im-
prove estimates in untextured regions of rigid scenes [11] or
sampled from a path subspace to improve motion estimates
along intensity edges affected by the aperture problem [20].
Garg et al. [9] combined subspace constraints with varia-
tional techniques adapted from optical flow estimation to
solve for the multiframe registration of deforming surfaces.
They compute full-length paths for every point in a selected
reference frame. An extension softens the subspace con-
straint to create a prior on image motion [10]. These meth-
ods do not handle occlusions, limiting their applicability.

LME finds paths by optimizing a global energy function
over the entire video. It models visibility explicitly, and re-
connects paths across brief occlusions. As explained earlier,
we improve upon LME by removing its reliance on refer-
ence frames, handling visibility combinatorially rather than
by approximate relaxation, and minimizing energy by direct
optimization rather than variational methods. Our extension
has the benefits mentioned in the introduction and demon-
strated by the results in Section 6.

3. Model
Let p be an index into a set of paths xp(t) : T → R2,

where T is the (discrete) time domain of the video se-
quence. A path is visible at time t iff its visibility flag
νp(t) : T → {0, 1} is equal to 1 at time t. Both func-
tions xp(t) and νp(t) are unknowns to be estimated for all
paths in a given video sequence. To ensure approximately
(at first, and exactly later) at least one path per pixel in every
frame, we anchor xp(t) to point up in some frame τp by let-
ting xp(τp) = up, and require enough anchor points to have
some path pass through every pixel in the video sequence.
In contrast with LME, τp is path-specific and unrestricted.

Paths are assumed to be in the space spanned by a



sequence-specific basis of paths {ϕ1, . . . ,ϕK}, up to a
shift:

xp(t) = up +

K∑
k=1

cpk(ϕk(t)−ϕk(τp)) . (1)

The motion relative to the anchor point xp(τp) = up is de-
termined by the unknown coefficients cp = (cp1, . . . , cpK).

Since paths in a video with F frames have F points,
the standard basis over R2F can represent any path ex-
actly. However, for many sequences a much more com-
pact (K << 2F ) basis is adequate, and provides powerful,
sequence-specific regularization.

Given basis paths and anchor points, we find paths and
visibility flags by interleaving computing optimal paths
given visibility with computing optimal visibility given
paths. The next two sections define the optimality crite-
ria for these computations. Section 4 shows how to find the
path basis and initial anchors, and Section 5 shows how to
compute optimal paths, visibility, and anchors.

3.1. Optimal paths

Given a set of basis paths and a set of anchors, we find
the best motion coefficients for each path by minimizing
an objective function that penalizes changes in appearance
along a path (temporal smoothness) and differences be-
tween nearby paths (spatial smoothness):

∑
p∈P

F∑
t=1

ED(cp, t) + λ
∑

p,q∈P
ES(cp, cq) . (2)

The first term,

ED(cp, t) = νp(t)Ψ(I(cp, t)− I(cp, τp)) , (3)

employs a robust penalty function Ψ(s) =
√
s2 + ε2

to measure the difference between the image intensity
I(cp, t) = I(xp(t)) of the path in frame t and that at the
anchor up in frame τp. Multiplication by νp(t) ensures that
this penalty is levied only on visible points. The second
term,

ES(cp, cq) = αpq

K∑
k=1

Ψ(cpk − cqk) , (4)

measures the difference between the motion coefficients of
pairs of paths. The multiplier αpq couples nearby paths that
have similar appearance, and is equal to

αpq = exp

(
− (I(cp, τp)− I(cq, τq))2

σ2

)
(5)

if the path p is visible in the anchor frame of path q (that is,
if νp(τq) = 1) and passes close enough to the anchor of q
(that is, if ||xp(τq)− uq|| < ∆). Otherwise, αpq = 0.

