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Abstract. Mutual information has emerged in recent years as an effec-
tive similarity measure for comparing images. One of mutual informa-
tion’s drawbacks, however, is that it treats each image as a 1D signal.
In other words, it is calculated only on a pixel by pixel basis, meaning
that it takes into account only the relationships between corresponding
singleton pixels and not those of each pixel’s respective neighborhood.
As a result, a great deal of the spatial information inherent in images is
lost. We propose a novel extension to mutual information called region
mutual information (RMI) that efficiently takes regions of corresponding
pixels into account. By doing so, we improve the robustness of standard
mutual information as a similarity measure and show our technique’s
usefulness on a real world problem from the medical image registration
domain.

1 Introduction

1.1 Mutual Information

The mutual information (MI) between two variables is a concept with roots
in information theory and essentially measures the amount of information that
one variable contains about another. Put another way, it is the reduction in
uncertainty of one variable given that we know the other[1]. MI was introduced
as a similarity measure between images (both 2D and 3D) simultaneously by
Viola et al.[2] and Maes et al.[3]. As a similarity measure, it has a number of
advantages. In particular, it assumes no prior functional relationship between
the images. Rather, it assumes a statistical relationship that can be captured by
analyzing the images’ joint entropy. Mutual information is closely related to joint
entropy. Specifically, given image A and image B, the joint entropy H (A4, B) can
be calculated as:

H(Aa B) = ZPAB (aa b) 1ngAB (CL, b)
a,b

The joint entropy is minimized when there is a one-to-one mapping between the
pixels in A and their counterparts in B and begins to increase as the statistical
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relationship between A and B weakens. Here, since we are dealing with discrete
images, we express all entropies with sums instead of integrals. In general, we
must divine the probability distribution associated with each image by binning
the values into histograms.

Mutual information considers both the joint entropy H (A, B) and the indi-
vidual entropies H(A) and H (B) where:

H(X) = - ZPX(HT) log px (x)

MI is defined as:
H(A)+ H(B)—-H(A,B)

Intuitively, as Viola notes, maximizing the mutual information between two im-
ages seems to try and find the most complex overlapping regions (by maximizing
the individual entropies) such that they explain each other well (by minimizing
the joint entropy)[2]. As a similarity measure, mutual information has enjoyed a
great deal of success, particularly in the medical imaging domain[4]. It is robust
to outliers, efficient to calculate, and generally provides smooth cost functions
on which to optimize.

There is, however, one important drawback to mutual information as a way
of comparing images: it fails to take neighborhood relationships into account.
Mutual information treats images simply as 1D signals, not considering any of
the spatial relationships that exist among the pixels.

1.2 Previous work

Since its introduction, there have been a number of extensions to mutual infor-
mation. In [5], an overlap invariant extension called normalized mutual informa-
tion is introduced. In [6] and [7], different methods for calculating entropy are
used. Each of these extensions, however, continues to ignore important spatial
information in images.

More recently, researchers have begun to extend mutual information to in-
clude spatial information. In particular, in [8], mutual information is multiplied
with a term that compares the gradients of the two images. In [9], “second
order” mutual information is defined. This formulation involves calculating the
marginal and joint entropies of a pixel and one neighbor instead of a single pixel.
Both cases add some amount of spatial information to the existing framework
of mutual information and both cases validate their metrics on the problem of
medical image registration. Also, both papers report that the final accuracy of
their registrations are essentially the same as when using mutual information.
The real improvement of incorporating spatial information lies in the robustness
of the measure. A robust similarity measure is one with a smooth landscape with
respect to misregistration, specifically, one that does not have too many local
extrema on the way to a global optimum. Both [8] and [9] report improved ro-
bustness of their metrics over standard mutual information. Each, however, has
important limitations. In [9], only one neighbor at a time is considered which
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leaves out a great deal of spatial information. In [8], they do not actually extend
mutual information, rather MI is simply multiplied by a different term which
accounts for the neighborhood information we are after.

In this paper, we present regional mutual information (RMI), an extension to
mutual information that incorporates spatial information in a way that leads to
smoother, more robust energy functions than have previously been reported. The
paper is organized as follows: Section 2 presents our formulation and justification
of RMI and details our algorithm for calculating it. Section 3 presents the results
from testing our algorithm vs. MI and those in [8] and [9] on a 2D-3D medical
image registration problem using a clinical gold-standard for validation. Finally,
Sections 4 and 5 discuss our work and present some conclusions and related
future research directions.

