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Abstract

We present a real-time system for the reconstruction of
shape and motion from an arbitrarily long sequence of
single-scanline images. With this system, experiments
on reconstruction can be run e�ortlessly and make it
possible to explore the delicate sensitivity aspects of
the problem in an empirical fashion. We identify three
singular values of a certain matrix of image measure-
ments as the key elements for a sensitivity analysis.
Our experimental results suggest that reconstruction
is indeed possible in practice with su�cient accuracy
at least for navigation and as a guidance to manipu-
lation.

1. Introduction

A vision system that can provide dynamic scene shape
and camera motion information reliably and in real
time would be of great usefulness to robotics, for in-
stance, in the control of manipulators and in robot
navigation. While the literature on the subject is vast,
no system is known that works reliably, under per-
spective projection, and in real time. In [Tom94], we
proposed a new formulation of this problem that faces
directly the poor conditioning of the shape reconstruc-
tion problem. In this formulation, the computation is
expressed in terms of well-observable parameters only,
using generously redundant data, and paying close at-
tention to the numerical aspects of the computation.

A setup that allows running experiments with mini-
mal e�ort and overhead is crucial for understanding
a problem like shape and motion reconstruction from
image sequences. In fact, the problem itself, and not
just this or that implementation, is inherently sensi-
tive to noise. Even a good algorithm will fail if the in-
put data are not very good. Even subpixel amounts of
positional uncertainty in the measured image feature
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coordinates can defeat the most sophisticated algo-
rithm. Camera and lens miscalibration can have even
worse e�ects, since they introduce systematic devia-
tions from the correct measurements. Thus, attention
to the implementation details is part of a successful
system at least as much as attention to the mathe-
matical and numerical aspects of the computation.

In summary, the following three elements are essen-
tial for a good shape and motion reconstruction sys-
tem. First, the problem must be carefully formulated
so that only well observable quantities are made part
of the required solution. Second, the image measure-
ments must be good enough, with respect to both ran-
dom and systematic errors, to bring the input of the
reconstruction algorithm to within the \basin of at-
traction" of a solution. Third, close attention must be
paid to the numerical aspects of the computation, so
that the particular implementation of the algorithm
does not add failure modes of its own. Because of the
close interaction of these three aspects, only controlled
experiments in the laboratory will tell if each of the
pieces of a solution is good enough.

Our current reconstruction system is for 
atland,
where the camera moves in a plane and images are sin-
gle scanlines. Although all the concepts hold also in
three dimensions, the extension is technically less than
straightforward, and has not been addressed yet. A
two-dimensional version of shape reconstruction, be-
sides being interesting conceptually as an intermediate
step towards a fully three-dimensional system, is use-
ful in its own right. For instance, indoor robots often
travel on a smooth and level surface, so the camera
scanline that shares a horizontal plane with the cam-
era's optical center satis�es the 
atland assumption.
One can then have one or more separate vision sys-
tems, each of which reconstructs one horizontal slice
of the environment.

In this paper, we describe a real-time implementation
of this system. This implementation required rein-
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Figure 1. Camera and world points in 
atland.

venting the computation completely. Rather than a
linear stage followed by a nonlinear one, as done in
[Tom94], we now have two linear stages, each imple-
mented as the incremental update of the solution to a
linear system. Linearity of the second stage is achieved
thanks to the redundancy of the measurements and at
the cost of a theoretically less-than-optimal solution.
The solution to these two linear stages is then fed to
an iterative re�nement procedure that proceeds again
by repeated solutions of linear systems.

In the following section, we summarize our mathemat-
ical formulation of reconstruction problem (section 2)
and its solution (section 3). We then discuss the basic
numerical issues (section 4) and implementation prob-
lems (section 5) that must be addressed for a reliable
computation of object shape and camera motion. In
section 6, we show our experimental results, and in the
conclusion (section 7) we point out the main problems
to be overcome for a complete and satisfactory solu-
tion to the problem of reconstruction.

2. Formulation

Suppose that the camera and the world points all live
in a two-dimensional world (�gure 1).

