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Abstract-h many computer vision applications it is necessary to compute the direction of 
heading of a moving camera from the images it produces. Traditionally, this computation has been 
baaed on the optical flow, that is, on the motion of point features in the field of view. We show 
that the differential changes in the angles between the projection rays of pairs of point features are 
a better input for this purpose. These angles, the image deformations, do not depend on viewer 
rotation, so the key problem of separating the effects of rotation from those of translation is solved at 
the input. Experiments show both the feasibility of the method on real images and the advantages 
of using deformations rather than optical flow. 
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1. INTRODUCTION 

As we walk down a hallway, the moving images on our retinas convey enough information to 
determine our direction of heading. Several researchers have investigated how this direction 
could be computed, either in the human visual system, or by a computer processing images from 
a moving camera. 

The main difficulty of this computation is to separate the effects of viewer rotation from those 
of viewer translation. In fact, with only translation the task would be quite simple; features in 
the image move toward or away from a single point, the focus of expansion, which points toward 
the direction of heading (see Figure 1). If the viewer also rotates, however, the focus of expansion 
vanishes. Unfortunately, the rotational component is often dominant; the effects of translation 
on the images are small, being inversely proportional to the usually large distance to the scene, 
while the effects of rotation are independent of distance. This has always been known to movie 
directors, who use expensive dollies to move their cameras with as little vibration as possible. 

In this paper, we show that the effects of rotation can be eliminated from the image measure- 
ments right at the input of the computation. Specifically, we observe that the angle between the 
projection rays of two features in the scene does not depend on the viewer’s rotation, and we use 
the changes in these angles as the input to our algorithm. In other words, rather than measuring 
how the image points mozle in the field of view, the traditional flow-based approach, we measure 
how the image deforms over time. 

Of course, our approach uses the same data as the flow-based methods do, since we compute 
deformations from feature positions in successive images. However, our method differs in how 
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Figure 1. With pure camera translation, the trajectories of all points paas through 
one image point, the focus of expansion. As the white lines suggest, the streaks in 
this slow-exposure picture all converge to a point near the middle of the picture. 

those data are used; computing deformations removes rotation at the outset, rather than at some 
later stage of the computation. With noisy data, canceling rotation by computing deformations 

has two advantages. 

1. The direction of heading is computed from deformations by minimizing a residual function 
with a deeper minimum than the one based on optical flow. Even very small rotations 
flatten the minimum of the flow-based residual function considerably, leading to a mini- 
mization that is more sensitive to noise. 

2. The magnitude of deformations with respect to image noise is a direct indication of their 
reliability for the estimation of the direction of heading. This is not true for optical 
flow; a large flow may be just caused by viewer rotation, and the differences between flow 
vectors may be too small with respect to noise to be used for the computation of heading. 
Deformations, on the other hand, can be monitored as the viewer moves, and heading 
computed only once they are large enough. 

With n feature points there are n(n - 1)/2 pairs of features, and therefore, O(n2) angles 
between features. However, only 2n - 3 of these angles are independent. We propose a method 
for selecting a sufficient set of O(n) points in time O(n log n). 

In the next section, we discuss previous work on the subject. Then, in Section 3, we define 
image deformations and derive an equation that links them to the direction of heading. In 
Section 4, we combine these equations into a single system of equations for a sufficient set of 
feature pairs. In the same section, we also show how the distances to the feature points in space 
can be eliminated from the equations, leading to a minimization problem in two variables, which 
we solve in Section 5. In Section 6, we explain why local minima are shallower than global ones, 
an important point for finding the correct solution. We then test our solution on both simulated 
and real images (Sections 7 and 8), and discuss applications and complexity issues in Section 9. 

2. RELATION WITH PREVIOUS WORK 

We now compare our method with others regarding how the effects of rotation are eliminated 
from the images. We do not discuss methods that require space-continuous velocity fields or 
second derivatives of image motion [l-3], since we use as input the instantaneous image velocities 
of a set of discrete image points. 



Image Deformations 

The methods presented in [4-6] are based on the following observation: if a point p in the 
first image moves to q in the second, then the vectors q, Rp, T, where R is rotation and T is 
translation, are coplanar 

q.(RpxT)=O. 

The three methods above enforce this constraint over several points to compute R and T. The 
effect of noise on these nonlinear equations depends on R. For instance, if the two vectors Rp 
and T happen to be nearly parallel to each other, small perturbations of p can change the 
direction of Rp x T considerably. 

