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Stereo Matching as a
Nearest-Neighbor Problem

Carlo Tomasi, Member, IEEE, and Roberto Manduchi

Abstract—We propose a representation of images, called intrinsic
curves, that transforms stereo matching from a search problem into a
nearest-neighbor problem. Intrinsic curves are the paths that a set of
local image descriptors trace as an image scanline is traversed from
left to right. Intrinsic curves are ideally invariant with respect to
disparity. Stereo correspondence then becomes a trivial lookup
problem in the ideal case. We also show how to use intrinsic curves to
match real images in the presence of noise, brightness bias, contrast
fluctuations, moderate geometric distortion, image ambiguity, and
occlusions. In this case, matching becomes a nearest-neighbor
problem, even for very large disparity values.

Index Terms—Stereo vision, stereo matching, correspondence
problem, disparity, ambiguity, occlusions, search, nearest-neighbor
search, dynamic programming.

1 INTRODUCTION

STEREO correspondence is traditionally associated with search: For
every point in the left image, the right image is searched for a
similar point. In this paper, we show that search is not inherent in
the correspondence problem. Instead, matching becomes a nearest-
neighbor problem. The way out of search is associative memory,
and essentially inverts the way images are represented. Rather
than storing image intensities by their position in the image, the
usual array I(x), we can store image positions by their appearance:
in a sense, x(I). Then, image points that look similar are stored in
the same place. If both images are stored in the same memory,
correspondences are trivially established, because corresponding
points share the same memory locations. Occlusions are also easily
found as points that live alone in some location. There are two
problems with this scheme. Different image points can look the
same, so memory locations can be crowded; and corresponding
points in the two images can look different, so that points that
ought to go in the same memory location do not.

We address the first problem by analyzing possible changes
between corresponding scanlines, so we know where to look next
if a memory location is missing a point. The second problem is
addressed by a twofold strategy. First, it is reduced by encoding
image appearance with richer descriptors than image intensity:
Each image location is described by a vector of parameters. Sec-
ond, the resolution of the remaining ambiguity is made easier by
preserving contiguity information with the descriptors. Consider
traversing a scanline in one of the two images. The vector of de-
scriptors traces a curve in some space, and points that are nearby
in the scanline are also nearby in the representation. Contiguity
then helps selecting among similar match candidates: When two
points look similar, we look around them and match entire curve
segments at once, rather than isolated points.

To illustrate our approach, here is one simple version of what
we call an intrinsic curve for, say, the left scanline in row 68 of the
image in Fig. 1. A low-pass filtered version of the image intensity
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g. 1. Testimage “Trees” from SR, frame 1.

I(x) and its derivative I'(x) are computed everywhere (solid lines in
Fig. 2b and Fig. 2¢c) and are plotted against each other (solid lines
in Fig. 3a and Fig. 3b). When plotting I’ versus I, we lose track of
space, that is, of the coordinate x which merely parameterizes the
curve I’(l). This parameter is stored for later use, but it plays no
role in the shape of the curve. If I(x) is replaced by a shifted replica
r(x) = I(x + d), the curve of Fig. 3b remains the same. The dashed
curves in Fig. 2 and Fig. 3 show the construction of the intrinsic
curve for the scanline r(x) taken from a different viewing position.

More general geometric transformations between I and r, and
photometric distorsions on the range of the two signals, can de-
form an intrinsic curve. In the next section, we present a theory of
intrinsic curves, and study the effect of geometric and photometric
distorsions. Because of these distortions, matches are nearest
neighbors in the space of descriptors. Our proposed metric in this
space, an algorithm for the nearest-neighbor computation, and a
dynamic programming technique for global optimization are de-
scribed in Section 3 and tested on real stereo pairs.

2 INTRINSIC CURVES: THEORY

An efficient procedure for matching two signals is to compare
vectorial descriptions of their local intensity variations [3], [4], [5].
In this section, we define intrinsic curves more generally. We also
identify the geometric mappings

r(x) = l(ox)) @
between the two images that are compatible with any particular
way to build intrinsic curves, in the sense that they leave the
curves unaltered. Finally, we investigate geometrical and topologi-
cal properties of intrinsic curves.

DEFINITION. An intrinsic curve: Suppose that the N operators Py, ..., Py
are applied to the signal I(x) to produce the new signals
Pu(x) = [Pul](x)
forn=1, ..., N. The vector
p() = (p1(x), ..., pn(x)) @
describes a curve C in R" parameterized by the real variable x:
C={p(x), x € R). ®)

C is called the intrinsic curve generated by I(x) through the op-
erators Py, ..., Py.
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Fig. 2. Scanline 68 from the image of Fig. 1, pixels 40-60 (solid line: frame 1; dashed line: frame 2). (a) Intensity. (b) Its low-pass filtered version.

