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Abstract

Many boundaries between objects in the world project
onto curves in an image. However, boundaries involving
natural objects (e.g., trees, hair, water, smoke) are often
unworkable under this model because many pixels receive
light from more than one object. We propose a technique
for estimating alpha, the proportion in which two colors
mix to produce a color at the boundary. The technique
extends blue screen matting to backgrounds that have almost
arbitrary color distributions, though coarse knowledge of
the boundary’s location is required. Results show a number
of different objects moved from one image to another while
maintaining naturalism.

1. Introduction

The popularity of image-based rendering techniques has
led to increased interest in extracting objects from one image
to be placed in another. When boundaries are in focus and
are well modeled by a set of edges meeting at corners, a
reasonable effect can be obtained by cutting and pasting
followed by a smoothing operation along the boundary. In
many cases, however, this approach is insufficient.

Natural objects are particularly difficult to extract because
parts of the object can exist at scales below the resolution
of the camera. Leaves and strands of hair are often much
smaller than one pixel, resulting in large numbers of pixels
receiving light from more than one object. The output of an
edge detector or a segmentation algorithm is usually a poor
representation of such boundaries.

We examine a model in which a pixel belongs to two
regions whenever its color was formed by light directly
reflecting from two separate objects. The colors and the
relative amounts of each are determined by examining the
colors of nearby pixels that receive light from only one ob-

ject. The percentage that an object contributes to the color
of a pixel is referred to as its alpha value.

Of course, we have little hope of finding out in general
whether a pixel is gathering light from one object or two.
Since traditional edge models break down, we require addi-
tional input in the form of a segmentation of an image into
regions that are definitely an object versus regions that con-
tain a boundary. These boundary regions need not conform
exactly to a boundary because extra pixels can be reclassified
as belonging to an object.

The following sections explain the details surrounding
this procedure: the history and rationale of previous ap-
proaches, the constraints on specifying boundary and object
regions, and the estimation of alpha values and the “un-
mixed” colors that formed the color of a boundary pixel.
Results demonstrate the algorithm’s effectiveness on bound-
aries that cannot otherwise be adequately captured.

2. The history of alpha estimation

The concept of alpha was invented separately by three
different communities: computer graphics, film and televi-
sion, and remote sensing. The assumptions, methods, and
applications of the three groups are quite different, however,
so it is worthwhile to examine them separately.

The original application of alpha in graphics was for soft
filling, or changing the color of an antialiased region such
as an edge. Fishkin and Barsky [2] published the most
comprehensive technique for soft filling when alpha values
were unknown but the original foreground and background
colors were known exactly. The color of an edge pixel was
presumed to fall into the vector subspace in color space
spanned by the original colors. This technique works for up
to four colors between the two objects [3].

Mitsunaga et al. [4] developed a more robust system for
estimating alpha which assumed that the gradient of alpha
across a boundary is proportional to the multidimensional



gradient magnitude. Projecting image gradient vectors onto
a reference vector connecting the average colors of the fore-
ground and background increased the signal-to-noise ratio.
Objects such as hair and water, however, do not follow this
assumption.

For a long time now the film and television industry has
used blue screen matting to perform image-based rendering.
An actor could be filmed against a blue or other color screen,
after which a matte could be extracted and the blue screen
replaced. Smith and Blinn [7] analyzed the matting problem
in great detail, noting that a unique solution exists only for
the easiest cases. They showed that a unique solution can be
found in the general case if the foreground object is filmed
against two backgrounds that differ in every pixel. However,
this approach is useful only in studios where non-moving
objects can be photographed twice. They provided bounds
on alpha for the general case.

Finally, the remote sensing community has long been
interested in unmixing pixels, because each pixel from a
satellite image receives light from many different materials.
A simple yet effective implementation of this idea came from
Adams et al. [1], who deduced the composition of rocks
and soil in an image of the Martian surface and estimated
the amount of each everywhere in the image while also
accounting for illuminationeffects. Such techniques usually
involve much informationnot present in the image, however,
such as laboratory reference spectra of materials, heuristics
for ranking candidates, and other analyses of the data. The
problem we consider uses only the image data.

3. Object and boundary regions

Since the algorithm we present here is more a tool than
a system, the user must specify more than the input image.
We restrict our attention to images in which there are only
two regions, foreground and background, since an image
with multiple objects can be decomposed one at a time.
Images must be partitioned into not two but three regions,
the third being the boundary region. This section details
two alternatives for specifying these regions using the tree
example in Figure 1.

A chain of pixels separating the twoobjects can be dilated
to form a boundary region. This chain can be constructed
using the edges found by an edge detector, the boundary
found by a region segmentation algorithm, or a hand-drawn
boundary using a paint program or a boundary-finding tool
such as Intelligent Scissors [5].

