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Abstract. Instantaneous camera motion estimation is an important research topic in computer vision. Although
in theory more than five points uniquely determine the solution in an ideal situation, in practice one can usually
obtain better estimates by using more image velocity measurements because of the noise present in the velocity
measurements. However, the usefulness of using a large number of observations has never been analyzed in detail.
In this paper, we formulate this problem in the statistical estimation framework. We show that under certain noise
models, consistency of motion estimation can be established: that is, arbitrarily accurate estimates of motion
parameters are possible with more and more observations. This claim does not simply follow from the general
consistency result for maximum likelihood estimates. Some experiments will be provided to verify our theory. Our
analysis and experiments also indicate that many previously proposed algorithms are inconsistent under even very

simple noise models.
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1. Introduction

In principle, the field of instantaneous velocities mea-
sured in the images produced by a moving camera con-
tains enough information to determine the rotation and
direction of translation of the camera, as well as depth,
i.e., the distances of scene points from the camera’s
center of projection.

In the absence of prior information about the un-
known depth and motion parameters, this motion field
analysis problem is most naturally cast as a statistical
estimation problem. It turns out that the image motion
field carries no information about the absolute depth of
points in the world, nor about the magnitude of the
translational velocity of the camera. A constraint is
consequently imposed on the magnitude of the trans-
lational velocity, under the assumption that translation

is nonzero. We thus face a nonlinear, constrained, sta-
tistical estimation problem.

The mathematics of motion field analysis has been
studied thoroughly in the absence of noise, as outlined
in Section 3. Conditions for the existence and unique-
ness of a solution are now well understood. However,
this is an inverse problem: the calculation of image ve-
locities from depth and motion is well-behaved, but the
converse is ill-conditioned, in that small errors (hence-
forth referred to as noise) in the measurements of veloc-
ities can produce large errors in the estimates of depth
and motion. One immediate consequence is that out-
liers in the image motion field measurements cannot be
ignored, as a single outlier can play havoc with the solu-
tion. In addition, bias and variance can be amplified by
inappropriate transformations of the problem formula-
tion. When previous researchers have seeked insights
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and designed algorithms through linearization or vari-
ous algebraic transformations of the original problem,
they have exposed themselves to this danger.

Although in theory, five points or more can be suf-
ficient to uniquely determine the motion parameters in
the ideal situation, in practice, one should use a large
number of velocity measurements to “average out” the
effect of noise. However, no analysis has been carried
out to study whether noise can be truly averaged out as
hoped, and to understand the true behavior of motion
estimation algorithms with a large number of veloc-
ity measurements. This paper addresses this issue. We
show that under appropriate noise models, there ex-
ists a family of motion parameter estimation methods
from sparse measurements of an image motion field
that are consistent as the number of measurements in-
creases. The noise model we consider in this paper is
non-parametric in that it cannot be specified with a fi-
nite number of parameters. In addition, the family of
estimation methods we propose do not correspond to
maximum likelihood estimates, which require certain
parametric assumptions on the noise distribution. It is
also important to note that even under the assumption
of a parametric noise model, the standard consistency
argument for maximum likelihood estimate still cannot
be applied directly to the motion problem, as explained
in Section 4.

The paper is organized as follows. Section 2 de-
fines the problem of motion field analysis, and Sec-
tion 3 sketches the history of previous work in the area.
Section 4 contains the main result of this paper, and
provides a rigorous statistical analysis to show the con-
sistency of a class of motion estimation methods un-
der moderate noise assumptions. Experiments will be
given in Section 5 to illustrate the theoretical results in
this paper. Section 6 summarizes the results and offers
some final remarks.

2. Problem Statement

The image velocity caused by the motion of a camera
with respect to a rigid scene under perspective projec-
tion is given by the following equation (see for instance
Trucco and Verri, 1998, Section 8.2.1):

ux) = A(x)(ﬁ + w x X) (D)

In this equation, u(x) is the image velocity at image
position x = (x, x2, )T, tis the camera’s translational

velocity, w is its rotational velocity, Z(x) is the scene
depth of the point imaged at x, and the camera’s focal
length is taken without loss of generality to be 1. The
matrix

1 0 —X1
AX) = 2
(x) [ 01 _xz] @

projects three-dimensional velocities onto a plane or-
thogonal to the camera’s optical axis. The magnitude
of the rows of A(x) accounts for the variable distance
of image points from the center of projection. The im-
age motion analysis problem is to estimate the 3D mo-
tion parameters t and o and the depths Z(x) from a
collection of velocity vectors sampled at some image
positions. Because t and Z appear as a ratio in Eq. (1),
their absolute magnitudes cannot be determined. We
therefore add the constraint

[t =1 (3)

under the assumption that t #0.!

Assume now that the velocity measurement u(x) is
corrupted with noise n(x). Then, for convenience, we
can rewrite the motion equation in the matrix form:

u(x) = p(x)A(X)t + B(X)w + n(x), 4)
under the constraint that ||t||, = 1, where

1+x2 —x;

—1—x§ X1X2 x|’

—X1X
B(x) = 1X2

and p(x) = 1/Z(x) is the inverse of depth. The quanti-
ties t, w, p(x) are the true parameters, and n(x) denotes
noise. We call

r(x) = u(x) — w,(t, ®, p(x)) ®)

the residual between measured velocity u(x) and pre-
dicted velocity u,, from an estimate (t, @, p(x)) of the
true parameters.

In this paper, we regard motion estimation as the fol-
lowing statistical estimation problem: Consider m mea-
sured image velocities u; at x; (i =1, ..., m), where
each coordinate X; is taken from a fixed but unknown
distribution Dj,. At each measurement point X;, there
holds the equality

u = pAit+ Bo+n (=1,...,m) (6)
that corresponds to (4), where n; is the noise at x;. We
are mainly interested in the behavior of an estimation
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t + oXx(Zx)

Figure 1. Projection u of the world motion onto the image. In the
absence of noise, u = C(«, X).

rule so that when m — oo, the estimated parameters f, D)

approach the true motion parameters t, w in probability

under the normalization condition that ||t]|, = ||t|> = 1.
To further simplify the notation, we write (4) as

u(x) = C(ay, X) +n(x),

where «; denotes the true motion parameter (t;, ),
and

C(a,x) = px)AX)t+ BX)w.

Figure 1 shows the terminology used in these equations.
Note that we treat each p(x) as a hidden variable, which
later becomes irrelevant in the computation. Therefore
we do not explicitly include p(x) in the vector of un-
knowns o = (t, w).

Throughout this paper, we use ||| to denote the
2-norm |-||,. For any two dimensional vector a=
[ai, ay], we define its normalized orthogonal direction
as Q(a) =[ap, —ai]/llall. If a=0, then we shall just
set Q(a) =11, 0].

Statistically, itis not easy to analyze the motion equa-
tion (6) directly, since for each measurement point there
is an associated unknown parameter p; that is sensitive
to the corresponding noise n;. For the same reason,
it is not possible to obtain a good estimate for every
pi. If not treated appropriately, the uncertainty of p;
could also lead to additional uncertainty in the esti-
mated motion parameters. This additional uncertainty
can be difficult to analyze theoretically. In order to elim-
inate this undesirable effect, we shall eliminate p; from
(6), so that our analysis only focuses on the motion pa-
rameter «. Intuitively, we need to project (6) onto the
direction that is orthogonal to A;t, which eliminates the

pi-dependent term in (6). Formally, we shall define this
projection as i(a, X, ) = Q(AX)t)” (u— B(X)w). Itis
easy to verify that the following (p(x)-independent) re-
lation holds:

h(a, x, C(a, X)) = 0. 7

Furthermore, the function value h(«, X, C(a;, X))
can be regarded as a closeness measure of the flow
caused by a motion parameter « to the true flow
C(ay, x) of the true motion parameter «;. To see this,
note that p(x) is not observable, therefore the close-
ness of the flow of o and the true flow C(«,,x)
at a spatial coordinate x can only be measured by
inf, | pAX)t+ B(x)w — C (e, X)||. Thatis, we want to
choose p such that the approximate flow C(«, X) and
the true flow C(«,, X) is closest in 2-norm.

This definition of closeness leads to h(«, X,
C(a;, x)):

h(a, x, C(ey, X)) = inf[ pAX)t+ B(x)w — C(a;, X)||-
p
®)

In summary, & (e, X, C(a;, X)) measures the closeness
of the flow implied by the computed motion parameter
with the optimal depth parameter to the true flow.

Utilizing Eq. (7), we obtain the following estimation
method for motion parameters:

G = argmin ) _ f(h(er, x;, w)), )
i=1

where f is a known function which penalizes large val-
ues of /(+). In this paper, we are especially interested in
the case that f has a form of f(x) =|x|? forg > 1. The
idea is to penalize large values of h(«, X;, u;) so that
the equality i (e, X, C (¢, X)) = 0 is approximately sat-
isfied on average. The normalized projection used in the
definition of £ is important. It follows from the basic in-
variant principle and the philosophy of non-informative
assumptions (or priors) in statistics. This philosophy
implies that for the motion estimation problem, with
minimum prior knowledge, we should not bias toward
any specific projection direction in our formulation.
Such a bias may lead to an inconsistent estimator, as
we show later.

In this paper, we call f(h(a, x,u)) a loss function.
Equation (9) is defined through an average of the losses
of the empirical (observed) data, therefore we call it an
empirical estimation. We also call the corresponding
empirical average of the losses empirical risk:
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1 m
Ronp(@) = — 3 f(hlet,xi,0)),  (10)
i=1

which can be regarded as an empirical goodness mea-
surement for each potential motion parameter «.
Empirical risk is an approximation to the true under-
lying risk, where the average over observed samples in
(10) is replaced by the following expectation over the
unknown underlying distribution D of (x, u):

R(a) = Exu f(h(a, X, ), (1)

where we use Ex u) to denote the expectation with re-
spect to the joint random variable (x, u).