(c) Its derivative.

2.1 Compatible Mappings

Any reparameterization x — o(x) of C leaves C unchanged. How-
ever, reparameterizing /(x) to /(c(x)) can, in general, modify C. For
instance, if

and

pa(x) = 1(x) pa(x) = I'(x),
where the prime denotes differentiation, the new components of C
after the change x — a(x) become

Pr(x) = l{e(x)) and Fy(x) = o' (x)V"(ex(x))

so that P(x) traces a new curve that is modulated by o/(x) in its
second component.

DEFINITION. A compatible mapping: A mapping x — o(x) is said to
be compatible with the operators Py, ..., Py if, for every signal
I(x), the intrinsic curve generated by I(x) is equal to the intrinsic
curve generated by 1(ofx)).

The set of compatible mappings depends on the choice of the
operators Py, ..., Py. For instance, it is easy to verify that

* the constant displacements of(x) = x + d are compatible with
shift-invariant operators;

* the affine mappings of the form o(x) = ax + d are compatible
with the operators

\(n+1)/n

n+l

defined wherever Wl(x) £0;
x

 if the mapping x — a(x) is regarded as an operator A ap-
plied to I(x), that is, if

[Al](x) = I(edx)),
then o(x) is compatible with operators P;, ..
an operator D such that for every n,

P,A=DP,

where D is a diffeomorphism independent of n. Both previ-
ous examples are special cases of this general rule.

., Py if there is

Thus, intrinsic curves can be regarded as invariants with re-
spect to the set of compatible mappings, and provide a richer and
more general description than “classical” invariants such as func-
tion moments [6], [7], [8], [9], affine mappings [10], [11], [12], and
shift-invariant filters [3], [4], [13], [14], [15]. The fact that, in gen-
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Fig. 3. (a) Intrinsic curve formation: The signals of Fig. 2b and Fig. 2c are plotted against each other, forming a 3D curve whose projection on the

plane x = 0 is the intrinsic curve (b).
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Fig. 4. A signal sampled on a uniform grid (a) and on an nonuniform grid (c) induced by the uniform arc length sampling of the intrinsic curve (b).

eral, affine mappings are not compatible with shift-invariant
operators is, therefore, important and was also pointed out in [3].
In the remainder of this section, we assume that the mapping
ofx) is a diffeomorphism. In addition, we assume throughout
this paper that both the input signals I(x), r(x) and the operators
P, are continuous.

If the transformation between the left and right images were
just a mapping o(x) compatible with the operators Py, ..., Py, stereo
matching would be nearly trivial, because the two intrinsic curves
would coincide, and their parameterizations by x would yield the
correspondences.

In reality, the left and right images in a stereo pair are related in
a more complex way. First, the actual mapping ofx) is at best only
approximately compatible with any given set of intrinsic curve
operators. Second, photometric distortions ¢(/(x)) combine with
geometric distortions /(c(x)). Third, noise corrupts both I(x) and
r(x). Fourth, occlusions and specularities complicate matching.

In the next section, we analyze the properties of special in-
trinsic curves on the plane. Then, in Section 2.3, we analyze the
discrepancies between corresponding intrinsic curves from real
stereo pairs.

2.2 Properties of Intrinsic Curves
In this section, we concentrate on planar (N = 2) intrinsic curves with

pi(x) = [P1l](x) = l(x) and  p(x) = [Pal](x) = I'(x), @)
reminiscent of the phase space diagrams of systems theory [16]. The
following properties of intrinsic curves in the phase space are
proven in [24].

The intrinsic curve generated by I(x) is connected iff the first
derivative of I(x) is continuous. The curve is differentiable n times
iff I(x) is differentiable n + 1 times.

Intrinsic curves are traversed left to right in the upper half-
plane and right to left in the lower as one traverses the original
signal from left to right. Also, when crossing the axis of the abscis-
sas, the curve tangent forms an angle of + n/2 with it. If I(x) is zero
mean, its intrinsic curve loops around the origin.

Imagine traversing the image scanline I(x) from left to right at
constant speed in x. The corresponding point p in phase space then
moves along the intrinsic curve (I(x), I'(x)) at a velocity that de-
pends on the local behavior of I(x). The relationship between these
two traversal velocities is shown in Fig. 4. If, in turn, we sample
the curve with constant arc length period through spline interpo-
lation, we induce a nonuniform sampling of the signal, as shown
in Fig. 4c. Samples are denser where the signal busyness is higher,
less dense where the signal is flat. This is a very desirable property
for stereo matching, because matches are less robust where the
image is “flat.”

