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1 Introduction
Stereo vision is one of the most thoroughly studied problems in computer vision. In a survey of the state of the art
[23], and more recently on the accompanying Middlebury stereo vision web page, Scharstein and Szeliski categorize
and compare a wide array of algorithms that follow approaches ranging from window-level correlation to dynamic
programming, to combinatorial optimization, to belief propagation.

This survey shows that the problem of stereo matching is relatively easy to formulate, but hard to solve. More
than thirty years after the first attempts on computers [12, 19], and in spite of the existence of several experimental
or commercial hardware systems that match stereo image pairs [14, 17, 27, 2] most computer vision conferences still
have entire sessions on this thriving topic. If the problem were solved, this would not be the case.

A public data benchmark like the Middlebury web site is a precious resource for comparing approaches, coalescing
efforts, and eventually advancing the state of the art. We need more work in this direction. Because of this benchmark,
whether one algorithm is better than another is not a matter of judgement, but can be measured by the number of
correct matches for the two methods on the same image pairs.

One clear lesson learned from past work is that stereo is best formulated as a global problem, in which an entire
image is matched to another one as the result of a single optimization problem. The two common alternatives are to
match one point at a time (the favorite hardware solution), or two corresponding epipolar lines at a time. The latter
is a reasonable compromise between the greediest solution and the completely global one, and has been traditionally
addressed with dynamic programming (see [1, 20, 3, 9, 4, 26] and many more).

The great advantage of dynamic programming is its conceptual and algorithmic simplicity. This has allowed
recasting stereo matching into a Bayesian formulation [3] and a Maximum-likelihood approach [9] as mathematical
sophistication in computer vision progressed, to propose variations based on different similarity metrics [4], and to
explore efficient multi-scale implementations [26]. Less tangibly, but perhaps not less importantly, when a problem
that is simple to state has a solution that is simple to explain, we feel that we are on the right track: if something goes
wrong it is easier to fix, and when things go right we know why and what to retain when attempting improvements.
Good performance in the experiments is of course the ultimate indicator of a good idea, but until we can claim perfect
performance an improvement that comes at the expense of understanding is of somewhat reduced heuristic value.

This is why I have not been able to experience the same sense of satisfaction with the completely global solutions
that perform best on the Middlebury web page, whether I contributed to them [5, 18] or not [28, 16, 15, 24]. These
solutions are all complex in two ways. First, the exact problem in all these formulations is NP hard, and approxima-
tions (still relatively expensive) must be used. Second, algorithms that use sophisticated heuristics to search for an
approximate optimum in a large space are difficult to understand intimately. When something goes wrong, it is often
hard to tell whether the culprit is in the necessary approximations introduced for tractability or rather an inappropri-
ately defined optimization target. When things go well, it is not clear if a small modification to the algorithm, meant
to improve some aspect of its solution, would retain good performance in other aspects.

Fortunately, the dilemma between a simple but line-by-line solution to stereo and a more global solution can be
resolved in a different way, through a formulation based on maximum flows in networks. This solution has been
shown in the literature in somewhat different versions [22, 13, 21, 6]. The version in [22] was even featured on the
Middlebury web page, where it performed respectably (2.98 percent of pixels with disparity wrong by more than one
pixel on the Tsukuba image), although not among the “stars.”

In a nutshell, as shown most elegantly in [6], instead of finding a shortest path on the usual graph used in the
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dynamic programming formulations, one first transforms this graph into its graph-theoretical dual, and voilà, the
shortest path becomes a minimum cut. As well known, a minimum cut can be found by computing a maximum
flow through the graph. If one considers one scan line at a time, this problem transformation is just an exercise in
graph theory. However, if the two images in the stereo pair are considered in their entirety, the dynamic programming
solution ceases to be applicable, while the minimum cut formulation still admits a polynomial-time solution. This is
also practically very fast, thanks to Cherkassky and Goldberg’s implementation [8] of the Goldberg-Tarjan max-flow
algorithm [11].

The max-flow/min-cut solution to the stereo correspondence problem has not received the attention that it deserves.
Few others work on it, and the the approach is rarely taught in computer vision courses or books. Part of the reason
may be the method’s good but not stellar performance on the benchmarks. Another part may have to do with the fact
that the network flow formulation is apparently less flexible than the one based on dynamic programming, as it seems
more difficult to incorporate some of the heuristic constraints that we are used to seeing in stereo vision algorithms.
A third part of the explanation may be that previous formulations based on network flow may be more complex than
they need to be.

