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1 Introduction

Structure-from-motion is the problem of recov-
ering the motion of a camera and the shape of
objects in front of it from the images that the
camera produces. If vision is to compute a rep-
resentation of the world from images, structure-
from-motion is undeniably a central problem. Yet
decades of research have shown that this compu-
tation is very sensitive to errors in image mea-
surements, both random and systematic. The
time has come to assess this sensitivity quantita-
tively. Is the problem so bad that only extremely
controlled experiments with carefully calibrated,
high-quality equipment can yield acceptable re-
constructions of the world's geometry? Or can
we hope to devise methods that extract useful
three-dimensional information from the images
produced by an o�-the-shelf camera in a wide ar-
ray of imaging scenarios? It may seem surprising
that no clear and complete answer to this ques-
tion is known yet. After all, if structure-from-
motion is a hopeless endeavor, hundred of man-
years are being wasted. Conversely, if solutions
are practically feasible, only a good understand-
ing of what can and cannot be computed reliably
is likely to lead to success.
Presumably, there are two main reasons why a

systematic sensitivity analysis of structure-from-
motion has not been done yet. One is that the
function to be analyzed, which takes image mea-
surements as inputs and produces structure and
camera motion as outputs, is not explicitly avail-
able. Reconstruction methods exist, but they
di�er in important ways, so selecting a partic-
ular method severely limits the generality of any
conclusion that is drawn from its analysis. The
other reason is that if sensitivity is expressed as
a Jacobian of the ouput versus the input of the
reconstruction process, this very large matrix of
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numbers is by itself uninspiring and needs inter-
pretation, a less than straightforward task.

The main contribution of this paper is a frame-
work for the sensitivity analysis of structure-
from-motion that addresses both these di�cul-
ties. Although not available directly, the recon-
struction function is completely speci�ed by the
formulation of structure-from-motion as a least
squares problem. Implicit di�erentiation then
leads to the desired Jacobian. The interpretation
of the latter is made possible by the Singular-
Value Decomposition (SVD) which exposes the
structure of the matrix in a way that lends itself
directly to geometric interpretation.

Of course, a sensitivity analysis is not the whole
answer. Algorithms can fail because of outliers in
the data or because of convergence to local min-
ima, whether inherent in the function to be mini-
mized or produced by a particular reconstruction
method. Consequently, only an actual working
reconstruction system will eventually prove feasi-
bility. While sensitivity analysis gives, in a sense,
an expected lower bound on the structure and
motion errors that one can hope to attain for a
given image quality, actual experiments with spe-
ci�c algorithms provide upper bounds. However,
experiments with image sequences can be expen-
sive in terms of setup, computation, and analy-
sis. In fact, processing a whole sequence of images
provides but one data point in the large space of
experimental parameters. To address this di�-
culty, we have developed a method that recon-
structs structure and motion in Flatland, that is,
in a two-dimensional slice of the world, using sin-
gle image scanlines as its input. The input is
small enough that the method works in real time
on a workstation. Yet the sensitivity issues are
not trivialized relative to the three-dimensional
case. In fact, a simple equation counting argu-
ment shows that the data constrain the solution
better in three than in two dimensions. If we
understand the sensitivity issues in Flatland, we



have a good handle on their three-dimensional
counterpart as well.
The remainder of this paper describes this two-

prong approach to understanding the sensitivity
of structure-from-motion. In section 2, we de-
scribe our real-time system and what we have
learned from our experiments. Then, in section
3, we show how structure-from-motion can be an-
alyzed without explicit reference to a speci�c re-
construction method. Section 4 discusses impli-
cations and future work.

2 A Real-Time System for

Experimentation

The theory and full implementation details of our
real-time strcture-from-motion system in Flat-
land are explained in [9]. Here we �rst sketch the
main steps of the computation. We then show
how we have been using our system, and we sum-
marize some of the lessons we have learned from
our experiments in terms of sensitivity.