Figure 2: A spatiotemporal cube of the marple7 sequence.
Time runs from left to right. The corner of the crate (cyan)
is first occluded by Miss Marple’s arm (green) in frame 12.
A small patch (red dashed squares) around each path in ev-
ery frame is transported along the current path estimates
and monitored for consistent appearance. The arm patch
(top right) is most consistent, and makes this the control-
ling path at that point and frame. Points along paths that
either coincide with or are substantially parallel to a nearby
controlling path have their observed visibility flag ν̂p(t) set
to 1. All other flags are set to 0. Observed flags affect the es-
timated visibility flags at the nodes of a MRF that enforces
spatial and temporal consistency of the flags and ensures
that at least one path is visible at every pixel.

3.2. Optimal visibility

The binary visibility flag νp(t) for each path and frame is
modeled as a MRF whose structure depends on the current
estimates xp(t) of the paths p ∈ P . The MRF has one
node for each point vp(t) = (xp(t), t) along some path,
for t = 1, . . . , F , and one binary random variable νp(t) per
node. The neighborhood of vp(t) is the set of points vq(t)
with q 6= p and ‖vp(t) − vq(t)‖ ≤ ∆ for some small fixed
∆ (spatial neighborhood), plus the two points vp(t−1) and
vp(t+ 1) that are temporally adjacent to vp(t) along path p
(temporal neighborhood).

Each node in the MRF is associated with a binary ob-
served visibility flag ν̂p(t) computed from the data as fol-
lows. Path points in each frame are scored by their con-
sistency, which measures how little a patch around vp(t)
changes as it is transported by the current estimates of paths
near vp(t) to (i) a few frames before and after time t, and
(ii) the anchor frame τp for path p, similar to LME. The con-
trolling path at vp(t) is the most consistent path through the
spatial neighborhood of vp(t). Let now

d̄pq =
1

F

F∑
t=1

||xp(t)− xq(t)|| (6)

be the average distance between two paths, and let p∗ be
the controlling path at vp(t). Then, the observed visibility



ν̂p(t) is defined as follows (see also Figure 2):

ν̂p(t) =

{
1 if d̄pp∗ ≤ 4 pixels
0 otherwise . (7)

In words, a path p is observed to be visible at vp(t) when it
either coincides with (p = p∗ so that d̄pp∗ = 0) or is nearly
parallel (d̄pp∗ ≤ 4) to the controlling path p∗ at vp(t).

The observed visibility flags ν̂p(t) influence the (hidden)
visibility flags νp(t) through a data term in the MRF. Let

∆Ip(t) = Ψ(I(cp, t)− I(cp, τp)) (8)

be the same per-path, per-frame measure of intensity consis-
tency used in (3). We define the following average measure
of intensity change along the visible portion of path p:

∆p =

∑T
t=1 ν̂p(t)∆Ip(t)∑T

t=1 ν̂p(t)
. (9)

For correctly estimated paths, this measure reflects varia-
tions of intensity caused by unmodeled effects such as im-
age noise or global illumination changes, rather than by oc-
clusions. Given these definitions, the data term of the MRF
is defined as follows:

D(νp(t) = 1) = ∆Ip(t) + λL(1− ν̂p(t))

D(νp(t) = 0) = ∆p + λLν̂p(t) .
(10)

The terms with multiplier λL bias estimated visibility val-
ues νp(t) toward observed values ν̂p(t). Setting a point to
be visible incurs the additional charge ∆Ip(t), equal to the
change in intensity between anchor and current point. Set-
ting a point to be invisible incurs the additional charge ∆p

that accounts for the fact that intensity variations may be
caused by other than occlusions.

