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In its traditional formulation, stereo correspondence in-
volves both searching and selecting. Given a feature in one scanline, the
corresponding scanline in the other image is searched for the positions of
similar features. Often more than one candidate is found, and the correct
one must be selected. The problem of selection is unavoidable because
di�erent features look similar to each other. Search, on the other hand,
is not inherent in the correspondence problem. We propose a representa-
tion of scanlines, called intrinsic curves, that avoids search over di�erent
disparities. The idea is to represent scanlines by means of local descriptor
vectors, without regard for where in the image a descriptor is computed,
but without losing information about the contiguity of image points. In
fact, intrinsic curves are the paths that the descriptor vector traverses as
an image scanline is traversed from left to right. Because the path in the
space of descriptors ignores image position, intrinsic curves are invariant
with respect to disparity under ideal circumstances. Establishing stereo
correspondences is then reduced to the selection of one among few match
candidates, a task simpli�ed by the contiguity information carried by in-
trinsic curves. We analyze intrinsic curves both theoretically and for real
images in the presence of noise, brightness bias, contrast 
uctuations,
and moderate geometric distortion. We report preliminary experiments.

1 Introduction

The computation of stereo correspondences has traditionally been associated
with a search over all possible disparities: for every point in the left scanline
the corresponding right scanline is searched for a similar point. In this paper we
show that search over disparities is not inherent in the correspondence problem.
The way out of search is associative memory, and essentially inverts the way
images are represented. Rather than storing image intensities by their position
in the scanline, the usual array I(x), we can store scanline positions by their
appearance: in a sense, x(I). Then, image points that look similar are stored in
the same place. If both scanlines are stored in the same memory, correspondences
are trivially established, because corresponding points share the same memory
locations. Occlusions are also easily found as points that live alone in some
location. There are two problems with this scheme: ambiguity and disguise.
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Ambiguity means that di�erent image points can look the same, so memory
locations can be crowded, and one match must be selected amongmany. Disguise
occurs when corresponding points in the two scanlines look di�erent because of
the viewpoint change or because of image noise. In this case, points that should
go in the same memory location do not. We deal with disguise by analyzing
possible changes between scanlines. This analysis tells us where to look next
if a memory location is missing a point. Ambiguity is addressed by a twofold
strategy. On the one hand, it is reduced by encoding image appearance with
descriptors that are richer than the mere image intensity I: each image location
is described by a whole vector of parameters. On the other hand, the resolution
of the remaining ambiguity is made easier by preserving contiguity information
with the descriptors. Consider traversing a scanline in one of the two images. The
vector of descriptors traces a curve in some space, and points that are nearby in
the scanline are also nearby in the representation. Contiguity then helps selecting
among similar match candidates: when two points look similar, we look around
them, and attempt matching entire curve segments at once, rather than isolated
points.

To illustrate the approach, here is one simple version of intrinsic curve for,
say, the left scanline. A lowpass �ltered version of the image intensity l(x) and
its derivative l0(x) are computed everywhere (solid lines in �gure 1 (b) and (c))
and are plotted against each other (solid lines in �gures 2 (a) and (b)). When
plotting l0 versus l we lose track of space, that is, of the coordinate x which
merely parameterizes the curve l0(l). This parameter is stored for later use, but
it plays no role in the shape of the curve. If l(x) is replaced by a shifted replica
r(x) = l(x + d), the curve of �gure 2 (b) remains the same. Because of this
invariance to displacements, we call the curve of �gure 2 (b) an intrinsic curve.
More general geometric transformations r(x) = l(�(x)) between l and r can
deform an intrinsic curve, but the deformations can be predicted. The dashed
curves in �gures 1 and 2 show the construction of the intrinsic curve for the
scanline r(x) taken from a di�erent viewing position.

Ambiguities cause intrinsic curves to self-intersect or overlap, and cannot be
avoided. The selection process just mentioned is therefore unavoidable. On the
other hand, the richer the description is, that is, the higher the dimensionality
in which an intrinsic curve lives, the less likely self-intersections are.

In the next section, we present a theory of intrinsic curves. Section 3 show
how real images di�er from the ideal case, and section 4 shows preliminary
experiments.

