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Early vision algorithms in humans and computers
process images from the eye and from electronic
video cameras respectively. They infer the shape,
appearance, and motion of objects in the world.
Conventionally, the lack of semantic interpretation
distinguishes between ‘early’ and higher levels of
vision.

INTRODUCTION

The crystalline lens in the human eye focuses the
entering light onto the array of receptors in the
retina, forming an image of the world. This retinal
image encodes the color and brightness of the light
that surfaces in the world reflect from light sources
into the eye. The retinal image changes over time as
objects or light sources move relative to the obser-
ver. The human early vision system analyses these
changing patterns of color and brightness to deter-
mine the position, shape, motion, and appearance
of objects in the world. Conventionally, vision is
said to be ‘early” when it implies little or no seman-
tic interpretation of the scene. Early vision there-
fore excludes higher cognitive aspects like object
recognition or event interpretation.

Computer vision systems make similar infer-
ences from the images produced by electronic
video cameras. The basic computational elements
and the overall architecture of human and com-
puter early vision systems differ greatly. However,
the abstract nature of the computations they both
perform does not depend on the mechanisms of
their implementation in man or machine.

The first step in vision is the formation of images,
either in a camera or in the eye. Thereafter, images
are analyzed and summarized in terms of edges,
colors and textures, in order to provide a descrip-
tion of images that is more compact and depends to
a lesser extent on changes of lighting or viewpoint.

When changes of an image over time are con-
sidered, the motion of points in the field of view
provides valuable information about the world.
Image motion results from both observer motion
and the movements and deformations of objects in
the field of view. Its analysis allows distinguishing
foreground from background, reconstructing the
geometry of the three-dimensional world, and
computing the motion of the observer within the
environment. Additional sources of information
about the world’s geometry are: stereoscopic
vision, which employs two cameras or eyes; the
variations in the shading of visible surfaces; and
the analysis of how edges meet one another in
simple scenes. Although effortless to humans,
early vision is the very difficult task of forming a
stable representation of the world from the variable
images seen by a moving observer.

IMAGE FORMATION

In the ‘pinhole camera’ model of perspective
projection, the rays of light passing through a
point O in space intersect an image plane, which
records the intensity and color of each ray. The
point O represents the optical center of the eye or
camera, and the image plane stands for the retina or
the camera sensor. Let a point P on a visible surface
in the world have coordinates (X, Y, Z) in a Carte-
sian reference system with origin at O and Z-axis
orthogonal to the image plane. If the focal distance
(the distance from O to the image plane) is f,
the image p of P has coordinates x = f X/Z and
y=fY/Z. These coordinates are measured in a
Cartesian image reference system, whose origin is
the image point nearest to O.

The pinhole camera model captures the essential
property of image formation: each point on the
image plane corresponds to a line in the world,
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2 Early Vision

called the projection ray of that point. This model
does not account for secondary properties of real
lenses, such as their imperfections, their limited
ability to form sharp images, or the dependency
of image brightness on lens size.

To model the finite number of sensing elements
in real vision systems, the image coordinates x
and y are discretized into integer pixel values
within a finite range: i =g(x/s) and j=q(y/s)
(—n <i,j < n), where g(a) is the integer nearest to
a, s is the size of a sensing element, and 7 is a
positive integer. The function g captures the dis-
crete nature of images, and the bound 7 on image
coordinates accounts for the finite field of view of a
real vision system. This model does not account for
possible overlap between adjacent sensing elem-
ents, or for sensors not on a square grid.

In the human eye, two types of photoreceptors at
pixel (i, j) encode the color and brightness of in-
coming light. The ‘rods” are highly sensitive to all
wavelengths in the visible spectrum, but cannot
distinguish colors. The ‘cones’ are less sensitive,
but exist in three types, responsive to different,
(but overlapping) bands of the visible spectrum.
In electronic color cameras, red, green, and blue
filters are superimposed on three brightness
sensors at each pixel. Black-and-white cameras
have one sensor per pixel.