The weights on edges between the random variables of
the MRF encourage both temporal and spatial consistency
among visibility values. Specifically, a penalty

V
(
νp(t), νp(t+ 1)

)
= λT |νp(t)− νp(t+ 1)| (11)

is added between temporally adjacent neighbors to discour-
age changes of visibility along a path. The weight on an
edge between spatial neighbors is

V
(
νp(t), νq(t)

)
= λSwpq(t)|νp(t)− νq(t)| (12)

with

wpq(t) =
e
−
(

∆Ipq(t)+∆Ipq

σ2

)
d̄pq + ε

(13)

where ε > 0 prevents division by zero. In this expression,

∆Ipq(t) = (I(cp, t)− I(cq, t))
2

∆Ipq = (I(cp, τp)− I(cq, τq))2 .
(14)

In words, ∆Ipq(t) measures difference in appearance be-
tween paths in a single frame, and ∆Ipq measures a similar
difference between anchor points. The combined effect of
these two terms is to push discontinuities in visibility closer
to intensity boundaries, and the division by d̄pq reduces the
spatial discontinuity penalty between unrelated paths.

Finally, we clamp enough visibility values to 1 to ensure
that every pixel in the sequence has a visible path through it.
Specifically, we make all anchor points visible, νp(τp) = 1,
and we also force νp(t) = 1 if d̄pp∗ <

√
2. This assignment

guarantees that at least one visible path goes through every
pixel because d̄p∗p∗ = 0. We roll the pairwise cost for each
edge incident to a clamped node into the unary cost for the
other node of that edge.

4. Preliminaries

Before we solve for motion and visibility, we select basis
paths and an initial set of anchors, paths, and visibility flags.

4.1. Finding the basis paths

Basis paths are obtained by first tracking a sparse set
of feature points with a frame-to-frame tracker [13]. This
yields several tracks, that is, paths that do not necessarily
extend through the entire sequence. These tracks are sup-
plemented with those formed by concatenating optical flow
vectors between consecutive frames [18], as described in
more detail in Section 4.2, where we do the same to initial-
ize a dense set of paths.

For some sequences, several tracks may extend from first
to last frame. PCA can then yield a basis whose size K is
determined by adding principal components until the recon-
struction residual for the input tracks is below, e.g., 2 pixels.

In general, however, occlusions and tracking failures
make tracks start late and end early, leading to a matrix of
track coordinates with missing entries. We iterate between
matrix factorization with missing data [6] and a compaction
step that associates tracks corresponding to the same world
point [16]. If needed, a user can be asked to correct mis-
takes in data association. We scale path coordinates so that
the mean per-path motion between frames is one pixel.

4.2. Initialization

To cover every pixel in a video sequence with paths, we
need to create a number of paths of the same order of the
number of visible points in the sequence. To this end, we
form an initial set of paths by placing anchor points at ev-
ery pixel in the first and last frames in the sequence, and
supplement these with additional anchors in regions that
are not yet covered by some path. More specifically, we
start by defining path fragments we call temporal superpix-
els with the procedure described by Sundaram et al. [18].
We first concatenate optical vectors into tracks, which we



(a) (b)

Figure 3: Anchor point selected during initialization (a) and
at convergence (b). Colors other than gray denote anchor
points, and similar colors denote similar sets of path coef-
ficients. Note the improved segmentation of Miss Marple
after convergence.

break when the optical flow field fails a forward-backward
consistency check or when the point is too close to a motion
boundary (equations (5) and (6) from [18], respectively).
To prevent merging foreground and background tracks, we
create a thin empty buffer around the regions where tracks
terminate. If a superpixel thus created extends over several
frames, we replace it by an entire path whose coefficients
are computed by projecting the superpixel onto the path ba-
sis. If the superpixel is too short, we copy the coefficients of
the path with the greatest intensity consistency over a few
frames among existing, nearby, parallel paths. The tempo-
ral extent of superpixels provides an initial estimate for the
visibility flags.

Every temporal superpixel that extends to the first or the
last frame yields an initial path anchored in that frame. The
remaining superpixels are said to be covered if their paths
differ by an average of less than two pixels per frame from
an existing path. New paths are formed only for superpixels
that are not yet covered, and their anchor points are placed
in the last frame of the superpixel. Figure 3a shows the an-
chor points selected in this way for the marple7 sequence.
Colors other than gray are anchors, and similar colors cor-
respond to similar sets of path coefficients.

