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Abstract

We propose a method to compute the direction of
heading from the differential changes in the angles be-
tween the projection rays of pairs of point features.
These angles, the image deformations, do not depend
on viewer rotation, so the key problem of separat-
ing the effects of rotation from those of translation is
solved at the input. Ezperiments show both the feasi-
bility of the method on real images and the advantages
of using deformations rather than optical flow.

1 Introduction

As we walk down a hallway, the moving images on
our retinas convey enough information to determine
our direction of heading. Several researchers have in-
vestigated how this direction could be computed, ei-
ther in the human visual system or by a computer
processing images from a moving camera.

The main difficulty of this computation is to sepa-
rate the effects of viewer rotation from those of viewer
translation. In fact, with only translation the task
would be quite simple: features in the image move to-
ward or away from a single point, the focus of expan-
sion, which points toward the direction of heading. If
the viewer also rotates, however, the focus of expan-
sion vanishes. Unfortunately, the rotational compo-
nent is often dominant: the effects of translation are
small, being inversely proportional to the usually large
distance to the scene, while the effects of rotation are
independent of distance. This has always been known
to movie directors, who use expensive dollies to move
their cameras with as little vibration as possible.

In this paper, we propose a method that eliminates
the effects of rotation right at the input of the compu-
tation. Specifically, we observe that the angle between
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the projection rays of two features in the scene does
not depend on the viewer’s rotation, and we use the
changes in these angles as the input to our algorithm.
In other words, rather than measuring how the image
points move in the field of view, the traditional flow-
based approach, we measure how the image deforms
over time.

Of course, our method uses the same data as
the flow-based methods do, since we compute defor-
mations from feature positions in successive images.
However, our method differs in how those data are
used: computing deformations removes rotation at the
outset, rather than at some later stage of the compu-
tation. With noisy data, canceling rotation by com-
puting deformations has two advantages.

1. The direction of heading is computed from defor-
mations by minimizing a residual function with
a deeper minimum than the one based on opti-
cal flow. Even very small rotations flatten the
minimum of the flow-based residual function con-
siderably, leading to a minimization that is more
sensitive to noise.

2. The magnitude of deformations with respect to
image noise is a direct indication of their reliabil-
ity for the estimation of the direction of heading.
This is not true for optical flow: a large flow may
be just caused by viewer rotation, and the differ-
ences between flow vectors may be too small with
respect to noise to be used for the computation
of heading. Deformations, on the other hand, can
be monitored as the viewer moves, and heading
computed only once they are large enough.

With n feature points there are n(n — 1)/2 pairs of
features, and therefore O(n?) angles between features.
However, only 2n — 3 of these angles are independent.
We propose a method for selecting a sufficient set of
O(n) points in time O(nlogn).

In the next section, we discuss previous work on the
subject. Then, in section 3, we define image deforma-
tions and derive an equation that links them to the



direction of heading. In section 4 we combine these
equations into a single system of equations for a suffi-
cient set of feature pairs. Then, in section 4, we show
how the distances to the feature points in space can
be eliminated from the equations, leading to a mini-
mization problem in two variables, which we solve in
section 5. Finally, we test our solution on both simu-
lated and real images (sections 6 and 7).

2 Relation with previous work

We now compare our method with others regard-
ing how the effects of rotation are eliminated from the
images. We do not discuss methods that require con-
tinuous velocity fields or second derivatives of image
motion [9] [20] [19], since we use as input the instanta-
neous image velocities of a set of discrete image points.

The methods presented in [10] [18] [21] are based
on the following observation: if a point p in the first
image moves to q in the second, then the vectors
q, Rp, T, where R is rotation and T is translation,
are coplanar:

q-(RpxT)=0

The three methods above enforce this constraint over
several points to compute R and T. The effect of
noise on these nonlinear equations depends on R. For
instance, if the two vectors Rp and T happen to be
nearly parallel to each other, small perturbations of p
can change the direction of Rp x T considerably.

