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This paper presents a new framework for the com-

putation of shape and motion from a sequence of im-

ages taken under perspective projection. The frame-

work is based on two abstractions, the picture and trail
loci, that represent respectively the set of all pictures

of the same scene and the set of all trails that a point

in the world can leave on the image for a given cam-

era trajectory. These abstractions lead to a remarkably

clean relation between perspective and orthography. A

shape and motion reconstruction method is developed

for the case of a two-dimensional world, but all con-

cepts also hold in three dimensions. Experiments show

that the method is rather immune to noise but criti-

cally dependent on camera calibration.

1 Introduction

An important problem in computer vision is to
compute structure and motion from the images pro-
duced by a moving camera. If the world is stationary
and if feature points can be tracked from image to
image, this becomes a purely geometric problem. It
is, however, a nonconvex and potentially poorly con-
ditioned one. Conditioning must be addressed by for-
mulating the problem in terms of well-observable pa-
rameters only, using redundant data, and paying close
attention to the numerical aspects of the computation.
Nonconvexity must be addressed by a solution method
that does not get caught in local minima.

This paper presents a new formulation of the prob-
lem of computing shape and motion from a sequence
of images of a rigid scene under perspective projec-
tion. This formulation addresses the issues mentioned
above, as highlighted in the following.
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No rotation in the model. The proposed imag-
ing model is independent of the camera rotation
around its optical center. This is achieved by de-
scribing image changes through the angles between the
projection rays of point features, similarly to what is
done in [6]. The sensitivity problems of the standard
approaches are thereby avoided.

Multiframe and multipoint. The new formula-
tion can handle any su�ciently large number of fea-
ture points and camera positions. In fact, the �rst
proposed step is to use the available images to build
the locus of all possible perspective images of the same
scene. This picture locus, turns out to be a three-
dimensional variety in a space with roughly as many
dimensions as there are visible features. Every image
is a point on the picture locus.

Global minimization. The new approach splits
the computation into a linear stage in the space of all
the data and nonlinear stage in a space with a �xed
and small number of dimensions, representing all pos-
sible a�ne deformations of the world. In this small
space, the global minimum can be at least approxi-
mately identi�ed by dense sampling.

Perspective vs orthography. This two-stage
partition of the computation was made possible by a
fundamental insight about the picture locus: the sub-
space tangent to the locus at the origin is the set of all
orthographic images of the same scene. This insight,
in a sense, reduces the problem of shape and motion
under perspective to that of shape and motion under
orthography, a link that is interesting per se even be-
sides the computational methods that it suggests.

Incidentally, the �rst stage of the computation
yields shape and motion up to two separate a�ne
transformations. In many applications [10] this is suf-
�cient, and the second, more expensive stage that en-
forces Euclidean metric can be omitted.

In this paper, a 
at, two-dimensional world is con-
sidered, and this for two reasons. First, although all



the concepts hold also in three dimensions, the ex-
tension is technically less than straightforward, and
has not been addressed in detail yet. Second, all the
concepts introduced are more easily visualized in 2D,
where the picture locus becomes a picture surface.

The next two sections present the main abstractions
of the framework. Section 4 then outlines the recon-
struction method. Experiments are discussed in sec-
tion 5. Simulations shows that the method works well
even with substantial image noise. Then, an experi-
ment with real images gives mixed results, supporting
the conjecture that camera calibration is critical for
good results.

2 The Picture Locus
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Figure 1: The components of a point on the picture
surface (a picture vector) are the tangents of the pro-
jection ray angles.

The plane at the bottom of �gure 1 represents the
two-dimensional world where both camera and scene
are supposed to live. The camera looks at a set of
point features and only records the tangents of the an-
gles between projection rays. In this two-dimensional
case, with P + 1 feature points one feature serves as a
landmark and there are P tangents per frame (in the
�gure, P = 3 for visualization purposes). The tangent
t of each angle is given by (see [7])

t =
uz � wx

1� ux�wz
(1)

where (x; z) is the position of the feature in the world
and

K = (u;w) = C=jCj2 (2)

is the vector obtained by re
ecting the camera coor-
dinates C across the unit circle.

