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Abstract In this document, we present an alternative to
the method introduced by Ebner (Pattern Recognit 60–67,
2003; J Parallel Distrib Comput 64(1):79–88, 2004; Color
constancy using local color shifts, pp 276–287, 2004; Color
Constancy, 2007; Mach Vis Appl 20(5):283–301, 2009) for
computing the local space average color. We show that when
the problem is framed as a linear system and the resulting
series is solved, there is a solution based on LU decomposi-
tion that reduces the computing time by at least an order of
magnitude.

Keywords Color constancy · Gray-world assumption ·
Local space average color

1 Introduction

Color constancy refers to the outstanding capability of
humans to recognize the color of the objects under a wide
variety of illumination conditions. Due to the many benefits
such a capability would bring to computer vision systems,
much research has been carried out in this field (see [13]
for a recent account). Although many different algorithms
have been developed [1,3] and a good level of understanding
has been achieved [15,17,20], the problem remains largely
unsolved [16]. A recent trend in the field [4] is to either
employ several color constancy algorithms, and combine the
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results, or to analyze the image to assess which algorithm
will perform better. For instance, for scenarios with ample
gamut of colors, some researchers [6,12,19] have chosen to
take into account the gray-world assumption to develop their
methods [5], which state that the average surface reflectance
is gray. Furthermore, a widespread practice is to assume that
the illuminant is uniformly distributed through space, and
only a few methods explicitly consider the presence of mul-
tiple light sources [2,10,11]. Ebner [6–10] has proposed an
iterative formulation aimed at computing the color of the
illuminant locally to tackle the more realistic situation of
multiple illuminants coexisting in a scenario using the gray-
world assumption. Ebner called space average color the local
illuminant thus computed.

The gray-world is too bold an assumption about how the
world looks in general. However, there may be the need to
make assumptions to gain intuition to build more comprehen-
sive models. In this document, we present an alternative form
solution to Ebner’s iteration scheme. In our proposal, we for-
mulate the problem as a linear system and solve the resulting
series. We show that the resulting matrices are sparse and
hence admit a compact representation and a fast solution via
LU factorization [14]. Furthermore, we show that the com-
puting requirements are reduced at least by an order of mag-
nitude. Also, in this document, we are only concerned with
the computational aspects of the problem. A method to com-
pute a constant descriptor for color, including chroma and
lightness, is out of the scope of the present research, and it
is still one of the most fascinating open problems in the field
of computer vision.

The rest of the paper is organized as follows. In the next
section, we review the gray-color assumption and the referred
iterative formulation. Then, in Sect. 3, after framing the prob-
lem as a linear system, we derive an alternative solution.
There, we discuss the use of sparse matrices to reduce the
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space requirements and LU matrix decomposition to speed
up the solution of the linear system. Next, in Sect. 4, we
describe some experiments. A concluding section discusses
the results and suggests directions for future research.

2 The gray-world assumption

In the gray-world assumption [5], it is expected that the
observed color components of a given scenario will aver-
age to gray. As a consequence, any observed deviation with
respect to gray may be attributed to the illuminant. That
is, let the normalized representation of a color image and
its observed space average color be C(x) = {Ci (x)} and
A(x) = {Ai (x)}, respectively, for i = {r, g, b}, 0 ≤ Ai (x) ≤
1 and 0 ≤ Ci (x) ≤ 1. We are going to assume that Ai
and Ci are represented by matrices with dimensions h rows
by w columns, where κ = hw. Furthermore, suppose that
c̃ = (cr , cg, cb)

T and ã = (ar , ag, ab)
T are particular pix-

els of the color image C and space average color image A,
respectively. Under the gray-world assumption, when the
scene is lit with an illuminant different than white, ã will
undergo a deviation with respect to the gray line, repre-
sented by the unitary vector w = (1, 1, 1)T /

√
3, that can

be expressed as

ã⊥ = ã − (ãT w)w. (1)

