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Abstract. We present a strategy that combines color and depth images
to detect people in indoor environments. Similarity of image appearance
and closeness in 3D position over time yield weights on the edges of
a directed graph that we partition greedily into tracklets, sequences of
chronologically ordered observations with high edge weights. Each track-
let is assigned the highest score that a Histograms-of-Oriented Gradients
(HOG) person detector yields for observations in the tracklet. High-score
tracklets are deemed to correspond to people. Our experiments show a
significant improvement in both precision and recall when compared to
the HOG detector alone.

1 Introduction

The detection of human beings from visual observations is a very active research
area. The recent introduction of inexpensive depth sensors that work at frame
rate offers new opportunities to address this difficult problem. In this paper,
we combine depth and color data from a single sensor to track and classify
people. More specifically, we introduce a directed graph whose edges connect
chronologically ordered observations. Weights on the graph capture similarity of
appearance and closeness in space, and a greedy traversal of the graph produces
tracklets, that is, chronological sequences of observations that are likely to corre-
spond to the same person. Each tracklet then receives a score from a color-based
person detector from the literature [1]. Tracklets with scores exceeding a prede-
fined threshold are deemed to correspond to people. Our experiments show that
our strategy reduces the number of detected false positives by a factor of fifty,
while increasing the detection of true positives threefold. The rest of the paper
is structured as follow. After a brief review of related work, Section 3 describes
a method to extract foreground objects using depth information. Then, Sec-
tion 4 discusses the creation of tracklets, and Section 5 presents results on two
color/depth video sequences. Comparison with ground truth data illustrates the
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benefits of our approach when compared to HOG detection alone. A concluding
Section suggests directions for future research.

2 Previous Work

An account of early efforts on people tracking can be found in [7]. These include
the analysis of parts of the body, both internal or external, as well as dynamical
characteristics, such as the gait. Some of the first results can be traced back to
the Seventies [12], when psychophysical studies [11] showed that humans could
perceive people based on pure motion data. Prompted in part by security consid-
erations [20], new techniques, protocols and standards have emerged in the past
decade. Some approaches have used silhouettes [5] or body-part matching [14, 21,
23,22]. The combination of cascades of increasingly complex classifiers has pro-
duced fast and robust recognition algorithms [28] for relatively stylized person
poses. Features for tracking people include the Scale Invariant Feature Transform
(SIFT) [13], [15], Haar-like wavelets [29], shape [33], and Histograms of Oriented
Gradients (HOG) [1]. The latter have proven to be particularly successful. To
build a HOG descriptor, the window of interest in an image is subdivided into
a grid of cells, and a histogram of the orientations of luminance gradients is
computed in each cell. The histograms are normalized and concatenated into a
single vector for the whole window. A linear Support Vector Machine (SVM)
[27] classifies the resulting vectors into person or non-person. This work was
later extended [2] to include the use of motion. Motion information had been
used in other work as well [29], [6]. SVMs have been used with other descriptors
for whole bodies [16] or body parts [19]. Schwartz et al. [25] further incorporated
texture information.

Some researchers have combined spatial and light intensity information to
detect people. For instance, Zhao and Thorpe[34] use a stereo system to segment
the silhouettes that are fed to a neural network that detects pedestrians. Xu and
Fujimora [32] also extract body silhouettes but with a time-of-flight device. The
use of body, the whole or just parts of it, has proven to increase the robustness of
the detection and tracking methods. Consider for example the strategy proposed
by Muiioz et al.[17] where there is the combined use of a face detector and depth
information to track people. Javed et al. [10] instead combine color with position
information inferred from the locations of multiple cameras. In our work, we use
similar principles for combining color and position information. However, we
work in the field of view of a single color/depth sensor, and derive position
information from a depth map through background subtraction. In addition, we
also run a HOG classifier on every color frame, and propagate the best scores it
generates to all observations in the same tracklet. Thus, we classify one tracklet
at a time, rather than one window at a time. While this approach propagates
both true positives and false positives, our reliance on the best detection result in
each tracklet ensures that the HOG classifier is given the opportunity to operate
on body poses that fit the HOG model particularly well. The good results of our
experiments in Section 5 show the validity of our approach.



3 Detection of Foreground Objects

We first classify the measurements X = {xy,...,X;, } from a depth sensor, where
Xi = [Tk, Yk, 21T, into background B and foreground F. To this end, a Gaussian
background model is used to detect the foreground by Maximum A Posteriori
(MAP) estimation. The resulting foreground points are then grouped into sep-
arate objects by connected component analysis. For our purposes, we divide
the tridimensional space into equally spaced bins centered at X = {Z1,..., T4},
Y={9y,..-,0}, and Z = {Z1,...,Z.} with grid spacing Az, Ay, and Az. At
the workspace boundaries, the bins extend to either co or —oo. In the following,
N is a function that counts the number of observations that fall into each of the
bins of a histogram.

