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ABSTRACT

We introduce a class of metric perceptual distances between tex-
tures. The first metric is sensitive to both rotation and scale
differences, and provides a basis for two other metrics, one in-
variant to rotation, and the other invariant to both rotation and
scale. Our metrics are based on Earth Mover’s Distance compu-
tations on log-polar distributions of spatial frequency computed
from Gabor filters. We show consistency of our metricswith psy-
chophysical findingson texture discrimination and classification.

1 INTRODUCTION

Similarity measures between textures are important for image
understanding applicationssuchas content-basedimageretrieval,
texture segmentation, and texture classification. In order to be
useful, it isimportant that these similarity measures correspond
to human texture perception. In addition, in image retrieval it
is often crucia that the similarity distances be metric, so that
efficient data structures and search algorithms [ 2, 3] can be used.

In this paper we define a class of texture metrics based on
texture features close to the model of simple cells in the pri-
mary visual cortex[11]. For the distance between texture feature
histograms we use the Earth Mover's Distance (EMD), an ef-
fective and efficient measure of histogram differences [18]. We
evaluate our metrics both quantitatively, by examining the actual
distances between different textures, and qualitatively, by using
multidimensional scaling techniques [21] to find what are the
texture properties that affect our metrics the most, and to “visu-
alize” the metrics. We obtain similar results to those found by
psychophysical experiments[20, 17].

2 PREVIOUSWORK

Many similarity measuresfor texturesexists. They canbedivided
into measures that are defined in the image domain [15], and
measuresthat are definedin the (local) frequency domain, mostly
by using Gabor filters [12, 14, 16]. In principle, most of the
methods compute histograms of a predefined feature set. Thisis
doneeither by taking asingle feature set or by gathering statistics
over some neighborhood. Then a similarity measure is defined
over the histograms. Common similarity measures includes the
Ly-norm [14], the L>-norm [12], and statistical tests [16].

Other methods proposed for applications such as image re-
trieval and texture segmentation rephrase distances between tex-
tures in probabilistic terms. Given a prototype texture, the other
textures are ranked by their posterior probabilities of matching
the prototype texture [13].

Common problems with most texture similarity measuresare
that they are usually not metric. The techniques used for his-

togram matching often lead to false negatives (L1-norm), or
false positives (L2-norm) [19]. This happens because only cor-
responding bins in the histograms are compared, ignoring the
neighboring bins. Also, some texture similarity measures are not
shown to correspond well to visual similarity. Lastly, many mea-
sures cannot be extended naturally to handle image transforma-
tions such as rotation and scale as required in some applications.

3 TEXTURE REPRESENTATION

Gabor functions [9] are commonly used in texture analysis (e.g.
[1, 8, 14]). There is strong evidence that simple cells in the
primary visual cortex can be modeled by Gabor functions tuned
to detect different orientations and scaleson alog-polar grid [7].
When applied to images, these functions produce features which
are the basis for many definitions of texture.

In[11] Leederivesthe following Gabor wavelets with param-
eters properly constrained by neurophysiological data on simple
cells and by the theory of wavelets. A discretization of a two-
dimensional wavelet is given by [6]

Wlmpq = (1)
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where a is a scale parameter, Az, Ay is the spatial sampling
rectangle, A9 = = /L is the orientation sampling interval with
l=0,....,2L—1,andm =0,...,M — 1 arethe scales. p, q
areimage position. Weuseda = 1/2, Az = Ay =1,M =5
scales, and 21, = 16 orientations.

The notation ve(z,y) = (&, y) denotes a rotation of the
mother wavelet ¢ (z, y) by 8. We chose the following Gabor
function as our mother wavelet [11]:
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The constant & determines the frequency bandwidth of the fil-
ters. We use k& = 3.14 which corresponds to a half-amplitude
bandwidth of 1 octave, consistently with neurophysiological find-
ings. See [11] for details on Gabor wavelets and the choice of
parameters.

Sincefor this paper our images are homogeneoustextures, we
take as our texture features the spatial mean of the energiesof the
Gabor responses:
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The denominator normalizes i, sothat ", = Ein = 1. In
general when the image has more than one texture, the energy
mean can be computed for smaller regions or at every pixel.