Thus, the correction õ of the color c̃ consists of compensating
for the illuminant as

õ = c̃ − ã⊥. (2)

It is rarely the case that the illumination in the image is spa-
tially uniform. Ebner [6–10] addressed this problem by com-
puting a local average of the color before applying the gray-
world assumption. That is, given an initial estimate of the
local average of a color band ai , and an observation of a
color component ci , Ebner proposed the following iterative
relation to compute the local space average:

A
′
i (x) = 1

| N (x) |
∑

x′∈N (x)

Ai (x′), (3)

where the average Ai (x) is updated as

Ai (x) = (1 − ρ)A
′
i (x) + ρCi (x), (4)

and 0 < ρ ≪ 1 is a small positive constant. In this study,
we assume absorbing conditions for points at the boundary,
i.e., to compute the local average for pixels at the border, we
use only the pixels inside the image limits. To compute the
local space average, Ebner proposed either to build a resistive
grid [10] or to execute (3) and (4) iteratively for a number of
cycles in the order of the tens of thousands. In [10], Ebner
also suggested the use of successive over relaxation (SOR)

[22]. In the next section, we show that this formulation admits
an alternative form of solution based on its representation as
a linear system. Furthermore, we show that the alternative is
faster and, for a given resolution, can be computed in a fixed
number of operations.

3 A linear system alternative

Without loss of generality, the elements in Ai and Ci can be
ordered in column-wise order, resulting respectively in the
vectors a = {a j } and c = {c j }. This way, (3) and (4) can be
expressed as

a(r) = (1 − ρ)Pa(r−1) + ρc, (5)

where a(0), for r = 1, corresponds to the initial estimate of the
value of the local space average and P = {p ji } is a weighted
connectivity matrix [21], with the property

∑κ
i=1 p ji = 1.

The second iteration can be expressed as

a(2) = (1 − ρ)Pa(1) + ρc. (6)

To solve for a(2) we can plug-in (5), for r = 1, into (6). After
some algebra, it results in

a(2) = (1 − ρ)2 P2a(0) + (1 − ρ)ρ Pc + ρc, (7)

where Pr is the r-step weighted connectivity or the weight
associated in taking into account any two pixels k and j in
the rth iteration.

It is easy to appreciate that the pattern that is emerging
has the general form

a(n) = (1 − ρ)n Pna(0) + ρ

(
n−1∑

i=0

(1 − ρ)i Pi

)

c. (8)

We are interested in the behavior of (8) as n tends to infinity.
In these conditions, the first half vanishes because (1 − ρ)n

becomes zero. Among other things, it means that the final
local space average does not depend on the initial estimated
value of it. As for the summation, it can be simplified by
subtracting a(n) from (1−ρ)Pa(n). That is, let the expansion
of a(n) be expressed as

lim
n→∞ a(n) =ρ(I + (1− ρ)P+ · · ·+ (1− ρ)(n−1) P(n−1))c.

(9)

Then, we multiply by (1 − ρ)P , resulting in

lim
n→∞(1 − ρ)Pa(n)

= ρ((1− ρ)P+(1− ρ)2 P2+ · · ·+ (1− ρ)n Pn)c. (10)

The subtraction of (9) from (10) will eliminate most of the
terms except those at the extremes. Factoring out a(n), this
results in
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Fig. 1 Local space average. In
a, the number in the middle of
each square represents the
intensity value and the position
in row-wise ordering. The
connectivity used to compute
the average is illustrated in b.
Note that the central pixel is not
used in this example. For
instance, to compute the average
of pixel 1, the pixels 2 and 4 are
used. The weights are uniform
and have to add to 1. In c, we
show the convergence for
different values of ρ, in
logarithmic scale. The values on
the right are the starting values.
At ρ = 10−4, the largest
difference with respect to 5 is
smaller than 10−3. For values
below 10−12, the values start to
diverge from 5, and for values
below 10−15, the average breaks
down due to numerical round off
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lim
n→∞(I − (1 − ρ)P)a(n) =ρ(I − (1 − ρ)n Pn)c=ρc,

