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Abstract 
Previous algorithms that recover camera motion from 

image velocities suffer from both bias and excessive vari- 
ance in the results. We propose a robust estimator of 
camera motion that is statistically consistent when image 
noise is isotropic. Consistency means that the estimated 
motion converges in probability to the true value as the 
number of image points increases. An algorithm based on 
reweighted Gauss-Newton iterations handles 100 velocity 
measurements in about 50 milliseconds on a workstation. 

1 Introduction 
In principle, the instantaneous velocities measured in 

the images produced by a moving camera determine the 
rotation and direction of translation of the camera as well as 
depth, i.e., the distances of scene points from the camera's 
center of projection. While large, finite camera motions 
yield a better baseline for scene depth measurements, the 
small motions implied by the use of image velocities are 
more easily measured, and are sufficiently good for camera 
motion estimation. 

In the absence of noise, conditions for the existence and 
uniqueness of a solution are well understood. However, 
small errors (henceforth referred to as noise) in the image 
velocities can produce large errors in the estimates of depth 
and motion. Similarly, a single outlier can play havoc with 
the solution. 

In addition, bias and variance can be amplified by in- 
appropriate transformations of the problem formulation. 
When previous researchers have seeked insights and de- 
signed algorithms through linearizations or various alge- 
braic transformations of the original problem, they have 
exposed themselves to this danger. Bias, often severe, 
appeared in the solutions, and variance was greater than 
necessary. 

This paper addresses these issues, and proposes an al- 
gorithm for the computation of camera motion from sparse 
image velocities. The algorithm produces solutions with 
lower bias and smaller variance than previous methods, and 

"Supported by NSF grant IRI-9509149, DoD MURl contract 
DAAH04-96-I-0007,and by agrant oftheCharles Lee Powell Foundation. 

0-7695-0149-4/99 $10.00 0 1999 IEEE 
164 

tolerates a moderate amount of outliers. Furthermore, our 
method produces consistent estimates of camera motion, in 
the sense that these estimates become as close as desired 
to their true values, with probability one, as the number of 
image points is increased. Our algorithm is fast, and can 
process 100 image velocities per frame at 20 frames per 
second on a workstation. 

2 Problem Statement 
The image velocity due to camera motion under per- 

spective projection is given by 

u(x) = d(x)A(x)t + B(x)w + n(x) . ( 1 )  

Here, U(.) is the image velocity at image position x = 
( 2 1 ,  2 2 ,  l)T, t is the camera's translational velocity,w is its 
rotational velocity, d(x) is the reciprocal of scene depth at x, 
measured along the optical axis. The camera's focal length 
is 1,  without loss of generality. The term n(x) denotes 
noise, and 

The image motion analysis problem is to estimate the 3D 
motion parameters t and w and the vector d of inverse depths 
d(x) from a collection of velocity vectors u(x).  Because 
t and d appear as a product in equation ( I ) ,  their absolute 
magnitudes cannot be determined. We therefore add the 
constraint Iltl( = 1. We define our estimator as 

In this expression, 

r(x) = U* - d(x)A(x)t - B(x)w (3) 

is the residual, {x} is the set of the image locations where 
velocity measurements ut are available, and 11 . ( I p  is the 
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p-norm, with p a number between 1 and 2. More generally, 
we can define the estimator 

where f( .) is any rotationally symmetric and convex func- 
tion, called the lossfunction. 

Theresidual r(x) isavectorwith twocomponents. How- 
ever, for each point x, a reference frame can be chosen in 
which one component of r(x) can be zeroed exactly, even in 
the presence of noise: If we define the unit epipolar vector 

e=- A W  
IIA(x)tll ’ 

from equation (3) we see that eTr(x) = eTu, - 
d(x)IIA(x)tll - eTB(x)x can be set to zero by letting 

Thus, no loss of generality is incurred if r (x)  is replaced by 
its component orthogonal to e: 

T(X) = 7 r ( x )  = (U. - B(X)X) (6) 

where T = [e2 ,  -ellT is a unit-norm vector orthogonal to 
e. This residual ~ ( x )  is independent o f t  and d(x), and only 
depends on the rotation w. 

3 Previous Work 
In the absence of noise, image velocities at five points 

yield a finite number of depth and motion solutions [ 121. 
With more points, the solution is essentially unique [7]. 
Image velocity measurements at more than five points are 
necessary if the data are noisy. Bruss and Horn [2] alge- 
braically eliminate depth and obtain a residual r(x) that 
is bilinear in camera rotation and translation. They then 
simplify the expression of the residual for computational 
purposes, effectively replacing the residual r(x) in equation 
(3) with 

We will see in section 6 that this simplification introduces 
bias. Later MacLean et al. [ 131 derived the same residual 
as Bruss and Horn by a different route. In either case, a 
least-squares estimate of both depth and rotation can be 
obtained as a function of translation. These estimates are 
substituted back into the residual to obtain a function of 
translation alone, which is found by nonlinear minimiza- 
tion. 