Our choice of the different parameters also makes the Gabor
representation closeto atight frame[11]. A tight frameallowsfor
complete reconstruction of an image from its wavelet responses.
In our case however, reconstruction is not possible since we keep
only the energies of the Gabor responses. Nevertheless, tight
frame is a desirable property since it guaranteesthat the energy
of theimageis preserved by the F,,,’s up to aconstant factor [6].

In order to make the frame even tighter, each scale can be
furthermore divided into voices by:

Vine(®,y) = 272N hine (‘2"/Nx, —2"/Ny) )

where N is the number of frequency sampling steps per scale,
andn =0,...,N — 1 istheindex. Weuse N = 2 voices per
scale.

Exploiting symmetry, computing only L orientations is suffi-
cient, so our texture representation is a 5 by 8 array of energies
which we call texture signature. Figure 1 shows two examples
of textures signatures. *
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Figure 1. Texture signatures. Left: Patches from fabric
(top) and tile (bottom) textures. Middle: DFT magnitude.
Right: Texture signatures.

4 THE EARTH MOVER’SDISTANCE

The texture signature derived in section 3 is a two-dimensional
histogram. To compare textures we need a measure of similarity
between these histograms.

In [18] the concept of the Earth Mover’s Distance (EMD) is
introduced as a flexible similarity measure between multidimen-
sional histograms or, more generaly, distributions. Intuitively,
given two histograms, one can be seen asamassof earth properly
spread in space, the other as a collection of holes in that same
space. Then, the EM D measuresthe |east amount of work needed
to fill the holes with earth. Here, a unit of work corresponds to
transporting a unit of earth by a unit of distance.

I Thetexturesused in this paper are mostly fromthe MIT MediaLab's
VisTex texture collection, and from the Brodatz album.

The EMD is based on the transportation problem [5]: Let
P be a set of points called suppliers, @ a set of points called
consumers, and ¢;; the cost to ship aunit of supply from p; to g;.
In general, P and @@ does not have to be of the same size. We
want to find a set of flows f;; that minimize the overall cost
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where w,, is the total supply (weight) of supplier : and w,;, is
the total capacity (weight) of consumer 5. Constraint 3 allows
shipping from a supplier to a consumer and not vice versa. Con-
straint 4 forces the consumersto fill up al of their capacitiesand
constraint 5 limits the supply that a supplier can send to its total
amount. A feasibility condition is that the total demand does not
exceed the total supply.

The transportation problem is a special case of linear op-
timization which can be computed efficiently [18]. It can be
naturally used for histogram matching by defining one histogram
as the supplier and the other as the consumer, and solving the
transportation problem where c;; = d(p:, g;) isthe ground dis-
tance which should be chosen according to the problem at hand.
When the total weights of the histograms are not equal (partial
matches), the smaller histogram will be the consumer in order
to satisfy the feasibility condition. Oncethe transportation prob-
lem is solved, and we have found the optimal flow F', the earth
mover’s distanceis defined as

o fid(pi,g5)
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wherethe denominator isanormalization factor that avoidsfavor-
ing histograms with smaller total weights. For texture signatures
however, by construction Zi ; fi; =1

Thus, the EMD naturally extends distance betweensi ngleele-
mentsto distance between sets of elements, or histograms, where
items from neighboring bins contribute similar costs, thereby
eliminating histogram binning artifacts. If the ground distance
is ametric and the total weights of two signatures are equal, the
EMD is atrue metric [18].

5 TEXTURE METRICS

The notion of distance between textures varies with athe task at
hand. While for texture classification one may want the distance
to be invariant to rotations of the texture and perhaps also to
changesin scale, for texture segmentation these invariants may
be inappropriate. In this section we show how to use the EMD
to define different distances between textures. In section 5.2 we
define a distance with no invariance. In section 5.3 we definea
rotation invariant distance and in section 5.4 we add also scale
invariance.