When the translation of the viewer is large, the three methods just cited are preferable to 
ours, since they make no assumption ss to the distance traveled by the viewer. In contrast, we 
measure differential changes in the angles between features. On the other hand, when the viewer 
moves little, the methods above can fail altogether when a certain quadratic equation has no 
real solution [4,6]. Our method degrades more gracefully; as image deformations become smaller 
and smaller relative to noise, the uncertainty in the direction of heading grows, but no outright 
failure occurs. 

An observation by Helmholtz [7] has been used in (8-111; the vector difference in velocity 
between two points that are nearby in the image but at different depths is nearly independent 
of rotation (and exactly so, when the points are at the same image location). Changes in this 
difference, called motion parallm, supply sufficient constraints to recover the direction of heading. 
Our method is also based on motion parallax; our image deformations are the magnitude (in 
degrees of visual angle) of the vector difference used in those papers. However, by ignoring the 
direction of the parallax and only considering its magnitude we make parallax independent of 
rotations exactly, regardless of the image positions of the two feature points. The two hard 
problems of determining pairs of image features along depth boundaries and measuring their 
image velocities (given the interference of the boundary) are thereby avoided. 

Our approach is similar to those in [12-151 in that we minimize some residual over the mea- 
surements in the least squares sense. Like Heeger and Jepson, we reduce minimization to that 
of a function of two variables (the parameters for the direction of heading), but we use rotation- 
independent image deformations rather than image flow, with the advantages mentioned in the 
introduction. 

3. IMAGE DEFORMATIONS 

Consider two points P and Q in space, 8s in Figure 2. As the viewer moves from C to C’, 
the magnitude (Y of the angle PCQ formed by the projection rays changes to PC’Q. The image 
deformation is iu, the time derivative of a. The angle cr is given by 

Q = arccos (pTq) (1) 

where p and q are two unit vectors from the viewer center to the points P and Q. 

initial camera position 

Figure 2. As the viewer moves, the angle a between projection rays CP, CQ wu-ies. 
The time derivative of thii variation is the image deformation. 
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To find iu, we first determine the derivative of cy with respect to viewer position when C moves 
along three special directions: p, q, and the direction 

,=pxq 
IP x ql’ 

orthogonal to p and q. If p, q, r are the amounts of viewer motion along p, q, r, we find that 

acY sin 0 &Y sin (Y da, 
ap=IQI9 Y&=Jpl’ s=o. 

If the viewer motion is expressed instead in an orthogonal reference system through its compo- 

where the Jacobian J is given by 
J=[pqrl_l. 

nents 5, y, z, the chain rule for differentiation yields 

(21 

Finally, we apply the chain rule once more to compute the derivative of Q with respect to time, 
given the three time derivatives t of the viewer position C: 

ii = sinatTJT 1 1 ;y-: . (3) 
0 

We can rewrite equation 
measurement equation: 

where the scalar 

(3) in a more compact form to obtain~the following fundamental 

b = tTAd, (4 

jj=_L 
sin (Y (5) 

is a quantity that can be measured from two or more images, the vector 

collects the reciprocals of the unknown depth values, the columns of the 3 x 2 matrix 
known second and first row of J, and the vector t is the unknown viewer velocity. 

A are the 

4. COMBINING MULTIPLE MEASUREMENTS 

With n features instead of two, we can write n(n-1)/2 equations like equation (4), one for every 
pair of features. However, only 2n - 3 of these equations provide independent measurements. 

In fact, if two points ~1, p2 are picked 8s reference, the positions of all n points is identified 
up to a mirror flip by the distance between p1 and p2 and by the 2(n - 2) pairs of angles that 
p1 and p2 form with the other points Pi for i = 3,. . . ,n, for a total of 1 + 2(n - 2) = 2n - 3 
parameters. This construction, however, is only useful as a way to count independent equations. 
In fact, an arbitrary choice of p1 and p2 can lead to long and narrow triangles (pl, ~2, pi> yielding 
a numerically poor system of equations. 
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Instead, we measure angles Q for pairs of image points that are connected by the edges of 
a Delaunay triangulation [16] of all the points (see Figure 7). This triangulation is a planar 
graph, and thus, has 0(n) edges. Every vertex is connected to at least two others, leading to a 
sufficient set of measurement equations. Edges connect nearest neighbors, yielding large ratios in 
equation (5) for reduced noise sensitivity. Finally, points strictly inside the convex hull belong to 
triangles that are as close as possible to equilateral, yielding maximally independent measurement 
equations. 

