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ABSTRACT

We introduce a class of metric perceptual distances between tex-
tures. The first metric is sensitive to both rotation and scale
differences, and provides a basis for two other metrics, one in-
variant to rotation, and the other invariant to both rotation and
scale. Our metrics are based on Earth Mover’s Distance compu-
tations on log-polar distributions of spatial frequency computed
from Gabor filters. We show consistency of our metrics with psy-
chophysicalfindings on texture discrimination and classification.

1 INTRODUCTION

Similarity measures between textures are important for image
understandingapplications suchas content-based image retrieval,
texture segmentation, and texture classification. In order to be
useful, it is important that these similarity measures correspond
to human texture perception. In addition, in image retrieval it
is often crucial that the similarity distances be metric, so that
efficient data structures and search algorithms [2, 3] can be used.

In this paper we define a class of texture metrics based on
texture features close to the model of simple cells in the pri-
mary visual cortex[11]. For the distance between texture feature
histograms we use the Earth Mover’s Distance (EMD), an ef-
fective and efficient measure of histogram differences [18]. We
evaluate our metrics both quantitatively, by examining the actual
distances between different textures, and qualitatively, by using
multidimensional scaling techniques [21] to find what are the
texture properties that affect our metrics the most, and to “visu-
alize” the metrics. We obtain similar results to those found by
psychophysical experiments [20, 17].

2 PREVIOUS WORK

Many similarity measures for textures exists. They can be divided
into measures that are defined in the image domain [15], and
measures that are defined in the (local) frequency domain, mostly
by using Gabor filters [12, 14, 16]. In principle, most of the
methods compute histograms of a predefined feature set. This is
done either by taking a single feature set or by gathering statistics
over some neighborhood. Then a similarity measure is defined
over the histograms. Common similarity measures includes the
L1-norm [14], the L2-norm [12], and statistical tests [16].

Other methods proposed for applications such as image re-
trieval and texture segmentation rephrase distances between tex-
tures in probabilistic terms. Given a prototype texture, the other
textures are ranked by their posterior probabilities of matching
the prototype texture [13].

Common problems with most texture similarity measures are
that they are usually not metric. The techniques used for his-

togram matching often lead to false negatives (L1-norm), or
false positives (L2-norm) [19]. This happens because only cor-
responding bins in the histograms are compared, ignoring the
neighboring bins. Also, some texture similarity measures are not
shown to correspond well to visual similarity. Lastly, many mea-
sures cannot be extended naturally to handle image transforma-
tions such as rotation and scale as required in some applications.

3 TEXTURE REPRESENTATION

Gabor functions [9] are commonly used in texture analysis (e.g.
[1, 8, 14]). There is strong evidence that simple cells in the
primary visual cortex can be modeled by Gabor functions tuned
to detect different orientations and scales on a log-polar grid [7].
When applied to images, these functions produce features which
are the basis for many definitions of texture.

In [11] Lee derives the following Gabor wavelets with param-
eters properly constrained by neurophysiological data on simple
cells and by the theory of wavelets. A discretization of a two-
dimensional wavelet is given by [6]

Wlmpq = (1)
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where a is a scale parameter, �x;�y is the spatial sampling
rectangle, �� = �=L is the orientation sampling interval with
l = 0; : : : ; 2L� 1, and m = 0; : : : ;M � 1 are the scales. p; q
are image position. We used a = 1=2, �x = �y = 1, M = 5
scales, and 2L = 16 orientations.

The notation  �(x; y) =  (~x; ~y) denotes a rotation of the
mother wavelet  (x; y) by �. We chose the following Gabor
function as our mother wavelet [11]:
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The constant k determines the frequency bandwidth of the fil-
ters. We use k = 3:14 which corresponds to a half-amplitude
bandwidth of 1 octave, consistently with neurophysiologicalfind-
ings. See [11] for details on Gabor wavelets and the choice of
parameters.

Since for this paper our images are homogeneous textures, we
take as our texture features the spatial mean of the energies of the
Gabor responses:

Elm =

P
p;q
jWlmpq j2P

l;m;p;q
jWlmpqj2 :



The denominator normalizes Elm so that
P

l;m
Elm = 1. In

general when the image has more than one texture, the energy
mean can be computed for smaller regions or at every pixel.