CONVOLUTION WITH LINEAR FILTERS

Convolution is a ubiquitous operation in early
vision. Intuitively, it amounts to additively
blending the pixel values of small image neighbor-
hoods to form a new pixel value. For instance, the
blurring of a lens can be described as a weighted
average of neighboring pixels in an ideal, sharp
image. In this case, the blurred image is the convo-
lution of the sharp image with an operator that
averages pixel values together. At a somewhat
higher level, an edge can be detected by comparing
neighboring image pixels with an edge template.
This is, again, a convolution, between the input
image and the template.

Another example of convolution is image
smoothing. To reduce the effects of noise in images,
it is often useful to replace each pixel in an image
with a weighted average of the intensity values that
surround it. This averaging operation can be de-
scribed by saying that the image is convolved with
an operator, or ‘kernel’, that contains the weights to
use for the average. As a simple example, if we
compute the average of a pixel and its eight imme-
diate neighbors, the kernel is a 3-by-3 matrix all
of whose elements are equal to 1/9. These nine

numbers are multiplied by the nine pixels in ques-
tion, and the products are added together to yield
the output average value. This procedure is re-
peated everywhere in the image.

Formally, let L(i, j) be a function of pixel coordin-
ates (i, j), and let I(i, j) be the output, say, of a rod or
cone. The convolution | of I with L is defined as

JG,j) =D 1(i—a,j—b)L(ab) 1)
a b

where the sums are performed over the domain of
definition of the ‘filter kernel’ L. Thus, the output
J at (i, j) is a linear combination of the values of the
input I in some neighborhood of (7, j) and the values
of the filter kernel L provide the combination coef-
ficients. Similarly, single or triple summations
appear in the definitions of convolutions of func-
tions of one or three variables with filter kernels of
one or three variables respectively.

Convolution with a bell-shaped kernel smoothes
the input. A well-known example of a smoothing
kernel is the isotropic Gaussian function

G(i,j) = ke *+7)/2 2)

and its one- and three-dimensional equivalents.
‘Isotropic’ here means that the function G is rota-
tionally symmetric, that is, it has the same shape in
all directions. For instance, an out-of-focus lens
blurs in approximately the same way in all direc-
tions, and its output is often approximated by the
convolution of an isotropic Gaussian with the input
image.

Convolution with the derivative of G with re-
spect to one of its arguments approximates the
partial derivative of the input with respect to the
corresponding variable. This operation is very
useful for edge detection, described next.

EDGE DETECTION

Edges are curves in the image across which image
brightness or color changes abruptly. They are
caused by shadow boundaries, contours of objects,
or changes in surface orientation or reflectance.
Standard algorithms for edge detection convolve
the brightness I(i,j) of the input image separately
with the two partial derivatives G; and G; of the
Gaussian kernel G to approximate the spatial gra-
dient (I, I,) of I. Some algorithms (Canny, 1986)
then define edges to be ridges in the magnitude of
the gradient. Others (Marr and Hildreth, 1980) con-
volve again I, with G; and I, with G; and add the
resulting images together to obtain the Laplacian of
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image brightness. Edges are then zero crossings of
the Laplacian.

Noise in the sensing elements produces random
fluctuations of perceived brightness, which can
cause spurious edges to be detected. A single
threshold on the gradient magnitude cannot be
used to suppress these edges: if the threshold is
too high, good edges are removed as well, and if
it is too low, spurious edges persist. Some algo-
rithms (Canny, 1986) require edges to contain
some elements above a high threshold, but are
then extended to all edge elements that are con-
nected to the former and are above a lower thresh-
old. Other algorithms link edge elements into
curves, and preserve only those curves that are
longer than a given length.

OPTICAL FLOW AND MOTION
PERCEPTION

As a point in the world moves relative to the obser-
ver, so does its image. When specified for every
visible point, this image motion is called the motion
field. The true motion field cannot be determined
unambiguously from measurements in a very small
image neighborhood. For example, if the neighbor-
hood straddles a vertical edge and the edge moves
in any direction, one only sees the horizontal com-
ponent of motion. The edge may also be moving up
or down, but this motion cannot be seen in the small
aperture of this neighborhood. This inability to ob-
serve the motion field directly is called, somewhat
awkwardly, the aperture problem.