Rieger and Lawton [I61 and later Hildreth [6] and 
Prazdny [14] proposed a method based on motion paral- 
lax. Jepson and Heeger built upon these previous efforts 

r’(4 = 4 4 I I A ( X ) f l l  . (7) 

and proposed a series of subspace methods for estimat- 
ing egomotion [5, 9, 101. Given optical flow at m image 
points, they construct a set of m - 6 constraint vectors that 
are orthogonal to the camera translation velocity. From 
these, translational velocity is computed without requiring 
iterative numerical optimization. However, this method 
is biased, and does not make use of all of the available 
information (m - 6 linear constraints versus m bilinear 
constraints). We will see in section 6 that this increases 
variance. 

From a problem formulation equivalent to equation (I), 
Zhuang et al. [21] proposed a linear algorithm for egomo- 
tion estimation based on the so-called epipolar constraint 
on the velocity field: 

tT(x x U) + X T K X  = 0 (8) 

where li’ = w T t l  - (wtT + t w T ) / 2 .  
Since camera motion is a nonlinear function of image 

measurements, its estimates are usually biased. For in- 
stance, a nonlinear transformation T ( n )  from a scalar input 
noise variable n to an output perturbation can be written as 

03 

~ ( n )  = cknk M cO + c1n + c2n2 
k = O  

where the c k  are Taylor coefficients. Even when CO = 0 
and E[n] = 0, we have bias E[T(n)]  M c?E[n’], which is 
nonzero if c2 # 0. Kanatani [ l  11 analyzed the bias of im- 
age motion analysis, and proposed a method that subtracts 
an estimate of the output bias from the solution. How- 
ever, his bias cancellation assumes a narrow field of view, 
which leads to poor camera motion estimates in the first 
place. Furthermore, Kanatani’s results, even when unbi- 
ased, exhibit unnecessarily high variance, as will be shown 
in section 6. 

The somewhat disappointing results obtained in the lit- 
erature, together with an analysis [ 191 based on the Cramer- 
Rao lower bound [ 151, led researchers to believe [ 191 that 
computation of camera motion from instantaneous image 
velocities is unlikely to succeed. In this paper we show that 
this is not so. We propose an algorithm for the computa- 
tion of camera translation and rotation from motion field 
measurements that is consistent and fast. “Consistent” here 
means that as more image points are used, the estimates of 
camera motion converge in probability to their true values. 
This is a strong result, since for sufficiently many points it 
guarantees that both bias and variance are almost certainly 
small. In addition, we reduce sensitivity to outliers by using 
a less-than-quadratic error norm. 

4 Consistency 
If (t, ;l)m is the motion estimate obtained from m noisy 

measurements, and (t’ , w’) are the true motion parameters, 
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consistency means that for any positive E ,  

lim P [Il(t,Lj), - (t*,W*)l( < E ]  = 1 m + w  

In words, whatever the allowed, positive error E ,  a sufficient 
( m  -+ 00) number of measurements will almost certainly 
(P[.] = 1) yield an estimate (t, L j ) ,  that is within E of the 
true value (t*, w * ) .  

To show that (2) and (4) are consistent estimators, two 
assumptions are required, one technical and one essential. 
The technical assumption is that the sample distribution of 
image noise approaches the true distribution as m -+ 00. 

This ergodicity assumption presents no problem. The es- 
sential assumption is that the true noise distribution is the 
same for all image points, and isotropic, i .e.,  symmetric 
around the origin. Because of the aperture problem, po- 
sitional uncertainty in images is not generally isotropic. 
However, a feature detector like the one in [ 181 leads to 
uncertainties that are very close to isotropic. With these 
assumptions, we have the following result. 

If the errors on the image velocity mea- 
surements are independent, identically distributed, and 
isotropic, and if f (.) is rotationally symmetric and con- 
vex, then the estimator ( 4 )  is consistent. 

The proof of this theorem is very technical, and is omit- 
ted here for lack of space. Full details can be found in [20], 
and a proof of a similar flavor has been given in [8] under 
different assumptions and for different problems. These 
proofs use the central limit theorem as their main tool. 