Our choice of the different parameters also makes the Gabor
representation close to a tight frame [11]. A tight frame allows for
complete reconstruction of an image from its wavelet responses.
In our case however, reconstruction is not possible since we keep
only the energies of the Gabor responses. Nevertheless, tight
frame is a desirable property since it guarantees that the energy
of the image is preserved by theElm’s up to a constant factor [6].

In order to make the frame even tighter, each scale can be
furthermore divided into voices by:

 �l��(x; y) = 2�2�=N l��

�
�2�=Nx;�2�=N y

�
;

where N is the number of frequency sampling steps per scale,
and � = 0; : : : ;N � 1 is the index. We use N = 2 voices per
scale.

Exploiting symmetry, computing only L orientations is suffi-
cient, so our texture representation is a 5 by 8 array of energies
which we call texture signature. Figure 1 shows two examples
of textures signatures. 1
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Figure 1: Texture signatures. Left: Patches from fabric
(top) and tile (bottom) textures. Middle: DFT magnitude.
Right: Texture signatures.

4 THE EARTH MOVER’S DISTANCE

The texture signature derived in section 3 is a two-dimensional
histogram. To compare textures we need a measure of similarity
between these histograms.

In [18] the concept of the Earth Mover’s Distance (EMD) is
introduced as a flexible similarity measure between multidimen-
sional histograms or, more generally, distributions. Intuitively,
given two histograms, one can be seen as a mass of earth properly
spread in space, the other as a collection of holes in that same
space. Then, the EMD measures the least amount of work needed
to fill the holes with earth. Here, a unit of work corresponds to
transporting a unit of earth by a unit of distance.

1The textures used in this paper are mostly from the MIT Media Lab’s
VisTex texture collection, and from the Brodatz album.

The EMD is based on the transportation problem [5]: Let
P be a set of points called suppliers, Q a set of points called
consumers, and cij the cost to ship a unit of supply from pi to qj .
In general, P and Q does not have to be of the same size. We
want to find a set of flows fij that minimize the overall costX

i = 1 : : : jP j
j = 1 : : : jQj

fijcij ; (2)

subject to the following constraints:

fij � 0 i = 1 : : : jP j; j = 1 : : : jQj (3)X
i=1:::jP j

fij = wqj j = 1 : : : jQj (4)

X
j=1:::jQj

fij � wpi i = 1 : : : jP j ; (5)

where wpi is the total supply (weight) of supplier i and wqj is
the total capacity (weight) of consumer j. Constraint 3 allows
shipping from a supplier to a consumer and not vice versa. Con-
straint 4 forces the consumers to fill up all of their capacities and
constraint 5 limits the supply that a supplier can send to its total
amount. A feasibility condition is that the total demand does not
exceed the total supply.

The transportation problem is a special case of linear op-
timization which can be computed efficiently [18]. It can be
naturally used for histogram matching by defining one histogram
as the supplier and the other as the consumer, and solving the
transportation problem where cij = d(pi; qj) is the ground dis-
tance which should be chosen according to the problem at hand.
When the total weights of the histograms are not equal (partial
matches), the smaller histogram will be the consumer in order
to satisfy the feasibility condition. Once the transportation prob-
lem is solved, and we have found the optimal flow F , the earth
mover’s distance is defined as

EMD(x; y) =

P
i;j
fijd(pi; qj)P
i;j
fij

where the denominator is a normalization factor that avoids favor-
ing histograms with smaller total weights. For texture signatures
however, by construction

P
i;j
fij = 1.

Thus, the EMD naturally extends distance between single ele-
ments to distance between sets of elements, or histograms, where
items from neighboring bins contribute similar costs, thereby
eliminating histogram binning artifacts. If the ground distance
is a metric and the total weights of two signatures are equal, the
EMD is a true metric [18].

5 TEXTURE METRICS

The notion of distance between textures varies with athe task at
hand. While for texture classification one may want the distance
to be invariant to rotations of the texture and perhaps also to
changes in scale, for texture segmentation these invariants may
be inappropriate. In this section we show how to use the EMD
to define different distances between textures. In section 5.2 we
define a distance with no invariance. In section 5.3 we define a
rotation invariant distance and in section 5.4 we add also scale
invariance.



In order to evaluate the meaningfulness of our new texture
metrics, we use MultiDimensional Scaling (MDS) [21] to embed
the textures in the Euclidean plane so that distances in the plane
are as close as possible to the EMDs between them. Such embed-
dings allow us to see all distances at once, albeit approximately,
and to evaluate whether the EMD is a perceptually natural metric.
The MDS is introduced in the next section.