2 Intrinsic Curves: Theory

An e�cient procedure for matching two signals is to consider a vectorial descrip-
tion of the local intensity variation at every point. Then two points from the two
images are match candidates if the local descriptions are \close" to each other.
A similar idea is at the basis of the stereo algorithms of Kass [14], Jones and
Malik [11], and Weng, Ahuja and Huang [30]. In this section we de�ne intrinsic
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Fig. 1. (a) Test image \Trees" from SRI - frame 1. (b) Lowpass-�ltered scanline 68,
pixels 40{60 (solid line: frame 1, dashed line: frame 2), and (c) its derivative.

curves more generally. We also identify the geometric mappings

r(x) = l(�(x)) (1)

between the two images that are compatible with any particular way of building
intrinsic curves, in the sense that they leave the curves unaltered. In other words,
intrinsic curves are invariant with respect to compatible mappings. Finally, we
investigate geometrical and topological properties of intrinsic curves.

De�nition of an intrinsic curve. Suppose that the N operators P1; : : : ; PN are
applied to the intensity signal l(x) to produce the new signals pn(x) = [Pnl](x)
for n = 1; : : : ; N . The vector

p(x) = (p1(x); : : : ; pN (x)) (2)

describes a curve C in RN parameterized by the real variable x:

C = fp(x); x 2 Rg : (3)

C is called the intrinsic curve generated by l(x) through the operators P1; : : : ; PN
(see �gures 1, 2).

It is crucial to notice that the curve C lives in RN , not RN+1: the image
coordinate x is not a component of the curve. Spatial information is lost when
going from image l to curve C, and it is exactly this loss of information that
makes C invariant to a suitable class of geometric transformations, as discussed
in the following subsection.
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Fig. 2. (a) Intrinsic curve formation: the signals of �gure 1 (b) and (c) are plotted
against each other, forming a 3-D curve whose projection on the plane x = 0 is the
intrinsic curve (b).

2.1 Compatible Mappings

While any reparametrization of C leaves C unchanged, reparametrizing the gener-
ator signal l(x) to l(�(x)) can in general modify C. For instance, if p1(x) = l(x)
and p2(x) = l0(x), where the prime denotes di�erentiation, the new compo-
nents of C after the change x ! �(x) become ~p1(x) = l(�(x)) and ~p2(x) =
�0(x)l0(�(x)) so that ~p(x) traces a new curve that is modulated by �0(x) in
its second component. It therefore makes sense to ask what reparametrizations
x! �(x) leave C unaltered.

De�nition . A mapping x ! �(x) is said to be compatible with the operators
P1; : : : ; PN if for any signal l(x) the intrinsic curve generated by l(x) is equal to
the intrinsic curve generated by l(�(x)).

Examples

Constant Displacement. Let the operators Pn in (2) be shift-invariant: l(x) !
l(x + d) ) pn(x) ! pn(x + d). The constant displacements �(x) = x + d are
compatible with shift-invariant operators.

A�ne Mapping. The a�ne mappings of the form �(x) = ax+ d are compatible
with the operators p0(x) = l(x) and

pn(x) = [Pnl](x) =

�
dn

dxn l(x)
�(n+1)=n

dn+1

dxn+1 l(x)



for n > 0, de�ned wherever dn+1

dxn+1 l(x) 6= 0. This is proved immediately by noting
that

dn

dxn
[l(ax+ d)] = an[

dnl

dxn
](ax+ d) :

Semi-Commutative Mapping. If the mapping x ! �(x) is regarded as an oper-
ator A applied to l(x), that is, [Al](x) = l(�(x)), then �(x) is compatible with
operators P1; : : : ; PN if there is a change-of-variable operator [Dq](x) = q(�(x))
such that for every n we have PnA = DPn where � is a di�eomorphism indepen-
dent of n. In fact, in this case, the mapping x! �(x) simply reparameterizes the
intrinsic curve. Both previous examples are special cases of semi-commutative
mappings.

Thus, intrinsic curves can be regarded as invariants with respect to the set
of compatible mappings, and provide a more general description than \classi-
cal" invariants such as function moments [5],[26],[19],[24]. A�ne mappings are
a popular model for the transformation between the two images of a stereo
pair [15],[13],[6], and shift-invariant �lters are often used for image descriptors
[14],[11],[12],[18],[17]. The fact that in general a�ne mappings are not compat-
ible with shift-invariant operators is therefore important. This was pointed out
in [14], where a clever analysis of the e�ect of �ltering a signal undergoing a�ne
geometrical distortion is carried out. From the results of [14], we can assume that
the intrinsic curves are approximately invariant with di�eomorphisms x! �(x),
so long as the supports of the �lters' kernels are narrow and �(x) is close to the
identity function. In the remainder of this section we assume that the mapping
�(x) is a di�eomorphism (which, in particular, implies that it is monotone and
continuous). In addition, we assume throughout this paper that both the in-
put signals l(x); r(x) and the operators Pn are continuous, so that the intrinsic
curves are connected.