The true risk R(«) can be regarded as the risk of a
motion parameter associated with infinitely many sam-
ples. There is no randomness involved in the definition
of R(a). On the other hand, empirical risk R,,,,(ct) can
be regarded an approximation of (11) with a finite num-
ber of observations. It is a random estimator of R («)
which depends on the choice of empirical samples. In
this regard, estimator (9) attempts to minimize approx-
imately the true risk R (o) through a limited number of
measurements. Therefore the consistency of this esti-
mator (the formal definition of consistency is given at
the beginning of Section 4), which is the topic we ad-
dress in this paper, includes the following two aspects:

e If o approximately minimizes (11), then « is close
to the true motion parameter «,. An estimator with
this property is said to be infinite-sample unbiased.

e With large probability over random image velocity
measurements (the probability approaches 1 as the
sample size goes to 00), if & minimizes (10), then
« also approximately minimizes (11). An estima-
tor with this property is said to exhibit finite-sample
convergence.

3. Previous Work

The literature on the computation of camera motion
from image velocities is rich in both the psychological
and computational literature of vision. In the follow-
ing, we make a few remarks about the measurement of
the image motion field. We then sketch what is known
about the motion analysis problem in the absence of
noise, and finally survey previous work that explicitly
addresses problems related to noise.

3.1. Motion Field Measurements

In a seminal book, Gibson (1966) coined the term “op-
tical flow” to denote the apparent velocity of image
points, which was intended to be the input to the com-
putation of depth and camera motion. More recently, it
was recognized that optical flow combines photomet-
ric and geometric aspects in complicated ways, and
that the former can interfere with the latter. A thor-
ough discussion of these issues can be found in Verri
and Poggio (1989). Assuming that the motion field
can be measured, say, by one of the methods surveyed
in Beauchemin and Barron (1996), the problem be-
comes a purely geometric one. It has been argued (see
Negahdaripour and Horn, 1987 for one of the first pro-
posals in this sense) that this separation requires an
assumption of flow smoothness, usually unwarranted,
and that an approach that computes depth and mo-
tion directly from image intensities, without interven-
ing flow computation or feature tracking, is preferable
(Horn and Weldon Jr., 1988 discusses this point in de-
tail). However, direct methods replace flow smoothness
with the equally controversial assumption that surface
brightness is independent on viewing direction. Be-
cause of this, we prefer to separate photometric and
geometric aspects, because the problem becomes sim-
pler to understand. Lack of flow smoothness is not an
issue if sparse motion field measurements are made.
The locations for the measurements can be chosen care-
fully, say by the methods in Moravec (1977) or Shi and
Tomasi (1994), so as to lead to good estimates of the
motion field.

Once motion field measurements are available, a fur-
ther distinction is useful. Namely, image motion field
analysis can be divided into the recovery of camera mo-
tion alone, followed by depth computation. Few image
points (see subsection below) are sufficient for the re-
covery of camera motion, and less expensive and more
reliable methods are then available for the subsequent
computation of a denser depth map given the now-
known camera motion, possibly over several frames
(see for instance Matthies et al., 1989). Nalwa (1993)
calls this two-stage approach the bootstrap approach.
To appreciate the importance of this point, notice that
one frame provides only two scalar measurements (the
two components of image velocity) for each unknown
depth value, so depth is only weakly constrained by
a single frame. Depth values are more strongly con-
strained when several frames are used, assuming that
the scene is stationary. A large number of velocity
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vectors from an individual motion field, on the other
hand, can be used to determine camera motion.

In our work, we track point features from one frame
to the next to measure approximate image velocity. In
particular, we use the algorithm in Lucas and Kanade
(1981) for tracking, and the method in Shi and Tomasi
(1994) for selecting good measurement locations. Still,
some features yield possibly grossly mistaken motion
field estimates. This occurs particularly at depth dis-
continuities, where false features occur frequently. Un-
less better feature selection methods are devised, a mo-
tion field analysis method has to be able to cope with
outliers like these.

3.2.  Existence, Uniqueness, and Ambiguity
of Solutions

In the absence of noise, image velocities at five points
yield a finite number of depth and motion solutions.
This follows by a simple limit argument from an early
result by Kruppa (1913), who gave a proof for finite
image displacements rather than image velocities. With
more points, the solution is essentially unique, except
when points in the world are on a certain (possibly
degenerate) hyperboloid of one sheet that depends on
camera translation, called a critical surface (Maybank,
1985; Horn, 1987; Negahdaripour, 1989). In this case,
two solutions are possible from the given flow.

Of course, all points in a scene are hardly ever on
a critical surface, but the probability that they are in
some sense close to one may not be negligible, espe-
cially because hyperboloids can degenerate into cylin-
ders or pairs of planes, which are frequent surfaces in
the world. In such a case, an algorithm may fail in two
different ways. If two possible approximate solutions
are similar to each other, their basins of attraction in the
estimation may merge, and lead to a shallow extremum.
If the two solutions are different, the optimization al-
gorithm may find the wrong solution. This is a lesser
problem, since the relation between the two solutions
is known, and one can check both solutions to find the
one with lower residual.

3.3.  Previous Algorithms for Noisy Data

Image velocity measurements at more than five points
are necessary if the data are noisy. Several algorithms
have been proposed to solve this over-constrained, non-
linear minimization problem, and most transform the

problem algebraically in order to obtain solutions that
are either in semi-closed form or more efficient than a
brute-force search over the set of all possible solutions.
In this section, we briefly review a small but representa-
tive sample of these solutions. Since we consider algo-
rithms based on image velocities, no mention is made
of algorithms that assume point correspondences be-
tween possibly widely separated viewing positions.
Bruss and Horn (1983) applied a simple algebraic
manipulation to remove depth from the estimation
problem, and obtained a residual r(x) that is bilinear
in camera rotation and translation. However, they then
simplified the expression of the residual for compu-
tational purposes. Their simplification is equivalent to
replacing the residual term r(x) in Eq. (5) with

r'(x) = r(x) | AL (12)

where t is the unit-norm camera velocity vector and
A(x) is the scaled projection matrix in Eq. (2). We will
see in Sections 4 and 5 that this simplification can in-
troduce severe bias into the solution. Later MacLean
et al., 1994 derived exactly the same bilinear residual
as Bruss and Horn, but by applying a different algebraic
manipulation. In either case, a least-squares estimate of
both depth and rotation can be obtained as a function
of translation. These estimates are substituted back into
the bilinear residual to obtain a nonlinear function of
translation alone. Translation is estimated by minimiz-
ing this nonlinear residual over all image velocities,
subject to the constraint that the translational velocity
has unit norm.

Rieger and Lawton (1985) proposed a method based
on motion parallax. If two 3D points have the same im-
age location but are at different depths, then the vector
difference between the two flow vectors is oriented to-
ward the focus of expansion (FOE). The Rieger-Lawton
algorithm locates the FOE from the local flow-vector
differences. Hildreth (1992) later modified the Rieger-
Lawton algorithm to improve its performance. An ob-
vious problem with both versions of this algorithm is
that it is particularly difficult to measure flow vectors
near occlusion boundaries.

Motion parallax is more general than the constraint
used by Rieger and Lawton. Prazdny (1983), for ex-
ample, noted that the difference between any two (not
necessarily adjacent) flow vectors gives a constraint on
translation, independent of rotation. Jepson and Heeger
built upon these previous efforts and proposed a series
of subspace methods for estimating egomotion (Heeger
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and Jepson, 1992; Jepson and Heeger, 1991, 1993).
The simplest of these is the so-called linear subspace
method (Jepson and Heeger, 1991, 1993). Given opti-
cal flow sampled at N discrete points in the image, one
can construct a set of constraint vectors that are shown
to be orthogonal to the camera translation velocity. For
N image velocity samples, there are N — 6 constraint
vectors. The translational velocity turns out to be the
eigenvector corresponding to the smallest eigenvalue
of a matrix suitably constructed from all the constraint
vectors.

The advantage of the linear subspace method is that
translational velocity is computed directly without re-
quiring iterative numerical optimization. The disadvan-
tage is that this method does not make use of all of the
available information (N — 6 linear constraints versus
N bilinear constraints).

From a problem formulation equivalent to Eq. (1),
Zhuang et al. (1988) derived the so-called epipolar con-
straint on the velocity field:

tT(xxu)—l—xTKx:O (13)

where K is a symmetric matrix with eigenvalues 1,1,0,
related to camera motion by the following equation:

1
K=0ow"tl — E(a)tT +tw?).

This constraint can be shown (Kanatani, 1993) to mean
that camera motion and the two projection rays of
any given scene point before and after motion must
be coplanar. Based on this instantaneous-time epipo-
lar constraint, Zhuang et al. (1988) proposed a linear
algorithm for egomotion estimation.

Since camera motion and scene depth are nonlinear
functions of image measurements, their estimates are
systematically biased. In fact, a simple argument based
on the Taylor series expansion shows that zero mean
noise is almost invariably transformed into nonzero-
mean noise by a nonlinear transformation. To see this,
write the nonlinear transformation 7' (n) from input
noise to output noise as

o0
T(n) = E cknk ~cy)+cin+ cznz,
k=0

where the ¢, are Taylor coefficients. We assume that
the noise is relatively large so that second order term
O (n?) is not negligible. In this case, even when cg =0
and E[n] =0, we have

E[T(n)]~ E[cln + cznz] = czE[nz],

which is nonzero if ¢; # 0. Thus, nonlinear transforma-
tions introduce bias into the results. Kanatani (1993)
analyzed the statistical bias of image motion analysis
with an argument essentially equal to the one above,
and proposed a method (called renormalization) that
subtracts an estimate of the output bias from the solu-
tion. The quality of Kanatani’s results is hard to eval-
uate from that paper, since only one simulation is pre-
sented. More results are shown in Section 5 below.

