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Abstract

Corner models wn the literature have lagged behind
edge models with respect to color and shading. We use
both a region model, based on distributions of pixel col-
ors, and an edge model, which removes false positives,
to perform corner detection on color images whose re-
gions contain texture. We show results on a variety
of natural images at different scales that highlight the
problems that occur when boundaries between regions
have curvature.

1 Introduction

Corners and junctions (multiple corners at the same
image location) are crucial for high-level vision tasks
because they represent occlusions useful to stereo and
motion algorithms, and they provide shape informa-
tion for object recognition. They are arguably at least
as important as edges, yet current edge models invoke
fewer assumptions and are more robust than current
corner models.

Specifically, edge models proposed in the literature
are superior to existing corner models with respect to
color and shading. Many color edge detectors have
been proposed ([1], [5], and [11] form a representative
sample), but corner detectors have been confined to
greyscale images. Certain algorithms (e.g. [8]) appear
to be easily extendable to color images. The effects
of shading on the direction of the image gradient were
modeled by Wang and Binford [12] to create an edge
detector insensitive to shading, while most corner de-
tectors assume that regions are of constant intensity
(Alvarez and Morales [2] assumed level sets).

Many corner detectors start with an edge map
rather than an image (e.g. [6] and [7]), which would
appear to mitigate such effects. However, we ar-
gue against using these indirect methods for two rea-
sons: (1) using the output of an algorithm whose goal
is something other than corner detection causes un-
known biases and errors to propagate into the corner
detector, and (2) the analysis of Deriche and Giraudon

[4] showed that edges found by first-derivative opera-
tors tend to “round off” corners. Without using the
image itself, it is impossible to distinguish true cor-
ners from curved boundaries. Therefore, we opt for a
direct approach.

At a conceptual level, corner and edge detection
algorithms both compute the degree to which two ad-
Jacent regions are dissimilar. Corners do not bisect an
operator’s support, however, and the resulting asym-
metry must be accounted for. Also, corners are point
features, so only one response to the same part of the
image can be accepted. Detecting junctions, though,
requires accepting multiple responses of the corner de-
tector in the same or nearly the same image location.

Our approach uses both a region model, from which
we create a set of corner candidates, and an edge
model, which decides whether to accept or reject a
candidate. We model a corner as two adjacent regions
that differ in their color distributions. The resulting
operator generalizes edge detection to asymmetric re-
gions with multiple colors per region. Multiple colors
are represented by a set of point masses in a color
space. The distance between two such sets is found
using the Earth Mover’s Distance, which measures the
minimum amount of “work” required to transform one
set into the other in that space.

The advantage of this model is that we can detect
corners (and edges, see [10]) in textured regions where
other detectors cannot. Two textures may have the
same “mean color,” for example, even though they
have no color in common. Furthermore, the texture
need not be homogeneous as long as its colors are suf-
ficiently different from its neighbors.

An edge model is also necessary, because corners
cannot exist independently of edges. Our model, in-
spired by Deriche and Giraudon’s, presumes that at
the two endpoints of the corner, there is a strong
edge response in the same direction. Furthermore, the
edge response between the two endpoints of the corner
should be weaker than the corner response. We can
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Figure 1: Parts of the region model. (a) Illustra-
tion of operator parameters. (b) The pixel weighting
function, a surface of revolution of half of a Gaussian
derivative function.

compare corner candidates with this model to exclude
most false positives in the operator’s response. If mul-
tiple candidates all respond well to the same corner,
we group them and choose the “best” candidate.

The next two sections explain the region and edge
models, respectively, after which we present the results
and our conclusions.

2 The Region Model

In this section we develop a model of two adjacent
regions and the perceptual distance between them. In
Section 2.1 we summarize the representation of a re-
gion as a color signature; details are in [10]. Section 2.2
tackles the problem of asymmetry between the two re-
gions, and Section 2.3 explains how initial corner can-
didates are selected.

2.1 Color Signatures

A color signature 1s a set of point masses that rep-
resents one of the two regions. There are five param-
eters that determine which pixels will belong to each
region: (z,y), the location of the center of the win-
dow; # € [0,360), the orientation of the corner (de-
fined as the angle formed by the positive z-axis and
the “clockwise” side of the corner); o € (0,180], the
angle subtended by the corner; and R, the scale pa-
rameter (Figure 1(a)). Because it is natural to con-
sider a corner as a wedge, the window is a circle of
radius R.