The optical flow is defined to be the smallest
image motion that is consistent with local image
measurements. In the example above, the optical
flow along the edge is (u, 0). This example shows
that the optical flow is not always the same as the
motion field: the latter is the true, projected motion;
the former is the apparent motion.

In computer vision, approximate motion fields
are computed by combining values of the optical
flow over several neighboring pixels, assumed to
share the same motion field (Lucas and Kanade,
1981), or by imposing smoothness constraints on
the field itself (Horn and Schunck, 1981). The
human visual cortex computes the motion field by
comparing the outputs of filters tuned to different
orientations in space-time, that is, to different sets
of spatial and temporal frequencies and directions
of motion. Accuracies of 5% for velocities between
2 and 15 degrees per second have been reported for
humans (McKee and Welch, 1985).

If only the observer is moving, the motion field at
as few as five points is sufficient in principle to
compute both the translation and the rotation of
the observer, except for an overall scale factor, as
well as the distance of the five points in the world
from the observer (Thompson, 1959). However, this
computation is very sensitive to inaccuracies in the
field measurements, and reliable results require
more motion field values. This computation is
called ‘structure from motion’. Accuracies as good
as one degree of visual angle for observer transla-
tion have been reported both in psychophysics and
in computer vision, where algorithms have been
proposed also for reconstruction from more than
two images.

COLOR AND TEXTURE PERCEPTION

Color

The three types of cone in the human eye are sensi-
tive to three different bands in the visible spectrum
of light, between 370 and 730 nanometres. Sensitiv-
ities peak at about 440, 540 and 560 nanometres for
the three types, with much overlap in particular
between the latter two bands. The distribution of
the approximately 5 million cones in each eye
varies from about 160 000 per square millimetre in
the fovea to about 20000 per square millimetre at
the periphery, with the short-wavelength receptors
being about 10 times sparser than those of the other
types, consistently with the greater amount of blur-
ring that the crystalline lens introduces at shorter
wavelengths. The density in the fovea corresponds
to a separation between cones of about half a
minute of visual angle.

The spectrum of light impinging on a set of cones
is the product of the spectrum of the light source
and the reflectance of the visible surfaces. Yet if the
color of the light source is changed, humans per-
ceive surface colors as if the change in the light
source were only about half as much as the actual
change. This ability of the human visual system to
compensate for changes in the color of the light
source is called color constancy. To achieve color
constancy, the visual system must estimate the
color of the light source at least approximately.
Some theories (Land, 1986) propose that the visual
system selects a color for the light source that cor-
rects the average color perceived by all the cones to
grey. Other theories (D’Zmura and Iverson, 1993)
propose that the visual system detects specular
reflections in the image, and takes them to reflect
the color of the light source unchanged.
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Both psychophysical and physiological evidence
suggest that colors are perceptually organized into
pairs of ‘opponent’ colors in the visual cortex. This
scheme for color encoding posits three mechan-
isms, each responding to a pair of sensations con-
sidered to be opposite to each other: light and dark,
red and green, and blue and yellow.

Texture

An image region has visual texture when the
distribution of its brightness values exhibits peri-
odicity, either deterministic or stochastic. For
instance, tiles on a floor are deterministically peri-
odic, and leaves on a tree are stochastically
periodic. When a texture on a complex surface is
projected to an image, the deformations caused by
foreshortening and by the changing normal to the
surface modulate the periodic components of the
texture.

Psychophysics and psychology indicate that
humans can recognize materials and objects based
on visual texture (texture classification), discrimin-
ate image regions with different textural properties
(texture discrimination), and infer the shape and
slant of a surface in the world from the modulation
of its texture (shape from texture). Statistical repre-
sentations (Caelli and Julesz, 1978) describe visual
textures by the first- and second-order distribu-
tions of image brightness values in small regions
of the image. Brightness histograms have been
used in computer vision to capture the complete
first-order empirical distribution. Summaries of
the second-order distribution have included co-
occurrence matrices, the fractal dimension of the
spatial distribution of brightness values, and the
conditional densities of an underlying Markov
random field model.