(11)

where the term (1 − ρ)n Pn vanishes when n → ∞. Finally,
we arrive at the expression

lim
n→∞ a(n) = ρ(I − (1 − ρ)P)−1c = ρK −1c. (12)

Note that, in practice, the matrix K −1 is actually not com-
puted. Instead, one can take advantage of the structure and
sparsity of K = {ki j }. As it can be appreciated in Fig. 1b, K
is banded, i.e., ki j = 0 for j > i + q and i > j + q. Golub
and van Loan [14] show that the LU factorization maintains
the sparsity on L and U. They also demonstrate how to com-
pute the factorization in 2κq2 flops, and both the forward
and backward substitution in 4κq flops. On the other hand,
to store the elements of the band requires (2q + 1)× κ cells.
Furthermore, it should be stressed that L and U need to be
computed only once for a particular average definition and
image resolution.

3.1 Speeding up calculations

In [10], Ebner offers an alternative to speed up the computa-
tion of the local space average color based on the use of SOR
[22]. SOR techniques aim to accelerate the rate of conver-
gence by introducing a factor ω that increases the value of
the estimate in the direction of the solution. Ebner’s iterative
scheme can be described by

A
′
i (x) = 1

| N (x) |
∑

x′∈N (x)

Āi (x′), (13)

where now Āi is the local space average and Ai (x) is an
auxiliary variable that is updated as

Ai (x) = (1 − ρ)A
′
i (x) + ρCi (x), (14)

and the SOR equation is defined as

Āi (x) = (1 − ω) Āi (x) + ωAi (x). (15)

After ordering Ai and Āi in column-wise form as a and ā,
respectively, (14) and (15) can be represented as

a(r−1) = (1 − ρ)P ā(r−1) + ρc, (16)
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and

ā(r) = (1 − ω)ā(r−1) + ωa(r−1). (17)

And the first iteration yields

ā(1) = ((1 − ω)I + ω(1 − ρ)P)ā(0) + ρωc. (18)

We can continue the same process as before, expanding suc-
cessive iterations and simplifying the expressions. At the end,
nth iteration yields the form

a(n) = ((1 − ω)I + ω(1 − ρ)P)na(0)

+ ωρ

n−1∑

i=0

((1 − ω)I + ω(1 − ρ)P)i c. (19)

When we analyze (19) for n → ∞, we notice that the first
term is not guaranteed to fade unless 0 ≤ ω ≤ 1. Provided
that, we can solve for a(n) by subtracting it from ((1−ω)I +
ω(1−ρ)P)a(n) . Using the conditions for ω previously stated,
this gives the solution

lim
n→∞ (I − ((1 − ω)I + ω(1 − ρ)P))a(n)

= ωρ(I − ((1 − ω)I + ω(1 − ρ)P)n)c = ωρc.
(20)

In other words,

lim
n→∞ a(n) = (I − ((1 − ω)I + ω(1 − ρ)P))−1ωρc. (21)

For simplicity, we prefer (12) for all of our computations.

4 Experimental results

The toy example in Fig. 1 illustrates some considerations in
the construction of the weighted connectivity matrix P =
{p ji }, specially for issues related to boundary conditions. A
3×3 matrix is filled up with values from 1 to 9, with 5 in
the center. Although for this example the central pixel is not
included, for subsequent tests, we use a 4-connected neigh-
borhood, with the central pixel included in order to compute
the average in (3). The following describes the conditions at
the borders. For the computation of P = p ji , and depend-
ing on the number of neighbors involved, there are three
cases. For the pixels on the corners, the vertical and horizon-
tal neighbors are used, and the weight for each element is
1/2. For the pixels in the horizontal borders at the top and at
the bottom rows, three pixels are used: the two lateral pixels
and the vertical neighbor, and so a weight of 1/3 is used. The
same rule applies for the vertical borders, the leftmost and
the rightmost columns. In this case, three pixels are used, the
lateral and the two vertical neighbors. The weight for each
element is also 1/3. Finally, for the pixels in the center, a
4-connected neighborhood is used and the weight for each
element is 1/4.