Point 0 serves as the origin of the global reference
system. Also, for every frame f = 1; : : : ; F the camera
records only the tangents tfp of the angles formed by
the projection ray of the feature points 1; : : : ; P with
that of feature point 0, so with P + 1 feature points
there are P tangents per frame (in the �gure, P = 3).
The tangent tfp can be found by simple geometry to
be (see also [Tom94])

tfp =
uf zp � wfxp

1� ufxp � wfzp
(1)

where (xp; zp) is the position of feature number p in

the world and

kf =

�
uf
wf

�
=mf=jmf j

2 (2)

is the vector obtained by re
ecting the camera coor-
dinates mf across the unit circle. This re
ection is
introduced to make equation (1) bilinear in motion
and shape.

With P + 1 world feature points and F camera posi-
tions, the FP measurements t11; : : : ; tFP can be col-
lected into an F � P matrix T . Each row of T repre-
sents one snapshot, and each column is the evolution
of one tangent over time. If the re
ected camera co-
ordinates uf ; wf and the shape coordinates xp; zp are
collected in a F�2 re
ected motionmatrix and a 2�P
shape matrix,

K =

2
64

u1 w1

...
...

uF wF

3
75 ; S =

�
x1 � � � xP
z1 � � � zP

�
;(3)

then equation (1) can be rewritten in matrix form for
the entire sequence as follows:

T = �(K;S) (4)

where the projection function � operates on the f-th
row ofK and on the p-th column of S to produce entry
tfp of T according to equation (1).

3. Solution Procedure

In [Tom94], this matrix equation was solved for shape
S and re
ected motionK through a batch procedure,
that is, after the entire matrix T of image measure-
ments was acquired. Here instead we reformulate the
solution as a series of steps, each of which amounts
to solving a linear system or taking a ratio of scalars.
This new formulation makes an incremental solution
possible, in which initial estimates of shape are re�ned
and the new camera coordinates are computed every
time a new image becomes available.

We �rst list the basic parts of the procedure, and we
then show how each of them works.

1. Find shape Ŝ up to an a�ne transformation
for each quadruple of points with subscripts
(0; 1; 2; p) where p ranges from 3 to P . Because
points 0; 1; 2 serve as a reference system for the
plane, the coordinates of all the points in space
are thereby determined in the same (a�ne) sys-
tem of reference.
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2. Compute Euclidean shape S by determining a 2�
2 matrix A such that

S = AŜ : (5)

3. Compute the matrix K of re
ected camera posi-
tions (see equations (2) and (3)) by solving the
matrix projection equation (4) for K.

4. Determine the matrix M of camera positions by
re
ecting the rows ofK back across the unit circle
through the inverse of transformation (2):

mf = kf=jkf j
2 : (6)

We now show that all these steps involve solving a
linear system or computing ratios of scalars.

1. If the scalar projection equation (1) is repeated
three times for points 1; 2; p, then the �rst two
equations can be algebraically solved for the re-

ected camera position coordinates uf ; wf . These
can then be replaced into the third equation to
yield the following homogeneous linear equation
(see [Tom94] for details)

a
(p)
1 t1(tq � tr) + a

(p)
2 tr(tq � t1) + a

(p)
3 t1(1 + tqtr)

+a
(p)
4 tq(1 + t1tr) + a

(p)
5 tr(1 + t1tq) = 0 :

where

a
(p)
1 = �xp(x1 � x2)� zp(z1 � z2)

a
(p)
2 = �x1(x2 � xp)� z1(z2 � zp)

a
(p)
3 = �x2zp + z2xp (7)

a
(p)
4 = x1zp � z1xp

a
(p)
5 = �x1z2 + z1x2 :

Writing this equation once for every frame f =
1; : : : ; F yields a F�5 homogeneous linear system

Ta(p) = 0 (8)

where the 5-dimensional vector a(p) collects the
unknown coe�cients in (7). Notice that because
the system is homogeneous the solution can only
be determined up to a multiplicative constant,
that is, only �a(p) can be determined. An F � 5
system of the form (8) must be solved for every
point p = 3; : : : ; P .