When the translation of the viewer is large, the
three methods just cited are preferable to ours, since
they make no assumption as to the distance trav-
eled by the viewer. In contrast, we measure differ-
ential changes in the angles between features. On the
other hand, when the viewer moves little, the meth-
ods above can fail altogether when a certain quadratic
equation has no real solution [10] [21]. Our method de-
grades more gracefully: as image deformations become
smaller and smaller relative to noise, the uncertainty
in the direction of heading grows, but no outright fail-
ure occurs.

An observation by Helmholtz [7] has been used in
[11] [14] [3] [8]: the vector difference in velocity be-
tween two points that are nearby in the image but
at different depths is nearly independent of rotation
(and exactly so when the points are at the same im-
age location). Changes in this difference, called mo-
tion parallaz, supply sufficient constraints to recover
the direction of heading. Our method is also based
on motion parallax: our image deformations are the
magnitude (in degrees of visual angle) of the vector

difference used in those papers. However, by ignoring
the direction of the parallax and only considering its
magnitude we make parallax independent of rotations
exactly, regardless of the image positions of the two
feature points. The two hard problems of determining
pairs of image features along depth boundaries and
measuring their image velocities (given the interfer-
ence of the boundary) are thereby avoided.

Our approach is similar to those in [2] [1] [12] [6]
in that we minimize some residual over the measure-
ments in the least squares sense. Like Heeger and
Jepson, we reduce minimization to that of a function
of two variables (the parameters for the direction of
heading), but we use rotation-independent image de-
formations rather than image flow, with the advan-
tages mentioned in the introduction.

3 Image deformations

Consider two points P and Q in space, as in figure
1. As the viewer moves from C to C’, the magnitude
o of the angle PCQ formed by the projection rays
changes to PC'Q. The image deformation is ¢, the

P

cfindl cameraposition .

initial camera position

Figure 1: As the viewer moves, the angle a between
projection rays CP,CQ varies. The time derivative of
this variation is the image deformation.

time derivative of . The angle « is given by
o = arccos(p’ q) (1)

where p and q are two unit vectors from the viewer
center to the points P and Q.

To find &, we first determine the derivative of o
with respect to viewer position when C moves along
three special directions: p, q, and the direction

_pxq
Ip x q

orthogonal to p and q. If p,q,r are the amounts of
viewer motion along p, q,r, we find that
Oda  sina da sina oo
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If the viewer motion is expressed instead in an orthog-
onal reference system through its components z,y, z,
the chain rule for differentiation yields

oo da
g:c Op
% | =T 5
04 04
0z or

where the Jacobian J is given by

J=[p q r] . 2)

Finally, we apply the chain rule once more to compute
the derivative of a with respect to time, given the
three time derivatives t of the viewer position C:

Q|
& = sinatTJT | P71 | . (3)
0

We can rewrite equation (3) in a more compact
form to obtain the following fundamental measure-
ment equation:

b=tTAd (4)
where the scalar ]
&

b= 5

sina (5)

is a quantity that can be measured from two or more
images, the vector

dp |P|71 ]
d = = _
[ dg ] [ QI
collects the reciprocals of the unknown depth values,
the columns of the 3x2 matrix A are the known second

and first row of J, and the vector t is the unknown
viewer velocity.

4 Combining multiple measurements

With n features instead of two, we can write n(n —
1)/2 equations like equation (4), one for every pair
of features. However, only 2n — 3 of these equations
provide independent measurements.

In fact, if two points p1, p2 are picked as refer-
ence, the positions of all n points is identified up to
a mirror flip by the distance between p; and ps and
by the 2(n — 2) pairs of angles that p; and ps form
with the other points p; for i = 3,...,n, for a total of
14 2(n — 2) = 2n — 3 parameters. This construction,
however, is only useful as a way to count indepen-
dent equations. In fact, an arbitrary choice of p; and

p2 can lead to long and narrow triangles (p1, P2, P:)
yielding a numerically poor system of equations.

