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As an alternative to texture segmentation for
the description of the images, we propose a
method for coalescing descriptors of adjacent
image patches with similar textural content into
tight clusters. We achieve this result by extend-
ing the notion of edge-preserving smoothing and
anisotropic di�usion from gray-level and color
images to vector-valued images that describe
the textural content of each image patch. To
this end, we �rst compute raw texture descrip-
tors, that is, vectors that describe local texture
appearance. We then de�ne texture contrast as
the maximum derivative of the texture descrip-
tor vector, and we de�ne signi�cant regions as
those in which contrast is low. We propose
an e�cient implementation of edge-preserving
smoothing and show that it is closely related to
anisotropic di�usion. Experiments on texture
mosaics and real images show that clear tex-
ture edges are found even where intensity edges
are weak or poorly de�ned, and that signi�cant
texture regions yield tight clusters of texture de-
scriptors.

1 Introduction

Describing the textural content of images is an
important task in the indexing, perceptual orga-
nization, and interpretation of pictures. For in-
stance, in our work on image databases [Tomasi
and Guibas, 1994; Guibas et al., 1995] we index
pictures by vectors that encode the texture con-
tent of di�erent parts of an image. To this end,
it is useful to determine areas of approximately
uniform texture. In fact, each of these areas can
then be analyzed separately and as a unit. In-
tegration of texture information over an entire
region, as opposed to a small patch, yields de-
scriptor vectors that are at the same time more
accurate and fewer in number. In addition, ar-
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eas of mixed texture content can be excluded
from analysis, thereby keeping the space of in-
dexes clean of spurious vectors.

The traditional approach to the determination
of uniform texture regions has been texture seg-
mentation. In this approach, images are parti-
tioned into regions of supposedly uniform tex-
ture. The insistence on partitioning, that is on
the requirement to label each pixel in the im-
age with exactly one label, although apparently
a desirable outcome, conceals in reality several
di�culties.

First, many parts of many images do not con-
tain any \texture," under any de�nition of this
term. For instance, texture segmentation would
require to tag each eye in a person's portrait as
a single texture, or to partition it into separate
textures. This is of course possible in principle,
if anything by assigning each pixel to a separate
region, but it is hardly meaningful.

Second, the exact location of texture boundaries
is hard to determine, and is often not required
by the application. Some times, two textures
blend into each other gradually, in which case
the notion of a boundary is not even appropri-
ate. However, even if a boundary does exist,
whether a pixel belongs to one or the other tex-
ture is often a futile if not impossible question
to answer.

Third, explicitly identifying the extent of
uniform-texture regions requires complex pro-
cedures like region growing, splitting, or merg-
ing. However, it is often su�cient to know, for
every patch in the image, whether that patch is
similar in some sense to its neighbors. Comput-
ing regions, that is, the transitive closure of this
similarity relation, is expensive and not always
useful.

Fourth, and most fundamentally, the very no-
tion of a \uniform" texture is of dubious va-
lidity. Textures are often random, and no two



patches are exactly equal to each other. In
addition, uniform textures in the world be-
come nonuniform in the image because of di�er-
ences in distance, foreshortening, shading, and
lighting. Insisting on determining in all cases
whether two patches belong to the same tex-
ture requires restrictive texture models and ex-
pensive computation, and leads to questionable
results.

In contrast with segmentation, we propose in-
stead to let descriptors of similar and adjacent
texture patches coalesce into tight clusters. In
this approach, raw texture descriptors are �rst
computed for a �xed set of overlapping image
patches. If two adjacent patches contain similar
textures, a smoothing process brings the corre-
sponding descriptors even closer to each other.
If the textures in two adjacent patches are very
di�erent, however, then their descriptor vectors
are modi�ed so that their distance is left un-
changed or is even increased.

In other words, we propose to do edge-
preserving smoothing, but in the space of tex-
ture vectors rather than for image intensities.
This requires generalizing the de�nition of gra-
dient to a vector function, which we do by in-
troducing a measure of texture contrast. Thanks
to this de�nition, we can run the equivalent of
anisotropic di�usion processes [Perona and Ma-
lik, 1990] to achieve edge-preserving smoothing.
Running these processes in a space with many
dimensions brings also e�ciency considerations
to the forefront, and we propose an e�cient ap-
proximation to anisotropic di�usion. This is
particularly important in an application like re-
trieval from image databases, where large num-
bers of images must be processed when they are
entered into the database, and where query im-
ages must be processed in a short time to ensure
interactive behavior.