The goal of this contribution is to introduce an even simpler max-flow/min-cut formulation of stereo correspon-
dence than previously published, in the hope that the very simplicity of the approach will spur the types of studies of
this method that have been devoted to dynamic programming for the line-by-line case. Specifically, Section 2 shows
why dynamic programming cannot be applied to the global stereo correspondence problem. Section 3 then introduces
the proposed formulation of global correspondence as a max-flow/min-cut problem, and compares it to previous ones.
Finally, Section 4 shows anecdotal evidence of good performance, and Section 5 gives some indications for future
work.

2 Dynamic Programming Stereo and Its Limits
Assume that pixels in a given scan line of the left image always correspond to pixels in the same scan line of the right
image, and viceversa. This assumption entails no loss of generality, because stereo images can be always rectified
so that this is the case [25]. Figure 1 shows the standard graph used in dynamic-programming formulations of the
line-to-line stereo correspondence problem.

If the pixels of the right scan line are listed at integer positions along the horizontal axis of a Cartesian reference
frame and those of the left scan line are listed at integer positions along the vertical axis, as shown in Figure 1, then a
match between two pixels can be represented by a point on the plane with integer coordinates. Thus, the integer grid
on the plane is the set of all possible matches. In the rectified camera configuration, a pixel in the left scan line can
only match a pixel in the right scan line that has a lower horizontal image coordinate: points in the image from the
right camera are shifted to the left relative to where they are in the left camera. This restriction eliminates all points of
the grid that are above the main diagonal, labelled disparity 0 in Figure 1. Points on this diagonal have a disparity of
zero, which means that their horizontal image coordinates are equal. The ones on the next diagonal have a disparity of
one, that is, their coordinates differ by one pixel, and so forth. Greater disparity corresponds to points that are closer to
the camera, so disparities can also be bounded from above if one assumes that no object in the world can come closer
than a given distance from the two cameras. This results in the trapezoidal shape of the grid in Figure 1.

A list of all the actual matches between the two scan lines yields a path on the grid, like the thick blue line in Figure
1, which is assumed to start at the top left of the grid, and end at the bottom right (dummy, compulsory matches can
be added at the corners to enforce this). Not all paths correspond to valid solutions to the stereo matching problem.
For instance, some paths may represent surfaces that hide themselves or each other from either camera, a situation that
cannot occur in reality. To eliminate these impossible paths from the set of solution, valid paths are often constrained
to only go monotonically from top left to bottom right. Thus, the blue path in Figure 1 is valid, because it is only
made of segments that when the path is traversed from top to bottom go vertically down, horizontally to the right, or
diagonally down and to the right. In contrast, the short, thick, orange segment would not be a valid path segment,
because it goes diagonally down and to the left. Physically, this segment would connect two matches in which the
order of the two points in the left image is opposite to the order of the two points in the right image (see the order of
the thick and thin lines at the endpoints of the segment). Such pairs of matches are not impossible, but they are rare.
Forbidding them results into the ordering constraint, which restricts the set of solution somewhat more than necessary,
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Figure 1: The standard graph used in dynamic-programming formulations of the line-to-line stereo correspondence
problem. See text for explanations.

but in a way that is very easy to enforce, especially when using dynamic programming.
A horizontal segment of the path corresponds to right pixels that have no corresponding left pixels, that is, to a

point in the left image where disparity changes abruptly. This is called a left occlusion. A right occlusion is defined
similarly, with the role of the two images reversed.

When formulating the stereo correspondence problem within the framework of dynamic programming, one typi-
cally defines a cost for each candidate match, which is an increasing function of the difference in the pixel values at the
two image points being matched: similar pixels are more likely to match than dissimilar ones. A cost is also typically
charged to occlusions, both left and right, according to the observation that most surfaces in the world are smooth, that
is, that disparity changes only slowly from point to point most of the time. One can then look for a path that satisfies
the ordering constraint and has overall minimum cost. This is done very efficiently with dynamic programming.