The coordinates of point p in the reference system
formed by points 0; 1; 2 are then given by (see
[Tom94])

x̂p = �a
(p)
5 =a

(p)
7 and ẑp = �a

(p)
6 =a

(p)
7 :

These coordinates can be collected into a 2 � P
a�ne shape matrix

Ŝ =

�
1 0 x̂3 � � � x̂P
0 1 ẑ3 � � � ẑP

�
: (9)

2. Since the coordinates in Ŝ are expressed in the
same a�ne reference shape, they can di�er from
the Euclidean coordinates of the feature points
only by a 2�2 transformation (see equation (5)).
In order to compute this transformation A, we
notice that the �nal solution is determined up to
an overall scale factor and a rotation. Therefore
we can assume without loss of generality that

A =

�
1 a
0 b

�
(10)

which amounts to keeping the origin at point 0
and the unit point of the x axis at point 1. Then,
equations (5), (9), and the last four equations (7)
yield

�a
(p)
2 = x̂p + a(ẑp � 1) ; �a

(p)
3 = �bx̂p

�a
(p)
4 = bẑp ; �a

(p)
5 = �b :

Using the �rst of these equations to eliminate �
yields three equations in a and b:2
64
a
(p)
3 (1� ẑp) a

(p)
2 x̂p

a
(p)
4 (1� ẑp) a

(p)
2 ẑp

a
(p)
5 (1� ẑp) �a

(p)
2

3
75
�
a
b

�
=

2
64
a
(p)
3 x̂p

a
(p)
4 x̂p

a
(p)
5 x̂p

3
75 :

A triple of equations like these can be written
for every p = 3; : : : ; P , so that the two unknown
entries a; b of the transformation matrix A are
found as the solution of an overdetermined system
of 3(P � 2) equations,

C

�
a
b

�
= c : (11)

Equation (5) then yields the Euclidean shape ma-
trix S.

3. Once shape is known, the bilinear matrix projec-
tion equation (4) is linear in the re
ected camera
coordinates K. With P points (ignoring the ori-
gin), each of the F rows of K,

kf = (uf ; wf)
T ;

can be found as the solution to the system2
64

z1 + tf1x1 x1 + tf1z1
...

...
zP + tfPxP xP + tfP zP

3
75kTf =

2
64

tf1
...

tfP

3
75
(12)

of P equations in 2 unknowns.
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4. From K, the motion matrixM with all the cam-
era coordinates can be found by the re
ection (6).

5. Shape and motion computed from the previous
steps are suboptimal because shape is computed
one quadruple at a time, rather than from all the
points at once, and because system (11) uses only
four out of the �ve equations (7) to avoid non-
linear equations. It is then advisable to use the
computed shape and motion as starting values for
an iterative procedure that re�nes shape and mo-
tion by repeatedly solving the original projection
equation (4). Since this equation is bilinear in mo-
tion and shape, the iterative procedure can work
by interleaving solutions to linear systems.

4. Numerical Aspects

To summarize, we need to solve the following linear
systems:

1. P � 2 versions of the F � 5 system (8), one ver-
sion for each quadruple of points with subscripts
0; 1; 2; p for p = 3; : : : ; P . This is a homogeneous
system. The number of its rows grows with time,
and the solution improves in quality. This system
must be solved in an incremental fashion to avoid
unbounded storage and computation time.

2. The 3(P �2)�2 system (11) for the computation
of the two unknown entries a; b of the matrix A
(equation (10)). The size of this system is �xed,
but its solution must be recomputed afresh with
every frame because its entries depend on the im-
proving a�ne shape estimates x̂p; ẑp.

3. The P � 2 system (12) that computes re
ected
camera coordinates uf ; wf at every frame. Also
this system is �xed size and needs to be recom-
puted for every frame.

4. P systems of size F�2 for the re�nement of shape
and F systems of size P � 2 for the re�nement of
motion through equation (4). Both the size of the
shape systems and the number of the motion sys-
tems grow with the number of frames. To keep
storage and computation time �xed, we only re-
member a �xed-size set of past frames for this
computation. The choice of these frames is dis-
cussed in section 5, and the idea is to store an ap-
proximately uniform sample of the past sequence
of frames. With this device, the two systems used
in the re�nement stage are �xed in size.

Notice that all linear systems can be easily updated if
features disappear because of occlusions or other rea-
sons, with the only exception of the three reference
features. Similarly, update is straightforward if fea-
tures are added at di�erent points in time. In the cur-
rent version of the system, disappearance of any of the
reference features causes the reconstruction system to
stop. We are working on overcoming this important
limitation.