We can then let 

d=[di .a. &IT, 

b=[bl a.- b,,JT, 

where bk is the left-hand side of equation (4) for edge k, and m is the number of edges in the 
Delaunay triangulation. If edge k connects points i and j, the matrix A for the kth measurement 
equation (4) is formed from the Jacobian [pi pj rij1-l of equation (2). Because the matrix A for 
pair (i, j) is equal to that for pair (j, i), but with its columns switched, we can consistently define 

Ak = [aji aijl, 

and define the m x n matrix A(t) whose entry k,l is 

{ 

tT&j, for 1= i, 

tkl = tTaji, for 1 = j, 

9, otherwise. 

With these definitions, the m equations (4) can be collected into the following bilinear system: 

b = A(t)d. (6) 

If t, d is a solution to equation (6), so is ct, d/c for any nonzero c, consistently with the fact that 
absolute scale cannot be recovered from images alone [17]. With the additional constraint that 
the translation t have unit norm, t is the viewer’s direction of heading. 

5. SOLVING FOR THE DIRECTION OF HEADING 

In the presence of noise, equation (6) will only be satisfied approximately, so we need a measure 
for how close b is to the column space of A(t). Conceptually, a measure for this distance is 
obtained by replacing d in equation (6) by its solution d+ in terms of the pseudoinverse, 

d+ = (A(t)TA(t))-lA(t)Tb, 

and then measuring the residual 
p(t) = ]A(t)d+ -b]. (7) 

This residual does not depend on d, and can be minimized with respect to t. Of course, from a 
numerical standpoint, more efficient algorithms for computing (7) should be used than computing 
the pseudoinverse of A(t) for given values of t: the reason for introducing this pseudoinverse is 
only to show that conceptually a residue can be built that does not depend on d. In practice, we 
use a a variable projection method [18,19] on the unit sphere It.1 = 1 to minimize the residual (7) 
with respect to d and t. Local minima do exist, but the more points are available in the field 
of view, the smoother the residual (7) turns out to be. In our experiments, we usually find 
one or two local minima, with the correct minimum considerably deeper than the other (see 
Sections 7 and 8 for examples, and Section 6 for a discussion of this point). One can then use 
local minimization methods starting at a few random points on the unit sphere and choose the 
convergence point of smallest residual as the solution. At the end of the computation, the depth 
vector d is simply discarded. In fact, it has been shown [20] that if the translation is small and 
rotation is nonzero the depth results are unreliable no matter what algorithm is used. However, 
one could conceivably estimate better depth results from a long sequence of depth measurements 
from consecutive pairs of images, using, for instance, a Kalman filter. 
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6. GLOBAL AND LOCAL MINIMA 

In this section, we give an intuitive explanation for why local minima of the residual function (7) 
are deeper than the global minimum, a fact that we have invariably noticed in our experiments 
and simulations. First, the camera motion is known [5] to be uniquely determined by optical flow 
in the absence of noise. If noise is added, the global minimum is raised away from zero. Local 
minima, on the other hand, are away from zero already in the ideal case. This by itself does not 
imply that they become even higher when noise is added. It just says that without noise the 

global minimum is deepest. 

Figure 3. The correct (crosses and solid arrow) depth and motion interpretation of 
image deformations yields the global minimum of the residual (7). The crosses on 
the left, together with the circlea and the dashed arrow, yield a local minimum. 

With noise, we can gain some understanding of what happens by considering the example of 
Figure 3, in which the camera sees two clouds of points in front of itself. Crosses denote the 
true position of the points in the world, and the solid arrow points along the true direction of 
motion of the camera. As the camera moves ahead, two phenomena can be observed in the 
image. The dominant one is that the two clouds of points become more distant from each other 
as they move toward the image periphery. The secondary effect is that the points within each 
cloud are spread further apart from each other. The relative extent of these two effects depends 
on the actual geometry of the scene. The minimization algorithm then tries to “explain” the 
image deformations by determining the positions of the points in the world and the motion of 
the camera. A good explanation corresponds to a deep minimum. 

The correct explanation is given in Figure 3 by the crosses and the solid arrow. However, a 
different explanation is possible, represented by the left cloud of crosses, the cloud of circles, and 
the dashed arrow for camera motion. The algorithm has no notion of “in front” or “behind” the 
camera, although this would be easy to check after depths have been computed. Consequently, 
the two explanations are equally good in terms of the data, since the points behind the camera 
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(the circles) project onto the same image locations ss the corresponding points in front of the 
camera (the crosses on the right). 