The somewhat disappointing results obtained in
the literature motivated researchers to analyze the
efficiency’ of motion estimation (Weng et al., 1993)
based on the Cramer-Rao lower bound (Rao, 1973).
This analysis led some researchers to believe (Weng
et al., 1993) that computation of camera motion from
instantaneous image velocities is unlikely to succeed.
In this paper we show that this is not necessarily so.
While the bias and variance problems discussed above
do render motion estimation essentially impossible in
some cases, this is shown to occur only at relatively
narrow field-of-view angles, and with a limited number
of motion field measurements, as in the simulations in
Weng et al. (1993). As we will show next, under appro-
priate noise models, estimators based on (9) converge
to the true motion parameters in probability, when the
sample size m increases.

4. Consistency

In the previous section, we have argued that in gen-
eral, with a limited number of image velocity measure-
ments, the computed motion parameters t and o will be
systematically biased. However, this bias can decrease
as the sample size m tends to infinity. To characterize
the performance of a statistical estimation algorithm,
it is thus important to study its large-sample behavior.
In this regard, a fundamental problem for a statistical
estimation algorithm is its consistency. For motion es-
timation problems, we can formally define consistency
as follows.

Definition 1. Let @({(x;, w;)};=1...») be any estima-
tor of the true motion parameter ¢, based on m random
velocity measurements (x;, w;) (i =1, ..., m). We say
that & is consistent if for any € > 0, and n > 0, there
exists a number M such that as long as the sample size
m > M, then with probability at least 1 — 1 over m ran-
dom velocity measurements (x;, u;) (i =1, ..., m), the
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estimated motion parameter is within distance € of the
true motion parameter o:

Plllee({xis u)}izi,.m) — ol <€l >1—n.

Intuitively speaking, the consistency of a motion es-
timation algorithm implies that when we use more and
more image velocity measurements, we have greater
and greater chance to obtain an accurate estimate of
motion parameter. As mentioned at the end of Section 2,
consistency includes two components: infinite-sample
unbiasedness and finite-sample convergence.

4.1. Noise Model

From the statistical point of view, if our goal is to es-
timate the parameter of a distribution in a paramet-
ric family (where the number of parameters should be
fixed) based on random samples drawn from the distri-
bution, it is well-known that under quite moderate as-
sumptions, the maximum likelihood estimate (MLE)
for the corresponding parametric distribution is con-
sistent. Furthermore, it is also asymptotically a most
efficient unbiased estimator as far as the Cramer-Rao
lower bound is concerned. The motion estimation prob-
lem can be casted as a maximum-likelihood estimate
problem if the distribution of noise n(x) has a known
form. For example, if we assume an iid® noise model
with density proportional to exp(—Af|n]|) for a fixed
parameter A > 0, then it can be verified that Eq. (9) is
equivalent to the MLE for this noise model, which is
of the following form:

plrtlfu fl; — (piAit+ Biw)|). (14)

Unfortunately, even under this noise model assump-
tion, the standard conditions that ensure the consis-
tency of maximum likelihood estimate are not satis-
fied for the motion estimation problem. The reason is
that in the MLE formulation (14), each p; appears as a
distribution-related unknown. This implies that in the
original formulation, the number of unknowns is pro-
portional to the number of samples. On the other hand,
formulation (9) itself, which eliminates p;, cannot be
regarded directly as a maximum likelihood estimate.
Otherwise, the corresponding noise distribution would
have a density of the form ocexp(Lf (Q(A(X)t;)"n)),
which has a strange dependency on the true motion pa-
rametert,.* Such anoise model is not even well-defined
mathematically since it would imply the unsatisfiable

condition that n and n + s A (x)t, have the same density
for all real numbers s.

From a more technical point of view, even if we
accept the above ill-defined noise model and regard
Eq. (9) as the corresponding MLE in a non-natural way,
the standard consistency proof of maximum-likelihood
estimate still cannot be applied to (9), due to the dis-
continuity of Q (A (x)t)—this technical issue has been
carefully treated in the proof of Theorem 4.

Another important difference between our analysis
and that of MLE is that we consider a relatively general
non-parametric noise model, which cannot be directly
handled by the maximum likelihood method. In our
model, we do not assume any fixed parametric form for
the noise distribution. We only impose certain restric-
tions on the noise distribution. This is useful for two
reasons: the noise distribution is more general, which
means that results we obtain will be more general; we
are able to derive a family of different consistent motion
estimation algorithms under the same noise model.

A reasonable noise model is necessary for the consis-
tency analysis. For example, assume that «; is the true
motion, but noise is added so that the observed “noisy”
flow exactly matches that of a different motion param-
eter «,,. In this case, without any prior knowledge of
the noise, it is perfectly valid to consider the estimate
ay, as the true motion parameter. This suggests that if
the noise is added so as to bias toward a specific mo-
tion configuration, then without any prior knowledge, it
is impossible to obtain consistent estimators. We will
thus need to make reasonable and moderate assump-
tions on the noise model so that it does not introduce a
bias toward any specific motion configuration.

Specifically, the following assumptions are essen-
tial in our analysis: each noise term n; in (6) is taken
from a rotationally symmetric (isotropic) distribution,
and independent from one another. However, we do not
assume that noise distributions at different image coor-
dinates are identical. Under this noise model (together
with a number of less important technical assumptions
which will be introduced later), we show that (9) is
consistent. We also demonstrate that the formulations
used by Bruss and Horn as well as some others are in-
consistent under this simple noise model. This analysis
demonstrates that although numerous methods can be
proposed through algebraic manipulations to the rigid
motion equation under the noiseless assumption, these
manipulations can be potentially very dangerous when
we take the effects of noise into consideration.

Before we go into the technical details of the proofs,
we would like to briefly justify the assumptions we have
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imposed on the noise distribution. Although, strictly
speaking, the independence assumption is not exactly
realistic, it is a quite standard assumption to simplify
statistical analysis since statistical principles such as
the law of large numbers can be applied. In practice,
even if there exists moderate dependency among obser-
vations, similar statistical principles may still be valid
(approximately), and hence our analysis can still be
applied to provide useful insights.

The more subtle problem is the assumption of ro-
tational symmetry. Because of the aperture problem,
positional uncertainty in images is not truly isotropic.
However, a feature detector like the one in Shi and
Tomasi (1994) leads to uncertainties that are very close
to isotropic. Also from a statistical point of view, even
when the noise is biased toward a certain direction lo-
cally, the derivations in this section will be valid as
long as the bias directions are globally isotropic on
average. Practically, this can be non-rigorously inter-
preted in the following two ways: if the overall effect
of local noise biases does not favor any specific motion
parameter, then it has an effect similar to the isotropic
assumption; if we run algorithms over multiple image
sequences with any fixed motion parameter, and if the
overall noise effect averaged over the multiple images
behaves like isotropic (which is very likely), then the
estimated motion parameters averaged over multiple
images has no bias in the large-sample limit.

We emphasize that the rotational symmetry of noise
is very important in our analysis: it is used to demon-
strate that the proposed formulation is infinite-sample
unbiased. One explanation of the inconsistency of the
formulation used by Bruss and Horn is that such a
formulation breaks this symmetry. Even though it is
possible to accommodate non-isotropic noise mod-
els into our formulation, provided that such informa-
tion is known, it is reasonable to assume that noise
is isotropic without any prior knowledge. As we have
pointed out earlier, this conforms with the philosophy
of non-informative assumptions in Bayesian statistics.

Under the isotropic noise model, in the following, we
prove the consistency of motion estimation based on (9)
by analyzing its two components that are mentioned at
the end of Section 2: infinite-sample unbiasedness and
finite-sample convergence.

4.2. Infinite-Sample Unbiasedness

In this section, we investigate the first component of
consistency of the proposed motion estimation formu-

lation (9)—infinite-sample unbiasedness. That is, we
show that as long as we can find « that approximately
minimize the true risk (11), « is close to ;.

We start our analysis with the following theorem
showing that with isotropic noise and a convex func-
tion f, the true motion parameter achieves the min-
imum true risk defined in (11). This is the first step
to demonstrate that the proposed schemes are infinite-
sample unbiased.

Theorem 1. Assume that the noise distribution of
n(x) is rotational symmetric for any given X, and as-
sume that f is symmetric and convex. Then, the true
motion parameter o, achieves the minimum of R(«) =
Egow f (h(a, X, w).

Proof: See Appendix A. g

The above theorem implies that the true motion pa-
rameter also minimizes the true risk with respect to the
true distribution defined in (11). This is a very impor-
tant step in our analysis since if the true motion pa-
rameter ¢«; does not even minimize the true risk, then a
scheme based on the minimization of (11) will not be
consistent.

In order to show infinite-sample unbiasedness, we
shall introduce a noise-free risk with respect to the true
flow C(«;, X) as:

Rpree(@) = Ex) f (h(at, X, Cr, X)) (15)

Note that by (7), the minimum of Ry («) is f(0) which
can be achieved at «,. This definition is very useful
since we can now separate the problem into two parts
as anoise dependent analysis plus a noise free analysis:

1. We would like to show that if & approximately min-
imizes the true risk R(«) in (11) which is noise-
model dependent, then « also approximately min-
imizes the noise-free Rp.(cr) which is not noise-
model dependent.