Also, a paint program can be used to specify parts of the
image as “pure,” or consisting only of pixels belonging to
one of the two objects. In our example magenta pixels mark
the sky and yellow pixels delineate the tree (the two colors
should not exist in the image already, of course).

Tree Boundary Specification

Object Specification Visualization of Manifold

Figure 1. Computing alpha values along a
boundary requires specifying the object or
boundary regions.

Two methods are necessary because there are many im-
ages where one is preferable to the other. The object speci-
fication method is superior in this example because there are
many pixels well inside the outer boundary of the tree that
contain blue. The boundary specification method is advan-
tageous in images where the colors of one or both objects
change as we move along the boundary, however. If we
have a pixel chain we can form many pairs of local color
distributions instead of one global pair that may not be well
separated in color space.

The purpose of specifying object and boundary regions
is twofold: it labels each pixel for proper use in the com-
putation, and it partitions color space as well. The final
illustration of Figure 1 is a conceptualization of the colors
of the tree and sky mapped into color space. Pixels from the
boundary region lying between these two regions of color
space are assigned fractional alpha values. Thus, the speci-
fication of the boundary region need not be precise so long
as it actually contains the boundary, and so long as it leaves
enough of a color in an object that it can be represented by
one or more clusters.

4. Estimating alpha

Our algorithm for alpha estimation for the most basic
cases is similar to the algorithms of Fishkin and Barsky.
The complexities come from the fact that we have noise
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Figure 2. An example of the roles of anchor
points. All boundary pixels in the shaded re-
gion have their alpha values computed from
the two distributions of pixels in the square.

and other sources of variance in the data, potentially many
more than four colors, and unmixed colors that need not
correspond to modes of the color distributions. This section
describes the mechanisms for dealing with this complexity.

4.1. Building a manifold in color space

Alpha values are measured along a manifold connect-
ing the “frontiers” of each object’s color distribution. Each
distribution is represented as a set of point masses found
through vector quantization, for which we use Orchard
and Bouman’s binary split algorithm [6] and the CIE-Lab
color space [8]. We denote the two distributions as X =
f(xj;uj; �2uj )g (j = 1; : : : ;M ) and Y = f(yk;vk; �2vk)g
(k = 1; : : : ; N ), where the xj’s and yk’s are percentages of
each color specified byuj andvk respectively. The variance
of each cluster is recorded as well.

One manifold is constructed for each pair of distribu-
tions. If the boundary region was initially specified, we
must decide which pixels to use for each pair of distribu-
tions. We divide the chain of pixels into intervals, defining
the endpoints of the intervals as anchor points. The length
of each interval is equal to three times the amount of dila-
tion performed. Since different parts of the chain can be
dilated by different amounts, the length of the intervals can
also differ. The anchor points serve two purposes: (1) they
become the center of a window defining the pixels in each
object region that will form the local color distributions, and
(2) they divide the boundary region into pieces through a
Voronoi diagram. Each piece uses the color distributions
specified by the corresponding anchor point for computing
alpha. Figure 2 illustrates these two functions.

The set of line segments connecting one point mass from
each signature can be represented as the Cartesian product
f1; : : : ;Mg� f1; : : : ; Ng. A subset of this product is used
to create a flow that constructs the manifold between the
signatures. This flow maximizes the number of line seg-
ments on which a nonzero amount of mass is transported.
Doing so assures us that as many boundary region pixels as

Intersection Conflict Angle Conflict

Figure 3. Conflicts between line segments
cause ambiguities in the computation. We
always choose the shorter segment.

possible are near a line segment, increasing the accuracy. It
is important that the segments do not conflict, however, or
ambiguity will enter the computation.

Figure 3 illustrates two types of conflicts, “intersection”
and “angle.” A pixel near the intersection of two line seg-
ments could be a combination of either pair of colors with
very different alpha values, so we must reject the longer
segment. In three dimensions, two random line segments
never intersect, so we declare an intersection conflict when-
ever the minimum distance between any pair of points from
each segment is below a threshold (set at 5 CIE-Lab units).
Intersection conflicts can occur only when the two segments
do not share an endpoint.

Angle conflicts, on the other hand, can occur only when
the two segments do share an endpoint. When the angle
between two segments is small (less than 10�), the three
clusters are almost collinear. This is another source of am-
biguity, noticed previously by Smith and Blinn. Again, we
choose the smaller segment as being more likely.