If the transformation between left and right image were just a mapping �(x)
compatible with the operators P1; : : : ; PN , stereo matching would be nearly triv-
ial. In fact, to determine �(x) from the observation of l(x) and of r(x) = l(�(x)),
the intrinsic curves are �rst computed from the two signals. For each signal, the
parametrization (3) is stored, so that every point on either curve can be traced
back to its image coordinate x via table lookup. Because of compatibility, the
two intrinsic curves coincide. For every point p that belongs to both of them, the
corresponding image coordinates are a match, with the sole exception of points
where the intrinsic curves self-intersect.

2.2 Geometrical and Topological Properties of Intrinsic Curves

Our de�nition of intrinsic curves is quite general. Their properties depend on
the characteristics of the operators fPng in (2). In this section, we concentrate
on the case N = 2 with the following choice for these operators:

p1(x) = [P1l](x) = l(x) and p2(x) = [P2l](x) = l0(x) : (4)



Vector p(x) is thus composed by the �rst two terms of the Taylor expansion of
l(x) around x, and each point on the intrinsic curve generated by l(x) represents
a description of the local behavior of l(x). With this choice, intrinsic curves are
de�ned on a plane, reminiscent of the phase space of systems theory [2]. We can
de�ne an orientation at p by computing the unit-norm tangent t(p) to the curve:

t(p) =
(l0(x); l00(x))p

(l0(x))2 + (l00(x))2
: (5)

The values of t(p) depend on the position of p as follows:

{ If p lies in the upper open half-plane, where l0(x) > 0, t(p) assumes values
in the right open half-circle

�
(p1; p2); p

2
1 + p22 = 1; p1 > 0

	
. When p lies on

the lower open half-plane, t(p) is in the left open half-circle.
{ If p lies on the axis of the abscissas, where l0(x) = 0, then t(p) = (0;�1).
In other words, when crossing the axis of the abscissas, the curve forms an
angle of ��=2 with it.

Note that if l0(x) = l00(x) = 0 (e.g., in a segment where the signal is constant), p
is singular with respect to x [25]. In such a case, the tangent can be de�ned by
continuity. On the other hand, an intrinsic curve can be singular only on the axis
of the abscissas. From these rules it follows that intrinsic curves are naturally

oriented clockwise: they are traversed left-to-right in the upper half-plane and
right-to-left in the lower. Furthermore, any loop must intersect the axis of the

abscissas.
In general, we may consider intrinsic curves C in RM of the form p(x) =�

l(x); l0(x); l00(x); : : : ; l(M)(x)
�
. Each point of the curve represents a local de-

scription of the function l(x) by an M{term Taylor expansion. The topolog-
ical properties described above apply to the projection of C onto each plane�
l(n); l(n+1)

�
, i.e. to the curve generated by P[l](x) =

�
l(n)(x); l(n+1)(x)

�
.

2.3 Intrinsic Curve Reparametrization

Intrinsic curves are continuous curves on the plane or in a space of higher dimen-
sion. For computation, on the other hand, intrinsic curves must have a discrete
representation. To this end, we now introduce the arc length parametrization,
which leads to a variable-rate image sampling that emphasizes \busy" parts of
the image. We assume hereafter that l(x) has support in the segment [x0; x1].

The length of the arc C(pa;pb) from pa = p(xa) to pb = p(xb) is equal to

arc length C(pa;pb) =

Z xb

xa

p
(l0(x))2 + (l00(x))2dx : (6)

The arc length parametrization is then s(x) = arc length C(p0;p(x)), where
p0 = p(x0). It is instructive to study the relation between s(x) and l(x). We
have that

d

dx
s(x) =

p
(l0(x))2 + (l00(x))2: (7)