With P + 1 world feature points, an image from
re
ected camera position K = (u;w) yields a set of P
measurements t1; : : : ; tP :

tp =
uzp � wxp

1� uxp �wzp
(3)

that can be collected into one vector t = (t1; : : : ; tP ), a
point in a P -dimensional space. As the camera moves,
the point t moves within this space. The locus of all
possible points t for a �xed set of world features is a
surface, traced by the parameters u;w and whose P
components are given in parametric form by equation
(3). This surface is called the picture surface, and does
not depend on camera position, since it represents the
images of the given features from all possible camera
positions. As an example, �gure 2 shows a region of
the picture surface for the four features S0 = (0; 0),
S1 = (0; 4; 0:8), S2 = (0:7; 0:1), S3 = (0:2; 0:5) of
�gure 3 when the camera moves in the region de-
�ned by the rectangle with vertices K0 = (�1;�1)
and K1 = (�1;�0:5) in the K plane, corresponding
to camera positions C on the grid in �gure 3. This
grid is in one-to-one correspondence with the grid on
the picture surface of �gure 2. Surfaces for more fea-
tures cannot be visualized directly, but are still two-
dimensional objects, because they are traced by two
parameters.
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Figure 2: The picture surface for the four features in
�gure 3. The patch displayed here corresponds to the
camera positions shown in �gure 3.

The picture surface is univocally related to the po-
sitions of the feature points in space: di�erent scenes
yield di�erent surfaces, and di�erent points on the
same surface represent di�erent pictures of the same
scene.

Section 4 shows that the picture surface can be
determined by linear data �tting from the available
image measurements. Unfortunately, the relation be-
tween the surface parameters resulting from �tting



Figure 3: When the re
ected camera coordinates K
de�ned in equation (2) vary in the rectangle with ver-
tices (�1;�1) and (�1;�0:5), the camera moves on
the grid shown. The cross at the origin is the land-
mark feature.

and the coordinates of the world features that cor-
respond to this surface is complicated. The brute-
force approach to establishing this relation leads to
a nonlinear constrained minimization problem of dif-
�cult solution. To avoid this problem, an important
result about the picture surface is now introduced and
proven in [7].

Theorem (Orthographic Picture
Plane) The plane tangent to the picture sur-

face at the origin represents all the images of

the same world features under orthography,

up to a scale factor.

This theorem is important because any two distinct
orthographic images of a given set of features are the
x and z coordinates of the features in the world except
only for an a�ne transformation [8]. In other words,
we just need to pick any two points (not colinear with
the origin) on the orthographic plane to obtain struc-
ture up to an a�ne transformation.

3 The Trail Locus and Duality

The picture locus is a surface in the 2D case and
a 3D variety in the 3D case. It is the set of images
obtained by �xing the scene and moving the camera
around. Conversely, one can determine a trail locus by
instead �xing a number of positions along the camera's
path and collecting the image positions of a single fea-
ture in the world, measured with respect to the land-
mark point. The image measurements from the given
camera positions represent the trail that that feature
left in the images as the camera moved. When the

world feature is displaced, the trail vector moves on
the trail locus.

If the projection equation (1) is examined, an im-
portant relation of duality can be established between
the picture and trail surfaces. In fact, equation (1)
does not change with the replacements

u$ x and w$�z :

Because of this symmetry, all that is said about the
picture locus also hold for the trail locus. In particu-
lar, the orthographic-plane theorem holds for the trail
surface as well, and the method used to determine
a�ne shape, described in the next section, can also be
used for a�ne motion.

4 The Reconstruction Method

Shape and motion are computed in four steps:

1. determine the picture surface by linear �tting;

2. pick two points on the orthographic plane of the
picture surface to determine a�ne shape;

3. determine a�ne motion with the same technique;

4. replace a�ne shape and motion into equation (1)
to determine their Euclidean counterparts.

A�ne shape and motion are computed with linear op-
erations, while the last step is nonlinear.

4.1 The Picture Surface

Because we know the analytic form of the picture
and trail surfaces (equations (3) and a similar one for
trails), determining their parameters from a set of im-
age measurements is a data �tting problem. The prob-
lem becomes linear if we eliminate motion from the
picture surface equation (3) and shape from the trail
surface equation. For the picture surface, this yields
an equation of the third degree in tp; tq; tr (see [7] for
the derivation):

a1tp(tq � tr) + a2tr(tq � tp) + a3tp(1 + tqtr)

+ a4tq(1 + tptr) + a5tr(1 + tptq) = 0 : (4)

where the subscripts p; q; r were dropped for simplicity
from the coe�cients ai. These coe�cients depend only
on shape, since the motion parameters u;w have been
eliminated. Determining the ai from a set of measure-
ments over several frames is an easy linear minimiza-
tion problem.