Vector quantization applied to the circle deter-
mines the number and location of the point masses.
Each pixel contributes a weight dependent only on its
distance to the center. The polar function f(r) =

2
cre” 202 where ¢ is a normalizing constant and o =
R/3, is the positive half of a 1-D Gaussian deriva-
tive function revolved around the y-axis (Figure 1(b)).
Isotropy simplifies computations over all combinations
of 8§ and a because the mass that each pixel contributes
remains constant. Sampling the ranges of 6 and «

partial normalized
A B A B
St 1 0 St 1 0
So 1 6 So 1/7 6/7
EMD: 0 EMD: 6/7

Figure 2: The normalized EMD can detect corners
that the partial EMD cannot.

equally breaks the circle into wedges, allowing efficient
updating of the signatures. We use 15° wedges.

We represent colors in the CTE-Lab color space [13],
in which short, Euclidean distances are perceptually
accurate. To account for the fact that long distances
are not, we use a normalized measure that saturates:

dij =1- exp(—Eij/'y),

where FEj; is the Euclidean distance between color ¢
and color j, and v = 14.0 is a constant determining
the steepness of the function.

The distance between two color signatures is found
using the Earth Mover’s Distance (EMD) [9]. The
EMD measures the minimum amount of physical work
needed to move the masses of one signature into cor-
respondence with the other. In our formulation, the
EMD lies in [0, 1] since the maximum amount of mass
that can be moved and the maximum distance it can
move are both 1.

2.2 Partial EMD vs. Normalized EMD

After creating two color signatures, Sy inside the
corner and So outside it, we can use the EMD to
measure the similarity between the two regions. An
important issue in this computation that is not present
when using this model for edge detection is that So
always has more mass than St.

We normalize St to have a mass of 1, regardless
of the value of «a, to preserve the same output range.
There are two ways to normalize So: we can use the
same constant and find the EMD between signatures
of unequal mass (“partial” EMD), or we can assign
So a mass of 1 also (“normalized” EMD).

Each type of EMD has different advantages. In
Figure 2 the normalized EMD detects a corner that the
partial EMD does not. A 45° corner consists entirely
of color A, while the oustide region has amounts of
colors A and B (a perceptual distance of 1 from A) in



30° partial normalized
A B A B
St 1 0 St 1 0
So 0.8 10.2 So 0.07 0.93
EMD: 0.2 EMD: 0.93
60° partial normalized
A B A B
St 0.9 0.1 St 0.9 0.1
So 0 5 So 0 1
EMD: 0.9 EMD: 0.9

normalized

partial

Figure 3: The partial EMD can more accurately de-
scribe a corner.

a 1:6 ratio. We define the mass of Sy to be 1, and the
mass of So can be either 1 or 7. If we choose the mass
to be 7 (partial EMD), then S; becomes a subset of
So, and the distance 1s 0. If instead we choose the
mass of Sg to be 1 (normalized EMD), the distance is
6/7, and a corner is likely to be found.

Figure 3 shows a situation where the partial EMD
describes a corner more accurately than the normal-
ized EMD. A 60° corner consists entirely of color A
except for the two edges, which contain some pixels of
color B. If 10% of the pixels inside the corner have
color B, then the values of the EMD are those shown
in the accompanying table. Both types of EMD detect
a corner, but the normalized EMD estimates « to be
30° while the partial EMD correctly estimates o to
be 60°. An example of the differences for real image
data is shown below the table. The corner found by
the partial EMD runs along the edges, while the other
does not.

We have chosen the partial EMD for our experi-
ments. Although we may have false negatives, the
number 1s likely to be small because the frequency of
the phenomenon illustrated in Figure 2 is inversely
proportional to «, and such corners are less frequent

in natural images. For the corners that we do detect,
it 1s best to describe them as accurately as possible.
2.3 Finding Corner Candidates

The process of corner detection begins by measur-
ing the EMD over all circular windows and for all
combinations of # and «. The result is a list of three-
dimensional tensors, one for each value of a. Corner
candidates are maximum values over x, y, and # that
are above a threshold. Parabolic interpolation over 6
gives the actual strength and orientation of a candi-
date.