In order to evaluate the meaningfulness of our new texture
metrics, we use MultiDimensional Scaling (MDS) [21] to embed
the texturesin the Euclidean plane so that distancesin the plane
are ascloseas possibleto the EM Ds between them. Such embed-
dings allow usto see all distances at once, albeit approximately,
andto evaluate whether the EMD is aperceptually natural metric.
The MDS isintroduced in the next section.

5.1 Multidimensional Scaling as a Perceptual Evaluation
Tool

Given a set of n objects together with the distances d;; between
them, the Multi-Dimensional Scaling (MDS) technique[21] com-
putes a configuration of points {p;} in a low-dimensional Eu-
clidean space R¢, (in our experiments we use d = 2) so that
the Euclidean distances d;; = ||p; — p; |2 between the pointsin
R? match aswell as possible the original distancesd;; between
the corresponding objects. Kruskal’s [10] formulation of this
problem requires minimizing the following quantity

Zm (dij — 5@‘])2 v
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with the additional constraint that the d;;s are in the same rank
ordering as the corresponding é;;S. STRESS is a nonnegative
number that indicates how well distances are preserved in the
embedding. Zero STRESS indicatesa perfect fit. Rigid transfor-
mations and refl ections can be applied to the MDS result without
changing the STRESS.

As we show in sections 5.2, 5.3 and 5.4, performing MDS
on a set of texture patches using different metrics automatically
reveals the properties of texture that predominantly affect our
distance, without the need for an explicit definition of the proper-
ties themselves. However, it isimportant to remember that since
the textures do not “live” in two-dimensional space (or in any
Euclidean space), the MDS gives only an approximation to the
distance matrix. While the MDS gives the general “feel” for the
main discriminative factors of ametric, it should not be used for
exact measures of distance between pairs of points.

STRESS = l

5.2 Nolnvariance

In section 3 we represented a texture by its energy samples on
a log-polar frequency grid. We can now use the EMD as the
distance measure between these distribution samples. To this
end, we define our ground distance to be the L -distance in the
log-polar space. We obtained similar results with the Euclidean
distance. Since the log-polar space is actually cylindrical, we
have two possible distances between a pair of points. We de-
fine the ground distance to be the shorter of the two distances.
The ground distance between the points (1, , m1) and (2, m2) is
therefore:

d((ll,ﬂll)7 (1277712)) = |Al| + oz|Am| s (6)
where
Al:mil’l(|ll—12|,L—|ll—12|) , Am:ml—mg.

The parameter o controls the relative importance of scale and
orientation. We used & = 1 with good results. Other choices of

« can result from the applicationsor from psychophysical exper-
iments. Our ground distanceis metric (see proof in Appendix A)
and therefore the defined EMD is metric as well [18].

We performed a similar experiment as in [14] on a small
texture database of 62 images of texture of size 256x 256 pixels.
Sets of textures which we perceptually considered as the same
contributed one representative to the database. Each image was
divided into 4 non-overlapping 128 x 128 subimages. Each of
the resulting 248 subimages was used as a query, asking for the
top 4 matches. The average percentage of number of matches
which belongsto the sameimagesasthe query, was 89.6%. When
the top 8 matches where returned, the performance increased to
96.8%.

To understand the metric qualitatively, we picked the 16 tex-
tures shown above Table 1, which showstheir (symmetric) EMD
distance matrix. Figure 2 shows the results of applying a two-
dimensional MDS to 16 textures using the described EMD.? In
thisfigure, the arrows we superimposed by hand suggest that one
axis reflects the coarseness of the texture, from fine to coarse.
The other (curved) axis reflects the dominant orientation of the
texture. On the left we see horizontal textures, on the right ver-
tical textures, and as we move from left to right on the lower
half circle, the orientation changes counter-clockwise. The other
textures have no dominant orientation. STRESS in this figure
is 0.061, so on average, distancesin the picture are close to the
real EMDs. Adding more oriented textures with different scales
and orientationswill complete also the top half of the orientation
circle, at the expense of the coarsenessaxis. This will increase
the STRESS, making two dimensions insufficient. In this case,
athree-dimensional MDS would use two dimensionsfor the ori-
entation circle and the third for coarseness.