After this initialization stage, the energy functions de-
fined in Section 3 are minimized by the algorithms de-
scribed in Section 5. This can result in the insertion of
additional anchor points. Figure 3b shows the color-coded
anchor points after convergence.

5. Optimization
Starting with the paths and visibility flags constructed

as described in Section 4.2, we interleave two steps during
optimization: a combinatorial optimization step finds visi-
bility flags νp(t) for the current path estimates, and a con-
tinuous optimization step updates path coefficients cp given
the current visibility estimates. In the process, we add an-

(a) Without regrouping. (b) With regrouping.

Figure 4: Effect of path regrouping. Motion estimates are
shown using the same color scheme as in Figure 3. The first
image in each pair shows the solution after the first round
of optimization; the second shows results at convergence.
Regrouping (b) recovers from a poor local optimum with
incorrect estimates for the motion of the occluded back-
ground.

chor points until every pixel in the sequence has at least one
path through it, and remove anchors of invisible paths. We
stop when the maximum change in every path falls below
one pixel in every frame.

The initial path estimates are often poor along occlusion
boundaries, because visibility is not yet accounted for. Be-
cause of this, we heuristically regroup paths between each
combinatorial and continuous step to let foreground and
background vie for paths between them.

We now describe the continuous step, path regrouping,
combinatorial step, anchor management, and termination.
Continuous step. We update path coefficients by minimiz-
ing the energy function (2) via trust-region Newton Con-
jugate Gradients optimization [14]. This method only re-
quires computing vectors of the form Hv where H is the
Hessian, rather than the very large but sparse H itself. The
sparsity pattern of H changes over time because the cou-
pling coefficients αpq in equation (5) depend in turn on the
path coefficients. When computing successive conjugate
gradients, we treat the terms αpq as constants—a good ap-
proximation for small path perturbations—and recompute
them between full descent steps.
Path regrouping. After 40 descent steps, we allow paths to
copy their coefficients and visibility flags from one of their
neighbors if doing so improves the path’s fit to data. Specif-
ically, path p copies from path q if νq(τp) = 1, τp 6= τq,
dpq(τp) < ∆, path q is visible for at least half the frames,
and the copy improves the data fit for p the most. Figure 4
illustrates the benefits of this step on the marple7 sequence.
Combinatorial step. Visibility flags are updated after path
regrouping by using graph cuts [2, 12] to compute the MAP
estimate for the MRF in Section 3.2 . The energy function
is amenable to this method as the edge costs (12) satisfy

V (0, 0) + V (1, 1) ≤ V (0, 1) + V (1, 0)

0 ≤ V (0, 1) + V (1, 0) .
(15)

Anchor management. When the maximum change in any
path in any frame is less than one pixel, we check that every



pixel in the video has a visible path through it. If not, we
add new anchor points to fill voids and resume optimization.
Newly inserted paths copy their initial parameters from the
closest visible path.

Anchors on paths that are invisible everywhere except at
the anchor itself (which is always visible) are deleted. These
one-point paths occur when visibility estimation correctly
identifies an outlier with an incorrect path estimate.
Termination. Optimization terminates when all path esti-
mates change by less than a pixel in every frame and all
pixels in the video have a path through them.

6. Results

We evaluate the performance of our technique on five
real sequences of increasing complexity, all with large mo-
tions and significant occlusions. The popular flowerbed (29
frames) and a new sequence with a truck driving behind a
road sign (33 frames) contain only rigid motion. The three
with non-rigid motion are from the Berkeley motion seg-
mentation dataset [5]: 60 frames from marple1, 72 frames
from marple8, and 25 frames from marple7. The marple7
and flowerbed sequences are the same as those evaluated in
LME. Figure 5 shows sample frames; the full sequences are
included in the supplemental material.