Structural representations describe visual tex-
tures as the repetition of a basic pictorial element,
or texton, according to some placement rule. This
rule can take the form of the description of a grid on
which textons are arranged, or it can be a formal
grammar, either deterministic or stochastic, that
generates the grid points. For instance, the texton
of a tiled floor could be a single tile, and the gram-
mar is the description of a regular grid of squares.

Current models of human texture analysis favor
filter-based representations of texture (Bergen and
Adelson, 1988). These are derived from the re-
sponses of a bank of linear filters tuned to different
sizes and possibly orientations of the image inten-
sity patterns. The integral of the magnitude of these
responses over a small image neighborhood meas-
ures the energy contents of that neighborhood at

the sizes and orientations that characterize the
filters. A final stage of computation groups neigh-
borhoods that have similar energy responses.

If the texture on a surface in the world is uniform,
the different distances and slants of different
surface patches relative to the observer produce
gradual variations of the corresponding image tex-
ture, as described by the equations of perspective
projection. Shape from texture solves these equa-
tions for either distance or slant, and infers the
three-dimensional shape of the surface.

REGION ANALYSIS AND
SEGMENTATION

The technique of segmentation partitions an image
into regions such that different parts of the same
region are similar to each other in some sense. For
example, gray-level segmentation may require that
the greatest difference between two pixels in the
same region be less than a fixed threshold. A good
segmentation would then have regions that are as
large as possible given this constraint. Similarly,
segmentation can be based on color or texture fea-
tures. The results of segmentation differ from those
of edge detection, mainly because edges are gener-
ally open curves while regions are bounded by
closed contours.

In computer vision, images are often segmented
in the hope that the resulting regions belong to
different objects, or to different parts of an object.
This is, however, rarely the case, because the varied
colors of objects, shadows, shading, and variations
in lighting produce large variations within objects,
while at the same time similar colors in adjacent
objects are not uncommon. Even so, describing an
image as a collection of disjoint regions can offer
advantages for later stages of processing, at least in
terms of computational complexity.

Several segmentation methods are based on
repeated splitting or merging, and sometimes on a
combination of both. In a splitting method, for in-
stance, the whole image may initially be considered
as a single region, to be split, say, in half if the
region as a whole is not homogeneous enough.
The same procedure is then applied recursively to
the resulting regions, until all regions are suffi-
ciently homogeneous. Merging methods proceed
in the other direction, starting with each pixel
being considered as its own region, to be merged
with neighbors as long as the resulting region is
homogeneous.
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‘Stochastic relaxation” has also been used for seg-
mentation. The class of images of interest is mod-
elled as a Markov random field, which specifies the
probability that a pixel has a certain value given the
values of its neighbors. Given a particular image,
relaxation iteratively adjusts pixel values to maxi-
mize the likelihood of the image having being
drawn from the class in question (Geman and
Geman, 1984). For segmentation, the underlying
Markov random field assigns highest probability
to noisy piecewise-constant images. As a result,
relaxation turns the input image into a piecewise-
constant one, whose discontinuities are the seg-
mentation boundaries.

BINOCULAR STEREOPSIS

‘Binocular stereopsis’ computes distances (called
‘depths’) to the visible surfaces by comparing the
images of the world seen by two eyes, in humans,
or by two cameras, in computer vision. This com-
putation assumes knowledge of the relative pos-
ition and orientation of the eyes or cameras. First,
a stereoptic correspondence module finds pairs of
points in the two images that are projections of the
same point in the world. Then, the depth for each
pair is computed by triangulation.

Stereoptic Correspondence

Two matching points in the two images of a stere-
optic pair are likely to look similar to each other.
However, this is not always the case. For instance, a
point on a glossy surface may have the color of the
surface when viewed from one eye, but the color of
the light source in the other eye because of a specu-
lar reflection. Furthermore similar points do not
necessarily match. On a blank wall, for instance,
many points look the same. Thus, similarity of
appearance, the main criterion for matching two
points, is neither necessary nor sufficient for a
match. Correspondence is also complicated by the
fact that points visible in one image may not be
visible in the other because of an intervening oc-
cluding object, so that not every image point need
have a match.

Yet the human visual system can establish cor-
respondences effortlessly and on the basis of min-
imal information. Random-dot stereograms like the
one in figure 1 serve to demonstrate this ability,
and show that no prior recognition is necessary
for stereoptic correspondences to be established
(Julesz, 1960).