In this style of solution, sketched in figure 2, a frontier (some curve that splits the start point from the end point of
the path) is moved down the grid one step at a time. For each position of the frontier, dynamic programming records
the cost of the least expensive path up to each of the grid points on the frontier. Because of the associative nature of
the measure of the cost of a path (equal to the sum of the costs incurred along the path), the path costs recorded on the
frontier can be updated efficiently when the frontier is moved. Once the frontier meets the bottom right of the grid, the
cost of the best path from start to end is known. Additional information stored during the procedure allows to quickly
reconstruct the best path that leads to this optimal cost.

The details of dynamic programming are not important for our purposes. The crucial observation is highlighted in
the previous paragraph: a temporary variable is associated to each point on the frontier in order to store the cost of the
best path up to that point. This is feasible because both the frontier and any path are polygonal curves on the plane,
whose vertices are the integer coordinates of the grid points: two curves intersect at a point, and any frontier has a
small number of possible intersection points.

If we now were to extend this principle of solution to full images, the match grid would become three-dimensional,
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Figure 2: Dynamic programming moves a frontier (thick, red line) from top left to bottom right, and updates the
costs of the best (blue) path up to each grid point on the frontier. Only a small number of such cost values must be
maintained on the frontier.
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Figure 3: The blue path has now become a match surface that intersects the red frontier (another surface) along a
curve.
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since the two-dimensional grids for every scan line pair would have to be stacked on top of each other. Both curves
involved in dynamic programming, the path and the frontier, would become surfaces: the path would be replaced by a
family of paths, one per scan line pair, and this would form a match surface. Similarly, the frontier would have to be a
surface as well in order to separate the top left from the bottom right of the three-dimensional grid. The new situation
is illustrated in Figure 3.

This is why dynamic programming becomes infeasible for full image pairs: the intersection of a match surface
and a frontier is no longer a point but a curve, and the number of possible curves on any one frontier is too great.
We cannot store or update the cost of each possible match surface up to some frontier. The computational complexity
makes dynamic programming infeasible.

3 The Max-Flow/Min-Cut Formulation
What is infeasible in Section 2 is the solution method, not the problem itself. In fact, to come up with a feasible
solution, we just need to look at Figure 1 in a different way. The blue curve in that Figure has been described so far
as a path that connects the top left corner of the match grid to its bottom right corner. Figure 4 shows the same curve
interpreted differently, as a boundary or cut that separates the empty space in front of the surface, where disparities are
higher, from that behind the surface, where disparities are lower.

Finding a good match then turns into the problem of separating front from back with a minimum cut, where the
“size” of a cut is measured by the cost of the matches that lie along the cut. However, cutting the grid as drawn would
entail removing nodes from it (the nodes on the solution cut). Minimum-cut problems are instead cast in terms of
removing edges of a graph.

As explained in [6], since the graph is planar, all we need to do is to replace the original one with its dual, in
which each region (triangle) in the original graph becomes a node, and edges are drawn between nodes of adjacent
regions. Figure 5 shows this transformation. From here on, the details of graph construction are different from those
in previous papers, and make the resulting graph simpler.

Since the original graph is undirected, so is its dual. The resulting graph is made to be directed by making all
arrows point from high to low disparity. This will become useful a little later, when the ordering constraint is enforced.

There is one green, short edge for each match in the original (primal) grid, and the capacity of these edges equals
the match cost that was charged to each node in the primal graph. The other, red edges have infinite capacity. Because
of this, they cannot be cut without incurring an infinite penalty, so they will never be part of any minimum cut. Since
the red edges are in series with the green ones, it is still possible to cut the graph by cutting only green edges.

To make the graph into a traditional flow network, we need to add a source and a sink node, and some plumbing
to connect these to the rest of the graph. This is shown on a very small dual graph in Figure 6. From now on, we can
forget the original (primal) graph.

The resulting graph can be cut with paths that are not valid, in that they do not satisfy the ordering constraint. To
enforce the latter, we add one more set of edges, as shown in Figure 7. These also have infinite capacity, so they cannot
be part of any minimum cut. The role of the ordering edges can be understood by referring to Figure 8, in which the
small-scale details of a cut (blue curve) have been suppressed and only a few of the ordering edges have been drawn,
for greater clarity. Note that whether the ordering edges traverse a cut from front to back of the cut or from back to
front depends on the local orientation of the path. Solid arrows are edges that traverse the cut from front to back, and
they occur in parts of the cut that are oriented in the direction forbidden by the ordering constraint, that is, generally
from south-east to north-west when walking along the path starting from the top left of the diagram.