2. We would like to demonstrate that if o approx-
imately minimizes the noise-free risk Rpe.(cr) in
(15), then « is also close to «;,. This case can in fact
be regarded as the noise-free scene ambiguity anal-
ysis, which has been well studied in the literature.

The first step of the remaining analysis requires
us to define the residual risk of a parameter « as
AR(x) = R(x) — R(a;). By Theorem 1, we have an
inequality AR(«) > O for all «. The following theorem



On the Consistency of Instantaneous Rigid Motion Estimation 59

bounds the noise-free risk of a motion parameter « in
terms of the residual risk of a:

Theorem 2. Under the assumptions of Theorem 1,
then Vey > f(0),

AR(x)
infy P(f(m) < € |x)

Rfree(a) <€+

where n is the first component of the noise.
Proof: See Appendix B. m]

Intuitively speaking, the quantity infy P(f(n;) <
€0 | x) in Theorem 2 is related to the probability of noise
n that is small: P(||n|| < f~'(¢)) where f~'(¢) is the
largest z such that f(z) <e.

Definition 2. We say that small noise is uniformly
nonvanishing if Ve > 0, infy P(||n|| <€ |x) > 0.

Thus, small noise is uniformly nonvanishing if the
probability of finding arbitrarily small noise values any-
where in the image is nonzero. In this case, the right
hand side of the bound in Theorem 2 can approach
the minimum f(0) as AR(«) — 0, since Vey > f(0)
infy P(f(ny) <e€p|x)>0.

Since we deal with a general convex function f in
Theorem 2, the property of nonvanishing small noise is
required. The reason can be illustrated through the fol-
lowing intuitive example: consider a simple regression
model: x; =6; +n; where 6, =0 and n; is symmetric
noise. If we estimate 6, by minimizing ) .| x; — 6|, then
if small noise n; vanishes, say n; = %1, then clearly the
minimum is achieved for all 6 € [—1, 1].

However, this example also implies that this con-
dition is required only for convex functions f that
contain flat segments, such as the 1-norm f(x) = |x]|.
For a convex function that does not contain a flat seg-
ment, (such as f(x)=|x|? for ¢ > 1 which is what
we are interested in), the condition of nonvanishing
small noise can be removed. However, for simplic-
ity, we shall not go into such technical details which
are not essential in our discussion. One shall just
keep in mind that although we state our results with
the assumption of non-vanishing small noise, this as-
sumption is not essential. As a simple example, we
consider the square loss function f(x)=x2. Observe
that [ f(a+ D)+ f(a—b)]/2= f(a)+ f(b). We now
consider Lemma 1 in Appendix B, and canset k(a) =1
and p(b) = f(b). Since equality holds in this case,

the following result follows directly from the proof
of Lemma 1: Under the assumptions of Theorem 1,
and for the least squares formulation f(x)=x?, then
Ryree(@) = AR().

Theorem 2 essentially relates the approximate mini-
mization of (11) with the noisy flow to the approximate
minimization of Rg,, with the noise-free image veloc-
ity measurement u; = C(«, X). As we have pointed out
earlier, in addition to Theorem 2, in order to provide
conditions so that a formulation based on minimizing
(11) is infinite-sample unbiased, we need to demon-
strate that motion estimation based on the minimiza-
tion of the noise-free risk (15) is numerically stable.
This is equivalent to say that if A (e, X, C (o, X)) — 0
throughout coordinates, then o — «;.

Since the corresponding analysis is independent of
any noise model assumption, in this work, we regard
it as an aspect of the noise-free scene ambiguity anal-
ysis which has been widely studied in the earlier lit-
erature, referenced in Section 3.2. In order to empha-
size the main contributions of our work, which is noise
dependent, we shall skip further investigation on this
noise-free ambiguity issue, and simply list the relevant
assumptions on lack of ambiguity below.

Definition 3. We call a scene non-ambiguous if
Ex f(h(a, x, C(o;, X)) = f(0) (with constraint ||t|| =
1) has a unique solution.

We call a scene stably non-ambiguous if Ve > 0,
3§ > f(0) such that Ex f (h(a, X, C(a4, X))) <8 (with
It]l = 1) implies that |lo — ;|| < €.

We call a scene absolutely non-ambiguous if
for all camera motion [ty, wp] (with |ty]|=1),
Ex f(h(a, x, C([ty, wol, X)) = f(0) has a unique solu-
tion o = [tg, wp].

Note that if we make a reasonable choice of f such
that f(x) > f(0) for all x # 0, then the condition

Ex f(h(a, X, C(e, X)) = f(0)

is equivalent to the condition that i (e, X, C (a4, X)) =0
almost everywhere. Such a choice of f is also re-
quired for the validity of stable non-ambiguity, which
is an essential requirement in our analysis. Since
h(a, x, C(a,, X)) measures the closeness of the flow
with motion « and the true flow C(¢;, X), as outlined in
(8), the stable non-ambiguity requirement of the scene
is equivalent to saying that if a flow generated from
some camera motion is close to the true motion flow
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throughout the scene, then the motion itself is also close
to the true motion.

The following theorem summarizes the basic results
of this section. As we have pointed out earlier, the non-
vanishing small noise assumption is not essential.

Theorem 3. Under the assumptions of Theorem 1,
and with the further assumption that

1. The small noise is uniformly nonvanishing.
2. The scene is stably non-ambiguous.

Then motion estimation based on minimization of
(11) is infinite-sample unbiased: Ye > 0, there exists
n > 0 such that if o approximately minimizes (11) as
AR(x) <n, then ||a — o, || <e.

4.3.  Finite-Sample Convergence

In this section, we investigate the second component
of consistency of the proposed motion estimation for-
mulation (9)—finite-sample convergence. That is, with
large probability over random image velocity mea-
surements (the probability approaches 1 as the sam-
ple size goes to 00), if @ minimizes (10), then « also
approximately minimizes the true risk (11). We shall
first introduce the following definition which is used in
Theorem 4.

Definition 4. We call a scene non-degenerate if there
exists no solution @ = [t, w] of Ex f (h(«, X, 0)) = f(0)
such that t #0 and w # 0.

In other words, the only acceptable explanation of
zero flow (see the third argument of #) for a non-
degenerate scene is zero camera motion. Note that this
definition is also independent of any noise model as-
sumption, thus can be regarded as a specific aspect
of the noise-free scene ambiguity analysis which we
do not consider in this paper. It is also easy to see
from the definition that if a scene is absolutely non-
ambiguous, then it is also non-degenerate. We are now
ready to prove the finite-sample convergence result: un-
der certain technical assumptions, the true risk R (&) of
& obtained from (9) with a finite number of samples
converges to the minimum true risk R(w;) in prob-
ability, as the sample size m — oo. For simplicity,
we shall assume that the loss function is of the form

f@)=x"(@g=1.

Theorem 4. Assume that the scene is non-
degenerate, and

lime_,osupy P(x: [x —yl|l <€) =0.
Exf(Ix%) < 0.

sup, Enix f (Im]]) < oo.

sup, p(x) < oo.

Sl o

Then Ye >0, lim,,,_,oo P(AR(Q) <€) =1, where & is
obtained from (9), with f(x)=1|x|? (g > 1).

Proof: See Appendix C. O

Next, we would like to discuss the assumptions in
Theorem 4. Assumption 1 is non-essential. It can in fact
be removed by a more careful analysis. It is provided
only to simplify the proof. This assumption requires
that the density of x cannot be concentrated (like a
delta function) at a single point. This in turn guaran-
tees that any “bad” feature point won’t contribute too
much to the solution. Assumption 2 is important in our
current proof since it prevents the dominance of large
x which causes large variance in the solution. An in-
tuitive interpretation of this condition is to avoid the
large field-of-view situation which is known to cause
problems in motion estimation. Assumption 3 is quite
natural. It prevents the noise at a particular point from
overly influencing the solution. This assumption is re-
lated to the robustness of the motion estimator in (9): by
Jensen’s inequality, the condition sup, Eqx|n||? <0
is weaker than sup, Eyx [n||9> < oo when g; < ¢». This
implies that it is more robust to use a smaller ¢ in
f(x)=1x]? in the sense that the resulting method tol-
erates larger noise. However, similarly to Assumption
1, condition 3 can be weakened with a more careful
analysis. Assumption 4 prevents a 3D-world point to
be too close to the center of projection, and cause an
exceedingly large motion field—note that this situation
may happen with a small field of view. In summary,
assumptions in Theorem 4 are intuitively very sensi-
ble: they reflect conditions such as the effective field of
view used in the estimation and the robustness of the
estimator.

It is also important to mention that in Theorem 4 the
restriction of setting f(x) in the form |x|? (g > 1) is
non-essential. This assumption only simplifies certain
stages of the proof. Furthermore, the convexity condi-
tion on f (x) can also be removed if we make additional
assumptions on the noise distribution.
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At this stage, we can combine the results of infinite-
sample unbiasedness and finite-sample convergence
to prove the consistency of motion estimation based
on (9).

Theorem 5. Under the assumptions of Theorems 1
and 4, assume further that

1. small noise is uniformly nonvanishing.

2. the scene is stably non-ambiguous.

Then Ve > 0, lim,, .o P(|& —a,|| <€) =1, where &
is obtained from (9), with f(x)=|x|? (g > 1).