Knowledge of the relative position and orienta-
tion of the two eyes, or cameras, restricts matches

for any given point in one image to be on a known
line in the other. This is because the two optical
centres and any one point P in the world define a
plane, the so-called epipolar plane of P. This plane
intersects the two image planes at two lines called
the epipolar lines, which pass through the two
images of P. Hence the ‘epipolar constraint: the
match for any point on one epipolar line must be
on the corresponding epipolar line. The angle
formed by the projection rays of two matching
points is called the disparity.

One way to establish correspondences is to com-
pare small image patches along corresponding epi-
polar lines in the two images. Sums of squared
differences can quantify the comparison between
a small image patch Py, centered at (i, ji) in the left
image I;, and a patch Py centered at (ig, jr) in the
right image Ig:

S = ZZUL(ZL +a, jL + b)
a b

— Ir(ir +a,jr + b)) 3)

where the summation indices range over the
patches.

Even for image pairs as ambiguous as those in
figure 1, and even with imperfect image measure-
ments, a small value of s indicates a likely match, as
long as the patches being compared are not too
small. When these local comparisons fail to deter-
mine matches unambiguously, more global criteria
must be invoked. For instance, matches may be
required to correspond to smooth, or at least con-
tinuous, surfaces. In computer vision, these more
global requirements have been enforced by the use
of various techniques, including stochastic relax-
ation, dynamic programming, and network flow
optimization methods.

Triangulation

The depth of a point in the world is easily com-
puted from a pair of corresponding points. Let o be
the angle that the left projection ray of point P
forms with the optical center of the left camera.
Let 0 be the disparity, and let the baseline, that is,
the distance between the two optical centers, be b.
Then, a simple geometric construction shows that
the distance between the left optical centre and
point P is

p = b(cos o + sino.cot 9)

(4)
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SHAPE FROM SHADING

The perceived brightness of a surface varies with
the orientation of the surface relative to illumin-
ation and viewing directions, among other factors.
As a consequence, the shading on a uniformly
colored surface conveys some information about
the shape of the surface itself. The locations of
concavities and convexities are examples of quali-
tative information that can be gathered in this way,
but the shape of the surface can be reconstructed
even quantitatively if its reflectance map is known.

The reflectance map of a surface expresses sur-
face brightness as a function of surface orientation
for a particular distribution of the light sources. If
the depth of a surface is represented as a function
z(x,y) of the image coordinates x and y, the two
partial derivatives p and g of z encode the orienta-
tion of the surface, since the surface is orthogonal to
the vector (—p, — g,1) everywhere. Therefore, the
reflectance map can be expressed as a function
R(p,q) that gives the brightness of a surface patch
with normal proportional to (—p, —g,1) in viewer
coordinates. If the image at (x, y) has brightness
I(x,y), one thus obtains the equation

R(p, q) =1(x, y) (5)

The two functions R(p, g) and I(x, y) are known
(the former by assumption, the latter by measure-
ment), and the unknown depth z(x, y) appears
through its partial derivatives p and q. The equation
above is therefore a partial differential equation,
which can be solved for z by numerical means.

Because the reflectance map combines informa-
tion about light and surface, it is often hard to
determine a priori. However, it is conceivable that
one could learn approximate reflectance maps for
surfaces of various materials and, say, known pos-
ition of the sun in the sky.

LINE LABELLING IN POLYHEDRAL
SCENE ANALYSIS

The remarkable human ability to understand line
drawings inspired early computer vision research-
ers to separate the image interpretation task into
two stages. In the first stage, edge detection trans-
forms an image into a line drawing, which the
second stage then interprets.

In a world of polyhedral objects with no surface
markings, a line segment in the drawing can only
represent the convex or concave edge between two
visible faces, or an edge that occludes some surface
at a greater depth. Two or more line segments meet

at junctions corresponding to vertices in the world.
If the number of lines meeting at a junction is
bounded (typically by a maximum of three), junc-
tions can be classified into a finite taxonomy
depending on the number and angles of the meet-
ing lines. For instance, two lines form a V junction.
In Y junctions, three lines meet at angles that are all
smaller than 180 degrees in the image; and in W
junctions one of the three angles exceeds 180
degrees.