Figure 4 shows a sample manifold. It is produced by a
greedy algorithm that adds segments to the set of accepted
segments in order of increasing length if they have no angle
or intersection conflicts with segments already in the set.
Note that it is possible that one or more clusters will not be
an endpoint of any accepted line segment; any such clusters
are excluded from the rest of the computation, and the xj’s
or yk’s are renormalized. The n line segments chosen help
define the manifold. Each segment is represented as an or-
dered pair (j; k), and we define two functions, J(i) = j and
K(i) = k, that return the index into X and Y , respectively,
of the clusters marking the endpoints of the segment.

4.2. Computing alpha and unmixed colors

The two signatures X and Y serve as discrete represen-
tations of the colors from each object region. We must now
form a relationship between these two distributions and an
arbitrary pixel Q in color space. This task can be accom-
plished more naturally if we convert the color signatures
to continuous probability distributions. We use a mixture
of isotropic Gaussians, ensuring a simple formulation and
nonzero responses at all points in color space. Comparing
these two distributions at Q would be one way to estimate
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Figure 4. An example of a manifold. The line
segments are those accepted by the algo-
rithm, and pixels along a boundary should
lie in the shaded region between the two dis-
tributions represented by point masses.

�Q, the alpha value of Q.
However, we presume Q to be a mixture of colors from

X and Y , and so the probability of Q under either of these
distributions is likely to be numerically meaningless. Tradi-
tional methods from decision theory are unhelpful because
we are estimating the amount of mixture. We argue that Q
is actually drawn from a probability distribution formed as
the colors of X are “morphing” into the colors of Y across
the boundary. This morphing can be modeled as an interpo-
lation between the two probability distributions. Estimating
alpha becomes a maximum likelihood estimation problem:
find the interpolated probability density that maximizes the
value at Q.

We start by defining a function f(t) that produces a prob-
ability distribution for every value of t:

f(t) = pt(c); 0 � t � 1 ;

where c is an arbitrary color vector. The values at f(0) and
f(1) are the probabilitydensities corresponding toX andY ,
respectively. We model these distributions as mixtures of
n isotropic Gaussians (denoted Gi(c;�i; �2i )), each being
interpolated along one of the line segments defining the
manifold. The distributions for t = 0; 1 can be written as:

p0(c) =
Pn

i=1aiGi(c;uJ(i); �
2
uJ(i)

) ;

p1(c) =
Pn

i=1aiGi(c;vK(i); �
2
vK(i)

) ;

where ai is the amplitude of each Gaussian. Each ai is
proportional to the product xJ(i) � yK(i), and the sum of the
ai’s is normalized to 1. For any intermediate value of t,
the distribution produced by f(t) interpolates the mean and
variance of the Gaussians:

pt(c) =
Pn

i=1aiGi(c;�i(t); �
2
i (t)) ; where
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Figure 5. A 1-D example of interpolation. As
t varies, the mean and variance of a Gaus-
sian interpolates between p0(c) and p1(c). The
value of t that maximizes the value at Q is the
alpha value �Q.
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Figure 6. The two X’s are equally likely to be
drawn from p0(c), but these colors will have
different alpha values if we do not give special
treatment to the values 0 and 1.

�i(t) = (1� t)uJ(i) + tvK(i) and

�2i (t) = (1� t)�2
uJ(i)

+ t�2
vK(i)

:

Computing alpha values becomes straightforward:

�Q = argmax
t

f(t)jQ :

In practice we discretize t at a resolution of 0.01 and evaluate
Q for each set of Gaussians produced. Figure 5 shows a one-
dimensional example of two unimodal distributions and the
interpolated Gaussians.

The sole exception to this rule is whenQ appears to have
been drawn from p0(c) or p1(c); Figure 6 illustrates this
case. Both pixels marked with X’s are equally likely to
have been drawn from p0(c), but the directions of the noise
vectors are different, resulting in two different alpha values.
If f(0)jQ or f(1)jQ is above a threshold, the alpha value of
Q is set to 0 or 1 accordingly.

We must also find the unmixed color from each object.
These colors are not independent, because Q must lie on
the line segment connecting them. We use the weights
provided by each Gaussian component of the distribution
to estimate the unmixed color of each side, followed by a
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Figure 7. The value �Q is found by maximiz-
ing f(t)jQ, which is the sum of many com-
ponents, each corresponding to one interpo-
lated Gaussian. The values of the component
functions at �Q (0.06 in this case) are used to
compute two weighted averages to find the
unmixed colors.
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Figure 8. As predicted, the object specifica-
tion results for the tree are more satisfying.

small perturbation so that Q properly divides this new line
segment.