The \hard" decisions of texture segmentation
are eliminated by our approach. The exact lo-
cation of boundaries is unimportant, and yet
boundary regions can be identi�ed with su�-
cient precision that they can be tagged as \in-
signi�cant" for texture analysis. Even if only
coarsely localized, strong texture edges can be
found by our method, even when intensity edges
are weak. Also, clusters of texture descrip-
tor vectors can later be replaced by single vec-
tors not by precisely labeling regions, but sim-
ply by standard vector quantization techniques
[Gersho and Gray, 1992]. Now, whether vec-
tor clusters correspond exactly to image regions
becomes irrelevant: clustering is done by opti-
mizing information compression, rather than by
satisfying some semantically loaded criterion of
uniformity.

The next section introduces our version of raw
texture descriptors. These are standard Gabor
�lters, placed on a log-polar grid in the fre-
quency domain. Section 3 de�nes texture con-
trast. Section 4 discusses our e�cient, edge-
preserving smoothing algorithm, and section 5
concludes with some �nal remarks and a look
at future work.

2 Texture Descriptors

A common way to describe texture is to com-
pute the projection of the image intensity func-
tion onto a basis of functions. This is referred
to as a spectral decomposition, because each of
the di�erent basis functions is usually concen-
trated in a di�erent area of the frequency do-
main. In such a representation, a texture is
represented by a vector of values, each value
corresponding to the energy in a speci�ed scale
and orientation subband. Spectral decomposi-
tion methods include using quadrature �lters
[Knutsson and Granlund, 1983], Gabor �lters
[Farrokhnia and Jain, 1991] [Big�un and du Buf,
1994], steerable �lters [Freeman and Adelson,
1991] [Simoncelli et al., 1992] [Perona, 1991]
[Greenspan et al., 1994] [Shy and Perona, 1994]
[Heeger and Bergen, 1995], and the cortex trans-
form [Watson, 1987]. For our experiments, we
implemented the Gabor �lters because of their
simplicity.

2.1 Gabor Filters

Gabor functions [Gabor, 1946] are Gaussians
modulated by complex sinusoids. A useful prop-
erty of these functions is that they are max-
imally compact in both space and frequency.
In order to give the same emphasis to di�er-
ent frequency octaves, and because natural tex-
tures often have a linearly decreasing log power
spectrum [Field, 1987], we use what we call log-
Gabor �lters. The centers of these �lters in the
frequency domain are equally spaced in a log-
polar representation of the spectrum of an im-
age. More speci�cally, if !r and !' are variables
along the logarithm of the magnitude and along
the phase of the 2D frequency plane, we use the
�lters derived by Big�un and du Buf (1994) :

Gij(!r; !') = G(!r � !0ri ; !' � !0'j ) (1)

where

G(!r; !') = exp

 
�!2r
2�2ri

!
exp

 �!2'
2�2'j

!

with 1 � i � M and 1 � j � N . Here, M
is the number of scales and N is the number



of orientation bands. The N orientations are
taken to be equidistant:

�'j = �=2N
!0'j = 2�'j(j � 1)

for 1 � j � N . The M scales are obtained
by dividing the frequency range !max � !min

into the desired number of octaves: 2� + 4� +
: : : + 2M� = !max � !min which yields � =
(!max � !min)=2(2

M � 1) and

�ri = 2i�1�
!0ri = !min + f1 + 3(2i�1 � 1)g�

for 1 � i � M . Figure 1 shows the frequency
response of the M � N �lter bank for M = 4,
N = 4.

The responses of the Gabor �lters on an im-
age are computed in the frequency domain by
multiplying the Fourier-transformed image (af-
ter removing the DC component) with the �lter
responses in equation (1), and transforming the
results back to the space domain. Working in
the frequency domain avoids the image bound-
ary problems which occur when convolving in
the spatial domain. Also, we only retain the
magnitudes of the responses since these encode
the energy content and are independent of po-
sition within the texture region.

Figure 1: Frequency responses for Gabor �lters
for M = 4 and N = 4.

This �ltering stage returns MN response im-
ages. The values from corresponding positions
in these images form MN -dimensional vectors,
which are our raw texture descriptors. To re-
duce the dependence of the responses on light-
ing and in order to emphasize the texture struc-
ture information, we normalize the vectors to
be unit vectors. This makes our texture space
a MN -dimensional hypersphere.

Figure 2 shows a mosaic of four textures from
the Brodatz album [Brodatz, 1966]. Figure 3

shows the result of applying the Gabor �lters
from �gure 1 to this image. We down-sampled
each response image by a factor of four to save
computations. As expected, di�erent textures
give di�erent responses in the various scale and
orientation subbands.