2.1 Image Measurements

Suppose that the camera and the world points all
live in a two-dimensional world. Point 0 serves
as the origin of the global reference system. For
every frame f = 1; : : : ; F the camera records the
tangents tfp of the angles formed by the projec-
tion ray of the feature points 1; : : : ; P with that
of feature point 0, so with P + 1 feature points
there are P tangents per frame. The tangent tfp
can be found by simple geometry to be (see also
[7])

tfp =
ufzp �wfxp

1� ufxp �wf zp
(1)

where sp = (xp; zp)
T is the position of feature

number p in the world and

kf =

�
uf
wf

�
= mf=jmf j

2 (2)

is the vector obtained by re
ecting the camera
coordinatesmf across the unit circle. This re
ec-
tion is introduced to make equation (1) bilinear
in motion and shape.
The FP measurements t11; : : : ; tFP can be col-

lected into an F � P matrix T . Each row repre-
sents one snapshot, and each column is the evo-
lution of one tangent over time. If the re
ected
camera coordinates uf ; wf and the shape coor-
dinates xp; zp are collected in a F � 2 re
ected-
motionmatrix and a 2�P shape matrix, equation

(1) can be rewritten in matrix form for the entire
sequence as follows:

T = �(K;S) (3)

where the projection function � operates on the
f-th row of K and on the p-th column of S to
produce entry tfp of T according to equation (1).
The reconstruction method described in [9] solves
the matrix equation (3) for shape S and re
ected
motionK in a series of steps, each of which either
solves a linear system or takes a ratio of scalars.
Initial estimates of shape are re�ned and the new
camera coordinates are computed every time a
new image becomes available. Here are, in sum-
mary the steps of the computation:

1. Find shape Ŝ up to an a�ne transforma-
tion for each quadruple of points with sub-
scripts (0; 1; 2; p) where p ranges from 3 to
P . Points 0; 1; 2 establish a common a�ne
reference system for all the quadruples.

2. Compute Euclidean shape S by determining
a 2� 2 matrix A such that

S = AŜ : (4)

3. Compute the matrix K of re
ected camera
positions from equation (3).

4. Determine the matrixM of camera positions
by re
ecting the rows of K back across the
unit circle through the inverse of transforma-
tion (2),

mf = kf=jkf j
2 : (5)

It turns out that the critical step for the un-
derstanding of the sensitivity of the computation
is the �rst one. In this step, the scalar projection
equation (1) is repeated three times for points
1; 2; p, so the re
ected camera coordinates uf ; wf

can be eliminated to yield the following homoge-
neous linear equation (see [7] for details)

a
(p)
1 tf1(tf2 � tfp) + a

(p)
2 tfp(tf2 � tf1)

+ a
(p)
3 tf1(1 + tf2tfp) + a

(p)
4 tf2(1 + tf1tfp)

+ a
(p)
5 tfp(1 + tf1tf2) = 0 :

where

a
(p)
1 = �xp(x1 � x2)� zp(z1 � z2)

a
(p)
2 = �x1(x2 � xp)� z1(z2 � zp)

a
(p)
3 = �x2zp + z2xp (6)

a
(p)
4 = x1zp � z1xp

a
(p)
5 = �x1z2 + z1x2 :



Writing this equation once for every frame f =
1; : : : ; F yields an F � 5 homogeneous linear sys-

tem in a
(p)
1 ; : : : ; a

(p)
5 :

Ha(p) = 0 : (7)

An F � 5 homogeneous system of the form (7)
is solved for every point p = 3; : : : ; P . In sec-
tion 2.3 below we show that matrix H is the key
to understanding the sensitivity of this particular
reconstruction method.

