
Identity Connections in Residual Nets Improve Noise Stability

Shuzhi Yu 1 Carlo Tomasi 1

Abstract
Residual Neural Networks (ResNets) achieve
state-of-the-art performance in many computer
vision problems. Compared to plain networks
without residual connections (PlnNets), ResNets
train faster, generalize better, and suffer less from
the so-called degradation problem. We introduce
simplified (but still nonlinear) versions of ResNets
and PlnNets for which these discrepancies still
hold, although to a lesser degree. We establish
a 1-1 mapping between simplified ResNets and
simplified PlnNets, and show that they are exactly
equivalent to each other in expressive power for
the same computational complexity. We conjec-
ture that ResNets generalize better because they
have better noise stability, and empirically support
it for both simplified and fully-fledged networks.

1. Introduction
Deep convolutional neural networks have rapidly improved
their performance in image classification tasks in recent
years. So-called residual networks (He et al., 2016), in
particular, differ from regular ones by the mere addition of
an identity function to certain layers. It has been shown this
small change makes residual networks train faster than their
plain counterparts, in that they converge to the same training
risk in fewer epochs, and reduce the so-called degradation
problem (He et al., 2016), that is, their training risk increases
more slowly as new layers are added. In addition, ResNets
generalize better, that is, they achieve lower classification
risk for the same training risk.

In an attempt to understand why a small change in network
architecture leads to the advantages listed above, we intro-
duce a formal transformation between simplified versions

Material in this thesis is based upon work supported by the
National Science Foundation under Grant No. CCF-1513816.

1Department of Computer Science, Duke Univer-
sity, Durham, NC, USA. Correspondence to: Shuzhi Yu
<shuzhiyu@cs.duke.edu>.

ICML 2019 Workshop on Understanding and Improving General-
ization in Deep Learning, Long Beach, California, 2019. Copy-
right 2019 by the author(s).

of residual networks and their nearest kin, which we call
(simplified) plain networks. Specifically, for every simpli-
fied residual network we show how to construct a simplified
plain network of equal parametric complexity, and vice
versa, such that the two networks are exactly equivalent
to each other, if exact arithmetic is used. By “equivalent”
we mean that the two networks implement the same in-
put/output relation. Thus, the differences in performance
between plain and residual networks relate to the initializa-
tion and training, instead of expressive power. In summary,
simplified residual networks are equivalent to simplified
plain networks of equal parametric complexity initialized in
different ways for training.

The simplification we made relative to the networks used
in the literature amounts to removing batch normalization
layers and allowing for skip connections (the identity added
to residual networks) only across individual layers, rather
than across groups of layers. However, our simplified ar-
chitectures exhibit qualitatively similar differences between
plain and residual versions as the fully-fledged ones do, al-
beit to a lesser degree. Because of this, our insights may
help understand commonly used architectures also, a claim
we support with experiments on fully-fledged networks.

To explain the advantages above, we observe that adding an
identity across a layer makes some of the layer’s weights
close to 1, a value much higher than the small random
values used for initializing either type of network (plain
or residual). We show empirically that the large weights
present in residual networks decrease the relative sensitivity
of the output of a network to changes in layer parameters.
It has been shown recently (Arora et al., 2018) that such
a decrease in sensitivity (increase in noise stability) is a
good predictor of improved generalization. In addition, we
empirically observe better noise stability in the fully-fledged
residual networks as well.

Some recent theoretical work analyzes linear ResNets, from
which ReLUs are removed (Hardt & Ma, 2017; Kawaguchi,
2016; Li et al., 2016; Zaeemzadeh et al., 2018) or analyzes
shallow nonlinear ResNets (Orhan & Pitkow, 2018). In
addition, alternative views of ResNets have been proposed,
such as the unraveled view (Veit et al., 2016; Littwin &
Wolf, 2016; Huang et al., 2016; Abdi & Nahavandi, 2016),
the unrolled iterative estimation view (Greff et al., 2017;

Identity Connections in Residual Nets Improve Noise Stability

Jastrzebski et al., 2018), the dynamic system view (Chang
et al., 2018b;a; Liao & Poggio, 2016), and the ensemble view
(Huang et al., 2018). In contrast, we analyze simplified but
deep and non-linear networks. Our work does not reason by
analogy, but instead explores properties of skip connections
through a mapping between ResNets and PlnNets.

Previous work has shown the importance of weight initial-
ization for training deep neural networks and proposed good
initialization algorithms (Mishkin & Matas, 2016; He et al.,
2015; Glorot & Bengio, 2010; Krähenbühl et al., 2016). We
show that a ResNet is a PlnNet with a special initializa-
tion, and that the resulting weights, which involve entries
much larger than in previous studies, improve generalization
ability.