Output for different values of & cannot be compared
directly, however, even though the range of values is
the same. From a purely statistical standpoint, it is
less likely that a large EMD will result from a smaller
value of a because of the greater imbalance in the
amount of mass. The net effect is that we must vary
our threshold linearly with «.

In addition, we must choose bounds on a because
the output at small values is less reliable due to noise,
and large corners are hard to distinguish from edges.
We have chosen o, = 30° and apa.x = 150°.

3 Corner Detection

In this section, we present our edge model (Sec-
tion 3.1) and consider the problem of pruning multi-
ple responses to the same corner that all satisfy this
model (Section 3.2).
3.1 The Edge Model

In order for a true corner to exist, there must be
evidence of strong edges that are consistent with the
location, orientation, and angle of the corner. A basic
schematic of our model is illustrated in Figure 4(a).
Specifically, our model incorporates three ideas:

1. Edge direction at each end of a corner must match
the orientation of the side of that corner.

2. Edge response at each end of a corner must be

high.

3. Between the two ends of a corner, the edge re-
sponse must be weaker than the corner response.

In theory, none of these conditions 1s satisfied when
a corner candidate falsely responds to an edge (Fig-
ure 4(b)).

Before we can measure the degree to which a corner
matches our model, we must have edge information.
This 1s found by applying our operator with o = 180°,
and finding the orientation at each image location that
maximizes the response (see [10] for details).

Once this is done, we find two angles: 8¢, the differ-
ence in orientation between the clockwise side of the
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Figure 4: (a) A true corner. The edge is aligned with
the corner at the endpoints and “rounded off” in the
middle, where the response weakens. (b) A false pos-
itive due to inhomogeneities on one side of an edge.

corner and the edge response at the corner’s endpoint,
and 8¢ ¢, the corresponding angle for the counterclock-
wise side. Because edges have two valid orientations
(differing by 180°), we choose the one that yields the
smaller angle. Our measurement P can be expressed
as

P =cosf¢c + cosflce,

which lies between 0 and 2. We threshold P at 1.97.

Finally, where the edge crosses the line that bisects
the corner, the projection of the edge response onto
the line normal to the bisector must be weaker than
the corner response. We check responses on a small
interval along the bisector line centered at a point
R(sec § — tan §) pixels away from the corner. This
quantity is the distance from the corner point to the
circumference of an imaginary circle tangent to the
sides of the corner at its endpoints.

Applying all three parts of the model to the set
of initial corner candidates greatly reduces their num-
ber. Figure 5(a) shows the candidates for an image
patch consisting of cut stone against an ivy-covered
wall. Though all the candidates are near the bound-
ary between the two regions, most of them do not fit
the boundary well. Figure 5(b) shows the results after
applying the edge model.

3.2 Pruning Multiple Responses

Using edge data, however, does not completely
solve our problem. Figure 5(b) contains two corners,
each of which gives a strong corner response to the
same area of the image and matches the edges well.
Obviously, we would like to have only one.

The question of which corners to group together in
this image is trivial, but the general question of when
two or more corners are “close enough” to each other
that one should be accepted and the rest rejected has
no definitive answer in natural images.

We define two corners as being “close enough” if
the corner points are within 3R/4 pixels of each other

(c)

Figure 5: Corner detection steps applied to opera-
tor output of cut stone occluding an ivy-covered wall.
(a) Initial corner candidates. (b) After applying the
edge model. (c) Final result after pruning multiple
responses.

and one of the following conditions is true: (1) the
two clockwise orientations differ by no more than 10°,
(2) the two counterclockwise orientations differ by no
more than 10°, or (3) the sum the differences is no
more than 40°. These conditions group “nested” cor-
ners while preserving multiple corners near junctions.

An ambiguity arises when corner X is close to cor-
ners Y and Z, but Y and Z are not close to each other.
If our notion of “closeness” is global, then the order
in which we examine corners affects the final output.
Since this is unacceptable, we compute the transitive
closure of “closeness,” that is, X, Y, and Z will all
become part of the same set. It is theoretically pos-
sible that corners in distant parts of the image could
become part of the same set; in practice, however, the
application of the edge model removes enough candi-
dates that this does not happen often.