Because of the large number of linear systems to solve,
and because of the sensitivity of the solution to image
noise, it is crucial to employ e�cient and numerically
stable solution methods. We have essentially two dif-
ferent types of linear systems:

� A growing, homogeneous, F � 5 system for the
computation of a�ne shape for every quadruple
of points.

� Several �xed systems of size m � 2 where m de-
pends on the particular system but is usually
large.

Both systems are �rst converted to square (5�5 or 2�
2), upper-triangular systems by incorporating one row
at a time into the R matrix of a QR decomposition.
These square, triangular systems are then solved by
backsubstitution. For the homogeneous system, one
of the diagonal elements of R is zero in the absence of
noise. With noise, we assume that the element that
must be zeroed is the smallest diagonal element of R.
The corresponding entry of the solution vector is set
to 1, and backsubstitution can proceed as usual.

5. Implementation

In our experiments, we used a standard Pulnix CCD
camera with a 2/3" sensor (corresponding to an actual
sensor size of 6:6�8:8 mm) and a high quality Schnei-
der Cinegon 1.8/4.8mm lens corrected for chromatic
aberration both in the visible and the infrared parts
of the spectrum. Because of the wide �eld of view (105
degrees along the diagonal), distortion in unavoidable
even in a lens as good as this, and calibration is cru-
cial. To this end, we adapted the procedure described
in [Fle94], and we �tted a �fth-degree polynomial to
the coordinates measured on an image of a calibration
target made of concentric circles.

Frames are acquired by a Digital J300 frame grabber
that interfaces directly with the TurboChannel bus
of a Digital Alpha 600 workstation, where both the
tracker and the reconstruction algorithm are imple-
mented in C++. To select and track features we have
implemented a one-dimensional version of the system
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described in [ST94]. With a feature window width
of 7 pixels and a �lter kernel width of 5 pixels for
image smoothing the system can currently track one
feature per frame in about one millisecond. Feature
selection at this point requires user interaction and
does not run in real time. The camera is required to
remain still until feature selection is completed. The
user selects features by pointing and clicking in a fea-
ture selection window (upper-left window in �gure 2).
The tracker is then activated and follows features at
subpixel resolution as described in [ST94].

Although the tracker updates feature coordinates
at every frame, shape computation waits until the
changes in these coordinates are large enough to war-
rant incorporating a new set of input data. To check
for this event, we �rst monitor the RMS displacement
of all the features in the scanline. Once this measure
has exceeded one pixel, a new row of the matrix T
of angle tangents is computed, and its RMS variation
with respect to the previous row used for reconstruc-
tion is checked against another threshold (0:005 radi-
ans in our implementation). Only when this threshold
is exceeded is the most recent frame passed to the re-
construction algorithm and are the linear system solu-
tions updated. Consequently, the more expensive part
of the computation is performed only rather occasion-
ally for a slowly moving camera. Even more impor-
tantly, data are used only when they add su�ciently
new information to the computation. In summary, all
the frames produced by the camera are tracked, but
only a few of them are used for reconstruction. These
select frames are called signi�cant frames.

For the iterative re�nement stage described in section
3 a set of 2k key frames is stored, where k is a �xed
number (3 in our implementation). These key frames
should be spread as uniformly as possible over the past
tracking history. We achieve this with a caching algo-
rithm that after tracking about 2K signi�cant frames
remembers one signi�cant frame every 2K�k.

6. Experiments

In our experiments, the camera is mounted on a trans-
lation and rotation stage that can be moved by hand.
This setup ensures motion in a plane. Sliding objects
by hand on a table is an alternative mode of operation.
Figure 2 shows the program interface. The upper left
window shows the scene with the selected features su-
perimposed. All features are taken from the central
scanline. The lower-left window stacks the scanlines
used for reconstruction (signi�cant frames) on top of
each other, and the lower-right window displays shape
(squares) and camera position estimates (dots). The

Figure 2. The user interface.

menu in the upper right window allows setting various
system parameters.

Sensitivity to noise is the dominant issue in the recon-
struction problem. The problem itself is inherently
sensitive, and no algorithm or numerical implementa-
tion will make this go away. As a consequence, recon-
struction can only be applied when the �eld of view of
the camera is su�ciently wide [KvD87], [HW88], mo-
tion is su�ciently extended around the object [TK93],
and imagemeasurements are both su�ciently accurate
(low bias) and precise (low standard deviation).