Noise stability A recent paper (Arora et al., 2018) in-
troduces bounds for the ability of a network to generalize
that are tighter than standard measures of hypothesis-space
complexity are able to provide. They compress a network
to a simpler, approximately equivalent one, and tie general-
ization bounds to a count of the number of parameters of
the simpler network. Compressibility, and therefore gen-
eralization, improve if the network is noise-stable, in the
sense that perturbations of its parameters do not change
the input/output function implemented by the network too
much. We show empirically that (fully fledged) ResNets are
more noise-stable than their plain counterparts.

2. Simplified PlnNets and ResNets
A Plain Neural Network (PlnNet) and a Residual Neural
Network (ResNet) are the concatenation of plain blocks and
residual blocks respectively, each of which computes a trans-
formation between input x and output y of the following
form respectively:

y = f(p(x,p)) and y = f(x+ p(x, r))

where function f is a ReLU nonlinearity. In this expression,
p is a cascade of one or more of the standard blocks used
in convolutional neural networks, and has parameter vector
p and r respectively. Thus, a residual block merely adds
an identity connection from the input x to the output p of a
plain block.

A specific architecture of the residual block that contains
two convolutional layers has been shown empirically to
outperform several other variants. However, the goal of
our investigation is not to explain the performance of the
best architecture, but rather to compare plain networks with
residual networks. We have found empirically that even a
drastically simplified block architecture (shown in Figure 5)
preserves, to a lesser but still clear extent, the advantages of
ResNets over PlnNets mentioned above (see Supplementary
Material (SM) Section A). For example, the classification er-
ror for a 20- and 44-layer simplified PlnNets are 0.1263 and

0.2213 respectively. In comparison, those of a 20- and 44-
layer simplified ResNets are 0.1131 and 0.1182 respectively.
Because of this, in this paper we compare cascades of depth-
1 plain blocks of the form in Figure 5(a) with cascades of
depth-1 residual blocks of the form in Figure 5(b).

More specifically, PlnNets (or ResNets) of L layers are for
us the concatenation of a convolutional layer with ReLU,
3N plain (or residual) blocks, an average pooling layer and
a final, fully-connected layer followed by a soft-max layer
(more details in SM Figure 4). All the filters have size 3× 3
in our architecture.

conv layer

x

ReLUy = p(x)

p(x)

(a)

conv layer x
identity

ReLU

p(x)

y = p(x) + x

x

(b)

Figure 1. Simplified (a) plain block and (b) corresponding residual
block.

3. Simplified PlnNets and ResNets are
Equivalent

We now show that the simplified plain and residual blocks
are exactly equivalent to each other, in the sense that a plain
block with convolutional layer p(x,p) can be made to have
the exact same input/output relationship of a residual block
with convolutional layer r(x, r) = x+p(x, r) as long as the
parameter vectors p and r relate to each other as follows.

Consider a plain network block p with C input channels,
whose convolutional layer has D kernels (and therefore
D output channels) of width U = 2Uh + 1 and height
V = 2Vh + 1 for nonnegative integers Uh and Vh (the half-
widths of the kernel). Then, the set of kernels can be stored
in aD×C×U×V array. We index the first two dimensions
by integers in the intervals [1, D] and [1, C], and the last
two in the intervals [−Uh, Uh] and [−Vh, Vh].

We define the ID entries of that set of kernels to be the
kernel coefficients in positions (c, c, 0, 0) of the array, for
c = 1, . . . ,min(C,D). These are the entries that identi-
ties are added to in residual networks, and therefore the
plain network p and residual network r implement the same
function if

p = T (r) = r+ρ where ρ =

{
1 for all ID entries
0 elsewhere.

(1)
Of course this transformation is easily invertible:

r = T −1(p) = p− ρ

so that a plain network can be transformed to an equivalent
residual network as well.

Identity Connections in Residual Nets Improve Noise Stability

The transformations T and T −1 are extended from blocks
to networks by applying the block transformation to each of
the network’s 3N blocks in turn.

A crucial consequence of this equivalence is that the bet-
ter performance of residual networks over plain networks,
which manifests itself even when the networks have their sim-
plified form, does not derive from differences in expressive
power between the two architecture. Simplified residual
networks are simplified plain networks that are trained
into a different local minimum of the same optimization
landscape.

4. Training Plain and Residual Networks
As commonly done, we define the loss of a network as the
cross-entropy between prediction and truth at the output of
the final soft-max layer, and the training risk is the average
loss over the training set. In practice, it is common in
the literature to add weight decay, an L2 regularization
term, to the risk function to penalize large parameter values
and improve generalization. (Hinton, 1987; Krogh & Hertz,
1992)

4.1. Equivalent Training of Equivalent Networks

With slight abuse of notation, we henceforth denote with p
and r the transformation performed by an entire network
(plain or residual), rather than by a single block.