Proof: Ve > 0, by Assumption 1, Assumption 2, and
Theorem 2, 38 >0 such that ||&@ — ;|| >¢ implies
that AR(Q)>38. Therefore P(||@ —oy||>€) <
P(AR(&) > 8). Now by Theorem 4, we know that
lim, o P(AR(Q) >38)=0, therefore lim,_
P(l|l@¢ —a,]| > €)=0. ]

Although we have considered the consistency prob-
lem, we have not studied efficiency and robustness is-
sues in depth. A detailed analysis requires additional
information on the noise distribution besides our sim-
ple isotropic assumption. Such a study is beyond the
scope of this paper. We shall simply mention that if
we let f(x)=x|?, then a smaller g leads to more a
more robust estimator since large noise (outliers) has
less malicious impact. As we have mentioned earlier,
this point is already reflected in Assumption 3 (and
Assumption 2 to a lesser degree) of Theorem 4. We
include a simulation example in Section 5 to illustrate
this assertion. Furthermore, real image sequence ex-
amples in Section 5 also indicate that in the presence
of outliers, using a small g in f(x) =|x|? can make a
significant difference.

Finally, we discuss the role of t, 0 in our analysis.
Obviously, if t, = 0, then it does not have a well-defined
direction. Therefore it is impossible to obtain an esti-
mate £ that is consistent. Howeyver, the estimate of the
rotational parameter w will still be consistent. To see
this, we shall note that the only part in our analysis that
truly requires the assumption of t, 0 is in the defi-
nition of stable non-ambiguity of the scene, which is
the noise-free part of the analysis. In the case of t, =0,
as long as the scene is stably non-ambiguous with re-
spect to w, then the estimation of w in (9) will still be
consistent.

4.4.  Inconsistency of Some Previous Motion
Estimation Methods

Compared with (9), the Bruss-Horn approach is equiv-
alent to the minimization of

D fhe xi, uw) At
i=1

with f(x) =x2. Instead of using the normalized defi-
nition of Q(a) as in our formulation, they essentially
employed an unnormalized definition of orthogonal
projection so that ||Q(a)|» = ||all2, which breaks the
rotational symmetry. The fact that our formulation is
infinite-sample unbiased (and in addition, consistent)
implies that the Bruss-Horn formulation will bias to-
ward a translation direction so that ||A(X)t||, is small
with the constraint ||t||; = 1, even in the infinite-sample
case, (and more so in the finite sample case). This im-
plies that their formulation will be inconsistent.

By the definition of A(x), if the selected coordinates
(x1, x) are small compared to 1, then increasing the
third component of t tends to give a smaller value of
[|A(x)t||2; on the other hand, if many of the selected
coordinates (x;, x,) are large compared to 1, then de-
creasing the third component of t tends to give a smaller
value of ||A(X)t||>. Since the former situation occurs
when the camera’s field-of-view (fov) is small, and the
second situation occurs when the fov is large, the trans-
lation direction computed by the Bruss-Horn formula-
tion will bias toward forward motion with a small fov
and will bias toward side motion with a large fov.

The above argument relies on the assumption that
the modified formulation (9) is infinite-sample unbi-
ased and consistent, which we have just proved. The
conclusion of this analysis will be verified in Section 5
by experiments.

Since the linear subspace method introduced by
Jepson and Heeger (1991, 1993) starts with the same
formulation as that of Bruss and Horn, it suffers from
the same bias behavior as the latter. It is also not hard
to see that the formulation (13) by Zhuang, et al. in
(1988) also suffers from the same problem, due to
the term t” (xx u), which again breaks the rotational
symmetry.

Although the method obtained by Kanatani (1993)
is statistically more sensible, it starts from an inconsis-
tent formula. It is hard to analyze how good the bias
corrected formulation is, but we shall demonstrate by
experiments in Section 5 that while the bias is not totally



62  Zhang and Tomasi

IR1=0.338 true IRI=0.239

Bruss-Horn

IRI=0.238 true IRI=0.239

Kanatani

IRI=0.237 true IRI=0.239

- S

Figure 2. Bias: fov=50°.

removed, the formulation introduces a larger variance
than methods based on (9).

In our experiments, one can notice that the effect of
any bias in the translation parameter will be compen-
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sated by a bias in the rotation parameter, so that the
overall motion field remains similar. It is also interest-
ing to mention that if the camera translation is small
compared with the camera rotation, then the translation
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Figure 3. Bias: fov=150°.
bias of the above algorithms will have a very small im- could have a negligible effect on the rotation estimate.
pact on the optical flow field, hence the correspond- Therefore rotation estimate in this case could be unaf-
ing rotation bias will be small. In the extreme case fected by the potential translation bias. This claim will

of zero-translation, the bias caused by the translation be verified by a synthetic-image experiment.
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5. Experiments

We would like to verify our theoretical results by some
experiments, and to demonstrate the importance of con-
sistency by comparing different camera motion esti-
mation methods with each other. In this section, the
following algorithms will be compared:

1. Bruss-Horn: the Algorithm in Bruss and Horn
(1983) with least square minimization.

2. Jepson-Heeger: the linear subspace method in
Jepson and Heeger (1991, 1993).

3. Kanatani: the renormalization method in Kanatani
(1993).

4. RM-L2: the least square formulation with f(z) = z2
in (9).

5. RM-L1.2: the robust formulation with f(z) =|z|'*?
in (9).

The algorithm we used to solve RM-L2 and RM-
L1.2 has been described in Zhang and Tomasi (1999).

In the figures that follow, the directions of camera
translation and the axes of camera rotation are plot-
ted on a hemisphere and projected to a circle, which is
scaled to be uniform from 0°-90° in the radial direc-
tion. The true camera translation and rotation directions
are denoted by symbol o and x respectively on each
plot. The estimated camera translation directions are
plotted as black dots (one dot per run). The cluster size
of the black dots (individual translation direction es-
timates) thus gives a good indication of the variance
of the underlying motion estimation method. Individ-
ual estimated rotation directions are not plotted. This
makes the figures appear less cluttered. In addition, the
cluster center of the estimated translation directions is
denoted as ©>; the cluster center of the estimated ro-
tation directions is denoted as 4. They can be com-
pared with the true translation and rotation directions
to illustrate the corresponding biases: Magnitudes of
the rotations in degrees are also reported (“|R|” as the
computed average over all runs in each plot, “true |R|”
as the true magnitude of rotation). We have also in-
cluded an instance of optical flow field to illustrate the
observed camera motion field.

The tables report estimation errors using the format
of “error mean =+ error standard deviation”. Error for
translation direction is defined as the angle in degrees
between the estimated direction and the true direction.
Error for rotation is defined as the 2-norm of the dif-
ference of the estimated rotation and the true rotation,
measured in degrees.

5.1.  Simulated Flows

In each experiment, 100 random features are used, un-
less otherwise stated. The scene contains randomly
generated 3D positions with depth uniformly dis-
tributed between 1 and 4 units of focal length. The
projected image coordinate x is uniformly distributed
in the image of size 512 x 512 pixels. A hundred runs
(each run with 100 different random features) are made
in each experiment, and the reported results are highly
repeatable. For all experiments, we fix the true trans-
lation direction as [4, —3, 5] and the true rotation as
[—1, 2, 0.5] which corresponds to an angular velocity
of 2.39°/frame. Independent Gaussian noise is added
unless otherwise stated. The flows are very similar in
these experiments. This implies that it is useful to mea-
sure the size of noise by signal to noise ratio (SNR):
(Ellu;13)"?: (E|m]|3)".

Our first experiment assumes fov=50°. Noise
o =0.5 pixels, which leads to a 6:1 SNR. The sim-
ulation results are reported in Table 1 and Fig. 2.
In this experiment, we verify our assertion that with
relatively small fov, the Bruss-Horn formulation com-
putes a translation direction biased towards the center.
Note that this bias, which is in accord with our analy-
sis, supports our explanation of the inconsistency of the
Bruss-Horn (and related Jepson-Heeger) method. The
other three algorithms give comparable results. This
shows that with a fov of 50°, the Kanatani’s method
successfully corrected the inherent bias.

The second experiment changes the fov to 150°.
Noise standard deviation is still ¢ =0.5 pixel, with

Table 1. Bias: fov=150°.

Translation error Rotation error

Bruss-Horn 30.2+7.2 0.16£0.03
Jepson-Heeger 29.0+4.7 0.16 £0.02
Kanatani 6.7+5.5 0.09£0.04
RM-L2 63+3.6 0.05+0.03
RM-L1.2 69+4.1 0.05+0.04

Table 2. Bias: fov=150°.

Translation error Rotation error

Bruss-Horn 145+5.5 0.07£0.03
Jepson-Heeger 454+164 0.08 £0.04
Kanatani 38.1+19.9 0.19+0.09
RM-L2 7.8+7.9 0.08 +£0.10
RM-L1.2 8.6+7.8 0.08+£0.10
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Figure 4. Robustness: fov=50°.

SNR around 10:1. The results are reported in Table 2
and Fig. 3. In this case, Except RM-L2 and RM-
L1.2, all algorithms give translation estimates that
are biased towards a more lateral motion. Although
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150° is a rather extreme case, this experiment ef-
fectively demonstrates fundamental flaws in the pre-
vious approaches, which do not appear in our
formulation.
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Figure 5. Consistency: sample size = 2000.

The third experiment illustrates the robustness of the
methods. We still consider the case with 50° fov. The
noise is generated as a mixture of Gaussians, so that
90% has a 6:1 SNR, and the other 10% has 1:1 SNR.