2.2 Experimental Setup

In our experiments, we use a Pulnix CCD cam-
era with a 6:6�8:8 mm sensor and a high quality
Schneider Cinegon f1.8/4.8mm lens. Because of
the wide �eld of view (105 degrees along the di-
agonal), distortion is unavoidable. We calibrate
it away by the procedure described in [1]. Frames
are acquired by a Digital J300 frame grabber that
interfaces directly with the TurboChannel bus of
a Digital Alpha 600 workstation. Features are
tracked by a one-dimensional version of the sys-
tem described in [5] at a rate of about one feature
per frame per millisecond. Feature selection at
this point requires user interaction and the cam-
era is required to remain still until the selection is
completed. In our experiments, either the camera
or the object is moved by sliding it on a table.
Although the tracker updates image feature

coordinates at every frame, shape computation
waits until the changes in these coordinates are
large enough to warrant incorporating a new set
of input data. To check for this event, we �rst
monitor the RMS displacement of all the fea-
tures in the scanline. Once this measure has ex-
ceeded one pixel, a new row of the matrix T of
angle tangents (equation (3)) is computed, and
its RMS variation with respect to the previous
row used for reconstruction is checked against an-
other threshold (0:005 radians in our implemen-
tation). Only when this threshold is exceeded is
the most recent frame passed to the reconstruc-
tion algorithm. Consequently, the more expensive
part of the computation is performed only rather
occasionally for a slowly moving camera. In sum-
mary, all the frames produced by the camera are
tracked, but only a few of them, called signi�cant

frames, are used for reconstruction. These signi�-
cant frames are displayed on the computer screen
as the object or the camera are moved. The shape
and motion results are also redisplayed whenever
they are updated.
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Figure 1: (a) Noise factor 
 and (b) sensitivity �
as a function of \signi�cant frame" number for a
forward moving camera.

2.3 Sensitivity Considerations

Sensitivity to noise is the dominant issue in the
reconstruction problem. For meaningful results,
the �eld of view of the camera must be wide
enough [4], [3], motion must be su�ciently ex-
tended around the object [8], and image mea-
surements must be both su�ciently accurate (low
bias) and precise (low standard deviation).

From a numerical standpoint, since the homo-
geneous F � 5 system (7) is expected to have ex-
actly one a�ne shape solution with perfect data
and nontrivial motion, its matrix H should be of
rank 4. Of its singular values �1 � : : : � �5,
�4 should be nonzero and �5 should be zero. In
reality, noise increases �5, and closeness to degen-
erate shape or motion decreases �4. For instance,
if the camera does not move, all the rows ofH are
ideally equal, andH is rank 1: �2 = : : : = �5 = 0.



Also, when the camera's �eld of view approaches
zero width (telephoto lens) the rank of H tends
to 3: �4 = �5 = 0 [7]. Yet reconstruction under
perspective requires a stable, substantial gap be-
tween the last two singular values, leading to a
low noise factor


 =
�5
�4

� 1

and a good conditioning of the rank-4 part of the
system, leading to a low sensitivity factor

� = 1�
�4
�1

� 1

(the condition number is usually de�ned as �1=�4;
we prefer � because it remains between 0 and 1;
� = 0 is ideal). These two conditions can be opti-
mized by proper setup (�) and good image mea-
surements (
). Figures 1 (a) and (b) show the two
parameters 
 and � for a typical point quadruple
seen by a forward-moving camera. The object
is initially 25 cm away, and the four points span
about 15 degrees of the �eld of view. These plots
show the di�culty of the problem. While noise
is relatively under control (
 < 0:2), the sensi-
tivity factor � is dangerously close to 1 through-
out. Furthermore, the sensitivity � declines very
slowly when more frames are added (the camera
moved forward by about 8 cm during the 360
frames), and the noise factor 
 increases. The
increase of 
 may be counterintuitive at �rst, but
is due to the fact that new frames often add more
noise than new shape information.
In summary, our system for reconstructing

shape and motion from image sequences in real
time makes it possible for us to run many exper-
iments with little e�ort, and at the same time
forces us to consider the real di�culties of the
problem. Our experiments suggest that recon-
struction is indeed possible with su�cient accu-
racy at least for navigation and as a guidance to
manipulation. Sensitivity to image noise is by far
the dominant problem in reconstruction, and can
be understood by looking at the singular values
of the matrix H that appears in the system that
solves for a�ne shape. For good results, the �eld
of view must be wide enough and the cameramust
move by a su�ciently large amount; image mea-
surements must be accurate (good calibration)
and precise (low noise); the formulation of the
problem must be in terms of a minimal number
of parameters (camera and feature positions, but
no camera rotation); and the algorithms must be
numerically sound.