Once we have computed the transitive closure, we
pick the member of each set that maximizes the ex-
pression 2C' 4+ P 4+ E| where C' is the corner response,
P is the degree of orientation match described earlier,
and F is the sum of the edge responses at the end-
points of the two sides of the corner. C'is doubled so
that each term contributes equally. The final corner
of our example is shown in Figure 5(c).

4 Results

In this section we present results on a variety
of image patches in order to convey the versatil-
ity of the operator. All the results in this paper
that use the partial EMD were computed with the
same thresholds. The lengths of the sides of the cor-
ners in the images are equal to the chosen value of
R. Color versions of the results are available from
http://vision.stanford.edu/public/publication/.

Figure 6 shows one fabric occluding another. Al-



Figure 6: Two fabrics. Note the heterogeneity of each
texture, as well as the existence of shadows.

though each contains texture that varies greatly in
color and has regions in partial shadow, the corner is
correctly detected.

Figure 7 is more complicated because three textures
are involved: trees (upper left), rock (lower left), and
rock in deep shadow (right). Five corners are found
that separate the regions and, incidentally, form most
of the boundary of the illuminated rock.

In Figure 8 we show output at three different scales.
The image contains a junction, but the textured re-
gion subtends an angle greater than ap,x, and the
region boundaries are not rays emanating from the
junction. At all three scales we find the two smaller
corners with compatible orienations and corner points
near each other. We emphasize that corners are esti-
mated independently; a true junction detector would
combine these corners, perhaps with knowledge of the
lack of symmetry near the junction [10], to estimate
its location and parameters.

Other researchers have examined the evolution of
corners across scales in more detail. Mokhtarian and
Suomela [7] detected corners at a large scale and used
smaller scales to localize them, an approach that might
work well here. Alvarez and Morales’ framework [2]
caused corners to evolve along the line bisecting the
corner. Their framework depends on the level set as-

.-

Figure 7: Corners found between three regions.

sumption, which is violated here. Neither appears
to have been tested on boundaries with continuously
changing curvature or on corners as large as 150°,
though.

Finally, we wish to mention the running time. The
operator is implemented in C and can process image
locations (each including all combinations of  and «)
at a rate on the order of 1500 per minute on an SGI
Indigo 2, depending on R.

5 Conclusion

We have presented an operator that outputs high
values when two regions inside and outside of a cor-
ner have different color distributions. Using color sig-
natures and the Earth Mover’s Distance allows us to
detect corners in situations that others have not even
considered because they are forced to assume that each
region is constant.

The edge model eliminates those corners that are
not supported by evidence of strong edges. This basic
dependence of corners on edges is both conceptually
important and practically effective.

The application of corner detection to natural im-
ages that are not composed mostly of polygons brings
up many interesting issues, the most important of
which is the definition of a corner. We have not spec-
ified an optimality condition from which our operator
can be derived, because deciding that a corner exists
1s mostly a question of thresholding the curvature of
an edge with respect to the chosen scale. By the same
token, there 1s no ground truth in natural images to
compare our results to. The results are best evaluated



Figure 8: Comparison of output at three different
scales near a junction. Ome corner of the junction
1s greater than 150° and cannot be recovered directly.

Figure 9: A rock with edges (black) and corners
(white) drawn. The features are complementary.

in the context of an application, such as tracking land-
marks for robotic navigation or, more generally, shape
recovery for object recognition.

Another fundamental issue is the integration of cor-
ners and edges. One approach may be to detect
them separately and use the corners to perturb the
edges toward the true boundary. In Figure 9 we have
drawn, in addition to the two corners, a set of edges
found by thresholding and performing non-maximal
suppression [3] on the operator’s output at o = 180°.
Through a suitable process (e.g. energy minimiza-
tion), it may be possible to conform the edges to the
corners and produce a more accurate boundary.

However, the fact that we can compute edge and
corner information in the same framework by chang-
ing the value of o begs the question of whether the two
are fundamentally different at all. It is unsatisfactory
that we must exclude corners between 150° and 180°.
In Figure 10 we have drawn both edges and corners,
including o = 165°, on top of a natural image. The
large amount of overlap indicates that the two differ-
ent algorithms are producing nearly the same output,
though they do complement each other in a few places.
Future research will investigate a boundary model in
which both edges and corners can be detected and re-
lated to each other without creating an artificial dis-
tinction between them.
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Figure 10: Canyon with corners (left) and edges (right). Note the high amount of overlap. 165° corners have
been included.
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