IRI=0.365 true IRI=0.239

f" \\
- N
- N
. ~
L4 N
/ N
’ N
/
7’ \\
/ N
’ A
’ \
/ o \
’ \
/ \
r . 1
: * )
i I
i !
\ ;
A} !
\ /
\ ’
AY !
\ ’
\ ‘
A /
N /
~ ’
N .
N * 4
~ P
-~ -
-~ + -

Jepson-Heeger

IRI=0.240 true IRI=0.239

A 4
\ ‘
N ’
~ /
N 4
N % e
N -
S e
RM-L2
[ ai--dialialitiade - T SaPealilh - e |
1 e - !
-— - -~
1 - ) - !
— - -
! — - - ~ !
[ ol - |
- - -
| _ 1
t - bl 1
| - -1
[ = o~ - |
| e -— }
- -
1 .- “ —— I
1 - !
hal "
-— - -—
1 - Ca - Aol
| - - - P B
1 - - - 1
o«
[ - - 1
1 — ha |
[ - -~ - !
[ - b |
| |
b e e e e e e e A |
Flow Field

The results are reported in Table 3 and Fig. 4. In this
case, the Bruss-Horn and Jepson-Heeger methods are
still biased, while the other three methods are rela-
tively unbiased. However, itis clear from the results that
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Table 3. Robustness: fov=50°.

Translation error Rotation error

Bruss-Horn 39.3+7.8 0.20£0.04
Jepson-Heeger 39.0+7.6 0.19£0.04
Kanatani 32.1+249 0.17+0.10
RM-L2 22.0+19.9 0.15+0.12
RM-L1.2 9.5+52 0.08 +0.05

Table 4. Consistency: sample size = 2000.

Translation error

Rotation error

Bruss-Horn 434+32 0.20£0.01
Jepson-Heeger 39.6+1.7 0.19+£0.01
Kanatani 7.6+5.5 0.04 +0.02
RM-L2 53430 0.03+£0.02
RM-L1.2 3.0+1.8 0.024+0.01

Kanatani’s method gives a larger variance than RM-L2,
which in turn gives a larger variance than RM-L1.2.
The fourth experiment verifies our theoretical results
of consistency. The data are generated in exactly the
same way as in the third experiment, except that the
sample size increases from 100 to 2000. The results
are reported in Table 4 and Fig. 5. It can be seen that
the bias of Bruss-Horn and Jepson-Heeger methods can
notbe corrected by adding more data, which is in accord
with our theoretical analysis. On the other hand, vari-
ances for the other methods reduced significantly and
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Figure 7. Chessboard image.

all of them show close to zero biases. Graph containing
expected error for each algorithm against sample size
is reported in Fig. 6.

5.2.  Synthetic Sequences

To check whether our analysis is consistent with im-
age velocity measurements obtained by tracking im-
age features, we test the performance of the algorithms
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Figure 8. Chessboard: sample size = 100.

on some synthetic image sequences. In the literature,
synthetic images have been used extensively for eval-
uating various optical flow algorithms since they re-
semble real images and the true flow fields are known.
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For motion estimation experiments, synthetic image
sequences can be even more attractive since the ex-
act ground truth information is available. On the other
hand, accurate ground truth information is in general
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Table 5. Chessboard: sample size = 100.

Translation error Rotation error

Bruss-Horn 17.6£5.5 0.21£0.08
Jepson-Heeger 312+ 1.6 0.35+£0.04
Kanatani B 214436 0.13+0.04
RM-L2 35420 0.07+£0.03
RM-L1.2 1.1+£0.6 0.02+0.01

Table 6. Amiga: sample size = 100.

Translation error Rotation error

Bruss-Horn 82.7+£09 0.00+0.00
Jepson-Heeger 82.5+0.8 0.00£0.00
Kanatani B 80.8£5.5 0.07 £0.09
RM-L2 75.2+16.9 0.0140.03
RM-L1.2 74.1+17.0 0.01+0.01

difficult to obtain for images taken by a camera (see
Section 5.3).

The first experiment is done with a sequence of
twenty ray-traced images of a chessboard (courtesy of
Andy Kniveton). This dataset (chessboard) is generated
with a45° field of view. The image sequence resolution
is 512 x 512 pixels. The true translation direction is
[—2.28,4.03, —4.94] whichis randomly generated; and

Figure 9. Amiga image.

Table 7. Lab dataset.

Translation error Rotation error

Bruss-Horn 3394275 0.4940.39
Jepson-Heeger 37.0+22.5 0.60 £ 0.40
Kanatani B 3214233 0.384+0.31
RM-L2 16.3+£18.4 0.254+0.28
RM-L1.2 22+£1.7 0.0340.02

the rotation is [0.0357, —0.2642, 0.2586], which corre-
sponds to an angle velocity of 0.371°/frame. Figure 7
shows an image in the sequence. Figure 8 and Table 5
report results of the algorithms on this dataset. The
computation is based on 100 automatically tracked fea-
tures throughout the sequence, using the algorithm in
Lucas and Kanade (1981).

In accord with our theoretical analysis and results ob-
tained from the simulated flow experiments, the trans-
lation directions of Bruss-Horn and Jepson-Heeger are
biased toward the forward direction, because of the
narrow field of view. As we have pointed out in Sec-
tion 4.4, this bias also leads to a bias in the estimated ro-
tation parameter: The estimated translations are smaller
than truth, which causes a smaller translational flow
field. As a consequence, the estimated rotation param-
eters are larger than the true ones, so as to compensate
the effect on the flow field. This phenomenon can also
be observed in our simulation experiments (the effect
is reversed with a large fov). Interestingly, for this par-
ticular image sequence, the Kanatani method shows a
significant bias. Although we do not full understand its
true cause, we conjecture that the compensation used
in the Kanatani formulation is not suitable for the noise
model in this image sequence. This also shows why itis
useful to relax the underlying noise model assumption
as much as possible, as we try to achieve in our analysis.

The second experiment is to illustrate that all al-
gorithms perform well with zero translation. We use
another image sequence containing twenty images of
an Amiga computer (courtesy of Marvin Landis). The
resolution is still 512 x 512 pixels, with a 40° field
of view. Figure 9 shows an image in the sequence.
The translation is zero, and the rotation is [0.3910,
0.0081, —0.0163], which corresponds to an angle
velocity of 0.391°/frame. We have intentionally cho-
sen a rotational direction that is almost parallel to the
x-axis, since the flow field is very similar to that from
a translation in the y-axis. However, as we can observe
from Fig. 10 and Table 6, with 100 tracked features,
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all algorithms perform well on this data, although it is
clear that estimated translation directions are meaning-
less with all algorithms.

5.3. A Lab Sequence

We use an image sequence obtained from a camera in
a controlled lab (the “lab” dataset) to further illustrate
that algorithms based on our theoretical analysis per-
form well in practice.

This sequence is provided to us by John Zhang, who
used the data (Zhang, 1999). The images are taken with
a 5.5 mm lens on a Sony XC-77 CCD Video Camera.
The sensor area is 6.6 mm x 8.8 mm, which gives im-
ages of size 486 x 640 pixels. The camera is mounted
on a precision positioning device, which allows mea-
suring the true camera motion. The detailed lab set-
up and camera calibration procedure can be found in
Zhang (1999).

As in Zhang (1999), we use the first 51 frames in
the sequence, which contain different motion direc-
tions from one frame to the next frame without rotation.
The computation is based on 150 automatically tracked
features, which are identical to features used in Zhang
(1999). However, in this experiment, we do not perform
any outlier removal, as opposed to Zhang (1999). Fig-
ure 11 shows an image in the sequence. Figure 12 and
Table 7 contain results of the algorithms on this dataset.
These results include 50 runs, where each run corre-
sponds to the motion from one frame to the next frame.
Since the motion directions vary throughout the se-
quence, in Fig. 12, we plot all 50 true motion direc-

Figure 11. The block image.

tions, each denoted by a symbol o. The estimated mo-
tion directions are still plotted as dots. The rotations
are not illustrated in Fig. 12, to make the plots ap-
pear less congested. Clearly, outliers cause problems
for this sequence. As we can observe from the sam-
ple flow plot (from frame 30 to frame 31) in Fig. 12,
although most tracked features look reasonable, there
are some obviously incorrect ones. This example shows
that outliers can really become a problem in practice.
It is not surprising to see that the robust formulation
RM-L1.2, which in this example gives results compa-
rable to those of the more complex scheme proposed
in Zhang (1999), is much less sensitive to outliers than
the other methods.

6. Conclusion

In this paper, we have investigated the consistency of
the instantaneous camera motion estimation problem.
The theory we have developed shows that under certain
moderate noise assumptions, we can construct consis-
tent motion parameter estimators. One interesting con-
sequence of this theory is that although the depth in-
formation cannot be recovered, it does not cause prob-
lems in motion parameter estimation. The theory also
implies that any careless algebraic manipulation of the
standard ridge motion formulation can lead to both bias
and excessive variance in the results. These assertions
have also been verified by experiments.

Although the theory implies that under our noise
model a family of estimators are consistent, some of
the estimators may be more efficient (in terms of con-
vergence rate) or more robust (to outliers) than others.
Due to limitations of space, we have skipped a detailed
theoretical analysis. However, since outliers play anim-
portantrole in motion parameter estimation, it is impor-
tant to understand that robustness can be enhanced by
using a g-norm with g < 2 rather than the least squares
formulation with g = 2. This is because with a smaller
q, an outlier has a smaller impact on the estimation. We
have verified this point through experiments.