The extension of reconstruction to three di-
mensions is mathematically far from straightfor-
ward, and the computation requires more time
or resources than in two dimensions. However,
the sensitivity of the problem should, if anything,
improve, because the ratio of unknowns to mea-
surements is reduced by a factor of 3=4 from ap-
proximately 2(P+F)/PF to 3(P+F)/2PF, where
P is the number of points and F is the number
of frames.

3 Sensitivity Analysis of

Structure-From-Motion

The successful experiments reported in the previ-
ous section and in [9] imply that structure-from-
motion is not out of reach. However, the qual-
ity of the results is still far from optimal. When
objects are moved away from the camera, perfor-
mance degrades quickly because image parallax is
reduced and becomes comparable to image noise
and the residual lens distortion. When they are
moved too close to the camera, performance de-
grades because of unmodeled near-�eld lens dis-
tortion e�ects. In brief, the system is still rather
sensitive to errors in the image measurements. In
this section, we show how this sensitivity can be
understood without making reference to a partic-
ular reconstruction system.
The most important point is that sensitivity is

a property of the problem. Sensitivity does not de-
pend on the solution algorithm, although a poor
algorithm may add its own problems, and does
not depend on noise, although sensitivity to noise
is what is being measured. In fact, sensitivity ex-
presses a ratio of output noise per amount of input
noise, assuming that input noise is small. Conse-
quently, sensitivity analysis techniques should ex-
ist that depend neither on a particular algorithm
nor on a noise generator. Doing away with these
two factors has important advantages. First, sen-
sitivity is a local property of a problem, but an
actual algorithm operates in the global space of
all solutions. If an actual algorithm is used, the
suspicion lingers that some of the poorer results
may depend on a failure of that algorithm to con-
verge to the correct minimum. Second, using a
noise generator makes it necessary to compute
averages of performance, leading to potentially
long running times, and to the question of how
small noise really should be in the simulations,
given that sensitivity is a local property. Further-
more, since in these noise-based studies sensitiv-



ity is measured by collecting scatter statistics, the
results do depend on the statistics of noise which,
in principle, they should not do.
In this section, the main issues involved in

sensitivity analysis are identi�ed, and a gen-
eral methodology is developed. In structure-
from-motion, the projection relation from un-
knowns to measurements is simple, but the re-
verse reconstruction relation from measurements
to unknowns is hard to determine and sensitive
to noise. Furthermore, reconstruction problems
share with many other problems in vision and
physics the property that they depend on many
parameters, thereby bringing forth important is-
sues of data visualization and summarization. In
fact, the latter are perhaps the most important
challenges to address if sensitivity analysis is to
be of any use.
In the following, the basic structure of a re-

construction problem is identi�ed. Then, func-
tion minimization is introduced as the prototypi-
cal method for inverting the projection equations.
Minimization is, in a sense, the conceptual \so-
lution method" for any reconstruction problem.
After that, sensitivity is de�ned and related to
the parameters of the minimization method, and
a general sensitivity analysis method is outlined.

3.1 Reconstruction

In all reconstruction problems, the set of image
measurements is written as a function of motion
and structure parameters. Image measurements
can be point feature coordinates, their velocities,
a vector �eld, sometimes raw image intensities
as in [3], and can come from one, two, or more
images. Motion, on the other hand, can be rep-
resented by translation and rotation, or by the
corresponding velocities. Structure can be repre-
sented as depth or shape, in viewer-centered or
object-centered coordinates. Whatever the par-
ticular case, however, the structure of the prob-
lem is the same, and can be represented by the
following generic notation:

u = p(m; s)

where u represents image measurements, m and
s represent motion and shape, respectively, and p
is the projection function. In discrete problems,
u;m; s are vectors of real numbers. In continuous
problems, u and s are functions of two variables
and m is a function of one variable (essentially
time).