The trajectory p(x) may go through a point p, more than once
(self-intersect), when the local image description is the same at

more than one point x. Increasing the dimensionality of the local
description provides a richer representation (as long as the opera-
tors are independent), as noticed also in [3], [4]. This becomes ob-
vious with intrinsic curves. For example, with two operators the
intrinsic curves lie in a plane, and self-intersections are to be ex-
pected. With three operators, the curves live in a 3D space, where
intersections are less likely.

In more than two dimensions, we may consider intrinsic curves

Cin R" of the form p(x) = (l(x), I(x), 1”(x), ..., Z(N)(x)). The prop-

erties described above apply to the projection of C onto each plane
(I, 1), These definitions can be extended to negative values of
n as well by defining

l(")(x) = J.; J:n .A.JZl(xl)dxl

2.3 Deviations From the Ideal Case

dx_, for n < 0.

Intrinsic curves of corresponding scanlines /(x) and r(x) related by
a compatible mapping

r(x) = l(ofx)) ®)
are ideally identical. In reality, however, they can differ for the
reasons explained below.

2.3.1 Occlusions

When parts of I(x) or r(x) are occluded, a(x) is undefined. Occlu-
sions are studied in [18], [19], [4], [20], [21], [22]. With intrinsic
curves, an occlusion produces an arc of one curve that is not
matched in the other. Just before and just after the unmatched arc,
the curves are expected to coincide. See Fig. 5, where occlusions
stand out as “anomalous” arcs of one of the intrinsic curves. The
detection of occlusions seems easier in this setting, rather than in
the “natural” spatial domain of the signals.

2.3.2 Incompatible Mapping

The mapping o(x) may not be compatible with the operators P;, ..., Py.
For instance, affine transformations x — ax + d are not compati-
ble with the operator P[I](x) = (I(x), I'(x)). In fact, if G is the in-
trinsic curve generated by I(x), the intrinsic curve C, generated
by r(x) = l(ax + d) is

G ={(prap) : (pr, p2) € G}, (6)

a vertically scaled version of (. Affine transformations cause
problems also for correlation-based stereo systems [23].

2.3.3 Photometric Distortion and Noise

Brightness may vary between images. A simple model that
accounts for both geometric and photometric distortion is the
following:
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Fig. 5. Details of intensitites and intrinsic curves from the image of Fig. 1. (a) Intensity on scanline 92, pixels 18-38. The part of n(x) (dashed) from
pixel 23 to pixel 25 is not matched by /(x) (solid). (b) Intrinsic curves for (a). The arc of C, (dashed) between the two circled points is not matched in
C, (solid). (c) Intensity on scanline 95, pixels 74-94. The part of I(x) (solid) from pixel 79 to pixel 81 is not matched by r(x) (dashed). (d) Intrinsic
curves for (c). The arc of C; (solid) between the two circled points is not matched in C, (dashed).

r(x) = Al(ax + d) + B + n(x), 7)

where A and B represent the difference in contrast and brightness
between the two images, and are either constant or varying slowly
with respect to I(x). The term n(x) represents “noise,” that is, any
discrepancy independent of the signals. The terms a and d repre-
sent geometric distortion, and, in particular, d is the disparity we
are after.

We have observed empyrically that large geometric distortions
are less frequent than photometric distorsions, in accordance with
the results in [1]. Consequently, the terms A and B in our model
dominate, and we can, therefore, consider their effects alone for
the operator P[I](x) = (I(x), I'(x)). The intrinsic curve C, generated
by r(x) = Al(a(x)) + B with compatible o(x) is

C= {(Apl +B, APz) : (P1/ p2) € Gl 8)
Hence, transformation (7) induces an isotropic expansion of the
curve by a factor A and a horizontal shift by B.

3 STEREO MATCHING USING INTRINSIC CURVES

In our implementation, we chose the 4D operator P(x) = {IH)(x),
I(x), I'(x), I”(x)}. The second step is defining a distance between
descriptors. The radial metric defined in Section 3.1 is a distance
between intrinsic-curve points to be used to generate candidate
matches. Ambiguities are resolved by maximizing a global quality
function by dynamic programming. For efficiency, we first trans-
form the set of candidate matching points into a set of short candi-
date matching segments via a local aggregation algorithm. Finally,
experiments on real stereo pairs prove the effectiveness of our
approach.

3.1 Radial Metric

In Section 2.3, we have argued that contrast and brightness bias
dominate over geometric distortion and noise. The effects of both
brightness bias and noise can be minimized by preprocessing both
signals with a zero-mean, low-pass filter. In addition, the zero-
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mean filter causes intrinsic curves to loop around the origin.