2 Regional Mutual Information

2.1 Formulation

When using mutual information to compare two images, the actual probability
distributions associated with each image are not known. Rather, marginal and
joint histograms are usually calculated to approximate the respective distribu-
tions. One logical way to extend mutual information is to extend the dimension-
ality of the histograms. For example, using standard mutual information, one
set of pixel co-occurrences in the joint distribution is represented by one entry in
a two-dimensional joint histogram. What if we were to consider corresponding
pixels and their immediate, 3 x 3 neighborhoods? This would be an entry into
an 18D joint histogram. We could calculate the mutual information exactly as
before only this time we would use 9D histograms for the marginal probabilities
and an 18D histogram for the joint distribution.

One way to think of a d-dimensional histogram is as a set of points in R.
Mutual information treats images as 1D signals, or as a distribution of points
in 1D. Our formulation of RMI begins by recasting the problem to treat each
image as a distribution of multi-dimensional points where each point represents
a pixel and its neighborhood as depicted in Figure 1a.

2.2 The curse of dimensionality

At this point, however, we run into the curse of dimensionality. Essentially, the
space where these points reside grows exponentially with each new dimension
added. Figure 2 offers a look at why this is a problem. Here, what we’ve done is
created some multi-dimensional distributions with known entropies (e.g. normal,
exponential) in ®2, R*, and R® and estimated their entropies with a varying
number of samples. The important thing to notice here is that, as dimensionality
increases, more and more samples are needed to populate the space to get a
reasonable estimate of the entropy. For distributions in %, even 2 million samples
are not effective to approximate the entropy correctly. Two million samples would
correspond roughly to a comparison between images of resolution 1500 x 1500,
an impractical figure for most real world applications of image similarity.
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Fig. 1. (a) An illustration of the relationship between an image region and its cor-
responding multi-dimensional point. (b) Corresponding image neighborhoods and the
multi-dimensional point representing them in the joint distribution.
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Fig. 2. An illustration of the curse of dimensionality as it pertains to sampling and
entropy. On the z-axis, we have the number of samples and on the y-axis, the percentage
of the true entropy we get when using those samples to approximate the entropy. As
the dimensionality increases linearly, we need an exponentially increasing number of
samples to get a reasonable estimate of a distribution’s entropy.
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2.3 A simplifying assumption

We can take advantage of the fact that the entropy of a discrete distribution is
invariant to rotations and translations [10] in order to make our problem more
tractable. Specifically, we can try and rotate and translate our high-dimensional
distribution into a space where each dimension is independent. This is a re-
statement of the independent components analysis (ICA) problem as defined by
Bell and Sejnowski [11]. Unfortunately, ICA is an extremely underdetermined
problem and computationally too expensive for our purposes.

Instead we make the simplifying assumption that our high-dimensional dis-
tribution is approximately normally distributed. If this is the case, all we need
to do is transform the points into a space where they are uncorrelated which,
given the normal assumption, implies independence. Independence in each di-
mension allows us to decouple the entropy calculation [1] from one involving a
d-dimensional distribution to one involving d 1-dimensional distributions. Specif-
ically, the entropy of a normally distributed set of points in ®¢ with covariance
matrix Xy is: [10]:

Hy(£4) = log((2me)* det(Zq)?).

This is mathematically equivalent to transforming the points into a new basis
(B.) where each dimension is uncorrelated, projecting the data onto each of the
d new axes, and summing the entropies of those d 1-dimensional distributions.

In practice, given a high-dimensional distribution represented by a set of
data points P = [p1,---,pnN], we can calculate this approximation to its entropy
by first centering the data with respect to its mean, then diagonalizing its co-
variance matrix, and finally summing the entropies along each dimension. This
process is the same as that used by principal components analysis (PCA)[12]
and, essentially, what we are doing is summing the entropies along each of the
orthogonal principal modes of variation.

2.4 Algorithm

Now that we have a method for efficiently calculating the entropy of a high-
dimensional histogram, we can use it to calculate the RMI of a pair of images.
The algorithm proceeds as follows:

1. Given two images A and B, for each corresponding pair of pixels [4;;, By;],
create a vector v;; (Figure 1b) representing the co-occurrences of the pixels
and their neighbors for some specified square radius r. This vector is now a
point p; in a d-dimensional space where d = (r + 1)2. The image margins
can be handled in a number of ways. We chose simply to ignore the pixels
along the edges as we assume that they will not have too pronounced of an
effect on the final entropy. Given radius r and m X n images, we now have a
distribution of N = (m — 2r)(n — 2r) points represented by a d X N matrix
P = [p17" JPN]

2. Subtract the mean from the points so that they are centered at the origin.

1 N
Po=P— 5> pi
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Calculate the covariance of the points: C = Py Py

Estimate the joint entropy as: Hy(C)

5. Estimate the marginal entropies as H,(C4) and H,(Cg) where Cy4 is the
% X % matrix in the top left of C' and Cp is the % X % matrix in the bottom
right.