5.3 Rotation Invariance

In our log-polar array, rotation translatesto cyclic shiftsalong the
orientation axis. Although inefficient, we can achieve rotation
invariance by an exhaustive search for the minimal distance over
all possible shifts in orientation. In section 6 we mention an
efficient algorithm which avoids this exhaustive search.

Let t; and t. be two texture signatures. An EMD that is
invariant to texture rotation is

EMD(tl,tQ) = min EMD(tl,tQ,lS) s

1,=0,...,L—1

where EMD(t1, t2,{,) isthe EMD with orientation shift /. The
ground distance in equation (6) usesthe same Am but

Al = min( |h —lo+1. (mod L),
L—|h—l+1 (modL)|).

A two-dimensional MDS using the rotation-invariant EMD on
the texture signaturesin shownin figure 3 (with a STRESS value
of 0.044). One axis emphasizesthe directionality of the texture,
where textures with one dominant orientation (any orientation)
are at the top, and textures without a dominant orientation (no
orientation at all, or more than one orientation) are at the bottom.
The other axis is coarseness, similarly to the previous experi-
ment. For example, the two oriented textures of fabrics on the
right are closetogether although they have different orientations.

2Inorder to better seethefinedetailsof thetextures, only onequarter of
the texturesthat was used to compute the texture signature are displayed.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
11000 029 207 146 126 125 111 071 072 074 142 072 15 28 178 165
21029 000 213 150 124 111 101 055 05 057 121 077 138 28 162 154
3207 213 000 163 272 18 173 190 192 233 232 214 18 090 349 169
41146 150 163 000 142 210 192 177 173 198 240 129 213 245 276 223
5126 124 272 142 000 213 198 164 158 152 212 122 231 348 164 247
6125 111 18 210 213 000 026 070 072 110 087 164 083 235 198 116
7111 101 173 192 198 02 000 060 063 104 094 149 091 230 19 130
8071 05 190 177 164 070 060 000 011 051 078 104 091 253 164 112
91072 054 192 173 158 072 063 011 000 050 079 100 089 255 162 112
10 | 074 057 233 198 152 110 104 051 050 000 078 098 117 296 120 137
11| 142 121 232 240 212 087 094 078 079 078 000 163 070 275 147 104
12| 072 077 214 129 122 164 149 104 100 098 163 000 167 288 184 178
13| 156 138 18 213 231 083 091 091 089 117 070 167 000 224 203 0.82
14| 286 289 090 245 348 235 230 253 255 29 275 288 224 000 407 202
15| 178 162 349 276 164 198 19 164 162 120 147 184 203 407 000 224
16 | 165 154 169 223 247 116 130 112 112 137 104 178 082 202 224 0.00

Table 1: Top: The 16 textures used in this paper. Bottom: Distance matrix for the no invariance case.

Coarsenessand directionality were found by psychophysical ex-
periments by Tamura et a. [20] to be the two most discriminant
texture properties for human perception.

5.4 Scalelnvariance

Scaleinvariance can be obtained in asimilar manner. In the log-
polar array, scale invariance can be seen as invariance to shifts
in the scale axis. An EMD that is invariant to both rotation and
scaleis

L EMD(tl,tg,lS,mS) s
me = (M =1y, M~ 1

where EMD(t, t2, 1., m.) isthe EMD with orientation shift i,
and scale shift m.. The ground distanceis similar to the scale
invariance casewith

Am=m| —mos+m,.

Now the 2D MDS, shown in figure 4 (with STRESS equal to
0.074), can be interpreted as follows. One axis is again the
directionality, while the other shows what we call the “scality”
of the texture, a measure that distinguishes between textures
with one dominant scale and textures with more than one, or no
dominant scale. For example, the two textures of oriented bars
which have different orientations and scales are close to each

other. Also, the two textures of tiles on the right are very closeto
each other even if they differ by more than three octavesin scale!