From a numerical standpoint, since the homogeneous
F �5 system (8) is expected to have exactly one a�ne
shape solution with perfect data and nontrivial mo-
tion, its matrix T should be of rank 4. Consequently,
the R term in the QR decomposition of T should have
exactly four nonzero diagonal terms. A better look
at the structure of T can be gleaned from its singu-
lar values �1 � : : : � �5: speci�cally, �4 should be
nonzero and �5 should be zero. In reality, noise in-
creases �5, and closeness to either degenerate shape,
motion, or imaging situation decreases �4. For in-
stance, if the camera does not move, all the rows of T
are ideally equal, and T is rank 1: �2 = : : : = �5 = 0.
Also, when the camera's �eld of view approaches zero
width (orthographic projection) the rank of T tends
to 3: �4 = �5 = 0 [Tom94]. Yet reconstruction under
perspective assumes that there is a stable, substantial
gap between the last two singular values, leading to a
low noise factor


 =
�5
�4

� 1

and a good conditioning of the rank-4 part of the sys-
tem, leading to a low sensitivity factor

� = 1�
�4
�1

� 1
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Figure 3. (a) Noise factor 
, and (b) sensitivity � as a
function of \signi�cant frame" number for a forward
moving camera.

(the condition number is usually de�ned as �1=�4; we
prefer � because it remains between 0 and 1; � = 0 is
ideal). These two conditions mean little noise and no
degeneracy. They can be optimized by proper setup
(�) and good image measurements (
). However, the
numerical computation should be prepared to deal
with relatively large values of 
 and � if the recon-
struction system is to be applicable to a wide range of
interesting situations. For instance, �gure 3 shows the
two parameters 
 and � for a typical point quadruple
seen by a forward-moving camera. The object is ini-
tially 25 cm away, and the four points span about 15
degrees of the �eld of view. The focal length of the
lens is 4.8 mm.

These plots show the di�culty of the problem. While
noise is relatively under control (
 < 0:2), the sen-
sitivity factor � is dangerously close to 1 through-
out. Even more disturbingly, the sensitivity � declines
very slowly when more frames are added (the camera
moved forward by about 8 cm during the 360 frames),
and the noise factor 
 increases. The increase of the
noise factor 
 may be counterintuitive at �rst, but is
due to the fact that new frames often add more noise
than novel shape information.

7. Future Work

Having a system that reconstructs shape and motion
from image sequences in real time makes it possible
for us to run many experiments with little e�ort, and
at the same time forces us to consider the real di�cul-
ties that a satisfactory solution to the reconstruction
problem must overcome.

Our experimental results suggest that reconstruction
is indeed possible with su�cient accuracy at least for
navigation and as a guidance to manipulation. Sensi-
tivity to image noise is by far the dominant problem in
reconstruction. In this paper, we have started explor-
ing the issues related to sensitivity in a neighborhood

of the solution. These issues are best understood by
looking at the singular value of the matrix T that col-
lects the tangents of the angles between pairs of pro-
jection rays. For good reconstruction, the �eld of view
must be wide enough and the camera must move by
a su�ciently large amount; image measurements must
be accurate (good calibration) and precise (low noise);
the formulation of the problem must be in terms of a
minimal number of parameters (camera and feature
positions, but no camera rotation); and the algorithm
must be numerically sound.

The two limitations of our reconstruction method that
require most immediate attention are its dependence
on three reference features throughout the sequence
and the fact that a�ne shape is computed one quadru-
ple of points at a time. The �nal iterative re�ne-
ment stage addresses the latter problem, because it
combines all the measurements into one minimiza-
tion procedure, but more elegant and e�cient solu-
tions may be possible. Also, the extension to recon-
struction to three dimensions is mathematically far
from straightforward, and the computation requires
more time or resources than in two dimensions. How-
ever, the sensitivity of the problem should, if anything,
improve, because the ratio of unknowns to measure-
ments is reduced by a factor of 3=4 fromapproximately
2(P+F)/PF to 3(P+F)/2PF, where P is the number
of points and F is the number of frames. In conclu-
sion, the results are auspicious and encourage us to
continue our investigation of solutions of the recon-
struction problem.
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