The wrong explanation accounts for the increasing image separation of the two clouds as the 
camera moves along the dashed arrow, and thereby, creates a local minimum in the residual 
function. On the other hand, the points within each of the two clouds would essentially only 
translate together if the camera were actually moving along the dashed arrow. Consequently, the 
secondary effect of the diverging points within a cloud, which is actually observed in the data, is 
not explained by this incorrect interpretation, and the corresponding minimum is shallower. 

This argument also suggests that fewer local minima could be obtained if the minimization of 
the residual (7) were constrained to positive depth values, an approach that we did not pursue. 

7. A SIMULATION EXPERIMENT 

Figure 4 shows a contour plot of the residual p(t) on the hemisphere of heading directions t 

corresponding to a forward moving viewer. Because A(t)d = A(-t)(-d) (see equation (6)), the 
residual function is the same on the opposite hemisphere (p(t) = p( -t)). For this simulation 
we use 30 feature points, spanning a visual angle of about 120 degrees and distributed in depth 
between one and ten units away from the camera. Absolute depths are irrelevant because scale 
does not influence the results. The camera translation is one hundredth of the average distance 
to the scene, and the camera rotation is 3 degrees around a vertical axis. Random uniform noise 
is added to the second image. The width of the noise distribution is half a pixel for a 500 x 500 
pixel image. 

The true direction, randomly generated, was the unit vector (-0.306, -0.066, 0.950)T. Our 
method computed t = (-0.302, -0.126, 0.945)T, corresponding to a heading error of 3.45 degrees. 

Figure 5 shows the direction error versus feature position uncertainty for the same situation. 
Each point on the graph is the average heading error for ten runs with the same noise distribution 
but different noise samples. For increasing noise the results become more and more erratic. 
However, the algorithm never fails completely, but degrades gracefully. 

Figure 6 compares our deformation-based residual, 

lb - tTAd( 

(see equation (4)) with th e more traditional residual based on optical flow, 

Iu - (6Art + A2w)I e 

Figure 4. Contour plot of the residual p(t) on the forward hemisphere. The two loops 
slightly above and to the left of the center are minima; the bigger loop is around the 
global minimum. Other loops are maxima. 
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Figure 5. Direction of heading error versus feature position uncertainty. 

where u is the optical flow, w is a vector representing the camera rotation, Al and AZ are matrices 
that depend only on image position, 5 is inverse depth along the optical axis, and t is the direction 
of heading (see for instance [15]). In both cases, the overall residual is the root mean square of 
the residuals for the individual features. All plots were obtained for a viewer translating exactly 
forward and no image noise. The two top diagrams show the residuals for pure translation; the 
widths and shapes of the two minima are essentially the same. When the camera rotates even by 
just one degree, the minimum of the flow-based residual (bottom right plot) becomes elongated 
and shallow, leading to a more noise-sensitive minimization. The deformation residual, on the 

Figure 6. Contour plots of the deformation-based r&dual p(t) (left plots), and the 
traditional flow-baeed residual (right), for pure tranelation (top), and with an added 
rotation of one degree (bottom). 

To summarize, deformations are preferable to direct optical flow when the viewer rotates by 
even a small amount. On the other hand, regardless of whether flow or deformations are used, 
Figure 5 shows that recovering the direction of heading from a pair of images requires cameras 
and tracking systems of good quality. In the next section, we show that our method can be used 
with real images. 



Image Deformations 173 

8. AN EXPERIMENT ON REAL IMAGES 

Figure 7 shows the first of a sequence of images taken in our lab, with the Delaunay triangu- 
lation of the tracked features superimposed. The viewing angle is about thirty degrees and the 
objects in the scene are between about 50 and 1OOcm away. 

Figure 7. The first frame used in the experiment, with the Delaunay triangulation 
of the selected features. 

About 230 features were automatically selected in the first frame and tracked using the algo- 
rithm described in [21]. Of those, 44 were handpicked to provide a roughly uniform distribution 
over the image. The camera was moved by a Puma arm proceeding in small steps, first along 
a constant reference direction (roughly towards the pencils), then along a direction at an angle 
of 30 degrees from the reference direction. For every new frame, features were tracked and the 
root mean square image deformation from start to current frame was determined. As soon as 
the rms deformation exceeded one pixel, the direction of heading was computed from the de- 
formations between the start frame and the current frame. The current frame then became the 
new start frame for the next measurement. This procedure guarantees that the deformations are 
substantially greater than the feature position uncertainty (about 0.1 pixels), leading to a reliable 
computation of the direction of heading. 