Hence, we may expect that a variation�s of the new parameter will correspond
to a large variation �x if l0(x) and l00(x) are small (i.e., in parts of the curve
that lie close to the horizontal axis), and to a small �x when l0(x) and l00(x)
are large (i.e., when the curve is far from the horizontal axis). This observation
suggests a sort of \adaptive" sampling paradigm for l(x). Assume to sample the
curve C at constant-width intervals, that is, by keeping the arc length of the
segments C(pi;pi+1) constant. This procedure corresponds to sampling signal
l(x) on a nonuniform grid: the grid will be less dense in areas characterized by
small values of l0(x) and l00(x) (where the signal is \
at"), and denser if l0(x) and
l00(x) are larger (where the signal \busyness" is higher). This looks like a useful
sampling strategy for signal matching. In fact, it is well known (see e.g. [9]) that
a match is expected to be less robust (with respect, for example, to noise and to
quantization errors) in regions where the signal is \
at". The adaptive sampling
procedure leads to concentrating estimates in reliable areas(see �gure 3).
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Fig. 3. A signal sampled on a uniform grid (a) and on an nonuniform grid (c) induced
by the uniform arc length sampling of the intrinsic curve (b).

3 Deviations from the Ideal Case

Intrinsic curves of corresponding scanlines l(x) and r(x) related by a compatible
mapping

r(x) = l(�(x)) (8)

are identical. In reality, however, l(x) and r(x) can di�er for the following reasons.

No mapping. In certain cases, �(x) may not even exist, such as when regions of
l(x) or r(x) are occluded.

Incompatible mapping. The mapping x ! �(x) that relates l(x) and r(x) as in
(8) is not compatible with respect to the operators P1; : : : ; PN that are used
to build the intrinsic curves. For instance, a�ne transformations x ! ax + d
are not compatible with the operator P[l](x) = (l(x); l0(x)). In fact, if Cl is the
intrinsic curve generated by l(x), the intrinsic curve Cr generated by r(x) =



l(ax+d) is Cr = f(p1; ap2) : (p1; p2) 2 Clg which is a vertically expanded (a > 1)
or compressed (a < 1) version of Cl.

Photometric distortion and noise. The constant-brightness hypothesis implied
by relation (8) is not satis�ed. A convenient model that accounts for both geo-
metric and photometric distortion is the following (see [9] for a general discussion
of related issues):

r(x) = Al(ax+ d) +B + n(x) : (9)

In this model, A and B represent the di�erence in contrast and brightness be-
tween the two images, and are either constant or varying slowly with respect
to the dynamic of the signal. The term n(x) represents \noise", that is, any
discrepancy independent of the signals. The terms a and d represent geometric
distortion and, in particular, d is the inter-frame disparity we are after.

Let us consider the e�ects of A and B alone (that is, assume n(x) = 0 and
a compatible �(x)). The intrinsic curve Cr generated by r(x) = Al (�(x)) + B
with compatible �(x) is

Cr = f(Ap1 +B;Ap2) : (p1; p2) 2 Clg : (10)

Hence, transformation (9) induces an isotropic expansion of the curve by a factor
A and a displacement by B along the horizontal direction.

After testing several real-world images, we have observed that the shape of
intrinsic curves is altered mostly after photometric distortions, for example as
a consequence of the di�erent viewing position of the two cameras, optical at-
tenuation and sensitivity of the image sensors [29], [14], [30]. Large geometric
distortions that give raise to vertical dilation or shrinking of the intrinsic curve
are less likely to happen than photometric distortions [1]. Consequently, we be-
lieve that the terms A and B in our model are dominant over the geometric
distortion related to a.

The e�ects of both brightness bias B and noise n(x) can be neutralized by
preprocessing both signals with a zero-mean �lter with an otherwise lowpass fre-
quency response. The contrast di�erence term A is then the dominant remaining
term, and the point pr on Cr corresponding to a given point pl on Cl is collinear
with pl and with the origin. Hence, candidates for pr are among the points
fp̂rg of Cr lying on the \radial line" passing through both the origin and pl.
We then select the \right" correspondence within fp̂rg according to a number
of criteria which may be local (proximity in the phase space) or global (ordering
and coherence principles). This is described in [28] where we also present a data
structure for the e�cient access to points that lie along a given radial line.

Our procedure leaves image dilation or shrinking (modeled by the term a
in equation (9)) and a possible leftover intensity bias as the only terms of our
model (9) that have not been accounted for. An analysis of the inaccuracy due
to neglecting such distortion terms may be found in [28].



