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The pages that follow boast impressive 
numbers: 496 processors with a total of 
1,984 gigabytes of memory and 62 tera-
bytes of disk digested nearly 460,000 
Flickr pictures of Rome, Venice, and 
Dubrovnik. After 2.5 days, the proces-
sors output the detailed three-dimen-
sional geometry and colors of famous 
landmarks and monuments in these 
cities. To computer vision research-
ers, these automatic visual reconstruc-
tions—awesome in their detail, magni-
tude, and fidelity—are a dream come 
true, never mind the occasional gaps 
that give the resulting scenes a faintly 
war-torn look.

It took decades to get here. In 1959, 
Edgar Hynes Thompson, then Profes-
sor of Photogrammetry at University 
College London, worked out the al-
gebra for the smallest instance of the 
geometric side of visual reconstruc-
tion: If we take two pictures of the same 
scene from different viewpoints, the 
image coordinates of five world points 
are enough to compute where both 
points and cameras are in space. To 
this end, we need to know where each 
of the five points in one image shows 
up in the other, a task—called point 
correspondence—that in those days 
was performed by human operators. 
In 1934, Thompson himself, a young 
Captain of the British Royal Engineers, 
had designed a double microscope 
with reference grids and moving tables, 
the Cambridge Stereo-Comparator. An 
operator peering into the microscope 
wrote down coordinates of correspond-
ing points in the two photographs. This 
elaborate apparatus did not just satisfy 
military exactness: Applied mathema-
ticians soon proved visual reconstruc-
tion to be numerically ill-conditioned, 
thereby requiring extremely accurate 
data and carefully calibrated cameras 
to yield reasonable results.

In 1981, to lessen this difficulty, 
the British theoretical chemist and 
cognitive scientist Hugh Christopher 
Longuet-Higgins developed the first 
of a class of algorithms that use a large 
number of point pairs to solve an ap-

proximate but convex least-squares 
version of visual reconstruction. Un-
fortunately, the resulting estimates 
are statistically inconsistent, mean-
ing that the output error does not van-
ish even as the amount of input data 
grows indefinitely. The modern way 
out is to compute an initial solution 
by one of the approximate methods—
together with robust estimation tech-
niques to confront omnipresent data 
outliers—and then refine that solu-
tion through numerical, local optimi-
zation. This refinement, called bundle 
adjustment, operates efficiently on 
large but sparse matrices with tech-
niques that can be traced back to the 
1880 work on nested dissection—a di-
vide-and-conquer heuristic based on 
graph partitioning methods—by the 
German geodesist Friedrich Robert 
Helmert. Fortunately, bundle adjust-
ment restores statistical consistency, 
thus opening the way to automatic 
computation on common imagery.

The topic of point correspondence—
the other grand challenge of visual 
reconstruction—originated with the 
advent of digital cameras. People can 
easily judge if two image details look 
similar to each other, or if two pictures 
as a whole depict the same scene. Com-
puters, however, find either task very 
difficult. In 1999, David Lowe, a profes-
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sor of computer science at the Univer-
sity of British Columbia, showed how to 
describe image details well for comput-
ing point correspondences. Together 
with fast data structures for approxi-
mate nearest-neighbor search, Lowe’s 
feature descriptors are the workhorse 
of visual matching in this paper—and 
of much else in computer vision.

Yet the automated, bulk photo-
grammetry described here still seems 
an improbable achievement in the 
face of the difficulties of geometry and 
correspondence mentioned earlier. 
How can visual reconstruction pos-
sibly work with images taken by un-
known, disparate, uncalibrated cam-
eras under varying weather, lighting, 
and exposure settings?

In a way, success reveals as much 
about the input as it does about the 
computation. In a telltale statistic, only 
about 20% of the input images were 
eventually used in the reconstructions, 
the others being discarded at the many 
stations along the processing pipeline: 
Does the scene in this image match that 
of any other image in the set? Can indi-
vidual features in this image be placed 
in accurate correspondence with those 
of other images? Is the resulting cloud 
of 3D points consistent with computed 
camera positions? Are colors similar 
enough across images to allow for tex-
ture mapping? A picture is about as 
likely to join the final elite as a high 
school senior is to make it into Duke 
or Cornell. Success, then, is in part tied 
to a sort of converse Murphy’s Law that 
seems to hold for massive collections of 
tourist photographs: If something can 
go right, it will. If high-quality images 
are needed, taken under similar weath-
er conditions and exposure settings, 
and from appropriately separate view-
points that provide just the right cover-
age, then there are enough pictures out 
there that such a set will be found—if 
you know how.	
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How can visual 
reconstruction 
possibly work with 
images taken by 
unknown, disparate, 
uncalibrated cameras 
under varying 
weather, lighting, and 
exposure settings? 