The consistency analysis has added a compelling ar-
gument for the use of more velocity measurements for
camera motion estimation in the presence of noise, even
if five points are sufficient in the noiseless situation.
This argument shows that our intuition that noise can
be “averaged out” with more measurements is valid un-
der moderate assumptions. Furthermore, we have also
shown that an arbitrary algebraic manipulation under
the noiseless assumption should be avoided. Since our
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noise model is relatively simple, it is reasonable to ex-
pect a good motion estimation algorithm to be (at least
approximately) consistent under this model. All of our
experimental results, including simulation, synthetic
image sequences, and a real image sequence, confirm
our theoretical analysis. This suggests that our analysis,
which is based on the isotropic flow noise model as-
sumption, can provide useful insights in practical situ-
ations. It could also be interesting to apply the principle
of consistency to more general structure-from-motion
algorithms.
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Appendix A: Proof of Theorem 1

Let @ be any parameter, and denote b(«, x) = h(«, X,
C(ay, X)), then

h(a, x,u) = b(e, X) + g(, X, 1),

where g(a, X, u) = Q(A(X)t)"n has symmetric and
o independent distribution. Intuitively, b(w, X) is the
component of /(w, X, u) with the corrupted flow u re-
placed by the true flow, and g (¢, X, u) is the component
of h(«, x, u) caused by noise n. Therefore this decom-
position separates the effect of noise from the effect of
true flow. Utilizing this decomposition, we obtain

R(x) = /dP(x)/f(h(a, X, 1)) dP(u|x)
:/dP(x)/f(b(a, X) + g(a, X, u)) dP(u | x)

1
= fdP(X)f E[f(b(ot, X) + g(o, X, u))
b £ — gla x, w)]dP(u )
> / 4P (x) / F (e x, w) dP(u|x)

_ /dP(x)/f(g(a,,x, w) dP(u|x) = R(a).

Note that in the above derivation, the third equality
uses the fact that noise is symmetric. The inequality

uses the assumption that f is symmetric and convex.
It is a direct consequence of the Jensen’s inequality of
convex functions: the inequality can be geometrically
interpreted as that in the graph of a convex function,
the set above the function is convex, thus the mid-
dle point of any line-segment connecting two points
on the boundary (line 3 in the above derivation) is
in the set, so that it is above the boundary below it
(line 4 in the above derivation). The last equality uses
the fact that the noise distribution is isotropic, so that
for any normalized direction Q, Qn has the same
distribution. |

Appendix B: Proof of Theorem 2

We need a Lemma in order to prove Theorem 2.

Lemmal. Underthe assumptions of Theorem 1, and
if we further assume that [ f(a +b) + f(a —b))]/2>
f(a)+k(a)p(b) where k(a), p(b) >0, then V.,

AR(x)

Exp(h(a, x, C(ay, < —.
xp (h(ee, X, Clar, X)) infy B ok (1)

Proof: We still use the notations from the proof
of Theorem 1. Let b(«x, X) =h(«x, x, C(oy, X)), then
h(a, x,u) =b(a, xX) + g(, X, 1):

1

E[f(b(a9 X) + g(av X, u)) + f(b(a’ X) - g(Ol, X, u))]
— fgla, x, w) > k(g(a, X, w))p(b(e, X)).

It follows from the proof of Theorem 1 that

/[f(b(a7 X) +g((¥? X, u)) + f(b(aa X) - g(av X, u))
2

— f(gla, X, U))} dP(x,u)
> f k(g(@. x, ) p (b(e, X)) dP (x, u)

> / o(b(a, x)) dP (x) inf/k(g(ot, X, 1)) dP(u|x)
X
= Exp(h(e, x, Clay, x))) inf Bk (g(atr, X, w)).
‘We thus obtain the lemma by noting that g (¢, x, u) and

n,; | x have identical distributions (due to the isotropic
noise assumption). O
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Proof of Theorem 2: Let k(a)=1{a: f(a) <e€y})
where [ is the set indicator function and p(b)=
max (0, f(b) — €p), then there are two possibilities:

1. f(a)> min(f(b), €): in this case, either k(a) =0
or p(b) =0, thus

1
Flftatb)+ fla=b)l= fla)
= f(a) + k(a)p(b).

2. f(a) < min(f(b), €): in this case, f(b) — f(a) >
0and f(b) — f(a) > f(b) — €, thus

1
Ffatb)+ fla=bl= fb) = fla)
+ max(0, f(b) — €) = f(a) +k(a)p(b).

By Lemma 1, we obtain

AR(x)
Exf(h(Ol, X, C(atv X))) — €0 < infx Eulxk(g(at, X, u))

AR(@)

“infy P(f(n)) < € | %)

O

Appendix C: Proof of Theorem 4

The proof of finite-sample convergence in Theorem 4 is
very technical. Therefore it is useful to explain the ideas
hidden in the proof. Intuitively, for each fixed «, by the
law of large numbers, with sufficiently many samples
m, the empirical risk R,,,,(c) is close to the true risk
R () with high probability. If in addition we can show
that R, (a) is uniformly smooth in « (in a domain),
then with sufficiently many samples, R, () is close to
R(w) for all @ (in the domain) with high probability. If
so, we know that a parameter « that approximately min-
imizes the empirical risk R,,,(a) also approximately
minimizes the true risk R(«) with high probability (in
the domain). Essentially, inequality (34) characterizes
what we mean by uniform smoothness in «. Therefore it
plays a very important role in the proof. The remaining
proof after (34) is more or less standard manipulations
in statistics. Inequality (34) follows from (30) and (31)
which decomposes the uniform smoothness in « de-
fined in (34) into the uniform smoothness in t defined
in (30) and the uniform smoothness in w defined in (31).
The derivations of these two inequalities are specially
tailored to the motion estimation problem. In particular,
the first half proof of Theorem 4 establishes relevant

inequalities to show that under appropriate technical as-
sumptions, the discontinuity caused by the normalized
projection operator O does not introduce smoothness
problems. As we shall point out, the term smoothness
used above does not refer to the smoothness of the op-
tical flow itself (which will be discontinuous when the
depth is discontinuous), but rather to the projection of
the optical flow in the direction of Q (A (x)t).

The following proof of Theorem 4 is divided into 10
steps to improve its readability. In addition, we sum-
marize the goal of each step with an English sentence
at the beginning of the step. These sentences allow a
read who is not interested in the mathematical details
to have a high level understanding of the proof.

Proof: Before the main steps of the proof, we would
like to introduce a number of inequalities and constants
that characterize a number of regularity conditions used
later in the proof.

Firstly, it is easy to verify that with fixed ||xol| =1,
the function limy_.,[|Q(X) — Q(Xo)|l/|Ix —Xo| is
bounded. Thus by symmetry and boundedness of Q,
there exists a constant ¢y such that Vx; and Vx; #0,

19(x1) — Q) < collxi = x)[I/II%2[l.  (16)

We define A(x) = WA(X)' It is easy to see that

Q(A(X)t) = Q(A(x)t) and 3 constant ¢; > 0 s.t.
AL < crit]). (17)
There exist constants ¢, c3, ¢4 > 0 such that

IBX)I < ca(lIx[* + 1), (18)
fla+b) < ci(f(@)+ f(b)), (19)
la + b9 < cs(1+ f(@) + 16177, (20)

Also it is easy to verify the following inequality:
[f(@) = f(B)] < gqla = bl(lal’"" +[b""").  (21)

For clarity, we divide the rest of the proof into 10
steps:

Step 1: In this step, we write down a few more regu-
larity conditions formalizing some assumptions of the
theorem.

Since | QA Bx)o| < c2(1+|1x[1*) @], it fol-
lows from Assumption 2 that Ex f (Q(A(X)t)” B(x)w)
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exists for all t and w. Also VM > 0, we have constant
¢s that only depends on M:

cs(M)=Ex sup  f(QAXY BXw) < oo.

Itl=1.llol<M
(22)
It is clear from Assumptions 3 and 4 that
Exuf([ul) < o0, (23)
and Vy >0,
c6(y) = sup Euxf(llul) < oo. (24)

Ixll<y

We thus also have

Exn sup
Itl=1, ol <M

fh(t, o], x,u)) < co. (25)

Step 2: The goal of this step is to derive Eq. (28),
which means that the discontinuity caused by Q (A (x)t)
(with A(x)t small) is negligible.

For all §€(0,0.1) and €€ (0,0.15). Consider
an arbitrary choice of |[t|=1 and x such that
IAX)t| <€e. We obtain |t; — x113] < (1 + ||x||)e and
|t — x2t3] < (1 + ||x||)e. Consider the following two
situations:

a. |t3] > §&: in this case, let y=[t1, 1,]/13, then |y|| <
1/5. |AX)t|| <e implies that [x—yl| <2(1+
Ix[)e /8, therefore [x]| <2(1 + [lyll) < 2(1 4 1/8).
We obtain

E o wpicoty<e S AXIP + al + 1)
8
< P(X x =yl < 5(1 + 1/6)6)

x  sup  Euxf(IXI*+ uf + 1),

Ixll=2(1+1/8)

where ||y|| <1/6§. Since Assumption 1 implies

8
lim sup P(x: Ix—yll <-=-(1+ 1/8)6) =0,
=0 y|<1/s 8

and since (19) and (24) imply

sup  Euxf(IXI* + lull + 1) < oo,
[Ixl|<2(1+1/8)

therefore we obtain

lim sup Eurpicon<ef (X1 + [ul +1) =0,
€7V 13128
3 (26)

b. |t3] <4: in this case, either |¢1]| > 0.5 or |£;] > 0.5,
therefore 0.5 — |t3] - ||x]| < (1 + ||x]))e. We have
x|l > (0.5 —€)/(|t3] +€) > 0.1/5. Now, from As-
sumption 2 and Eq. (23), we obtain

lim lim, sup E w14
sp e>0 PP Bl dcot<e

x fUXI? + Jhafl 4+ 1) =0. 27

VA >0, by (26) and (27), we can find € > 0 such
that

sup E(x,u):HA(x)t||<ef(||X||2 +u] +1) < A.
[lt=1

Thus

fim $Up.E sy sy S IXIP + full + 1) = 0.
=0 1t1=
(28)

Step 3: In this step, we would like to show that
E. f(Q(AX)t)T B(x)w) is continuous in t and w. This
result will be used in Step 4.