Figure 2: Mosaic of four textures from the Bro-
datz album.

Figure 3: The result of applying the 16 Gabor
�lters in �gure 1 to the mosaic in �gure 2.

3 Texture Contrast

The raw texture vectors introduced in the pre-
vious section describe the local appearance of
small image neighborhoods. The size of these
neighborhoods is equal to that of the supports
of the coarser resolution �lters employed. On
the one hand, these supports are large enough
that they can straddle boundaries between dif-
ferent textures. In this case, they do not de-
scribe \pure" textures, and they can convey in-
formation that is hard to interpret and can be



misleading. On the other hand, the supports
are often too small for them to \see" enough of
a texture to yield a reliable description. In fact,
the basic period of repetition of the underlying
texture may be comparable to the �lter support
sizes, so that adjacent �lters see somewhat dif-
ferent parts of the texture, and the description
vectors di�er somewhat. Also, textures exhibit
variations in the world, as well as variations
caused by nonuniform viewing parameters.

Before using texture vectors for indexing or in-
terpretation, it is therefore preferable to sift
and summarize the information that they con-
vey. Speci�cally, it is desirable to eliminate vec-
tors that describe mixtures of textures, and to
average away some of the variations between
adjacent descriptors of similar image patches.
This poses a problem that is typical in the
perceptual organization of images: small dif-
ferences between attributes of adjacent areas
should be reduced, if not obliterated, and large,
extended di�erences should be enhanced to pre-
vent contamination between dissimilar areas.
The techniques of edge preserving smoothing
[Saint-Marc et al., 1991] and anisotropic di�u-
sion [Perona and Malik, 1990] have been pro-
posed to address this problem for gray scale im-
ages. For texture, a notion of texture contrast
is needed to tell \small" from \large" changes,
in order to apply analogous techniques. Also,
because of the length of texture vectors, e�-
cient processing is crucial, especially when sev-
eral thousand images are processed as is the case
in image database applications.

For texture contrast, we employ a notion of
\generalized gradient" from di�erential geom-
etry [Kreyszing, 1959] that has been used for
color images in the past few years [Di Zenzo,
1986; Cumani, 1991; Sapiro and Ringach, 1994].
The rest of this section discusses this notion as
it applies to texture.

Assume that we have a mapping � : S � <n !
<m. Let �i denote the ith component of�. If �
is a texture vector space, for example, then �i,
1 � i � m are the spectral decomposition sub-
bands, where m = MN . If � admits a Taylor
expansion we can write

�(x+�x) = �(x)+�0(x)�x+k�xke(x;�x) :
where ke(x;�x)k ! 0 as �x! 0 and �0(x) is
the m� n Jacobian matrix of �:

�
0(x) = J(x) =

0
BB@

@�1
@x1

� � � @�1
@xn

...
...

@�m
@x1

� � � @�m
@xn

1
CCA :

If one starts at point x and moves by a small
step �x, the distance traveled in the attribute

domain is approximately

d �= k�0(x)�xk =
p
�xTJTJ�x :

The step direction which maximizes d is the
eigenvector of JTJ corresponding to its largest
eigenvalue. The square root of the largest eigen-
value, or, equivalently, the largest singular value
of �0, corresponds to the gradient magnitude,
and the corresponding eigenvector is the gradi-
ent direction.

We can give a closed form solution for the eigen-
values in the case that n = 2, as it is for images.
In this case, the di�erential of � is

d� =
2X

i=1

@�

@xi
dxi :

and so

kd�k2 =
2X

i=1

2X
j=1

@�

@xi
� @�
@xj

dxidxj :

Using the notation from Riemannian geometry
[Kreyszing, 1959], we have

kd�k2 =
2X

i=1

2X
j=1

gijdxidxj

=

�
dx1
dx2

�T �
g11 g12
g21 g22

� �
dx1
dx2

�
:

where

gij �
mX
k=1

@�k
@xi

@�k
@xj :

and g12 = g21. Let now

�� =
1

2

�
g11 + g22 �

q
(g11� g22)2 + 4g212

�
:

be the two eigenvalues in the matrix G =�
g11 g12
g21 g22

�
. Since G is real and symmetric,

its eigenvalues are real.

We choose �+ as the generalized gradient mag-
nitude since it corresponds to the direction of
maximum change. We can verify that this mag-
nitude reduces to the ordinary gradient norm in
the case of a gray scale image (m = 1):

�+ =
1

2

�
�
2
x +�

2
y +

q
(�2

x ��2
y)
2 + 4�2

x�
2
y

�
=

1

2

�
�
2
x +�

2
y + (�2

x +�
2
y)
�

= �
2
x +�

2
y = kr�k2

where the subscripts x and y denote di�erenti-
ation.