If a plain network p and the corresponding residual network
r have parameter vectors p̂ and r̂, respectively, the func-
tions p(x, p̂) and r(x, r̂) the two networks implement are
different. However, if the initial parameter vectors p0 and
r0 satisfy the equation

p0 = T (r0) , (2)

the two networks p(x,p0) and r(x, r0) are input-output-
equivalent to each other.

In addition, since subsets of corresponding layers in p and r
are also equivalent to each other, inspection of the forward
and backward passes of back-propagation shows immedi-
ately that the gradient of the training risk function with
respect to p in p is the same as that with respect to r in
r. Thus, if training minimizes the training risk, and the se-
quence of training sample mini-batches is the same for both
training histories, a plain network p and a residual network
r whose initial weights satisfy equation 2 remain equivalent
at all times throughout training.

To ensure equivalence between plain and residual networks
even in the presence of weight decay, the penalty ‖p‖2 for
residual networks is replaced by ‖T −1(p)‖2. In this way, if
plain network p and residual network r are equivalent, both
their costs and the gradients of their cost are equal to each

other as well (experiment details in SM Section B). We can
therefore draw the following conclusion.

If exact arithmetic is used, training plain network p with
initialization p0 = T (r0) and weight-decay penalty
‖T −1(p)‖2 is equivalent to training residual network r
with initialization r0 and weight-decay penalty ‖r‖2. If
the two networks are trained with the same sequence of
mini-batches, the plain and residual networks p(x,pe) and
r(x, re) at epoch e during training are equivalent to each
other for every e, and so are, therefore, the two networks
obtained at convergence.

4.2. ResNets are PlnNets with Large ID Entries

The equivalence established in the previous Section allows
viewing a simplified residual network as a simplified plain
network with different weights:

r(x, r) = p(x, T (r)) .

Because of this, instead of comparing a plain network
p(x,p) with a residual network r(x, r), we can compare
the two plain networks p(x,p) and p(x, T (r)) to each other.
These have the exact same architecture and landscape, but
their parameter vectors are initialized with different weights,
and end up converging to different local minima of the same
risk function.

A first insight into this comparison can be gleaned by com-
paring the distributions of network weights (excluding bi-
ases) for p(x,pe) and p(x, T (re)) at epoch e of training.
For notational simplicity, we define the transferred parame-
ter vector t = T (r). We initialize the two networks p0 and
t0 with Kaiming Weight Initialization (KWI) method (He
et al., 2015) and Hartz-Ma Weight Initialization (HMWI)
method (Hardt & Ma, 2017) respectively (Details in SM
Section A). Since network equivalence is preserved during
training, we can also write te = T (re) for every epoch e,
so we compare plain networks p(x,pe) and p(x, te).

Initially (e = 0), the distribution χ(z,p0) of p0 is a
zero-mean Gaussian distribution with variance σ2

p, for the
weights. The distribution χ(z, t0) of the initial transferred
weights t0 is a mixture of two components: A Gaussian
with zero mean and variance σ2

r for weights other than the
ID entries, and a Gaussian with mean 1 and variance σ2

r for
the ID entries. These distributions change during training.
Incidentally, and interestingly, we have observed empirically
that these changes are small relative to 1 for the example
of networks p(x,pe) and p(x, te) of depth 32, so training
does not move weights very much within the optimization
landscape (more details in SM Section C).

Stated differently: The training histories for (i) a plain
network initialized by KWI and (ii) a plain network of equal
architecture but equivalent to a residual network initialized

Identity Connections in Residual Nets Improve Noise Stability

by HMWI evolve in relatively small neighborhoods of their
starting points in parameter space. The two neighborhoods
are far apart, separated in large measure by the size of the
ID entries in the two networks.

5. Large ID Entries Improve Noise Stability
The noise stability of a network (Arora et al., 2018) is
measured by how much the output changes when noise is
added to the weights of some layer. More specifically, the
cushion for layer ` is an increasing function of a layer’s
noise stability, and is defined as the largest number µ` such
that for any data point x in the training set,

µ`

∥∥A`
∥∥
F

∥∥x`−1
∥∥ ≤ ∥∥A`x`−1

∥∥ .
In this expression, A` represents the weights in the layer,
x`−1 is the output of previous layer (after the ReLU), and
‖ · ‖ and ‖ · ‖F are the 2-norm and Frobenius norm.