To prove this, Y|ty]| =1, wo and € >0, by (28),
we can decompose R? as S U T such that Eycg
FUB®)|(Jlwoll + 1)) < € and Q (A(x)t) is continuous
when x € T. Since f(Q(AX)t)T B(x)w) is bounded
by the integrable function f(cy(||x||>+ 1)|w]), we
obtain

: T
elim  Exer f(QARD BX)w)
= Exer f(Q(AX)t)" B(x)ay).

Also note that Eycs f(Q(AX)t)T B(x)w) <€ when
|l — ao|| < 1, therefore

[Tim .0 (1.0 Ex.f (Q(A XD B(X))
— Ex f(Q(A(X)t)" B(x)wo)| < 2e.

Since € is arbitrary, we conclude that Ey f (Q(Ax)t)T
B(x)w) is continuous in t and w. Similarly, Ey,
F(QAXHT (u— B(x)w)) is continuous in t and w.
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Step 4: 1In this step, we derive another regular-
ity condition that formalizes the assumption of non-
degeneracy of the scene. This condition will be used in
Step 10.

The non-degeneracy of the scene implies that V/||t||
and Jlo| =1,

Exf(QAX)D" BX)w) > 0.

By the continuity of Ey f (Q(A(x)t)T B(X)w) in Step 3,
we obtain

inf  Exf(QUAXHTBX)w) > 0. (29)

c7 = 1
Itl=1.llel=1

Step 5:  We would like to show that the motion esti-
mation formulation is uniformly smooth in t. That is,
for all €, y, M >0, we want to show that there ex-
ists § > 0 such that V||tg]| =1 and To={x : x| <y,
At > €}:

EXETU,U Sup |f(h([X7 Cl)], X7 u))
lt=tol| <6, llwl<M

— f(h([to, @], X, )| < €. (30)

Note that by (16) and (17), we obtain || Q(A(Xx)t) —
OQ(AX)ty) || <coc16/€ when xe Ty and ||t —to|| <§.
Therefore

|h([t7 (,()], X, u)) - h([t()’ C()], X, u)'
8 2
< COCIE(”u” + oy’ + M)

Together with (18) (20) and (21), we know that
Vit —toll <4,

|f(QA®YT (1 — B(X)w))
— f(QAM) (u— Bx)w))|
< qcoclgm[nun + o+ DM][2 4 2|u)!
+ f(h([t, 0], %, 0) + £ (h([to. @], X, 0))].
By (22), there exists a constant ¢ which depends on M:

c = Ex2+ f(h([t, ®], x,0))
+ f(h([ty, w], X, 0))) < oo.

Now,
Exu[llull + c2(y* + DM][2 + 2|ujj?™!
+ f(h([t, @], x,0)) + £ (h([to, ®], %, 0))]

IA

sup Eux[llull + c2(y* + DM]c
[Ix|l=M

+ sup Eux[2f(lulD) +2c2(* + DM|u]|?™"]
[Ixll<M

IA

c(1+c6(M) +cr(y* + HM)
+ [2¢6(M) + 2c2(y* + DM (1 + cs(M)] < ¢,

where ¢’ is a constant which depends on y and M.
Therefore

Exeryu| F(Q(AXYT (1 — BX)w))
— QAL (u— Bx)w))|

< (qcocicac’[€)8.

(30) follows from any choice of § < €2/(gcocicsc’).

Step 6:  'We would like to show that the motion esti-
mation formulation is uniformly smooth in w. That is,
for all €, y, M > 0, we want to show that there exists
8 > 0 such that V|| w ||, ||w2|| £ M and ||w; — wy ]| < §:

Ejxj<y.u P |f (h([t, @1], X, w))
t|=1,l|lo;—w||<
_f(h([ts C()z],X, ll))| <€, (31)

where ||w; ]|, [|wz]| < M. Similar to the proof of (30),
we note that

Ih([t, w11, x, w) — A([t, w2], X, w)| < c2(1 + y?)8.

The rest of the proof is the same as that of (30).

Step 7: In this step, we combine results from the pre-
vious two steps to show that the motion estimation
formulation is uniformly smooth in «, as formalized
in (34).

Ve, y, M > 0, by (28), we can find €’ > 0 such that
we can decompose {x : ||x|| <y} as S(ty) U T (ty) for
each ||ty = 1, such that [|A(X)ty|| > ¢’ when x € T (t))
and

Exestpu sup cs[ f(e(Ix]” + Do)
llwll=M

+ f(lulD] <e,
which implies that

Exestpu  sup  f(h([t, 0], x, 1)) <e.

Iti=1,llel<M
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Now by (30), we can find § and k quantities, t;, ..., t;
with corresponding decomposition S; U T; for each t;,
such that V||t|| =1, ||t — t;|| < § for some i, and

sup Exes,u sup f(h(t, w], x,w)) < €, (32)

i ItI=1.llwll=M

and Vi,

EXET,-,U sup |f(h([t, (X)], X, u))
lt—t; <8, lwll <M

—f(h(ti, 0], x, )| < €. (33)

It follows from (32) and (33) that Ve, y, M >0,
3 a finite partition of ||t]| =1 into the union of sets
Dy,...,Dyand 3t; € D; (i =1, ..., k) such that

sup Ejxj<yu  sup | f(A([t, 0], x, w))
i teD;, |oll<M

— f(h(t, o], x,w))| < €.

From this inequality and (31), we know that Ve, y,
M > 0, 3 a finite partition of ||t|| =1 into the union of
sets Dy, ..., D,y witht; € D; (i =1, ..., k);and afinite
partition of ||w|| < M into the union of sets Oy, ..., O,
withw; € O; (j=1, ..., ¢)such that

|/ (h([t, @], X, w))

sup Ejxj<y,u  Sup
i,j teD;,we0;

— f(h([ti, 0], x,w))| < €. (34)

Step 8: Inthis step, we apply the law of large numbers
to (34) to derive (37), which implies that the empirical
risk restricted to ||x|| < y converges uniformly in prob-
ability to the true underlying risk restricted to ||x|| <y,
in the domain |lw| < M.

By the law of large numbers, we have

lim P < sup |Exu f (h([t;, ®;], X, w))
m—0oQ ;g

L]
- EEmp,X,llf(h([tis a)j]v X, u))' > 26) = Os
(35)

where we use E,,,, to denote the empirical expectation
with m iid samples of (x, u) (the same convention will
be employed through the rest of the proof):

Eemp,x,uf(h([tia wj]7 X, ll))

m

1
= Z S (h([ti, o)1, X, ug).
k=1

m

Applying the law of the large numbers again to (34),
we obtain

lim P(spp Eemp,xi<yn sup |f(h([t, ®], x, 1))

m—>00 i,j teD;,we0;

— f((t, o], x,w))| > 2€> =0. (36)

By combining (34), (35) and (36), we obtain that Ve,
y, M >0:

lim P( sup | Eemp,xi<y.uf (h([t, @], X, w))

m—oe [ti=Lllwll<M

— Ejxj<yuf (AL, 0], X, w))| > 66) =0.
37

Step 9:  In this step, by refining inequality (37) in the

previous step, we derive inequality (38), which implies

that the empirical risk converges uniformly in probabil-

ity to the true underlying risk in the domain ||w|| < M.
From (25), we obtain

FQAXYH B(x)w) = 0.

lim Ejy>,  sup
y=o0, Ith=1. ol <M

Therefore Ve > 0, by the law of large numbers, 3y > 0,
such that
lim P( sup |Eemp,HxH>y,uf(h([tv a)]s X, ll))

m=ee Ith=1llol<M

— Exjsyuf (L, 0], x, w))| > e) =0.

Combining this inequality with (37), we have: Ve,
M >0,

lim P( sup [ Eemp xuf (h([t, 0], X, w))
mo0 A =1l <M

— Exu f(h([t, 0], x,0))| > e) =0. (3%

Step 10: In this step, we would like show that
there exists M such that lim,,_ . P(|®||<M)=1.
Then together with the uniform convergence of
empirical risk in (38), and the fact that E,,,xu
f(@a,x,u) < Eempxuf (o, X, u), we are able to obtain
the theorem.
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Now, we set r=0 (obviously in this case, the
assumptions in the Theorem are still satisfied with
p(x)=0,n=0and w; =0) and € = ¢7/2 in (38):

m—0oQ

lim P(ﬂtn_}nf - Eenpxf(QAXL)" BX)®)

> 67/2> =1,

which implies that

Eempx f(QAXL) B(x)w)

m—00 Ith=1lel=M

lim P< inf
> Mic /2) =1.
Therefore we obtain VM > 0,

lim P inf J h(t. ). x. u
<||t||=1,sz emp.x.uf (h([t, @) )

m—0oQ

> Mic;[2¢3 — Eempf(”“”)) =1

Note that @ is obtained by minimization of
Eempxuf (h([t, w]x,w)), and since if we choose M
large enough, then

m—0o0

lim P(Egmp,x,uf(ats X, ll)

< MqC7/2C3 - Eempf(”u”)) =1,

thus if we denote @ = [t, ®], then lim,,_, o P(||®| <
M)=1. Combining this with (38), and note that
EEmp,X,llf(&v X, u) S Eemp,x,uf(a[, X, u), we Obtain
the theorem. O

Notes

1. The implication of t = 0 will be discussed later in the paper. For
example, see discussions at the end of Section 4.3 and the end of
Section 4.4, and the second example in Section 5.2.

2. Efficiency can be interpreted as the average closeness of an esti-

mator to the true motion parameter.

. Independent, identically distributed.

4. This density follows from the fact that the inverse depth p is
chosen so as to make the residual orthogonal to A(x)t;, that is,
parallel to the normalized orthogonal direction Q(A(X)t;).

(98]
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