4 A Possible Matching Algorithm

In the ideal case, intrinsic curves from di�erent images coincide, except for oc-
clusions. In reality, because of the phenomena discussed in section 3, intrinsic
curves are only close to each other, and matching points can be found along the
radial line. A \pathological" case is when the operators Pn are shift-invariant,
and l(x) is periodic. In such a case, the intrinsic curve is closed, and in�nite
instances for �(x) are available. This fact re
ects the inherent ambiguity in the
match of periodic signals. For non-periodic signals, ambiguity can be somewhat
reduced by enriching the description of signals, as noticed also in [14] and [11].
The intrinsic curve representation makes such a notion apparent from a topo-
logical standpoint; for example, using only two operators, the intrinsic curves lie
in a plane, and self-intersections are to be expected. With three operators, the
curves live in a 3-D space, where a path is less likely to cross itself.
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Fig. 4. A signal l(x) (a), the intrinsic curve generated by l(x) in the phase space
(l; l0; l00) (b), and its projections onto the (l; l0) plane (c) and onto the (l0; l00) plane (d).

Figure 4 shows the intrinsic curve relative to a signal l(x) in the 3-D phase
space (l; l0; l00), together with its projections on planes (l; l0) (our usual intrinsic
curve in the plane) and (l0; l00). It is interesting to note (from (5)) that the phase
of any point of the curve in the plane (l0; l00) coincides with the phase of the



tangent to the curve in (l; l0) at the corresponding point.
In our algorithm, for each point pl(x) in Cl we select the candidates fp̂r =

pr(x̂)g of Cr lying on the radial line passing through pl in the plane (l; l0). Then,
we \rate" each candidate with its distance d to pl(x) in the 3-D space (l; l0; l00):

d(pl; p̂r) =

q
(l(x) � r(x̂))2 + (l0(x)� r0(x̂))2 + (l00(x)� r00(x̂))2: (11)

However, the closeness in the phase space alone is not su�cient to guarantee a
robust pointwise match of the curves. In fact, approximate ambiguitymay occur
even in the 3-D phase space when the curve loops close to itself (see �gure 4).
Hence, to pick the right candidate among fp̂rg, i.e., to resolve the ambiguity,
we rely on the available contextual information, as shown in the following.

In the literature, ambiguity is typically resolved by imposing constraints
on the disparity �eld, such as uniqueness, ordering (or monotonicity [7]), and
smoothness [20],[8], [23],[3],[22],[21]. Note that also other algorithms that make
use of vectorial local descriptions ([14], [11]) need to impose constraints on the
disparity �eld: the notion of \closeness" in the representation space is not itself
su�cient for a reliable match.

The main novelty of our approach is that disparity values never enter our

procedure to solve the ambiguity. In fact, we work only on intrinsic curves, which
have lost track of space: the inverse mapping p ! x is determined only after
the matches have been assigned. The new constraint we impose to resolve ambi-
guities comes naturally from the consideration that under ideal conditions (no
photometric distortion, compatible geometric distortion) curves Cl and Cr are
identical. Let s be the arc length parameter on Cl (see section 2.3), and let �s
be the length of the arc C(pl1 ;pl2) between two sampling points pl1 ;pl2 on Cl.
Then, barring occlusions, we expect the length of the (oriented) arc C(pr1 ;pr2)
on Cr to be \close" to�s. Note that we still rely on the constraints of uniqueness
and monotonicity, as parameter s is monotone with x, but we do not need any
other quality of the disparity �eld. In other words, we simply expect that, while
pl moves along Cl, the corresponding point pr moves similarly on Cr . We will call
such a constraint the coherence principle. The important point here is that two
corresponding points pl and pr di�er not because of the disparity, but because
of noise and distortions. Similarly the arc lengths of C(pl1 ;pl2) and C(pr1 ;pr2)
re
ect changes of appearance, not image distances. Details of the algorithm can
be found in [28].

For our preliminary experiments, we have chosen three couples of images,
namely two frames from the test sequence \Trees" from SRI, two from the se-
quence \Library", from the movie \Wings of Desire" directed by WimWenders,
and two from the \Castle" sequence from CMU (�gure 5). In all cases, the cam-
era was moving roughly horizontally (i.e., parallel to the scanlines). In the images
of �gure 5, the part of image above the white line belongs to the �rst frame, the
one below belongs to the second frame.