Instead, we measure angles « for pairs of image
points that are connected by the edges of a Delaunay
triangulation [13] of all the points (see figure 5). This
triangulation is a planar graph, and thus has O(n)
edges. Every vertex is connected to at least two others,
leading to a sufficient set of measurement equations.
Edges connect nearest neighbors, yielding large ratios
in equation (5) for reduced noise sensitivity. Finally,
points strictly inside the convex hull belong to trian-
gles that are as close as possible to equilateral, yielding
maximally independent measurement equations.

We can then let

d = [di - dy
b = [b b 17

]T

where by, is the left-hand side of equation (4) for edge
k, and m is the number of edges in the Delaunay tri-
angulation. If edge k£ connects points ¢z and j, the
matrix A for the k-th measurement equation (4) is
formed from the Jacobian [p; p; ri;]~' of equation
(2). Because the matrix A for pair (4,7) is equal to
that for pair (j,¢), but with its columns switched, we
can consistently define

Ak = [ aj;  Ajj ]
and define the m x n matrix A(t) whose entry k,[ is

tTaij forl =1
tr = tTaji forl=y
0 otherwise

With these definitions, the m equations (4) can be
collected into the following bilinear system:

b= A(t)d. (6)

If t,d is a solution to equation (6), so is ct,d/c for
any nonzero ¢, consistently with the fact that abso-
lute scale cannot be recovered from images alone [16].
With the additional constraint that the translation t
have unit norm, t is the viewer’s direction of heading.

5 Solving for the direction of heading

In the presence of noise, equation (6) will only be
satisfied approximately, so we need a measure for how
close b is to the column space of (A(t)). A measure
for this distance is obtained by replacing d in equation
(6) by its solution d™ in terms of the pseudoinverse,

a* = (A(t)TA(t))"2A(t)Tb



and then measuring the residual
p(t) = [A(t)d* —b| . (7)

This residual does not depend on d, and can be mini-
mized with respect to t. Efficient algorithms for com-
puting (7) are given in [5]. The minimization problem
can be solved by variable projection methods [4] [15]
on the unit sphere |t| = 1. Local minima do exist,
but the more points are available in the field of view,
the smoother the residual (7) turns out to be. In our
experiments, we usually find one or two local minima,
with the correct minimum considerably deeper than
the other (see sections 6 and 7 for examples). One
can then use local minimization methods starting at a
few random points on the unit sphere and choose the
convergence point of smallest residual as the solution.
We are studying minimization methods that give hard
convergence guarantees.

6 A simulation experiment

Figure 2 shows a contour plot of the residual p(t)
on the hemisphere of heading directions t correspond-
ing to a forward moving viewer. Because A(t)d =
A(—t)(—d) (see equation (6)), the residual function is
the same on the opposite hemisphere (p(t) = p(—t)).
For this simulation we use thirty feature points, span-

Figure 2: Contour plot of the residual p(t) on the
forward hemisphere. The two loops slightly above and
to the left of the center are minima; the bigger loop is
around the global minimum. Other loops are maxima.

ning a visual angle of about 120 degrees and dis-
tributed in depth between one and ten units away
from the camera. Absolute depths are irrelevant be-
cause scale does not influence the results. The camera
translation is one hundredth of the average distance to
the scene, and the camera rotation is 3 degrees around

a vertical axis. Random uniform noise is added to the
second image. The width of the distribution is half a
pixel for a 500 x 500 pixel image.

The true direction, randomly generated, was the
unit vector (—0.306,—0.066,0.950)T. Our method
computed t = (—0.302,—0.126,0.945)T, correspond-
ing to a heading error of 3.45 degrees.

Figure 3 shows the direction error versus feature
position uncertainty for the same situation. FEach
point on the graph is the average heading error for
ten runs with the same noise distribution but differ-
ent noise samples. For increasing errors the results
become more and more erratic. However, the algo-
rithm never fails completely, but degrades gracefully.
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Figure 3: Direction of heading error versus feature
position uncertainty.