This input monitoring method would not be possible with optical flow. In fact, the magnitude 
of flow says nothing about its reliability for the computation of the heading direction, since 
there is no direct relation between the amount of flow and the amount of camera translation. 
Deformations, on the other hand, are nonzero only in the presence of translation, and their 
size with respect to the uncertainty of feature positions is a direct indication of how reliable 
deformations are for the computation of translation. 

Three sufIlciently distant images were obtained with this procedure, with the second image at 
the turning point of the camera path. The residual functions for the two image pairs are shown 
in Figure 8. The error on the angle between the two directions of heading, as computed by our 
method, was about 8 degrees. Since we do not know the accuracy of the Puma arm for very 
small motions and our camera wss not calibrated, this error is only a rough indication of the 
accuracy of our method. We are planning more accurate experiments. Each residual function 
has a clean and deep global minimum, even with the small motion (1 cm) and narrow field of 
view (30 degrees) of our experiment. There is also one local minimum in each residual, but this 
is much more shallow and created no problem for our minimization procedure. 
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Figure 8. Contour plots of p(t) on the positive hemisphere for the two real image 
pairs. Global minima are in the first quadrant, local minima in the third. 

9. APPLICATIONS AND COMPUTATIONAL ISSUES 

The deformation-based method proposed in this paper makes it possible to compute the direc- 
tion of heading of a camera from its images in a more reliable way than previous approaches based 
on optical flow. If our method can be implemented in real time, it can be applied to many tasks. 
For instance, in hand-eye coordination, camera motion can now be measured in the camera’s 
frame of reference, as opposed to the robot%. This makes hand-eye calibration straight-forward. 
In robot navigation, a new motion measurement becomes available that is immune to problems 
like wheel-slippage or bumpy terrain that severely degrade mechanical motion measurements. In 
satellite docking or ballistic target homing applications, the vehicle’s motion can be continuously 
compared to the image of the target for accurate guidance even in the presence of rotations. 

The question of computational complexity is therefore of primary importance. The core of 
our method is the solution of the bilinear system (6). The variable-projection methods we use 
for this purpose (see Section 5) are iterative, and it currently takes a few minutes on a Sparc2 
workstation to solve for the direction of heading. The matrix A in equation (6) is formed from a 
m x n x 3 tensor of numbers, where n is the number of feature points and m is the (0(n)) number 
of feature pairs considered. While implementing the entire computation in one thirthieth of a 
second would require substantial hardware, we notice the following points. 

Measurements are used only when the deformation-monitoring system described in Sec- 
tion 8 deems the data to be reliable with respect to image noise. It may take several 
frames before a new computation is necessary. 
Complete convergence is not necessary at every computation. One can stop the iterations 
when new data become available, and start a new minimization using the current estimate 
as a starting point. This amounts to doing gradient descent on a slowly varying landscape. 
A much faster, although coarser, estimation of the heading direction t can be obtained by 
sampling the unit sphere Jt 1 = 1, and computing the residual (7) everywhere in parallel. 
The minimum can then be found by a comparison tree in time that is logarithmic in the 
number of sampling points. 

10. CONCLUSION 

Computing the direction of heading from image deformations is an interesting alternative to 
using the image flow field directly, because it removes the effects of rotation right at the outset 
in a clearly understandable and straight-forward way. The minimum of the residual function 
computed from deformations is deeper than that of the flow-based residual, leading to a more 
reliable solution. Furthermore, the magnitudes of the deformations, when compared to the noise 
level in the images, are a direct indication of their reliability for the computation of the direction of 
heading. Finally, our minimization method degrades gracefully with feature position uncertainty. 

Simulations confirm that a wide angle of view and accurate image measurements are necessary 
for good heading estimates, and our experiments with real images indicates that these require- 
ments are realistic. However, it ,is obvious from the quantitative data presented in this paper 
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that determining the camera’s direction of heading from closely-spaced images is a delicate task, 
and only explicit attention to the sensitivity of the problem, as well as to camera calibration and 
to the numerical aspects of the computation, can lead to accurate motion estimates. 
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