Dotted arrows, on the other hand, traverse parts of the cut that run in the valid direction, compatible with the
ordering constraint, and they carry flow from back to front.

Because of this arrangement, any path that violates the ordering constraint must also cut ordering edges that carry
flow forward (the solid arrows). Because these have infinite capacity, no minimum cost cut can have sections that run
in the forbidden direction. On the other hand, cutting ordering edges where the cut has a valid direction is harmless,
as these edges only carry flow from back to front, and do not contribute to the total flow from source to sink. Thus,
these edges appropriately enforce the ordering constraint.

We are now ready for the last and crucial step, that is, the insertion of additional edges that connect adjacent pairs
of scan lines for a completely global formulation of the stereo correspondence problem. The main constraint added by

6



Back


Front


Figure 4: The path in Figure 1 can be viewed as a cut that separates what is in front of the surface (higher disparity)
from what is behind.
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Figure 5: The thick, red and green arrows form the dual of the graph drawn in thin, yellow lines. We made the graph
directed by having all arrows point from the front of the graph (higher disparities) to the back.
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Figure 6: Adding a source and a sink, together with the necessary plumbing, makes a complete dual graph for a
standard, single-source max-flow/min-cut problem.
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Figure 7: This is the complete graph for the two-dimensional matching problem. The extra, infinite-capacity edges
enforce the ordering constraint, as explained in the text and in Figure 8.
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Capacity =
∞


Figure 8: A conceptual view of the edges added in Figure 7. These enforce the ordering constraint by preventing
cuts that would also have to cut infinite-capacity edges carrying flow from front to back of the cut. Solid arrows are
examples of these. Dashed arrows are harmless because they carry flow from back to front, and therefore do not
contribute to the cost of a cut.
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Figure 9: The top diagram shows the cross-edges added to enforce connectedness between rows for a slice of the
complete, three-dimensional graph for the global stereo matching problem. To obtain a genuine cut, one must cut two
vertically adjacent green edges (second diagram), or two diagonally adjacent green edges (third diagram), correspond-
ing to disparity differences of zero or one pixel. The bottom diagram shows that removing green edges in violation of
connectedness (two or more pixels of disparity difference) does not lead to a cut, as the blue flow can still make its
way through the network.

a global solution is the connectedness of the resulting match surface. This requires vertically adjacent pixels to have
similar disparities most of the time, a constraint of considerable heuristic power.

In previous work within the max flow/min cut framework, this constraint has invariably been implemented by
the addition of tunable smoothness terms between vertically adjacent pixels. The resulting networks all have a large
number of edges (17 for both [13] and [6]), and parameters. While parameters provide flexibility, they must be tuned,
and it is hard to think of matching algorithms that can tune their parameters automatically as a function of the input
images.

Instead, we propose a simpler version of connectedness, in which vertically adjacent pixels are merely required
to have disparities that differ by at most one pixel. We handle discontinuities in depth by waiving this requirement
whenever there are great changes in brightness between vertically adjacent pixels in either image, corresponding to
the assumption that depth discontinuities come usually with brightness discontinuities.

Of course, this assumption is not always true. Also, constraining vertical disparity changes to at most one pixel
might in some circumstances smooth over a very slanted surface. However, in both cases a (rare) violation of the
heuristic merely costs a local blurring of the match surface with respect to truth. The great advantage of making
this assumption is that the only parameter in the proposed method is a threshold implied by the edge detector that
determines when a brightness discontinuity has occurred between two vertically adjacent pixels. Edge detection is
well understood, including methods for selecting parameters [7].

Connectedness is enforced by a cross-connection, again with infinite-capacity edges, between vertically adjacent
match edges (the green edges in Figure 7). Figure 9 shows these edges for a vertical slice through the three-dimensional
graph obtained by stacking the two-dimensional graphs for all the scan line pairs. The slice is taken so that horizontally
adjacent green edges correspond to disparities that differ by one pixel. The caption of this Figure explains why this
arrangement enforces the proposed version of connectedness.
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Figure 10: A node in the full network has seven edges. Of these, one (short, in gold) has a finite capacity that is an
increasing function of the cost of the match corresponding to the node. The other six edges have infinite capacity.