The left part of sequence \Trees" exhibits a very articulated disparity �eld,
induced by the sharp depth discontinuities along the boundaries of the branches
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Fig. 5. Sequences (a) \Trees", (b) \Library" and (c) \Castle" with the computed
disparity �elds relative to one scanline (below white line: frame 1, above white line:
frame 2).

of the trees. No post{processing (e.g., �ltering) has been applied to the results.
Note that in some parts we have produced a dense disparity �eld while in other
ones no measurement was available. This is due to the following reasons: (i)
the intrinsic curves are sampled with uniform arc length period, which induces
the nonuniform sampling period of the measurement �eld, and (ii) the dispar-
ity is computed only where reliable segments of points were found. As pointed
out in section 2.3, dense measurements are characteristic of high signal busy-
ness regions, where disparity estimates are more reliable. Figure 5 (a) shows
that the computed disparity �eld follows the depth discontinuities of the scene
very tightly. Sequence \Library" (�gure 5 (b)) is characterized by a wide dis-
parity range (from less than 2 pixels corresponding to the back of the room,
to approximately 10 pixels at the edge of the bookshelves). Both the disparity
jump corresponding to the standing person's head (pixels 260{300) and the ramp
corresponding to the books on the shelf are detected by our system. The dis-
tinguishing feature of sequence \Castle" (�gure 5 (c)) is the very large disparity
overall: more than 25 pixels. In systems that search over disparities, this large
displacement is usually handled by multi{resolution techniques. Our approach,
which matches scanlines in the space of descriptors, shows that multi{resolution
is not a conceptual necessity.

In these experiments, the variance of the estimates is substantial. However,
the measurements are very dense, and a simple post{processing (e.g., median
�ltering [11]) would \clean" the computed disparity �eld e�ectively.



5 Future Perspectives

In this paper we have introduced a new image representation which allows ap-
proaching the stereo correspondence problem from a new perspective. Our notion
of intrinsic curves is a new and useful way to think about stereo, and leads to
practical matching algorithms. To the idea of associative storage and retrieval
of images, intrinsic curves add the powerful constraint of connectedness. Match-
ing in the space of descriptors makes the amount of disparity irrelevant, and no
multi{resolution technique is needed even for large displacements.

Better algorithms can be devised, richer or more stable descriptors can be
studied, the robustness to geometric and photometric distortion can be improved.
The descriptors can be made even richer through the concepts of local frequency
analysis and multi-resolution descriptions, both active areas of research in com-
puter vision today. We hope that the concept of compatible mappings elucidates
the basic issues in the design of local image descriptors. Extensions to full images
are at the same time conceptually straightforward and technically challenging.
The curves become surfaces or manifolds in higher dimensional spaces, but the
basis for the matching remains the same.

Finally, we would like to outline an intriguing direction of research that we
are starting to investigate for the detection of occlusions. Any stereo algorithm
must cope with occlusions. A number of researchers have dealt with the problem
of occlusions in stereo [27], [16], [11], [4], [7], [10]. The robust and accurate
detection of occlusions, however, seems still an open problem.

With intrinsic curves, an occlusion manifests itself as an arc of one curve that
is not matched in the other. Just before and just after the unmatched arc the
curves are expected to coincide. This situation appears clearly in �gures 6(b)
and 7(b), where the intrinsic curves of the signals of �gures 6(a) and 7(a) are
depicted: occlusions stand out as \anomalous" loops in one of the intrinsic curves.
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Fig. 6. Scanline 95 from the image of �gure 1 (a), pixels # 74{94 (solid line: l(x),
dashed line: r(x)). (a) Intensity. The part of l(x) form pixel 79 to pixel 81 is not
matched by r(x). (b) Intrinsic curves. The arc of Cl between the two circled points is
not matched in Cr .
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Fig. 7. Scanline 92 from the image of �gure 1 (a), pixels 18{38 (solid line: l(x), dashed
line: r(x)). (a) Intensity. The part of r(x) form pixel 23 to pixel 25 is not matched by
l(x). (b) Intrinsic curves. The arc of Cr between the two circled points is not matched
in Cl.

In general, the presence of an unmatched loop is not by itself su�cient ev-
idence of occlusion. Loops may be produced sometimes by noise, and we must
look for a more robust topological characterization. However, it is clear that an
occlusion manifests itself as a \perturbation" of only one of the two intrinsic
curves in a limited region. It seems therefore that the detection and analysis
of occlusions should be easier in this setting, rather than observing the pro�les
of the two signals in their \natural" spatial domain. In other words, the phase
space is the appropriate place to look whether two signals match { or they don't.
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