To be sure, expressions (2) or (4) have been the starting 
point for many if not most motion estimator algorithms. 
However, as mentioned above, past approaches have ma- 
nipulated (2) or (4) one way or another to simplify compu- 
tation. For instance, the Bruss-Horn approach is equivalent 
to the minimization of (7). The term IIA(x)tll breaks ro- 
tational symmetry, and biases results toward a translation 
direction such that IIA(x)tll with lltll = 1 is small. By 
the definition of A(x), if the coordinates ( ~ 1 ~ x 2 )  are small 
compared to 1, increasing the third component o f t  tends 
to give a smaller value of IIA(x)tll; on the other hand, if 
many of the coordinates (x l ,  q) are large compared to 1, 
decreasing the third component oft  tends to give a smaller 
value of IIA(x)tll. Since the former situation occurs when 
the camera’s field-of-view (fov) is small, and the second 
when fov is large, the translation direction computed by 
Bruss and Horn biases toward forward motion with a small 
fov and toward side motion with a large fov. Both effects 
are shown by the simulations in section 6. The methods 
in  [ S ,  9, 101 suffer from the same problem because they 
start from the same residual. This will be illustrated in 
section 6. Similarly, concerning [21], the term tT(x x U) 

in  equation (8) again breaks the rotational symmetry, and 
leads to similar problems. Although the method obtained 

Theorem. 

in [ 1 11 is statistically more sensible, it starts from an incon- 
sistent formula. Simulations in section 6 show that while 
the bias is not totally removed, this formulation yields a 
greater variance than (4). 

5 The Algorithm 
In this section, we develop an efficient numerical al- 

gorithm to solve the minimization problem (2). We first 
introduce the algorithm for the Least Squares case, and 
then extend it to p-norms. Finally, we describe a simple 
technique for global convergence, and discuss computation 
times. 
Least Square Formulation. Let p = 2 in the estimator 
(2). The starting point of our algorithm is a Gauss-Newton 
updating procedure, which converges fast, and is simple 
and stable. 

Given a residual R(8), where 0 = (t, w ,  d) is the un- 
known parameter, Gauss-Newton determines a descent step 
At?,+ from the current estimate 0k by approximating R(0) 
with a truncated Taylor series 

where gk and Hk are gradient and Hessian of R at 6k : 

where Jk is the Jacobian of p ( 0 )  = [rl, . . . , r,IT, and Hik 
is the Hessian of pi(0). If the residual p at the solution 
is small, the approximation Hk NN JrJk can be made. 
Differentiating (9) with respect to and setting the result 
to zero yields the linear system 

which is the basic step of the Gauss-Newton method. For 
our problem, the system (10) has m linear equations of the 
form 

dk(x)A(x)Atk 4- A(x)tkAdk(x) 4- B(X)Awk = h ( X )  . 
(1 1) 

The constraint IIt/l = 1, by differentiation, yields the addi- 
tional linear equation tTAtk = 0. 

Much better performance than straight Gauss-Newton is 
obtained by observing that 0 is separable [ l ,  4, 3, 171 as 
0 = (t, (U,  d)), in the sense that if tk is known then wk and 
dk(x) can be simply computed by first solving the linear 
problem 
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(see (6)). Once tk and wk are available, inverse depth dk (x) 
can be computed from (5) .  

Thus, while the Gauss-Newton iteration ( I  1 )  yields es- 
timates of Atk, Awk, Adk(x), only Ati is used, while 
A w k ,  Adk(x) are re-estimated via (12) and (5) for greater 
accuracy. As discussed in [ 1, 4, 31, this amounts to doing 
Gauss-Newton in t, a three-dimensional vector, rather than 
in the m + 6-dimensional vector (t, w ,  d). The computa- 
tional advantage is obvious. 
Robust Formulation. Some degree of robustness can 
be achieved by using a function I(.) in (4) that grows 
more slowly than x2: limx+m f ( x ) / x 2  = 0. This is 
equivalent to introducing a weight factor ~ ( x )  so that 
f(x) = w 2 ( x ) x 2  and limz+w ~ ( x )  = 0: 

niin w 2 ( x ) ~ ~ r ( x ) ~ ~ ~  (13) 
{x) 

wherew(x) = w(llr(x)ll?). Theinitial weightsw(x) areset 
to 1, and computation interleaves estimates of At,, Awk, 
Ad,+(x) with recomputation of the ~ ( x ) .  
Global Optimization. The above algorithm converges to 
a local minimum very quickly, usually within three to five 
iterations. In order to find the global minimum, we start 
from 15 initial points evenly spread on the unit hemisphere 
for t. The number of iterations can be reduced by elim- 
inating a fraction of branches having the largest residues 
at each step, as well as merging two branches when they 
become close to each other. Each branch is stopped when 
t changes by less than 0.0.5”. A typical run requires a total 
of about 40 Gauss-Newton steps, and converges essentially 
all the time to the correct minimum. 
Running Time. Each reweighted Gauss-Newton update 
requires O ( m )  time. Around 90m floating point opera- 
tions (flops) are required per point and iteration. With 100 
selected features ( m  = IOO), the total number of flops for 
the global optimization is about 40 x 90 x 100 = 3.6 x IO5. 
In our experiments (with m = 100) on a Sun Sparc work- 
station, global optimization, written in C, takes on average 
less than 0.05 seconds per image. 