6. Calculate the RMI = H,(Ca) + Hy(Cp) — Hy(C)

=

Asymptotically, RMI has the same performance as standard mutual information.
Given n X n images, the performance of standard mutual information is O(n?).
Similarly, RMI’s performance is O(n?d?) which represents the work required to
calculate the covariance matrix. Since d remains constant for a given choice of
the neighborhood radius, asymptotically, RMI’s performance converges to O(n?)
as well.

2.5 Justification

In general, 1-dimensional projections of data made up of vectors of independent
and identically distributed values tend to be normally distributed [13]. At a
high level, this observation is derived by an appeal to the central limit theorem.
Unfortunately, in our case, the vectors that make up our data are not indepen-
dent (pixel values close together are not generally independent of each other)
so the central limit theorem does not hold. There are, however, forms of the
central limit theorem which allow weak dependence among the data. One such
form, proven in [14], holds that the central limit theorem still applies in the case
of m-dependent variables. A sequence of random variables (X1, Xs,...,X,) is
m-dependent if, for some positive integer m, the inequality s — k > m implies
that the two sets (X1, X, ..., X) and (X, Xs41,---,Xn) are independent. So,
given data made up of m-dependent vectors, the central limit theorem does ap-
ply which implies that 1-dimensional projections of this data should also tend
to be normally distributed.

Now what we must do is demonstrate that our data, though not independent,
is at least m-dependent which would tend to support our assumption that its
projections are normal. Intuitively, m-dependence requires that variables far
away from each other in a sequence are independent. In our case, each data
point represents a sequence of pixels (Figure 1a). Though the pixel values are
locally dependent, pixels that are far apart in the sequence are further from each
other in the neighborhood they are drawn from and, hence, more likely to be
independent. Indeed, as the size of the neighborhood increases, it becomes more
and more likely that pixels far enough apart in the sequence representing that
neighborhood are independent.

As mentioned earlier, calculating the RMI is equivalent to projecting the
data onto each of the axes of the new, uncorrelated basis (B,,) and summing up
the entropies. To test the validity of our assumption that these projections are
generally normal, we generated 200 random pairs of medical images (amorphous
silicon detector X-ray images) of the type we would expect to see in a typical
registration problem. We then calculated RMI as usual, projected the data onto
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Fig. 3. For 200 random X-ray images, we plot the mean percentage of projections onto
B, which are normal vs. the radius of the neighborhood used. As predicted by the m-
dependent central limit theorem, the percentage of projections that can be considered
normally distributed increases as the radius increases.

each of the axes of B,,, and used a Kolmogorov-Smirnov normality test (a = 0.01)
to determine which of the projections could be considered normal. For each pair
of images, we performed this test for neighborhood radii ranging from 1 to 15.
The results can be seen in Figure 3 and suggest a tradeoff between the time
to calculate RMI and the accuracy of our assumption. Experimentally, we have
found that even a radius as low as r = 2 works quite well in practice.

3 Results

3.1 Validation

As we have mentioned, mutual information as an image similarity measure has
enjoyed a large degree of success in medical image registration applications. We
chose to validate RMI on just such a problem, specifically 2D-3D medical image
registration. The 2D-3D registration problem involves taking one or more X-
ray projection (2D) images of a patient’s anatomy and using these projections
to determine the rigid transformation T (rotation and translation) that aligns
the coordinate system of a CT (3D) image with that of the X-ray projection
images and an operating room. 2D-3D registration is an important primitive in
applications such as image-guided spine surgery [15,16] and radiosurgery [17,
18].