Although not the same, this measure is correlated with the
regularity [17] of the textures. While the intuitive interpretation
of thissecond axis deservesfurther investigation, we point out that
our results, based on EMD and MDS, are close to those of Rao
and Lohse [17] who used psychophysical experiments instead,
and concluded that regularity and directionality are perceptually
the two most important properties for texture classification.

6 COMPUTATION

A single EMD can be computed quite efficiently [18]. In ad-
dition, since the two signatures do not have to be of the same
size, the histograms can be reduced by pruning bins with very
small weights which contribute little to the EMD result. This
significantly reduces the size of the EMD problem which can be
computed much faster. In practice, for most textures most of the
bins can be pruned with negligible change to the EMD result.

The invariant texture distances in sections 5.3 and 5.4 can
be computed without an exhaustive search by using an EM type
optimization algorithm [4].
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Figure2: 2D MDS of 16 textures. The two dominant axes of orientation and coarseness emerge.

7 CONCLUSIONS

The texture distancesintroduced in this paper enjoy two crucial
properties for image retrieval and other texture discrimination
and classificationtasks: they are perceputally natural andthey are
metric. In addition, they can be computed very fast. Presumably,
our metrics can also improve the performance of texture segmen-
tation algorithms, thereby allowing application of our metrics to
entire, realistic images, rather than to patches of homogeneous
texture. Thisisamajor thread of our current research.
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A PROVING THAT THE DISTANCESARE METRIC

Here we prove that all distances defined in this paper are indeed
metric. Nonnegativity and symmetry hold trivially in all cases,
so we only need to prove that the triangle inequality holds. In
[18] it is proven that if the ground distance is metric, the EMD
ismetric. First, since our log-polar spaceis cylindrical, we need
to show that the ground distance (£, in our case) on acylinder is
metric aswell.

The projection of two points A and C' on the cylinder onto its
circular base divides it into two circular arcs (in the degenerate
caseonearc can beapoint). Theprojection of athird point B can
beinonly one of thesetwo arcs. Now thecylinder can be unfolded
into arectangle by a vertical cut anywherethrough the other arc.
Since in this two-dimensional plane AC < AB + BC, the
triangle inequality holds also on the cylinder (the other possible
distance from A to C' through the cut is chosen only if it makes
AC shorter). Therefore, our ground distance is metric.

We now provethat the EMD is metric in therotation and scale



-
I (ircctionality

v "scality”

Figure4: 2D MDS of 16 textures with rotation and scale invariance. “Scality” vs. directionality.

invariant cases. In the log-polar space rotation and scale shifts
are reduced to translations, and we now prove in general that
EMD’s under translations are metric.

Translation invariant EMD between signatures P and @ can
be written as

EMD(P,Q) =Y _ fud(pi,a; — Tra) ,
.3
where f;; and T'r¢ aretheflow and translation that minimize the

sum. Similar formulashold for EWD(Q, R) and Eﬁ/fD(P, R),
and we need to prove that

EMD(P,R) < EMD(P,Q) + EMD(Q,R) .

Without loss of generality we assumeherethat thetotal sum of the
flowsis 1. Consider theflow P — @Q — R. The largest unit of
weight that movestogether from P to @ and from @ to R defines
aflow which we call b;;x where, 5 and k correspond to p;, ¢;
and r respectively. Clearly Ek bijr = fi; and Zl bijk = gij.

We define R
hir = Z bisk
J
which isalegal flow from: to k since

Zhik = Zbi]k = Zg]k = wr, ,
g 2,9 J

and

Zhik = Zbi]k = Zfi] = wp, .
k 7,k J

Since EVD(P, R) isthe minimal flow from P to R, and h;y is
some legal flow from P to R,

EMD(P,R) <Y huxd (pi, 1 — (Trq + Tor))

ik

IA

> bukd (pis i — (Teg + Tor))

N
Zbi]kd(]?h% —Trg) +
N
> bind (a5 — Trq, i — (Trg + Tor))
N
> bikd(pi,g; = Tea) + > bigrd(ay, rx — Tor)
0,3,k N
> fudpia; = Tro) + Y gixd(a;, . — Tor)
g 5,k

EMD(P,Q)+ EMD(Q,R) .