Because reconstruction is sensitive to image
measurement errors, it should be posed as a min-
imization problem. To this end, the residue

r(u;m; s) = u� p(m; s) (8)

is de�ned and either the sum or the integral of
krk2 is minimized over all possible choices of m
and s, depending on whether a discrete or a con-
tinuous formulation of the problem is being used.
Here, we restrict our approach to a discrete, least
squares formulation, so the double vertical bars
represent the standard Euclidean norm. The min-
imization may be constrained by some require-
ment on the solution. Because absolute size can-
not be inferred from images alone, camera trans-
lation is often normalized in some way.

3.2 Sensitivity

For the time being, it is not necessary to draw a
distinction between motion and shape variables.
We will therefore introduce the world vector

w
�
= [m; s] (9)

of motion and shape combined. Let q be the num-
ber of entries of w. The projection equations are
now represented by

u = p(w) (10)

and we look for the1

min
w

e(u;w) =
1

n

nX
i=1

kri(u;w)k2

=
1

n
rT (u;w)r(u;w) :

If there are hmeasurements per image point (typ-
ically h = 1 or 2), the residue vector ri has
h components, which are stacked into the hn-
component vector r.
A necessary condition for w to be a minimum

is that the partial derivatives of e with respect to
w vanish:

g(u;w)
�
=

@e

@w
= 0 : (11)

For sensitivity analysis, the distinction between
a generic stationary point and the global mini-
mum is irrelevant: since we know the solution,
we need not search for it. The system of equa-
tions g(u;w) = 0 is called the system of normal

equations for the reconstruction problem.

1Parentheses denote functional dependency.



Sensitivity analysis addresses the following
question: How does the solution w change as a
result of small variations in the image measure-
ments u? In other words, we consider the normal
equations as implicitly de�ning a transformation

w = f (u) (12)

and seek to characterize the derivatives of w with
respect to u, that is, we look for the Jacobian
of f . Notice that equation (12) is, conceptually,
the inverse of the projection equation (10). For
this reason, we call equation (12) the reconstruc-
tion equation. The Jacobian of the reconstruc-
tion function f can be found from the partial
derivatives of g through the implicit function the-
orem [6]. The derivatives of g can then be writ-
ten in terms of those of the projection function
p thanks to equation (11). These two steps are
carried out in the Appendix. The �nal result is

that the Jacobian Jf = @f
@uT of f is the solution

of the linear system

�
JTpJp

�
Jf = JTp (13)

where Jp = @p
@wT is the Jacobian of the projection

function.
The term in parentheses turns out to be the

Hessian matrix of the total error function e(u;w)
with respect to w at the solution point of the
reconstruction problem. If this Hessian happens
to be invertible, that is, if the Jacobian Jp of the
projection function p has full rank, then equation

(13) can be multiplied by
�
JTpJp

�
�1

from the

left and by Jp from the right to obtain the new
equation

JfJp = Iq (14)

where Iq is the q � q identity matrix. Therefore,
if the Hessian is invertible, the Jacobian of the
reconstruction function f is the left pseudoinverse
of the Jacobian of the projection function p.

3.3 Interpretation of the Jacobian

In this section, we show an example of the sen-
sitivity analysis outlined above. The main point
here is to show how the Jacobian can be inter-
preted. Interpretation is not a trivial matter,
as there are important issues related to choosing
a reference system in which comparing di�erent
variables becomes meaningful. This problem also
includes choosing an appropriate scaling of all the
variables.