Contrast differences cause intrinsic curves to expand or con-
tract isotropically. This observation suggests the radial metric for
intrinsic curves on the plane: Two points have finite distance,
equal to their Euclidean distance, when they are collinear with the
origin; otherwise, their distance is set to infinity.

For curves in more than two dimensions, we first consider the
projection of the curves onto the {I, I’} plane and detect, for each
point p of the projection of the left curve, the points on the projec-
tion of the right curve that are collinear with p and with the origin.
The distance between such points and p is defined as the Euclid-
ean distance of the corresponding points in the 4D space. This
simple distance definition allows us to overcome most of the com-
plexities associated with nearest-neighbor computation in higher
dimensions [25], [26].

For curves on the plane, we can efficiently determine the can-
didates {p,} by indexing the curve in terms of the phase angle of its
points, so that points on the same radial line are stored next to
each other. For higher dimensional curves, we compute this same
representation for their first two components. With this represen-
tation, the complexity of matching is O(nk), where # is the number
of samples on C, and k is the number of loops of C, around the
origin. For each point in (, we retain the (at most) two closest
matching points on C,.

With our implementation, we do not need to constrain the
maximum disparity for computational efficiency, as most stereo
algorithms do, nor do we need to use multirate structures to cope
with large disparities. In fact, we work only on intrinsic curves,
which have lost track of space: The inverse mapping p — x is de-
termined only after the matches have been assigned. However, to
reduce ambiguity, we divide scanlines into overlapping segments
of 120 pixels each in our experiments.

3.2 Local Aggregation

For efficiency in the global optimization phase, candidate match-
ing points are first aggregated into candidate matching segments. In
fact, if two points match, and neighboring points in the two intrin-
sic curves match with equal or better quality, these two matches
should be tied together: In all likelihood, they are either both right
or both wrong. This is the intrinsic curve equivalent to the
smoothness principle [31], [28].

We, thus, identify a number of candidate match segments as
follows. Given two couples of candidate matches (p;1, pr1), (P Pr2),
let d; and d, be the distances (measured as the arc-length on the
intrinsic curve) between p; and pp and between p,; and p,,, re-
spectively. If (d, — d,)/d, is within [-J, d] for some small &, then we
assign (pn, pr) and (p,1, pr) to the same couple of candidate
matching segments. In order to limit the propagation of mis-
matches, however, the length of the segments (measured as the
arc-length of the corresponding segments of intrinsic curves) is
kept constant on the left curve C.

A greedy algorithm of complexity O(n) efficiently constructs a
feasible set of candidate matching segments by examining each
point of ( in scanning order. There are fewer candidate matching
segments than candidate matching points, therefore the search
space for the optimization is reduced.

3.3 Global Optimization

The procedure described in the previous section provides a set of
candidate matching segments. We now need a global procedure to
pick the correct chain of matches from the pool of candidates. As
customary [20], [27], we define an overall quality function to be
maximized, together with some constraints to be satisfied. The
quality function is

Q= zexp(—d(pﬁ,pyi )) )

where d(p,;, p,;) is the radial distance between the matching points

pi and p,; in the left and right curves, respectively. The choice of
the exponential function is not essential—any other well-behaved
function decreasing between 1 and 0 will do (see Fig. 6).

The constraints to be satisfied are [28] uniqueness (a point may
match at most one point in the other image) and ordering (the order
of two points in an epipolar line must be the same as the order of
their matches in the other image). The latter is violated in rare
cases, as in the “double nail illusion.” Two couples of matching
segments {c; = [(li, li2), (1, 72)]} and {C]' = [(lﬂ/ ljz), (rjll ”jz)]} are com-
patible and ordered (that is, they satisfy uniqueness and ordering) if

1) (Iu, lp) and (I3, Ip) do not overlap, nor do (1, 7;2) and (rjy, 772);

2) the ordering of Iy, I, Ij1, Ij2 is the same as that of ry, rip, 7j1, 7).

Each candidate matching segment is characterized by a quality
value g, which is the sum of the qualities of the matching points
that form it.

3.4 The Matching Algorithm

Given m candidate couples of segments {c; = [(li1, ln), (ra, T2},
where (I3, lp) and (r;1, ) are the endpoints of the ith segment on
the left and right curves, respectively, we now show an algorithm
that finds a chain of compatible segments of maximum quality.
The quality of a chain is the sum of the qualities g; of its matches.