While the application of this de�nition to color
is relatively straight-forward, matters are more
complicated for texture. In fact, color is a point
property of an image, while texture must be de-
�ned over neighborhoods. Because of the mul-
tiscale nature of texture in general, and of our
raw textured descriptors in particular, di�erent
�lters have in general di�erent supports. Com-
puting derivatives at di�erent scales, that is, for
di�erent values of !r in equation (1), requires
operators of appropriate magnitudes and spa-
tial supports in order to yield properly scaled
components. For instance, if di�erentiation is
performed by convolution with the derivatives
of a Gaussian, the standard deviation of each
Gaussian must be proportional to scale, and the
magnitudes must be properly normalized.

Figure 4(a) shows the texture contrast of the
texture mosaic from �gure 2. The texture
boundaries are characterized by high contrast.
However, even inside uniform texture regions
some residue contrast appears. This is discussed
in the next section.

4 Edge-Preserving Smoothing

Figure 4(a) shows some areas with relatively
high texture contrast even inside regions that
appear to be of the same texture. The sources
of these contrast areas have been discussed at
the beginning of the previous section, where
it was pointed out that small, low-contrast ar-
eas should be smoothed away, while extended
ridges of the contrast function should be main-
tained. The measure of texture contrast in-
troduced above allows extending anisotropic
di�usion [Perona and Malik, 1990] or edge-
preserving smoothing [Saint-Marc et al., 1991]
techniques to texture descriptors. In this sec-
tion, we present an e�cient implementation of
an edge-preserving smoothing algorithm, which
is based on repeatedly convolving each of the
spectral subbands of the image with a sepa-
rable binomial �lter weighted by a measure of
the texture contrast. After describing the algo-
rithm, we explore its relation with the method
described in [Perona and Malik, 1990].

First the weighting function g(C) is introduced,
where C is the texture contrast de�ned is sec-
tion 3. The function g(C) should be high where
the texture is uniform and low where the texture
is \edgy" and can be any nonnegative monoton-
ically decreasing function with g(0) = 1. We
chose to use

g(C) = e�
�
jCj
k

�2
(2)

where k controls the decay rate of g(�) and, as

we will see later, determines which of the edges
is preserved.

Smoothing is performed by convolving the spec-
tral subbands of the image with the binomial
�lter

B = BTB ; B = [ 1 2 1 ] :

after it is weighted by g(C). We chose this �l-
ter because it is separable and can be applied
e�ciently. When applied repeatedly, the bino-
mial �lter quickly gives an approximation of a
Gaussian. For brevity, introduce the following
notation:

a �x b =
1X

i=�1

a(i)b(x+ i; y)

a �y b =
1X

j=�1

a(j)b(x; y+ j)

c � b =
1X

i=�1

1X
j=�1

c(i; j)b(x+ i; y+ j) :

A single iteration of the smoothing procedure is
computed as follows at time t:

1. Compute the texture contrast C(t) as de-
scribed in section 3.

2. G(t) = g(C(t)).

3. For 0 � m < M and 0 � n < N do:

(a) Let I(t) be the m-th scale and the n-th
orientation subband.

(b) Compute:

K(t) = B �x G(t)

J(t) =
B �x (G(t)I(t))

K(t)

L(t) = B �y K(t)

I(t+1) =
B �y (K(t)J(t))

L(t)
:

(This computation can be simpli�ed. For clar-
ity, we bring it in the above form). It is easy to
see that

I(t+1) =
B � (G(t)I(t))

B �G(t)
:

Without the B(i; j) factor, this is similar to the
adaptive smoothing proposed in [Saint-Marc et
al., 1991], but implemented, in addition, in
a separable fashion for greater e�ciency. In
[Saint-Marc et al., 1991], this iterative process
is proven to be stable and to preserve edges. A
similar proof can be applied to our case with



straight-forward modi�cations. That edges are
preserved is proved by showing that when the
contrast is large enough (> k), it increases as
the iterations progress, thereby sharpening the
edge. When the contrast is small (< k), the
contrast decreases and the edge is smoothed.
This implies that k is equivalent to a contrast
threshold.