The most obvious di�culty stems from the fact
that some variables are incommensurable. Most
notably, rotations on one hand and translations
and point coordinates on the other cannot be
compared directly. From an abstract point of
view, two approaches to this issue appear pos-
sible. We either �nd a way to scale variables so
they become somehow comparable, or we avoid
comparisons altogether.
The �rst option, scaling variables into a com-

mon frame, could be realized by considering rela-
tive sensitivities instead of absolute ones. In this
approach, both image and world variables are di-
vided by their typical values, represented by suit-
able individual or cumulative averages. Compar-
ison are now possible, because all quantities are
dimensionless. However, relative sensitivities are
not too useful. Often, a rotation error of, say,
one degree is equally signi�cant whether it a�ects
a zero-degree rotation or a sixty-degree rotation.
Similarly, an uncertainty of one pixel on an im-
age coordinate can be achieved with similar e�ort
(after lens calibration) at the center and at the
periphery of the �eld of view. In brief, absolute
sensitivities are really what we are after.
Another method for scaling variables is to mul-

tiply them by coe�cients that make the columns
of the projection Jacobian equal in norm (this is
called column scaling, see for instance [2]). This,
however, merely makes all absolute sensitivities
similar to each other, without altering the nature
of the problem. One would still have to determine
whether a sensitivity of, say, one rotation unit is
more or less than a sensitivity of one translation
unit: quantities are still incommensurable.
A third scaling scheme is to compare camera ro-

tations and translations by their e�ects on the im-
age. A given camera rotation moves image points
of a given scene by a certain amount, measured,
say, by the average motion of all the image points.
The average motion of image points caused by
a camera translation can now be compared with
that produced by the rotation in homogeneous
units. In other words, the existence of a viewer,
and the fact that we are interested in the relation
between images and the world, induces an inher-
ent metric for the comparison of rotations and
translations: rotations and translations are com-
pared in terms of their perceptual importance.
Whether this comparison is useful, however,

depends on the application. For a general analy-
sis, the less committal approach of avoiding com-
parisons when they are not possible is both con-
ceptually simpler and more general. We propose



Figure 2: Eight camera positions (crosses) and
eleven points in the world (dots). As the camera
moves laterally, it �xates one of the points.

to analyze each of shape, translation, and rotation
independently, and in terms of their absolute sen-
sitivities. Comparisons between di�erent types
of quantities can be made a posteriori, once the
accuracy requirements of a given application are
known. To illustrate, consider a camera moving
laterally while observing a cloud of points. Fig-
ure 2 shows this scenario. There are eight camera
positions and eleven feature points.
The z axis connects the centroid of the world

feature points with the centroid of the camera po-
sitions. This choice makes z essentially equal to
the camera-to-scene distance. The x axis is along
the cameramotion, and x; y; z are an orthonormal
reference system. Projection equations are writ-
ten for this scenario, and the derivative of each
image coordinate is computed analytically with
respect to each world variable. Eight images of
eleven points yield 11� 8 � 2 = 176 image coor-
dinates. Of the world parameters, 11 � 3 = 33
coordinates specify the positions of the points in
space, while 8 � 6 = 48 rotation and translation
parameters specify the camera positions, for a to-
tal of 33 + 48 = 81 world parameters. This leads
to a 176� 81 projection Jacobian Jp. This Jaco-
bian, however, is singular because the image mea-
surements determine the world parameters only
up to an overall scale factor, a rotation, and a
translation. To remove this degeneracy, one of
the eleven points in space is made to coincide with
the origin, and one with point [1; 0; 0]T . A third
point is forced to have a y coordinate of zero. The
columns of Jp corresponding to these seven �xed
components are then removed, leaving a full-rank
176 � 74 Jacobian. Image coordinates are listed

in the 176-dimensional vector

u = [u11; v11 : : :u1;11; v1;11 : : :

: : :u81; v81 : : :u8;11; v8;11]
T

where the �rst subscript denotes the frame num-
ber and the second the feature number. The
world parameters are in the 74-dimensional vec-
tor

w = [s; t; r]T

where shape is represented by the 33 � 7 = 26
components of

s = [x3; z3; x4; y4; z4 : : : x11; y11; z11]
T ;

translation is the 24-dimensional vector

t = [tx1; ty1; tz1 : : : tx8; ty8; tz8] ;

and rotation is represented by the 24 entries of

r = [r�1; r�1; r
1 : : : r�8; r�8; r
8] ;

which represent the eight camera rotations with
quantities similar to Euler angles. Correspond-
ingly, the Jacobian Jp of the projection function
can be partitioned into three Jacobians