The matrix K can be stored compactly in a 5×κ array, i.e.,
the central diagonal and two off-diagonal elements on each

side. However, L and U require additional non-zero entries
of size κ × (h + 1) [18]. This is important because care-
lessly defined, an κ = h × w image will require as much as
κ × κ cells to hold the weighted connectivity matrix P, i.e.,
four times as much space as the original image. Nonetheless,
note that the vast majority of the entries of the linear sys-
tem are zero and the non-zero entries are in or close to the
main diagonal. The problem of space can be solved using
sparse representation for matrices. As for the value of ρ,
Ebner [10] points out that it determines the radius over which
local space average color is computed. Larger values of ρ use
small neighborhoods whereas smaller values use larger ones.
Figure 1c shows that for our toy example, the ratio of con-
vergence spans between 10−2 and 10−15. Out of this range,
the numerical stability essentially breaks down. In a more
realistic exercise, we obtained permission to use the images
in [8] and applied our method. The color images have reso-
lution 188 × 293 (rows × cols) pixels. We implemented
Ebner’s methods to compute the local space average defined
by (3), (4) and (13)–(15) in Matlab. In both cases, we used
ρ = 10−4 and a maximum number of iterations equal 10,000.
Convergency was defined by the sum of the squared differ-
ence between the current and previous estimate of the local
space average, with a value of ϵ = 10−7. In the case of the
SOR version, we tried several values of ω. In Fig. 2a, we
ran 30 times the three algorithms. The average time for (3)
and (4) was 95.95 s. For (13)–(15), the experimental results
are more complicated. Depending on the particular values
of ρ and ω, the expressions may or may not converge. For
instance, at ρ = 10−4, 28,613 iterations have to be executed
for ω = 0.1 and 9,364 iterations at ω = 1.3 to reach conver-
gency (although Ebner recommends ω > 1 to achieve faster
convergence). On the other hand, for ρ = 10−3, the method
requires 12,458 iterations for ω = 0.1 and 2,333 iterations
for ω = 1.2. For values of ω > 1.3, the method diverged
for both values of ρ. As for our method, the average com-
puting time was 1.97 s with ρ = 10−4. In Fig. 2, we show
the results for other images. To evaluate quantitatively the
relative change from the input to the output, we computed
the root mean squared error (RMSE), in CIE La∗b∗ color
space, for the images in Fig. 2. For the input, the first column
in Fig. 2, the RMSE between the first image and the second
one, the first one and the third one, and the second one and
the third one is 6.32, 10.3, and 33.74, respectively. As for the
third column, the output, the RMSE is correspondingly 1.16,
2.20, and 1.04. As expected, the resulting images are more
similar to each other.

5 Conclusion

In this document, we present an alternative solution to the
iterative formulation introduced by Ebner [6–10] to compute
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Fig. 2 Office environment. Results of the algorithm for the same set of images used by Ebner [8]. The columns show the original, the local space
color average, and the corrected image. In the experiments, ρ = 0.0001. With kind permission from Springer Science and Marc Ebner

the local space average color in an image. We referenced the
requirements of the solution in terms of the space needed in a
sparse matrix representation, and the computing complexity,
in terms of the number of flops. Our results show that our
implementation requires at least an order of magnitude less
time to execute.

The gray-world assumption is a bold statement about the
nature of the world that clearly may not hold up in some typi-
cal scenarios. Nevertheless, as our knowledge about how the
physical world operates advances and more complete compu-
tational models are developed, these assumptions may prove
useful in gaining the necessary intuition to solve the problem.
Despite this, the algorithm presented here shall only be used
with the necessary careful assessment of the characteristics
of the particular scenario.
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