6.1. Qualitative evaluation

For a qualitative evaluation, we use our motion results to
warp all frames to a selected frame. This creates a motion-
compensated video that should appear static except for re-
gions that are occluded in a particular frame, and that we
paint white. Figure 5 shows the last frame aligned to the
first frame, and viceversa, for all sequences.

We compare our results to LME paths and LDOF tra-
jectories using implementations provided by their authors.
We also ran two-frame optical flow between all pairs of
frames, but even methods specifically aimed at large dis-
placements [4] failed for distant frames. Figure 6 shows
examples of mistakes made by competing methods.

6.2. Quantitative evaluation

It is difficult to get reliable ground truth paths for realistic
sequences. Synthetic datasets [7] do not preserve associa-
tions across occlusions. Manual labeling for real sequences
is painstaking and unreliable, particularly for complex mo-
tions or low-texture regions.

Instead, we measure the degree to which intensities re-
mains constant along computed paths as a proxy for perfor-
mance. We define the all-path interpolation error (APIE)

APIE =

√√√√ 1

N

∑
p

∑
t νp(t)(I(cp, t)− I(cp, τp))2∑

t νp(t)
(16)

(a) LDOF warp of last frame to first frame of marple1.

(b) LME warp of 20th frame to first frame of truck.

Figure 6: Examples of mistakes made by competing meth-
ods visible when warping to align with the first frame.
White regions mark missing correspondences (left) or oc-
cluded pixels (right). LDOF trajectories do not bridge oc-
clusions and suffer from drift. Few correspondences remain
between the first and last frame of the marple1 sequence,
and the details of the motion of the man’s face have been
missed, leading to misalignment. (Misalignment is obvi-
ous in the accompanying video; see the supplemental ma-
terial.) LME paths bridge occlusions, but they require that
all occluders be visible in either the first or the last frame.
The front of the truck is not visible in either the first or last
frame, so it is not tracked as a potential occluder. As a re-
sult, portions of the background are incorrectly marked as
visible and included in the warp back to the first frame with
their appearance replaced by the missed occluding object.

where N is the number of paths. Even on perfect paths,
APIE would measure the correctness of the brightness con-
stancy assumption, and would be nonzero in general.

Table 1 reports the APIE for different methods for each
sequence, computed with intensity values in [0, 255]. LDOF
trajectories do not directly report visibility; the correspon-
dences for trajectories after occlusions are simply missing.
These entries are ignored as if they had νp(t) = 0. We use
the location and frame of the first observation of each trajec-
tory as its reference appearance. LME paths are anchored
either in the first or last frame and do report visibility values.

We aim to recover paths that maintain correspondence
across occlusions. We measure our success by analyzing the
average length of a path, defined as 1

N

∑
p

∑
t νp(t). As can

be seen in Table 1, the two methods that estimate visibility
(our method and LME) return significantly longer paths on
average as the result of their ability to detect disocclusions.



(a) Flowerbed. Two basis functions; 2.5 hours (29 frames). (b) Truck. Four basis functions; 20 hours (33 frames).

(c) Marple1. Eight basis functions; 65 hours (60 frames). Shadows
cause problems for our occlusion detection step, so that not all of
the man is recognized as being visible in both frames.

(d) Marple7. Five basis functions; 19 hours (25 frames).

(e) Marple8. Eight basis functions; 68 hours (72 frames). Miss
Marple (off-screen in both the first and last frames) walks past dur-
ing the sequence, completely occluding the entire scene.

Figure 5: Results of our method. For each sequence, we show the first and last frames, followed by the last frame warped
to align with the first frame, and vice versa. Regions detected as occluded in the source frame of the warp are marked in
white. See supplemental material for the original videos and videos warped to the first, last, and middle frames. Solution
times (rounded to nearest half-hour) exclude basis computation.