Jp =
�
Js j Jt j Jr

�
:

Inverting these Jacobians would not lead to re-
liable results. In fact, these Jacobians are very
poorly conditioned, a direct consequence of the
high sensitivity of the reconstruction problem to
image perturbations. The part of each Jacobian
that can be inverted reliably is revealed by taking
its Singular Value Decomposition (SVD). Figure
3 shows the singular values of Js, Jt, and Jr.
In each plot, there are several large singular val-

ues, a clear gap, and several singular values that
are much smaller. The magnitudes of the entries
of the corresponding right singular vector matri-
ces, shown in �gure 4, show which components
correspond to the large and to the small singular
values, respectively. Each column of a right singu-
lar vector matrix corresponds to a singular value,
and each row corresponds to an entry of s, t, or r.
For instance, �gure 4 (a) shows that the 18 larger
singular values correspond to the x and y compo-
nents of shape, while the last eight columns of the
right singular vector matrix have nonzero entries
essentially in correspondence with the z compo-
nents. Since in the inverse Jacobians the sizes of
the singular values are inverted, this means that
the z component of shape (approximately along
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Figure 3: The singular values of (a) the shape Ja-
cobian Js, (b) the translation Jacobian Jt, and (c)
the rotation Jacobian Jr of the projection func-
tion.

the optical axes) can be reconstructed with an ac-
curacy that is about 17 times worse than for the
x and y components. Similar conclusions can be
drawn for �gures 4 (b) and 4 (c).

These results stand to reason. In fact, they
show that in this scenario depth and translation
along the optical axis can be recovered only with
much less accuracy than the other parameters,
because of the relatively large distance between
scene and cameras. Also, and for the same rea-
son, a rotation around the optical axis can be
determined with accuracy about 24 times worse
than a rotation around axes parallel to the image
plane.
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Figure 4: The right singular vectors of (a) the
shape Jacobian Js, (b) the translation Jacobian
Jt, and (c) the rotation Jacobian Jr of the projec-
tion function. Singular vectors are columns, and
large entries are dark.

4 Conclusion

Successful experiments are always the de�nitive
proof that structure-from-motion is feasible. Our
preliminary experiments in Flatland show that
reconstruction is indeed possible. In addition,
they show how explicit attention to sensitivity
from the very beginning of the design pays o�
in the end. The matrix formulation of the input
to our reconstruction method provides an inter-
esting handle for understanding sensitivity issues,
as we have demonstrated by our arguments re-
garding singular values of the matrix H in equa-
tion (7). However, the performance of our system



depends critically on geometric factors like the
shape to be recovered and its distance from the
camera; on camera calibration; and on the quality
of image measurements. Consequently, we do not
propose this system as a tool to use directly in the
applications, but as a vehicle for investigation of
a particular approach to structure-from-motion.
In order to solve structure-from-motion well we

must �rst understand the sensitivity of the prob-
lem itself. In this paper, we have presented a
framework for this task which we claim is supe-
rior to the traditional approach of simulation of
noisy images. In fact, our approch is not tied
to any particular solution algorithm nor to a par-
ticular noise model. Computing derivatives of the
reconstruction function, which is only de�ned im-
plicitly by the optimization criterion, was possible
thanks to the implicit function theorem, a mathe-
matical result of deep importance in the analysis
of the sensitivity of inverse problems. Again, a
matrix proved to be the central element of our
analysis. Also, the SVD turned out once more to
be the ideal mathematical tool for understand-
ing the structure of the matrix. Our framework
needs to be 
eshed out, and scaling issues must
be addressed in more detail. Most importantly,
the theoretical results from our analysis must be
compared with results from experiments. All the
tools, however, are now in place. We hope that
our investigation will soon produce a satisfactory
and useful analysis of the sensitivity of structure
from motion, and that this analysis will in turn
generate useful and reliable algorithms.