A line drawing can then be interpreted by
assigning labels — convex, concave, or occluding —
to all line segments, making sure that no impossible
junctions result. For instance, a concave edge
cannot meet a convex edge at a V junction; and
three occluding edges cannot meet at a W or Y
junction. Remarkably, these rules usually restrict
the interpretation of a line drawing to one or very
few possibilities, assuming there are no accidental
alignments of features. Huffman (1971) developed
an elegant algorithm for finding a possible labelling
of a line drawing, and started a very active area of
investigation.

However, attempts to extend these results to
complex images failed for several fundamental
reasons. Firstly, objects in the world are not always
polyhedral. Secondly, an edge detector also detects
surface markings, shadow contours, and other
curves, for which simple consistency rules cannot
be given. Thirdly, edges computed from images are
usually broken, and junctions are hard to pinpoint.
Because of these difficulties, this line of research
has been abandoned.

SIZE AND POSITION INVARIANCE

As an objects moves relative to the viewer, the
size and position of its projection on the image
change. However, objects are recognized in
spite of these changes, and also in spite of changes
of illumination or viewing angle. The methods for
three-dimensional reconstruction described in the
previous sections form one basis for explaining this
invariance of recognition performance under
changing stimuli. According to this explanation,
the visual system would compute invariant repre-
sentations of the image, such as three-dimensional
object models in world coordinates.

An alternative explanation seems to be more
consistent with physiological evidence, and posits
instead the existence of mechanisms that compen-
sate for variations in size, position, and other
factors (Ito et al., 1995). Almost half of the neurons
in the anterior part of monkey inferotemporal
cortex seem to respond to the same object in the

0071.044

0071.045

0071.046

0071.047



0071.048

0071.049

Galley: Article - 00071

Early Vision 7

tield of view under large changes in object size and
position, although different cells respond within
different ranges of variation. On the other hand,
other neurons in the same area respond only
when the object is presented in a narrow range of
sizes and positions. Invariance in the former type of
neuron may be achieved by convergence of mul-
tiple cells of the latter type.

These two explanations of perceptual invariance
lead to entirely different theories of how the world
is represented in the visual system. The proposal
based on compensation is more consistent with pic-
torial representations of objects, in which images
are transformed and aligned to achieve constancy,
than the miniature world of the reconstruction-
based approach. But the evidence is still insufficient
to allow us to conclude definitely either way.

CONCLUSION

Some of the problems of early vision are problems
of image processing or statistical estimation. For
instance, edge detection amounts to template
matching in the presence of noise; and geometric
reconstruction estimates three-dimensional quan-
tities from noisy measurements of image motion.
However, vision is inherently a process of infer-
ence, and early vision is no exception: several as-
sumptions must be made in order to reconstruct
aspects of the three-dimensional world from its
two-dimensional projections on eye or camera,
and finding assumptions that are adequate in
most situations is still an challenge to computer
vision researchers. Vision is a form of cognition,
and the study of early vision may be one of the
best approaches towards understanding intelli-
gence.
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Glossary

Field of view The cone of directions that are visible
through the lens of a camera, eye, or other optical
system.

Fovea A small area, near the center of the retina, which
is packed with cones and affords acute vision.
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Gradient A vector that points along the direction of
steepest ascent of a function, and measures the rate
of change along that direction.

Photoreceptor One of the receptors for light stimuli in
the eye.

Pinhole camera A camera made of a dark box with a
small hole at the centre of one side and a screen on the
opposite side.

Pixel Any of the small, usually rectangular, discrete
elements that together constitute an image.

Texton A figural element which, when periodically
repeated on a surface, constitutes a visual texture.

Visual cortex A layer of gray matter in the occipital lobe
of the primate brain, responsible for integrating visual
information from the eyes.
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Figure 1. The images in this random-dot stereogram are identical, except that a central square in the right image has
been shifted slightly to the right, and the resulting gap filled with random dots. When viewed with eyes crossed so as to
fuse the two images into one, a square floating in front of a plane should appear after a few seconds
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