3.1 Planar Background Elimination

Similarly to Vrubel et al. [30], we assume that the workspace has either a flat floor
or a flat ceiling. Furthermore, we assume that the number of points describing
either one of these structures is a significant fraction of the points in the depth
map. We then compute the sensor roll and pitch angles that produce a maximum
bin value over the marginals on the vertical axis. Specifically, let h(j, o, 8) =
N([7; —y| < Ay/2) be the marginal histogram along the vertical direction
after a rotation of the reference system by roll and pitch angles o and 3. The
rotation that maximizes the number of points in the most populated bin, that
is, (v, B) = arg max, g max; h(j, o, B), can be estimated using the Nelder-Mead
or Simplex method [18]. For efficiency, the points below the floor and above the
ceiling are deleted after this rotation.

3.2 Background Model

The Occupancy Grid framework [4] provides a suitable platform for background
subtraction. Let s(x) be a foreground/background map for the spatial coordi-
nates x € X, with p(s(x) = F) + p(s(x) = B) = 1. The probability that a
particular space position x = [x,y, 2]7 is part of the background is

p(s(x) = B|z) o< p(z]s(x) = B)p(s(x) = B). (1)

Similarly to Gordon et al. [9], who presented a method to combine dense stereo
measurements with color images, we model the background with a mixture of
Gaussians and detect the foreground as those points that are more than 3o away
from the nearest background mode.

3.3 Foreground Objects

We extract foreground objects by connected components with 26-connectivity in
3D space, while reasoning about the positions of the detected objects relative to
the sensor. Let H be a histogram constructed out of the points in X, such that



H(inj.k) = N(Ti—| < A/2,[5;—y| < Ay/2, [ze—2] < Az/2). Let (i, j, k) be
an indicator variable that is 1 whenever H(i, j, k) > 0 and 0 otherwise. Objects
correspond to connected components in v(z, j, k). Finally, we eliminate clusters
that are smaller than a depth-dependent threshold of the form 7(d) = pe~"?
that models the fact that the size of an object decreases with its distance d from
the sensor. The values of p and v are found by data fitting on training samples.
Each output blob is given in the form of the tightest axis-aligned box around
each component.

4 Combining Detections

To combine measurements of depth and appearance, we use depth for tracking
blobs across frames and connecting them into tracklets, and we use the HOG
detector [1] in one of its available implementations [3,31] to assign scores to
individual blobs. The highest score on each tracklet is then propagated to all
the blobs on that tracklet. Blobs that are in tracklets with a score that ex-
ceeds a given threshold are classified as people. In this Section we describe our
construction of tracklets.

Adapting the framework proposed by Javed et al. [10], in our case for a single
camera, let k] be a binary indicator for the hypothesis that two observations O; =
{f;,x;,t;} and O; = {f;,x;,t;} belong to the same object. In each observation,
f is the blob color signature[24], x is the position of the centroid of the points in
a blob, and ¢ is the timestamp of the observation. The conditional probability
distribution of k! given two observations O;, O, is

p(k}|0i, 05) o< p(fs, £ |k )p({xs: t:}, {x5, 5}k )p(k]), (2)

assuming independence of f from (x,t). Lacking further information, we may
assume that p(k}) is uniformly distributed. We define

p(fi, £{I]) oc em B, 3)
where d(f;, f;) is the Earth Movers Distance (EMD) [24]. We also define
p({xi 1, (5,15} K)o el —t=a (@

where At is the inter-frame time. We estimate the constants «, 8 and - in these
expressions through data fitting to training samples.

To compute tracklets, we build a directed graph G = (V, E, P) whose node
set V is the set of observations O;, edge (i,7) in E connects observations O;
and O; such that ¢; < t;, and the weights in P are the probabilities m;; =
p(kf = 1]0;,0j), evaluated as explained above. Edges with zero weight are
omitted from FE. In G, we define tracklets as strongly connected paths, con-
structed greedily as follows: Let iy be the oldest observation in V. For each i,
let

(1) = ar ma i 5
i) ngV,(i,JX)eEﬂ-J (5)



A tracklet is the resulting path ig, i1 = j(ip), 42 = j(i1),.... The path ends
when j(iy,) is undefined. We then remove the elements of the tracklet from the
graph, and repeat.