6 Simulations and Experiments 
In this section, the following algorithms are compared: 

(i) Bruss-Horn: the algorithm in [2]. (ii) Jepson-Heeger: 
the linear subspace method in [9, IO]. (iii) Kanatani: the 
renormalization method in [ 111. (iv) RM-L2: the least 
square formulation described in this paper. (v) RM-Ll.2: 
the robust formulation in this paper with f (x )  = 1xI1 ’. 

100 features are used unless stated otherwise. Multi- 
ple runs are reported for each experiments. The directions 
computed by each run are plotted on a hemisphere, which 
is scaled to be uniform from 0” - 90” in the radial direction. 
The true camera translation and rotation directions are de- 
noted by the symbols o and x, respectively. The computed 

camera translation directions are plotted as a dot for each 
run. Average computed translation direction and rotation 
axis are denoted as D and +. The size of rotation in degrees 
is also reported (“IRI” as the computed average, “true IRJ” 
as the true size of rotation) on each plot. The tables in 
each figure report the errors using the format “error mean 
f error standard deviation.” For translation direction, er- 
ror is defined as the angle in degrees; for rotation, error is 
defined as the 2-norm in degrees of the difference between 
computed and true rotation. 

Simulations. The scene is randomly synthesized 3D po- 
sitions with depth uniformly distributed between l and 4 
focal lengths. The projected image coordinates x are uni- 
formly distributed in an image of size 512 x 512. A hundred 
runs are made for each experiment. For all simulations, we 
fix the translation direction as [4, - 3 , 5 ]  and rotation direc- 
tion as [-1,2,0.5]. Noise is Gaussian, and is measured by 
the signal to noise ratio (SNR): ( E ~ ~ U I I ~ ) ~ ~ ~  : (Elln)1z)’/2. 

Our first experiment, in figure 2, assumes fov=50°. 
Noise (T = 0.5 pixel, which leads to a 6:1 SNR. With 
relatively small fov, the Bruss-Horn and Jepson-Heeger for- 
mulations compute a translation direction biased towards 
the center, as predicted. The other three algorithms give 
results that are comparable to one another. 

The experiment in figure 3 changes fov to 150”. Noise 
standard deviation is still (T = 0.5 pixel, with SNR around 
10: 1 .  Except RM-L2 and RM-LI .2, all algorithms give 
estimation of translation that is biased toward the side. 

The experiment in figure 4 studies robustnes, with 50” 
fov. Noise is a mixture of Gaussians, in which 90% of 
the points has a 6: 1 SNR, and the other 10% has 1 : 1 SNR. 
Bruss-Horn and Jepson-Heeger are still biased, while the 
other three methods are relatively unbiased. However, 
Kanatani gives a greater variance than RM-L2, which in 
turn gives a greater variance than RM-L 1.2. 

The experiment in figure 5 verifies our theoretical claim 
of consistency. The data are generated in exactly the same 
way as in the third experiment, except that the sample size 
increases from 100 to 2000. The bias of Bruss-Horn and 
Jepson-Heeger cannot be corrected by adding more data. 

Experiments with Real Images. The last dataset, figure 6, 
is a pair of real images (block dataset) taken with a 16mm 
lens on a Panasonic camera (sensor area 8.8mm x 6.6mm). 
The field of view is thus approximately 31”, which is fairly 
narrow. The image resolution is 720 x 480 with a horizontal 
to vertical aspect ratio of 1.25 : 1. The distance between 
the camera center and the V block is about 40.6cm, and the 
distance to the background is about 58.5cm. This pair only 
contains lateral motion, without any rotation. 150 features 
are automatically tracked by the method in [ 181. Figure 1 
shows one image. 
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7 Conclusions 
The theory, simulations, and experiments in this paper 

emphasize the importance of consistency in the design of 
algorithms for the recovery of camera motion. Algebraic 
manipulation of the standard residual can lead to both bias 
and excessive variance in the results. Direct minimization 
of the standard residual, on the other hand, leads to smaller 
variance and negligible bias, and the use of p-norms in- 
creases robustness to a moderate amount of outliers. Con- 
sistency and robustness are not expensive, and a method 
using Gauss-Newton for quadratic convergence and special 
techniques that exploit the bilinear nature of the problem 
can work at near frame rate without special hardware. More 
systematic experiments are in progress to test the validity of 
the underlying assumption. We are also applying the prin- 
ciple of consistency to more general structure from motion 
algorithms. 

Figure 1 : One of the block images. 
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