We say that a couple ¢; is a predecessor of a couple ¢; (or ¢; is a
successor to ¢;) if ¢; and ¢; are compatible and the segments in c; are
to the left of the segments in c;. We denote this relation by ¢; < ¢;.

The relation ¢; < ¢;is a strict' partial ordering, since it is transi-
tive (¢; < ¢; < ¢ = ¢; < ¢3), asymmetric (¢; < ¢; = ¢; X ¢j), and irre-
flexive (¢; « ¢;).

This partial ordering generates a lattice, defined as the directed,
acyclic graph in which nodes represent couples, and an edge from
¢; to ¢; means that ¢; is an immediate predecessor of ¢; (that is, ¢; <
¢j, and there is no k such that ¢; < ¢ < ¢j). The lattice can be con-
structed in O(1°) time by the algorithm below.

Add dummy couples cj and c,,,; that are predecessor and suc-
cessor to every other couple, respectively. Form the complete par-
tial order graph C. The nodes of C are all the couples, and there is
an edge between ¢; and ¢ iff ¢; < ¢;. This can be done in O(m’) by
looping over all pairs of couples.

Using Dijkstra’s algorithm [29, vol. 1], label each node c in C
with the length L(c) of the longest path from ¢, to c. Although
Dijkstra’s algorithm is originally a shortest path algorithm, the
modification necessary to obtain longest paths is trivial. Dijkstra’s
algorithm takes time O(mz).

Now form the desired lattice by the following procedure. £ will
contain the lattice at the end, and ‘F is the frontier set in a breadth-
first visit of the graph C.

1.L=0

2: F={co}

3:force F

4: remove ¢ from F

5: create a copy C, of the subgraph of C reachable from c
6: while there are edges c — ¢ in C,

7 let d = arg min, L(c")

8: addedgec —>dto L

9: adddto F

10: remove from C, the subgraph reachable from d
11:  end

12: end

1. “Strict” here means that a couple cannot be a predecessor to itself.
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Fig. 6. A signal I(x) (a), the intrinsic curve generated by /(x) in the phase space (/, /, I”) (b), and its projections onto the (/, /) plane (c) and onto the

(f, ") plane (d).

In words, the partial order graph C is traversed breadth-first
starting from ¢, reaching each node by the fastest (line 7) route.
The step on line 10 ensures that whenever a node e is reachable
from ¢ both directly and through d, the direct connection is not
added to the lattice. This connection is redundant, because ¢ < ¢
can be inferred from c <dand d <e.

The work performed by the procedure above for each c is
bounded by the size of the unvisited part of the graph, so the
overall complexity is O(1°).

Finally, each node of the lattice can be labeled by its match
quality with the convention that ¢, and c,,,; have quality zero. One
more application of Dijkstra’s algorithm2 will produce the highest-
quality path from ¢, to c,,,1, that is, the globally best match.

3.5 Experiments

We have tested our stereo algorithm on the stereo pairs “Clo-

2. Labeling the nodes is equivalent to labeling each edge with the
quality of its source node.

rox” from Stanford University and “Castle” from Carnegie
Mellon University (Fig. 7), both subsampled to size 240 x 255
pixels. “Clorox” exhibits a very articulated depth field with
many occlusions. “Castle” shows patches with periodically
repeated patterns and has high values of disparity (up to about
15 pixels).

The images have been first filtered by a zero-DC notch filter,
with an otherwise low-pass frequency response. Each scanline is
first divided into overlapping segments 120 pixels long, which
reduces the actual disparity search window to approximately +50
pixels, a generous disparity interval in most cases.

The computed disparity maps are represented with pseudocol-
ors. No postprocessing has been performed on the computed dis-
parities. The sparseness of the computed disparity values results
from the constant arc-length period sampling procedure (see Fig. 4)
and from the fact that candidate segment matches with quality
below a threshold have been rejected.
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Fig. 7. Experiments with the stereo pairs “Clorox” (a), (b) and “Castle” (c), (d). Only one image is shown for each pair. The computed disparity
field is represented with pseudocolors; the correspondence between colors and disparities is given by the color bars on the right.

4 CONCLUSIONS

Intrinsic curves are a new and useful way to think about stereo,
and lead to practical matching algorithms. Matching in the space
of descriptors makes the amount of disparity irrelevant, and no
multiresolution technique is needed even for large displacements.
Instead of searching for matches over disparities, one can use effi-
cient algorithms for nearest-neighbor lookup. The concept of com-
patible mappings elucidates the basic issues in the design of local
image descriptors. Extensions to full images are conceptually
straightforward but technically challenging. The curves become
surfaces or 2D manifolds in more dimensions, but the basis for
matching them remains the same.
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