5.1 Multidimensional Scaling as a Perceptual Evaluation
Tool

Given a set of n objects together with the distances �ij between
them, the Multi-Dimensional Scaling (MDS) technique [21] com-
putes a configuration of points fpig in a low-dimensional Eu-
clidean space Rd, (in our experiments we use d = 2) so that
the Euclidean distances dij = kpi � pjk2 between the points in
Rd match as well as possible the original distances �ij between
the corresponding objects. Kruskal’s [10] formulation of this
problem requires minimizing the following quantity

STRESS =

"P
i;j
(dij � �ij)

2P
i;j
�2ij

#1=2
with the additional constraint that the dijs are in the same rank
ordering as the corresponding �ijs. STRESS is a nonnegative
number that indicates how well distances are preserved in the
embedding. Zero STRESS indicates a perfect fit. Rigid transfor-
mations and reflections can be applied to the MDS result without
changing the STRESS.

As we show in sections 5.2, 5.3 and 5.4, performing MDS
on a set of texture patches using different metrics automatically
reveals the properties of texture that predominantly affect our
distance, without the need for an explicit definition of the proper-
ties themselves. However, it is important to remember that since
the textures do not “live” in two-dimensional space (or in any
Euclidean space), the MDS gives only an approximation to the
distance matrix. While the MDS gives the general “feel” for the
main discriminative factors of a metric, it should not be used for
exact measures of distance between pairs of points.

5.2 No Invariance

In section 3 we represented a texture by its energy samples on
a log-polar frequency grid. We can now use the EMD as the
distance measure between these distribution samples. To this
end, we define our ground distance to be the L1-distance in the
log-polar space. We obtained similar results with the Euclidean
distance. Since the log-polar space is actually cylindrical, we
have two possible distances between a pair of points. We de-
fine the ground distance to be the shorter of the two distances.
The ground distance between the points (l1;m1) and (l2;m2) is
therefore:

d ((l1;m1); (l2;m2)) = j�lj+ �j�mj ; (6)

where

�l = min(jl1 � l2j; L� jl1 � l2j) , �m =m1 �m2 :

The parameter � controls the relative importance of scale and
orientation. We used � = 1 with good results. Other choices of

� can result from the applications or from psychophysical exper-
iments. Our ground distance is metric (see proof in Appendix A)
and therefore the defined EMD is metric as well [18].

We performed a similar experiment as in [14] on a small
texture database of 62 images of texture of size 256�256 pixels.
Sets of textures which we perceptually considered as the same
contributed one representative to the database. Each image was
divided into 4 non-overlapping 128 � 128 subimages. Each of
the resulting 248 subimages was used as a query, asking for the
top 4 matches. The average percentage of number of matches
which belongs to the same images as the query,was 89.6%. When
the top 8 matches where returned, the performance increased to
96.8%.

To understand the metric qualitatively, we picked the 16 tex-
tures shown above Table 1, which shows their (symmetric) EMD
distance matrix. Figure 2 shows the results of applying a two-
dimensional MDS to 16 textures using the described EMD.2 In
this figure, the arrows we superimposed by hand suggest that one
axis reflects the coarseness of the texture, from fine to coarse.
The other (curved) axis reflects the dominant orientation of the
texture. On the left we see horizontal textures, on the right ver-
tical textures, and as we move from left to right on the lower
half circle, the orientation changes counter-clockwise. The other
textures have no dominant orientation. STRESS in this figure
is 0.061, so on average, distances in the picture are close to the
real EMDs. Adding more oriented textures with different scales
and orientations will complete also the top half of the orientation
circle, at the expense of the coarseness axis. This will increase
the STRESS, making two dimensions insufficient. In this case,
a three-dimensional MDS would use two dimensions for the ori-
entation circle and the third for coarseness.

5.3 Rotation Invariance

In our log-polar array, rotation translates to cyclic shifts along the
orientation axis. Although inefficient, we can achieve rotation
invariance by an exhaustive search for the minimal distance over
all possible shifts in orientation. In section 6 we mention an
efficient algorithm which avoids this exhaustive search.