Figure 4 compares our deformation-based residual,
|b—tT Ad]

(see equation (4)) with the more traditional residual
based on optical flow,

_= - A%\r& + »\»NSV_

where u is the optical flow, w is a vector representing
the camera rotation, A; and A, are matrices that de-
pend only on image position, § is inverse depth along
the optical axis, and t is the direction of heading (see
for instance [6]). In both cases, the overall residual
is the root mean square of the residuals for the indi-
vidual features. All plots were obtained for a viewer
translating exactly forward and no image noise. The
two top diagrams show the residuals for pure trans-
lation: the widths and shapes of the two minima are
essentially the same. When the camera rotates even
by just one degree, the minimum of the flow-based
residual (bottom right plot) becomes elongated and



shallow, leading to a more noise-sensitive minimiza-
tion. The deformation residual, on the other hand,
remains unaltered (bottom left).

Figure 4: Contour plots of the deformation-based
residual p(t) (left plots) and the traditional flow-based
residual (right) for pure translation (top) and with an
added rotation of one degree (bottom).

To summarize, deformations are preferable to direct
optical flow when the viewer rotates by even a small
amount. On the other hand, regardless of whether
flow or deformations are used, figure 3 shows that re-
covering the direction of heading from a pair of images
requires cameras and tracking systems of good quality.
In the next section we show that our method can be
used with real images.

7 An experiment on real images

Figure 5 shows the first of a sequence of images
taken in our lab, with the Delaunay triangulation of
the tracked features superimposed. The viewing angle
is about thirty degrees and the objects in the scene
are between about 50 and 100 cm away.

About 230 features were automatically selected in
the first frame and tracked using the algorithm de-
scribed in [17]. Of those, 44 were handpicked to pro-
vide a roughly uniform distribution over the image.
The camera was moved by a Puma arm proceeding in
small steps, first along a constant reference direction
(roughly towards the pencils), then along a direction
at an angle of 30 degrees from the reference direc-
tion. For every new frame, features were tracked and
the root mean square image deformation from start
to current frame was determined. As soon as the rms
deformation exceeded one pixel, the direction of head-

Figure 5: The first frame used in the experiment, with
the Delaunay triangulation of the selected features.

ing was computed from the deformations between the
start frame and the current frame. The current frame
then became the new start frame for the next mea-
surement. This procedure guarantees that the defor-
mations are substantially greater than the feature po-
sition uncertainty (about 0.1 pixels), leading to a re-
liable computation of the direction of heading. Three
sufficiently distant images were obtained with this pro-
cedure, with the second image at the turning point of
the camera path. The residual functions for the two
image pairs are shown in figure 6.

The error on the angle between the two directions
of heading, as computed by our method, was about
8 degrees. Since we do not know the accuracy of the
Puma arm for very small motions and our camera was
not calibrated, this error is only a rough indication of
the accuracy of our method. We are planning more
accurate experiments. Each residual function has a
clean and deep global minimum, even with the small
motion (lcm) and narrow field of view (30 degrees)
of our experiment. There is also one local minimum
in each residual, but this is much more shallow and
created no problem for our minimization procedure.

8 Conclusion

Computing the direction of heading from image de-
formations is an interesting alternative to using the
image flow field directly, because it removes the ef-
fects of rotation right at the outset in a clearly under-
standable and straightforward way. The minimum of
the residual function computed from deformations is



Figure 6: Contour plots of p(t) on the positive hemi-
sphere for the two real image pairs. Global minima
are in the first quadrant, local minima in the third.

deeper than that of the flow-based residual, leading to
a more reliable solution. Furthermore, the magnitudes
of the deformations, when compared to the noise level
in the images, are a direct indication of their reliabil-
ity for the computation of the direction of heading.
Finally, our minimization method degrades gracefully
with feature position uncertainty.

Simulations confirm that a wide angle of view and
accurate image measurements are necessary for good
heading estimates. Our experiment with real images
indicates that these requirements are realistic.

We have not yet fully explored the idea presented
here, its weaknesses and strengths in comparison with
competing methods, and its computational implica-
tions. On the contrary, we have left open several
problems: how does the residual function behave as
a function of point position, camera motion, camera
calibration errors, and noise? Can the computation be
made efficient enough to work in real time? Can mul-
tiple frames and incremental estimation techniques be
used to improve the results over time? We are ad-
dressing these questions in our current research.
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