We validate RMI as a means of performing 2D-3D intensity-based registra-
tion using the same experimental set-up and clinical gold-standard as in [19]. We
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Table 1. 2D-3D Spine Image Target Registration Error

Similarity TRE (mm) Unsuccessful

Measure Mean Registrations
RMI 1.25 8%
Pluim, et al. 1.31 15%
Mutual Information 1.33 18%
Rueckert, et al. 1.43 30%

use archived clinical data from the CyberKnife Stereotactic Radiosurgery System
(Accuray, Inc., Sunnyvale, CA) which includes a preoperative contrast 3D CT
scan, 2 orthogonal intraoperative amorphous silicon detector 2D X-ray images,
and a built-in gold-standard calculated using bone-implanted fiducial markers.
We compared RMI not only to mutual information (implemented using his-
tograms as per [3]), but also to our own implementations of the aforementioned
similarity measures with spatial information from Pluim, et al.[8] and Rueckert,
et al.[9]. There have been a number of other similarity measures used for this
problem[20] including cross-correlation and gradient-correlation, two measures
that also take neighborhood relationships into account. However, following [19],
we focus on mutual information as, on real data, it has been shown to be more
accurate.

3.2 Experiments

Each experiment involved an initial transformation generated by perturbing the
gold-standard reference transformation by adding randomly generated rotations
and translations. The initial transformations were characterized by computing
the target registration error (TRE) [21] for the transformation and grouped
into eight initial TRE intervals: 0-2, 2-4, 4-6, 6-8, 8-10, 10-12, 12-14, and 14—
16 mm. For each of 6 patients (3 with cervical lesions and 3 with thoracic lesions)
and each similarity measure, 160 registrations were performed, 20 in each of the
six misregistration intervals. The TRE value was computed for each registration
transformation as the difference between the positions of a target mapped by the
evaluated transformation and the gold-standard transformation. The TRE values
were computed for each voxel inside a rectangular box bounding the vertebra
closest to the lesion and then averaged. The registrations were characterized as
either “successful” if the TRE < 2.5mm or “unsuccessful” if the TRE > 2.5 mm.
The results are listed in Table 1. Here we see that, while slightly more accurate,
the real win from using RMI lies in its robustness, or its success rate with respect
to misregistration. We take a more detailed look at robustness in Figure 4 where
we plot percentage of successful registrations vs. inital TRE for all 4 similarity
measures. While most of the measures perform well when started close to the
initial solution, as initial TRE increases, RMI performs much better. By the
time the initial TRE is in the range of 14-16 mm, RMI performs almost 50%
better than the next best measure. In terms of CPU time, the difference between
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Fig. 4. Percentage of successful registrations for initial transformations with different
initial TRE values. Each data point represents a 2mm range of initial TRE values
centered at the z-coordinate.

standard mutual information is and RMI is quite small. On average registrations
with mutual information took 101 sec., while those with RMI took 174 sec.

3.3 Noisy CT data

Intensity-based 2D-3D registration requires an accurate CT scan. Usually this
means that the patients are required to hold their breath during the scan so
that breathing artifacts don’t introduce noise into the data. Not all patients,
however, are able to hold their breath for a sufficient period of time. Those that
don’t usually leave CTs that are sufficiently noisy so as to severely affect the
performance of an image-based registration algorithm. We performed the same
experiments as above on two patients whose CT scans contained severe breathing
artifacts. The results, seen in Figure 5, show the same basic trends as those from
Figure 4 but are much more dramatic. For initial transformations close to the
gold-standard, RMI still succeeds 100% of the time and its performance drops
off much more gradually than the other three measures.

4 Discussion

To get a closer look at why RMI is more robust than MI, we analyzed a specific
situation from the data-set above where MI often fails. In particular, instead of
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Fig. 5. Percentage of successful registrations for initial transformations with different
initial TRE values. Each data point represents a 2mm range of initial TRE values
centered at the z-coordinate.

considering 6 independent parameters, we looked only at misregistration with
respect to the z-axis and plotted RMI with varying neighborhood sizes (up to
r = 4) vs. MI. The results, shown in Figure 6, illustrate one of the advantages
of RMI. MI clearly shows a strong local maximum to the right of the global
maximum which could have a large affect on the success of the optimization. As
we begin to consider RMI with larger and larger neighborhoods, more spatial
information is brought into the metric and we get a stronger peak at the global
optimum and a smoother, more accurate similarity landscape away from it.

5 Conclusions

Mutual information as an image similarity measure has enjoyed a great deal of
success in a variety of fields, medical image registration in particular. We have
extended mutual information in a principled way to arrive at RMI which incor-
porates spatial information inherent in images. We have demonstrated RMTI’s
improved robustness as a similarity measure and validated its use on real, clin-
ical data from the medical imaging domain. In the future, we hope to validate
RMI more extensively on larger clinical data sets. In addition, we’re interested
in applying RMI to non-rigid registration of clinical data. We would also like to
apply RMI to more problems from other domains such as the creation of image
mosaics and the querying of image databases.
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