Let t1 and t2 be two texture signatures. An EMD that is
invariant to texture rotation is

EMD(t1; t2) = min
ls=0;:::;L�1

EMD(t1; t2; ls) ;

where EMD(t1; t2; ls) is the EMD with orientation shift ls. The
ground distance in equation (6) uses the same �m but

�l = min( jl1 � l2 + ls (mod L)j;
L� jl1 � l2 + ls (mod L)j) :

A two-dimensional MDS using the rotation-invariant EMD on
the texture signatures in shown in figure 3 (with a STRESS value
of 0.044). One axis emphasizes the directionality of the texture,
where textures with one dominant orientation (any orientation)
are at the top, and textures without a dominant orientation (no
orientation at all, or more than one orientation) are at the bottom.
The other axis is coarseness, similarly to the previous experi-
ment. For example, the two oriented textures of fabrics on the
right are close together although they have different orientations.

2In order to better see the fine details of the textures,only one quarter of
the textures that was used to compute the texture signature are displayed.



1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0.00 0.29 2.07 1.46 1.26 1.25 1.11 0.71 0.72 0.74 1.42 0.72 1.56 2.86 1.78 1.65
2 0.29 0.00 2.13 1.50 1.24 1.11 1.01 0.55 0.54 0.57 1.21 0.77 1.38 2.89 1.62 1.54
3 2.07 2.13 0.00 1.63 2.72 1.85 1.73 1.90 1.92 2.33 2.32 2.14 1.86 0.90 3.49 1.69
4 1.46 1.50 1.63 0.00 1.42 2.10 1.92 1.77 1.73 1.98 2.40 1.29 2.13 2.45 2.76 2.23
5 1.26 1.24 2.72 1.42 0.00 2.13 1.98 1.64 1.58 1.52 2.12 1.22 2.31 3.48 1.64 2.47
6 1.25 1.11 1.85 2.10 2.13 0.00 0.26 0.70 0.72 1.10 0.87 1.64 0.83 2.35 1.98 1.16
7 1.11 1.01 1.73 1.92 1.98 0.26 0.00 0.60 0.63 1.04 0.94 1.49 0.91 2.30 1.96 1.30
8 0.71 0.55 1.90 1.77 1.64 0.70 0.60 0.00 0.11 0.51 0.78 1.04 0.91 2.53 1.64 1.12
9 0.72 0.54 1.92 1.73 1.58 0.72 0.63 0.11 0.00 0.50 0.79 1.00 0.89 2.55 1.62 1.12

10 0.74 0.57 2.33 1.98 1.52 1.10 1.04 0.51 0.50 0.00 0.78 0.98 1.17 2.96 1.20 1.37
11 1.42 1.21 2.32 2.40 2.12 0.87 0.94 0.78 0.79 0.78 0.00 1.63 0.70 2.75 1.47 1.04
12 0.72 0.77 2.14 1.29 1.22 1.64 1.49 1.04 1.00 0.98 1.63 0.00 1.67 2.88 1.84 1.78
13 1.56 1.38 1.86 2.13 2.31 0.83 0.91 0.91 0.89 1.17 0.70 1.67 0.00 2.24 2.03 0.82
14 2.86 2.89 0.90 2.45 3.48 2.35 2.30 2.53 2.55 2.96 2.75 2.88 2.24 0.00 4.07 2.02
15 1.78 1.62 3.49 2.76 1.64 1.98 1.96 1.64 1.62 1.20 1.47 1.84 2.03 4.07 0.00 2.24
16 1.65 1.54 1.69 2.23 2.47 1.16 1.30 1.12 1.12 1.37 1.04 1.78 0.82 2.02 2.24 0.00

Table 1: Top: The 16 textures used in this paper. Bottom: Distance matrix for the no invariance case.

Coarseness and directionality were found by psychophysical ex-
periments by Tamura et al. [20] to be the two most discriminant
texture properties for human perception.

5.4 Scale Invariance

Scale invariance can be obtained in a similar manner. In the log-
polar array, scale invariance can be seen as invariance to shifts
in the scale axis. An EMD that is invariant to both rotation and
scale is

EMD(t1; t2) = min
ls = 0; : : : ; L� 1

ms = �(M � 1); : : : ;M � 1

EMD(t1; t2; ls;ms) ;

where EMD(t1; t2; ls;ms) is the EMD with orientation shift ls
and scale shift ms. The ground distance is similar to the scale
invariance case with

�m = m1 �m2 +ms :

Now the 2D MDS, shown in figure 4 (with STRESS equal to
0.074), can be interpreted as follows. One axis is again the
directionality, while the other shows what we call the “scality”
of the texture, a measure that distinguishes between textures
with one dominant scale and textures with more than one, or no
dominant scale. For example, the two textures of oriented bars
which have different orientations and scales are close to each

other. Also, the two textures of tiles on the right are very close to
each other even if they differ by more than three octaves in scale!