(a) Depth blobs from s; (b) Color HOG detection from s;

(d) Tracklets from s2 with top-score HOG
detections

(¢) Empty scene from s3 (f) Tracklets from ss with foreground blobs

Fig. 1. People Detection using Color and Depth Images. (a) Bounding boxes of fore-
ground connected components found in a depth frame from s;. (b) HOG detections in
a color frame from s;. In this particular frame, the HOG finds two people, misses two,
and produces a false positive to the right of the plant. (¢) A frame from sz, with no peo-
ple. (d) Tracklets (red polygonal lines) from se with superimposed top-scoring HOG
detection results. (e) A frame from sz, with no people. (f) Tracklets (red polygonal
lines) from ss with superimposed foreground blobs.
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Fig. 2. Performance Evaluation. In these graphs, we vary the acceptance threshold 7
for the HOG detector from 0 (all pass) to 3.15 (most strict). In each diagram, the
horizontal axis is the number of HOG detections on the color images, and the vertical
axis is the number of detections with our method. (a) Number of false positive
detections (fp). For 7 = 0, HOG alone obtains 2,594 fp and our method yields 76. For
7 = 3.15, fp is 2 for HOG alone and 7 with our approach. (b) Number of true positive
detections (tp). For 7 = 0, HOG alone finds 245 tp and our method finds 615. When
7 = 3.15, tp is 0 for HOG alone and 16 for our approach. A standard ROC curve [26]
would be essentially meaningless, because the multiscale image scan examines 34,981
windows per image, vastly more than the expected number of targets.

5 Experimental Results

Our experiments evaluate the impact of depth information, used as described
earlier, on the performance of the HOG person detector. To this end, we captured
and processed three sequences s1, sy and s3 with a Microsoft Kinect sensor [§].
Each sequence contains roughly 2,000 color/depth image pairs at VGA resolution
(640 x 480). Sample frames are shown in Fig. 1. We divided the workspace in cells
with grid step Az = Ay = Az = 0.1m. Using the MATLAB implementation
of the Nelder-Mead optimization algorithm [18], we estimated the pitch (5) and
roll () angles. We used floor points in s; and s3, and ceiling points in sg. The
estimated angles for pitch and roll are —3.4 and —1.1 degrees for s1, 0.9 and 4.1
for so, and —0.9 and 3.4 for s3 . Only points between 0.1m and 2.5m above floor
level are considered for processing.

To construct a model of the background, we chose 20 frames from s, 80 from
s2, and 160 from s3, consecutive and without people. To detect people, we used
the OpenCV [31] implementation of the HOG [1] algorithm. From the HOG,
we retained all the detections with a strictly positive SVM score. Fig. 1 shows
some intermediate results for three scenarios. Part (a) illustrates the detection
of blobs in the depth images. Part (b) illustrates the performance of the HOG
detector. Scenes without people, like in part (c) and (e), were used to build the
background model for the depth maps. The combined use of space-time and



color constraints to detect people is illustrated in (d) and (f). Tracklets are in
red, and the HOG windows with top scores are shown in (d) and the foreground
blobs are shown in (f).

The multiscale search of the OpenCV implementation of the HOG detector
examines 34,981 candidates per image. Out of these, the HOG algorithm elimi-
nates many false positives, depending on the threshold used on the SVM score.
Adding depth information by our method improves detection performance sig-
nificantly. In Fig. 2, we plot two curves for false positives (fp) and true positives
(tp) for different HOG score thresholds. These curves relate results without and
with the use of depth information. When the HOG score threshold is zero, our
method reduces the number of fp from 2,594 to 76, while the number of tp
increases from 245 to 615. When the threshold is set to 3.15, the highest value
that results in some HOG detections, the number of fp goes from 2 to 7 and
that of tp goes from 0 to 16. Overall, with our approach, the number of false
positives is greatly reduced, and the number of true positives is simultaneously
increased.

Conclusion

In this paper, we presented a strategy to combine depth-based tracking and
appearance-based HOG people detection. This strategy greatly improves both
precision and recall. Our object detector is computationally efficient and accu-
rate. Overall, our strategy seems to give excellent results in indoor environments.
In the future, we plan to explore less greedy methods for the construction of
tracklets, more nuanced models of image similarity and space-time closeness,
and more detailed models of sensor uncertainty. We also plan to extend our
method to part-based person detection methods.

Our study suggests that the emergence of new, inexpensive depth sensors
presents new opportunities for surveillance, activity analysis and people track-
ing. Nonetheless, these sensors are unlikely to supplant regular cameras alto-
gether. This is because current depth sensors typically project infrared light,
either temporally modulated or spatially structured, on the scene. Black or dark
surfaces do not reflect well, and sometimes not at all, making background sub-
traction harder, and creating difficulties with people with dark hair or clothing.
In addition, depth sensors are inherently limited to shorter distances because
eye safety demands low illumination power levels. However, when the right con-
ditions are met, range sensors provide an invaluable resource of information that
can enhance the performance of demanding perceptual tasks.
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