A The Jacobian of the Re-

construction Function

In this Appendix, we derive the fundamental
equation (13) for the Jacobian of the reconstruc-
tion function f . To write the computations com-
pactly, we introduce the following matrix nota-
tion for derivatives. Only the following types of
derivatives are allowed: derivatives of a scalar
with respect to a vector or a matrix, or vice versa;
and derivatives of a row vector with respect to a
column vector, or vice versa. The meaning of
these derivatives is that of either a vector or a
matrix, with the following rules. Let A(r; s) be
an r � s matrix (possibly with r = 1 or s = 1, or
both). Then,

@A(r; s)

@A(1; 1)
=

h
@Aij

@A11

i

@A(1; 1)

@A(r; s)
=

h
@A11

@Aij

i

@A(1; s)

@B(r; 1)
=

h
@Aj

@Bi

i

@A(r; 1)

@B(1; s)
=

h
@Ai

@Bj

i

where i is the row index and j is the column index.
By replacing the reconstruction function (12)

into the normal equations (11), we obtain the new
equation


(u) = g(u; f (u)) = 0 (15)

where only image measurements appear as vari-
ables. From the implicit function theorem (see
for instance [6]) we obtain

@g

@uT
+

@g

@wT

@f

@uT
= 0 : (16)

Because all quantities involved are vectors, this is
a matrix equation. The function g has q compo-
nents, because it gathers the partial derivatives
of the error e with respect to the q components
of the world vector w (see equation (11)). Since
there are hn scalar image measurements in the
measurement vector u, the matrix @g

@uT is q�hn.

For similar reasons, @g
@wT is q � q. Finally, the

reconstruction function f has one component for
each of the q entries in the world vector (see equa-

tion (12)), so that @f
@uT is a q � hn matrix.

Equation (16) expresses the Jacobian @f
@uT of

the implicit function f as the solution to a linear
equation whose coe�cients are derivatives of g.
We now compute the sensitivity matrix, that is,
the Jacobian of the reconstruction function f , by
writing the derivatives of the normal function g in
terms of those of the projection function p. This
manipulation pays o�, since it leads to simpli�ca-
tions. In fact, although the �rst derivatives of g
are combinations of �rst and second order deriva-
tives of p, the terms that contain second order
derivatives vanish at the solution of the recon-
struction problem, leaving only �rst order deriva-
tives to compute.
To see this, consider the total error

e(u;w) =
1

n
rT (u;w)r(u;w)

where the residue vector r is (see equation (8))

r(u;w) = u� p(w) :

The derivatives of e(u;w) with respect to the
world vector w are

@e

@wT
= �

2

n
rT

@p

@wT



and the second derivatives can be collected in the
q � q Hessian matrix of the residue e:

@2e

@w@wT
=

2

n

�
@pT

@w

@p

@wT
� rT

@2p

@w@wT

�
:

(17)
Although the general expression of the Hessian

of e is given by equation (17), we are only inter-
ested in the Hessian at the solution points, that
is, where w = f (u). At these points, the residue
r vanishes, and

@2e

@w@wT
=

2

n

@pT

@w

@p

@wT
; (18)

which simpli�es the computation of derivatives
considerably. A similar argument holds for the
derivatives @g

@uT that appear in equation (16), for
which we obtain

@g

@uT
=

@2e

@uT@w
=

@

@uT

�
�
2

n

@pT

@w
r

�

= �
2

n

�
@2pT

@uT@w
r�

@pT

@w

�

since
@r

@uT
=

@u

@uT

is the identity matrix. At solution points, this
general expression simpli�es to the following,
since r vanishes there:

@g

@uT
=

@2e

@uT@w
= �

2

n

@pT

@w
: (19)

By replacing the expressions (18) and (19) into

equation (16) with Jf =
@f
@uT and Jp =

@p
@wT we

obtain the equation (13) for the Jacobian of the
reconstruction function f .
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