Although not the same, this measure is correlated with the
regularity [17] of the textures. While the intuitive interpretation
of this second axis deserves further investigation,we point out that
our results, based on EMD and MDS, are close to those of Rao
and Lohse [17] who used psychophysical experiments instead,
and concluded that regularity and directionality are perceptually
the two most important properties for texture classification.

6 COMPUTATION

A single EMD can be computed quite efficiently [18]. In ad-
dition, since the two signatures do not have to be of the same
size, the histograms can be reduced by pruning bins with very
small weights which contribute little to the EMD result. This
significantly reduces the size of the EMD problem which can be
computed much faster. In practice, for most textures most of the
bins can be pruned with negligible change to the EMD result.

The invariant texture distances in sections 5.3 and 5.4 can
be computed without an exhaustive search by using an EM type
optimization algorithm [4].



direction

coarseness

Figure 2: 2D MDS of 16 textures. The two dominant axes of orientation and coarseness emerge.

7 CONCLUSIONS

The texture distances introduced in this paper enjoy two crucial
properties for image retrieval and other texture discrimination
and classification tasks: they are perceputally natural and they are
metric. In addition, they can be computed very fast. Presumably,
our metrics can also improve the performance of texture segmen-
tation algorithms, thereby allowing application of our metrics to
entire, realistic images, rather than to patches of homogeneous
texture. This is a major thread of our current research.
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A PROVING THAT THE DISTANCES ARE METRIC

Here we prove that all distances defined in this paper are indeed
metric. Nonnegativity and symmetry hold trivially in all cases,
so we only need to prove that the triangle inequality holds. In
[18] it is proven that if the ground distance is metric, the EMD
is metric. First, since our log-polar space is cylindrical, we need
to show that the ground distance (L1 in our case) on a cylinder is
metric as well.

The projection of two pointsA andC on the cylinder onto its
circular base divides it into two circular arcs (in the degenerate
case one arc can be a point). The projection of a third pointB can
be in only one of these two arcs. Now the cylinder can be unfolded
into a rectangle by a vertical cut anywhere through the other arc.
Since in this two-dimensional plane AC � AB + BC , the
triangle inequality holds also on the cylinder (the other possible
distance from A to C through the cut is chosen only if it makes
AC shorter). Therefore, our ground distance is metric.

We now prove that the EMD is metric in the rotation and scale
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Figure 4: 2D MDS of 16 textures with rotation and scale invariance. “Scality” vs. directionality.

invariant cases. In the log-polar space rotation and scale shifts
are reduced to translations, and we now prove in general that
EMD’s under translations are metric.

Translation invariant EMD between signatures P and Q can
be written asgEMD(P;Q) =

X
i;j

fijd(pi; qj � TPQ) ;

where fij and TPQ are the flow and translation that minimize the
sum. Similar formulas hold for gEMD(Q;R) and gEMD(P;R),
and we need to prove thatgEMD(P;R) � gEMD(P;Q) + gEMD(Q;R) :

Without loss of generality we assumehere that the total sum of the
flows is 1. Consider the flow P 7! Q 7! R. The largest unit of
weight that moves together from P toQ and fromQ toR defines
a flow which we call bijk where i, j and k correspond to pi, qj
and rk respectively. Clearly

P
k
bijk = fij and

P
i
bijk = gij .

We define
hik

4
=
X
j

bijk

which is a legal flow from i to k sinceX
i

hik =
X
i;j

bijk =
X
j

gjk = wrk ;

and X
k

hik =
X
j;k

bijk =
X
j

fij = wpi :

Since gEMD(P;R) is the minimal flow from P to R, and hik is
some legal flow from P to R,gEMD(P;R) �

X
i;k

hikd (pi; rk � (TPQ + TQR))

=
X
i;j;k

bijkd (pi; rk � (TPQ + TQR))

�
X
i;j;k

bijkd(pi; qj � TPQ) +X
i;j;k

bijkd (qj � TPQ; rk � (TPQ + TQR))

=
X
i;j;k

bijkd(pi; qj � TPQ) +
X
i;j;k

bijkd(qj ; rk � TQR)

=
X
i;j

fijd(pi; qj � TPQ) +
X
j;k

gjkd(qj ; rk � TQR)

= gEMD(P;Q) + gEMD(Q;R) :