Sequence Method APIE Path length (frames) Path density (pixels) % pixels containing
Mean Std. dev. 50th 95th 99th visible paths

Flowerbed
LDOF traj. 13.97 11.2 10.5 0.47 8.5 15.2 66.6%
LME 9.37 23.9 7.3 0.31 0.79 1.3 97.5%
Ours 6.10 23.3 7.2 0.29 0.66 0.84 99.8%

Truck
LDOF traj. 19.74 6.8 7.5 1.2 47.0 70.0 47.3%
LME 17.82 23.4 7.4 0.39 1.9 4.4 88.6%
Ours 9.80 22.0 9.0 0.27 0.65 0.86 99.8%

Marple7
LDOF traj. 7.84 6.7 6.4 0.47 6.9 13.3 69.0%
LME 6.28 15.9 7.5 0.43 5.7 9.7 76.0%
Ours 5.61 15.5 6.8 0.32 0.70 0.89 99.7%

Marple1
LDOF traj. 15.83 9.4 11.4 0.51 14.7 26.7 62.5 %
Ours 8.79 18.9 19.3 0.35 0.85 1.0 97.8%

Marple8
LDOF traj. 13.69 14.9 14.7 0.47 7.4 16.4 71.2%
Ours 9.30 45.8 20.8 0.25 0.65 0.87 99.7%

Table 1: Solution quality metrics. APIE measures average intensity constancy along estimated paths (smaller is better,
assuming the brightness constancy assumption holds). Path length is the number of frames in which a path is reported as
visible (longer is typically better). Path density is computed by measuring the distance to the nearest visible path for each
pixel. We report the 50th, 95th, and 99th percentiles (smaller is better), as well as the percentage of pixels with a visible path
within a radius of 1 pixel (larger is better). The marple1 and marple8 sequences were too large for LME to complete within
a reasonable timeframe. We stopped computation after 72 hours when only a single iteration had completed.

Further, the average length of our paths tends to correspond
to the length of the dominant occluder.

A key feature of our algorithm is the ability to compute

the path for every visible point in a scene. We measure
path density by computing the distance to the closest vis-
ible path for each pixel in the sequence. Table 1 reports the



50th, 95th, and 99th percentile for each method, as well as
the total percentage of pixels with a visible path within a
distance of 1 pixel. LDOF trajectories leave many pixels
unexplained because they are not initialized in low-texture
areas. LME misses objects not visible in either the first or
last frame of a sequence. In many sequences, these missed
objects can account for a significant fraction of the scene.
Our method explains over 97% of the pixels in every se-
quence.

6.3. Parameter sensitivity

Our technique uses a few parameters that could be tuned
if desired. We selected settings for the parameters by hand
considering the results on the flowerbed sequence only, and
used the same values for all five sequences. We set λ = 1,
σ = 50, and λL = λT = λS = 0.5. We re-scale inten-
sity values to [0, 1] for the combinatorial optimization step
to match the range of the binary unknowns. In our exper-
iments, we found that results were relatively insensitive to
small changes in the values of λ or σ, but were more sensi-
tive to the values of the parameters for the occlusion detec-
tion step.

7. Conclusion
We introduced a method to compute extended video mo-

tion paths that explain every pixel of a video sequence. We
regularize the solution by projection on a low-dimensional
basis of motion paths, and can follow points through brief
occlusions. In contrast with previous methods, we can han-
dle occlusions wherever they occur. This is made possi-
ble by a new, non-variational formulation that allows for
more realistic visibility and appearance constraints and is
also more efficient than the variational approach. While
we focused on grayscale video, the extension to color is
straightforward.

Much work remains to be done. Video with many
or highly deformable moving objects such as crowds or
flags [9] may require nonparametric methods, and our so-
lution may perhaps be used for initialization. Sparsity-
inducing priors on the path coefficients are an intriguing
alternative, in which each path is allowed to use a small
number of functions from a large basis. Processing even
longer sequences than the one we can handle will require
models of long-term, global changes in illumination, and
separate motion bases for different video segments. How
to splice together solutions from these segments is an open
challenge, and so is greater computational efficiency.
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