4.2 A�ne Shape and Motion

The orthographic picture plane de�ned in section
2 is the tangent plane at the origin for the picture
surface of equation (4), that is, the plane

a3tp + a4tq + a5tr = 0 : (5)

Any two points on this plane, not colinear with the
origin, represent shape up to an a�ne transformation

[8]. More speci�cally, let t(1) = (t
(1)
p ; t

(1)
q ; t

(1)
r )T and

t(2) = (t
(2)
p ; t

(2)
q ; t

(2)
r )T be two points satisfying equa-

tion (5). For instance, let1

(t(1))T = (1; 0;�a3=a5)

(t(2))T = (0; 1;�a4=a5) :

Then the four columns of the 2� 4 matrix

�
0 (t(1))T

0 (t(2))T

�
=

�
0 1 0 x̂r
0 0 1 ẑr

�

represent the coordinates of the origin and the three
points numbered p; q; r up to an a�ne transformation.
Because the �rst three columns are the a�ne system
of reference (origin and two unit points), the only new
information is given by the coordinates of the fourth
point, that is, by

x̂r = �a3=a5 and ẑr = �a4=a5 :

With more than four points, we repeat this procedure
once for every value of r di�erent from p and q, for
a total of P � 2 independent problems. This yields
a 2 � P matrix Ŝ of all the a�ne coordinates in the
same reference system, because the origin and the two
landmark points p and q are always mapped to (0; 0),
(1; 0), (0; 1). For instance, with p = 1 and q = 2, we
have

Ŝ =

�
1 0 x̂3 � � � x̂P
0 1 ẑ3 � � � ẑP

�
:

Because a�ne coordinates di�er from Euclidean coor-
dinates only by an a�ne transformation, there must
be a 2�2 matrix A such that the matrix of Euclidean
coordinates is

S = AŜ :

Thanks to duality (section 3), the a�ne camera mo-
tion K̂ can be found by the same procedure.

1It is easy to change this choice if a5 = 0.

4.3 Euclidean Shape and Motion

To summarize, we now have a�ne shape, Ŝ, and
a�ne motion, K̂. These two matrices of coordinates
are expressed in two di�erent reference systems, so we
need to �nd two 2 � 2 matrices A and B that yield
the Euclidean coordinates S and K according to the
transformations

S = AŜ (6)

K = K̂BT : (7)

The origin of the coordinate system is the landmark
point (x0; z0) = (0; 0). We can �x scale and an overall
rotation of the reference system by requiring that

(x1; z1) = (1; 0) :

Since (x̂1; ẑ1) = (1; 0), this constraint yields two of the
entries of A:

a11 = 1 and a21 = 0 :

To �nd B and the remaining entries ofA, we replace
equations (6) and (7) into the original measurement
equation (1). Ignoring point and camera subscripts,
equation (1) becomes

t =
(b11û+ b12ŵ)a22ẑ � (b21û+ b22ŵ)(x̂+ a12ẑ)

1� (b11û+ b12ŵ)(x̂+ a12ẑ)� (b21û+ b22ŵ)a22ẑ

which is separately linear in the two vectors � =
(a12; a22) and � = (b11; b12; b21; b22). In [6], we show
a method for solving this type of equation, although
applied to a di�erent problem.

5 Experiments

Figure 4 shows the result of a simulation with noisy
images. Both true and computed structure and mo-
tion are shown. Noise on the image feature coordi-
nates is Gaussian with a standard deviation of 0.5
pixels for a 512� 512 image. In the simulation, both
features and camera positions are scattered randomly,
each in one quadrant of the plane. The two points at
the origin and along the positive horizontal axis (at
(1; 0)) are the reference points, and their computed
values are therefore exact.

The two plots in �gure 5 show the structure and
motion errors for increasing levels of noise. Ten fea-
tures and camera positions are used in all experiments,
and each experiment is repeated ten times with dif-
ferent random samples to produce ensemble averages.



Figure 4: True (circles) and computed (crosses) struc-
ture and motion with simulated data. Camera posi-
tions are in the lower-left quadrant, feature points in
the upper-right one.