In the following, we show that the edge-
preserving smoothing iteration is equivalent to
an iteration of the anisotropic di�usion pro-
posed by Perona and Malik (1990) . De�ne

c(t) =
G(t)

B �G(t)
:

Then we have

I(t+1) = B � (c(t)I(t))
and by using the fact that

B � c(t) = 1

we can write

I(t+1) � I(t) = B � [c(t)(I(t) � I(t)�)] (3)

where �(x; y) = 1 if x = y = 0 and 0 oth-
erwise. Equation (3) is a discretization of the
anisotropic di�usion equation

It = r � (c(x; y; t)rI) :
Instead of using a 4-neighbor discretization of
the Laplacian as done by Perona and Malik, we
use a better, 8-neighbor discretization [J�ahne,
1995]:

1

4

"
1 2 1
2 �12 2
1 2 1

#
:

Figure 4 (b) shows the texture contrast after
20 iterations. To visualize the MN -dimensional
vectors we project them onto the plane that is
spanned by the two most signi�cant principal
components of all texture vectors in the image.
Figures 4(c), (d) show the projections of the
texture descriptors before and after the edge-
preserving smoothing. Only descriptors from
signi�cant regions are shown in the latter. A
region is signi�cant if the contrast after smooth-
ing is everywhere smaller than the parameter k
in equation (2). We can see that the descriptors
of the four textures form clear distinct clusters
even in this two-dimensional projection. Notice
the sparse trail of points that connects the two
leftmost and the two up-most clusters in �gure
4(d). These points come from a \leakage" in the
boundary between two textures. This implies
that we are limited in the amount of smoothing
we can do before di�erent textures start to mix.
This is also a situation where most segmentation

(a) (b)
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Figure 4: (a) Texture contrast of �gure 2 before
smoothing (dark means large) and (b) after 20
iterations. (c) Projection of the texture descrip-
tors onto the plane of their two most signi�cant
principal components before smoothing and (d)
after 20 iterations.

algorithms would have to make a classi�cation
decision, even if the two textures involved are
in fact similar to each other.

In �gure 5 we see a real image and the result
of edge-preserving smoothing after only �ve it-
erations. We used four scales and four orien-
tation bands. Notice the strong texture edges
even where intensity edges are poorly de�ned or
weak.

The same processing was performed on the im-
age in �gure 6. Figure 7 shows the contrast
measure and the signi�cant regions. Notice that
there are many fewer edges than an intensity-
edge detector would �nd, and yet regions of
di�erent textures are well delineated. For in-
stance, the picket fence is essentially found to
be one region, while and edge detector would
have delineated each picket. Also the walls of
the buildings are now nearly edge-free, in spite
of substantial intensity contrast and even in the
presence of relatively large variations in the at-
tributes of the textures within each region.

Some of the texture boundaries in both �gures
5 and 7 appear as double, parallel lines. This
doubling is caused by the response of �lters that
are insensitive to both textures along the edge.
While these �lters give essentially no response
to the regions adjacent to these edges, the edge



(a)

(b)

Figure 5: (a) A real image. (b) Texture edges
after 5 iterations of the smoothing.

itself creates a peak, which is then di�erentiated
by the contrast detector, thereby creating dou-
ble ridges. We are studying ways to eliminate
this e�ect.

5 Conclusion

In this paper, we have proposed an alterna-
tive to texture segmentation for grouping local
texture descriptors. Rather than partitioning
the image into regions with \the same" tex-
ture, a poorly de�ned notion, we coalesce simi-

Figure 6: A picture of a lighthouse.

lar and adjacent texture descriptors into tight
clusters by a process analogous to the edge-
preserving smoothing procedures that have tra-
ditionally been applied to image intensities or to
color. The main advantage of this alternative
approach is that hard decisions about bound-
aries and \sameness" of textures need not be
made. At the same time, texture descriptors are
grouped in a way that allows compressing them
by standard techniques like vector quantization.
We have introduced a simple and powerful no-
tion of texture contrast, and we have also de-
�ned signi�cant regions as those where texture
contrast is low. Boundary areas and compli-
cated regions with no texture to speak of are
eliminated as insigni�cant for texture analysis.

In our current and future research, we are con-
sidering variations to Gabor �lters for the com-
putation of raw texture descriptors. In particu-
lar, we are experimenting with steerable �lters
[Freeman and Adelson, 1991; Perona, 1991] be-
cause they can yield many di�erent orientations
with less computation. When steerable �lters
are computed at di�erent scales, they can be
implemented e�ciently in a pyramid-like fash-
ion. Greenspan et al. (1994) derive an e�cient
steerable pyramid which gives similar �lters to
the Gabor �lters we are using.
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Figure 7: (a) Texture edges after ten iterations
of the smoothing. (b) Nonigni�cant regions are
blackened out.
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