Figure 7(a) shows a typical function consisting of the
values at Q as t varies. This function is a sum of many
smooth functions, each corresponding to one Gaussian as
shown in Figure 7(b). The component functions are not
Gaussians because the variance is a function of t. At the
maximum, each of the n Gaussians contributes a weight wi

to f(�Q)jQ. By mapping each weight back to the endpoints
of the segment it came from, we form a weighted average of
the colors of each signature to estimate the unmixed colors:

ûQ =

Pn

i=1wiuiPn

i=1wi

; v̂Q =

Pn

i=1wiviPn

i=1wi

:

Normally, no more than a few nearby Gaussians significantly
influence the unmixed color of a pixel.

If we denote the point on the line formed by ûQ and v̂Q
that divides it in the ratio � : 1� � as Q0, we can compute
the final colors uQ and vQ by perturbing ûQ and v̂Q by

Figure 9. A tree branch is extracted from a
tree background.



Figure 10. A plume of smoke causes a racing
car to fail its emissions test.

the vector
�!

Q0Q. The original image can now be faithfully
reconstructed.

5. Results

This section shows a set of examples on a variety of
natural objects. Using both methods of specifying object
and boundary regions, we create local or global color dis-
tributions of object regions to estimate the alpha values of
pixels in the boundary region. The signatures we create
have no more than 5 clusters each. An object is moved
to a destination image by combining unmixed colors with
the corresponding pixel colors from the new background
according to the computed alpha values.

We follow up Figure 1 by displaying alpha values for
the tree using both object and boundary specification (see
Figure 8). This example is essentially blue screen mat-
ting. As predicted, boundary specification cannot retrieve
the blue from the middle of the tree. The result using object
specification is more natural.

Of course, the algorithm is designed to handle more in-
teresting backgrounds than sky. Figure 9 also shows a tree
branch, but the background consists of trees. A conservative
specification of the two object regions is enough to recover
most of the branch. The twigs connecting the leaves are
dark, and so they are lost, and some of the highlights from
the background are brought into the foreground, but overall
the new rendering retains naturalism.

Figure 10 displays a plume of smoke extracted using the
boundary specification method. Since there is another plume
in this image, specifying object regions would produce poor
results. The boundary is extracted using Intelligent Scissors
and dilated by different amounts to capture, among other
things, the hole in the plume near one endpoint. The other
plume does not have deleterious effects on the result.

Figure 11 shows how a non-convex waterfall can still be
extracted. The interior region between the two halves of
the waterfall is successfully removed. The colors are well
localized spatially, but the algorithm creates global color
distributions that are unable to take advantage of this fact.

The final example, Figure 12, is of a woman whose hair
is being blown about by the wind. The boundary region
has been specified using Intelligent Scissors and dilated by
different amounts. The riverbank in the background has
similar colors to the hair, so the boundary must be narrow
in those areas to minimize artifacts. Mao’s picture shows
through her hair in the final image, but not every strand of
hair is recovered.

6. Conclusions

The problem of extracting an image region from the
background has no general solution. The film and video



Figure 11. A waterfall is transported to arid Death Valley.

industries use equipment that provides manual control over
the extraction process, but only when the background is a
constant color. In contrast, we have presented a tool for ex-
tracting image regions from almost arbitrary backgrounds.
It requires enough knowledge of a boundary’s location to
estimate the color distributions of the two image regions ac-
curately, and the current implementation does not allow for
much human intervention.

The results show that foreground objects can be moved to
new images without appearing counterfeit (with the excep-
tion of illumination changes). A close examination shows
some defects because the colors are not well separated, or
because the color representation is not accurate enough. The
second can be solved by increasing the size of the color sig-
natures, but the first is still unapproachable.

When the boundary specification method can be used, the
algorithm produces more accurate results and ensures that
any errors are local. For many boundary regions, however,
the topology makes this impossible. Specifying object re-
gions directly solves this problem, but only when the color
distributions are spatially uniform over the image. Prevent-
ing distributions from sharing colors is more difficult in this
case, and a method of providing local correspondence for
arbitrary region topologies would be helpful.

The fact that we are excluding colors in objects that are
not close to the frontiers of the color distributions has the
practical effect of producing biases in the alpha values. An-
gle conflicts in particular force us to overestimate values
with respect to the signature with two of the three collinear
clusters. Using information about the spatial distribution

and relative amounts of colors might allow us to choose one
color or the other at random.

Finally, we reiterate that this algorithm is indeed a tool,
not a system. Without reliable user input as to the location
of the boundary, the algorithm cannot succeed unless the
boundary can be extracted through edge detection or seg-
mentation algorithms, an unlikely prospect for the types of
boundaries that benefit most from this algorithm. Neverthe-
less, it expands the power of image extraction techniques.
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Figure 12. A woman takes an instantaneous vacation to Beijing.