Structure errors are measured as the ratio between the
average error per feature and the size of the bounding
box of the true feature positions. A similar measure
is used for the camera position errors.

Even with relatively few points and viewing posi-
tions, performance is good for subpixel noise levels.
When the standard deviation of noise increases beyond
one pixel, performance degrades sharply but continu-
ously. In feature tracking, the position of features can
usually be determined with an accuracy of 0.1 or so
pixels [8] for typical 512 by 512 images. From the plots
of �gure 5 we see that the corresponding structure and
motion errors are a fraction of one percent.

With real images, the results are less satisfactory.
The central part of �gure 6 shows an epipolar slice
(like the ones in [1]) from a sequence of images taken
with a Panasonic camera mounted on a micrometric
translation and rotation stage. The full �rst frame
of this sequence appears as �gure 10 in [4] in these
proceedings.

Features were obtained by detecting sharp inten-
sity transitions in the �rst row of the epipolar slice
and were tracked by continuity from one row to the
next. No camera calibration was performed, and the
computation used the nominal focal length of 16 mm,
converted to pixels based on the manufacturer's spec-
i�cation of the size of the sensor's active area. The
lens was a c-mount lens for surveillance applications,
with consequently poor optical properties. Figure 7
compares the actual positions of the features (crosses)
and of the camera (circles), measured from a top-view
picture of the setup, with the coordinates computed
by the algorithm. The camera motion is fairly ac-
curately recovered, the overall distance between the
camera and the scene is essentially correct, and each of
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Figure 5: Errors in the computed structure (top) and
motion (bottom) for increasing levels of image feature
noise, measured in pixels for a 512 by 512 image. See
text for the units of the vertical axes.

the three feature groups is approximately of the right
shape and size. However, the computed positions of
the three groups of features are considerably distorted
with respect to the ideal positions. The contrast be-
tween these results, with features tracked with about
0.1 pixels accuracy, and the simulations described in
�gures 4 and 5, run under greater positional uncer-
tainty values, seems to support the conjecture that
the camera calibration is crucial. We are working on
camera calibration in order to verify this assertion.

Figure 6: An epipolar slice (center) sandwiched be-
tween the top of the �rst and bottom of the last frame
of a 50-frame image sequence.



Figure 7: Actual (left) and computed (right) positions
of the camera (circles) and world features (crosses).

6 Conclusion

This paper presented a radically new conceptual
framework, as well as a computational procedure, for
the recovery of shape and motion from a sequence
of images taken under perspective. In the proposed
method, a linear stage for a�ne structure and mo-
tion is followed by a nonlinear stage to determine
the Euclidean metric. Because of this, the proposed
method can be seen on one hand as a successor of
techniques based on essential matrices pioneered by
Longuet-Higgins [2], independently reinvented by Tsai
and Huang [9] and surveyed in [3]; and on the other
hand it is a successor of the factorization method de-
scribed in [8]. However, essential matrices work on
two frames at a time, thereby either introducing a
hard correspondence problem when the two frames are
distant or leading to a poorly conditioned reconstruc-
tion when they are close. The multiframe factoriza-
tion method, on the other hand, works only under or-
thographic projection, which limits its applicability to
distant scenes and narrow �elds of view. The current
method, in contrast, is multiframe, multifeature, and
works for perspective images. In addition, in contrast
to local multiframe and multifeature methods such as
[5], our method is global, in that it does not require
an initial estimate of either structure or motion.

While more and better experiments are obviously
necessary, a good case can be made for this new way
of thinking about an old and important problem. In
fact, the picture and trail loci are useful abstractions
per se, and the results about their tangent subspaces
(or planes in the two-dimensional case) are one of their
primary advantages, since they establish an unsus-

pectedly clean and clear relation between perspective
and orthography. Furthermore, the new, rotation-
independent model of the imaging situation, which
made this relation apparent, removes the slack that
was caused by the poor distinguishability of rotation
and translation in previous formulations. Finally, the
reduction of the nonconvex part of the shape and mo-
tion reconstruction to the small space of a�ne scene
deformations gives a handle on the intrinsic noncon-
vexity of this vision task.

Future work on both camera calibration and the
extension of the computation to three dimensions will
hopefully imprint the seal of practical usefulness on
this new framework.
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