In summary, the formulation of the stereo correspondence problem proposed here is essentially parameter-free
(except for the well-understood parameters implied by the edge detector), and has seven edges per node, shown in
Figure 10. Figure 11 shows a network for a very small matching problem.

The optimal disparity surface is found with an entirely off-the-shelf algorithm, Cherkassky and Goldberg’s imple-
mentation [8] of the Goldberg-Tarjan max-flow algorithm [11]. This algorithm was designed to compute the maximum
flow that can be pushed through a network. As well known [10], there exists a minimum cut of the network whose
capacity is exactly the maximum flow, and finding the maximum flow also yields the minimum cut.

The asymptotic complexity of Goldberg and Tarjan’s algorithm is O(mn log(n2/m)), where n is the number of
vertices in the network and m is the number of edges. In our case, m = 7n (see Figure 10), so m is O(n), and the
resulting bound is O(n2 log n). To relate this to image size, let p be the number of pixels in the image and d the
maximum disparity allowed. Then, n = pd. As image resolution increases, the maximum disparity must increase
proportionally, so that d is O(

√
p). In summary, the asymptotic complexity is O(p3 log p). In practice, the constants

are small, and matching a 512 by 512 image takes of the order of one minute on a standard personal computer.
Both the goals of computational and conceptual simplicity have been achieved, albeit at the cost of a simplification

of the underlying heuristics. The next Section shows that at least in one nontrivial case practical results are good.
More experiments are left for future work.
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Figure 11: The three-dimensional network for a small matching problem. Source and sink edges have been omitted
for clarity. Each of the shaded planes corresponds to a different pair of scan lines.
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Figure 12: The Tsukuba stereo pair.

Figure 13: Color-coded view of the disparity surface mapped to the left and right image. Occlusions are in magenta
(dark red).

4 An Experiment
The Middlebury web page provides among others the stereo pair shown in Figure 12, for which students at Tsukuba
University have determined the correct matches by hand. Figure 13 shows the result computed by the maximum
flow/minimum cut method described in the previous Section, and Figure 14 gives a different view of the left map of
Figure 13. Images were processed at a resolution of 384 by 288 pixels, and matching required 40 seconds on a 1.4MHz
Pentium personal computer. No parameters had to specified, except for the values for Canny’s edge detector when
determining intensity edges in the two images. These values are σ = 1 for the standard deviation of the detector’s
gradient operator, and θh = 0.14 for the high threshold in the non-maximum suppression stage of the detector. The
low threshold is then automatically set to 0.4θh. The two thresholds are referred to a range of image values normalized
to [0, 1]. Please see [7] for the detailed meaning of these parameters. All these parameter values are the default values
in the Matlab implementation of Canny’s edge detector.

The fraction of correct disparity values is about 97%, similarly to [22]. This places this algorithm among the
“relatively good” ones in the Middlebury competition, in which the absolute best reach just above 99% (if we take the
hand-determined correspondences as the absolute truth). Note, however, that the proposed algorithm achieved these
results without setting any parameters in the matcher. This out-of-the-box performance is rather unusual for stereo
algorithms, which typically require extensive parameter tuning to yield good results.

5 Conclusions and Future Work
The main goal of this contribution has been to champion a global (i. e., image-to-image) formulation of stereo matching
that is equivalent to determining the minimum cut in a flow network. The resulting problem is essentially parameterless

15



Figure 14: A three-dimensional display of the left view of the disparity surface.

and can be solved by efficient, off-the-shelf algorithms. This approach has been proposed a few times in the past eight
years, and this paper provides a simpler instantiation of essentially the same idea.

The single experiment in the previous Section is not sufficient to establish the performance of the proposed algo-
rithm. A systematic evaluation would run the algorithm on a series of image pairs of real scenes for which accurate
ground truth is available. We are setting up an experimental facility with funding from the National Science Foundation
of the USA for acquiring just this type of images.

All the same, the hope is that good performance achieved on a difficult image in the first run of the code will
entice more researchers into studying and developing an approach to stereo that has the same features of simplicity of
dynamic programming, but is applicable to entire images rather than just one pair of scan lines at a time.

In addition to working on alternative formulations within this framework, it may be useful to examine implemen-
tations that take advantage of the regular structure of the network in Figure 11 to achieve greater practical efficiency.
This may be particularly useful for parallel implementations of the algorithm.
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