Because plain networks equivalent to residual networks
contain large weights, the same amount of noise added to
such a network has a smaller effect on the output than for
a plain network initialized in the traditional way. Thus,
residual networks have greater layer cushions and greater
noise stability overall, which leads to better generalization
when achieving the same loss. As shown in Figure 2, with
same training loss, the ResNets achieve smaller error.

Empirical measurements support this view. Specifically,
Figure 3 shows the distribution of the per-sample cush-
ion µ`(x

`−1) =
∥∥A`x`−1

∥∥ / ∥∥A`
∥∥
F
/
∥∥x`−1

∥∥ for the 10th

layer of a pre-trained 20-layer and 32-layer plain and resid-
ual network. To make this Figure, we measure the Frobenius
norm of the weights of ResNets after removing 1 from the
ID entries, because the intent of the term

∥∥A`
∥∥
F

is to mea-
sure change in the coefficients. The plots in the figure show
that ResNets have better noise stability than PlnNets do, as
the red distribution is to the right of the blue distribution.
This pattern holds for all the layers, with the exception of
2 layers (in both the 20-layer and 32-layer networks). This
result implies (Arora et al., 2018) that ResNets are more
likely to generalize better than PlnNets do. In summary, the
large ID entries make ResNets less vulnerable to noise in its
weights, leading to better generalization.

The better noise stability holds not only for simplified net-
works, but also for the fully-fledged ones. To show this, we
measure the per-sample interlayer cushion µi,j(x

i) of plain
and residual blocks in commonly used networks. Given
layers i ≤ j,

µi,j(x
i) =

√
n(i)

∥∥∥J i,j
xi x

i
∥∥∥ / ∥∥∥J i,j

xi

∥∥∥
F
/
∥∥xi
∥∥

where n(i) is the size of the input xi to layer i, and J i,j
xi is the

Jacobian of the part of the network from layer i to layer j.

Experimental results show that µi,j(x
i) for a residual block

is much bigger than that of the corresponding plain block.
For example, the interlayer cushion of the 5th out of 9 resid-
ual block of a fully-fledged residual network of depth 20 has
a mean 0.20 and standard deviation 0.0024. In comparison,
the interlayer cushion of the corresponding plain block has
a mean 2.7× 10−7 and standard deviation 2.4× 10−8. The
plain block in this case is the concatenation of two groups of
convolutional layer, Batch Normalization layer, and ReLU;
the residual block adds the input of the first convolutional
layer to the output of second Batch Normalization layer of
the plain block.

0 200 400 600 800 1000 1200
epoch

10 3

10 2

10 1

100

lo
ss

PlnNets
ResNets

(a)

0 200 400 600 800 1000 1200
epoch

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

er
ro

r

0.115
0.105

PlnNets
ResNets

(b)

Figure 2. Plots of risk L (left) and error E (right) as a function of
training time for plain (blue) and residual (red) networks of depth
20 after training for 1200 epochs on the CIFAR-10 dataset. The
results are based on training 13 plain networks and 13 residual
networks initialized at random (but equivalently to each other), to
estimate variance in the results. The sequence of training samples
are also randomized. Dark color refers to the mean and the half
length of the error bar represents the standard deviation.

0.24 0.26 0.28 0.30 0.32 0.34 0.36
10

0

200

400

600

800

1000

1200

1400

1600

nu
m

be
r

PlnNets
ResNets

(a)

0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52
10

0

200

400

600

800

1000

1200

1400

1600

nu
m

be
r

PlnNets
ResNets

(b)

Figure 3. Histogram of the per-sample layer cushion in the 10th

layer of 20-layer (left) and 32-layer (right) PlnNets (blue) and
ResNets (red). All the four networks are trained for 200 epochs
on CIFAR-10 dataset. The test errors for 20-layer PlnNet and
ResNet are 0.1263 and 0.1122 respectively, and those for 32-layer
networks are 0.1349 and 0.1121 respectively.

6. Conclusions
We propose a one-to-one map between simplified ResNets
and PlnNets, and we show how to train corresponding net-
works equivalently. We conjecture that ResNets achieve
lower generalization error than PlnNets because the large
ID entries make the former more stable against noise added
to the weights. Our experiments support our conjectures for
both simplified and fully-fledged networks.

Identity Connections in Residual Nets Improve Noise Stability

References
Abdi, M. and Nahavandi, S. Multi-residual networks: Im-

proving the speed and accuracy of residual networks.
arXiv preprint arXiv:1609.05672, 2016.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. Stronger
generalization bounds for deep nets via a compression
approach. In Dy, J. and Krause, A. (eds.), Proceedings of
the 35th International Conference on Machine Learning,
volume 80, pp. 254–263, Stockholmsmssan, Stockholm
Sweden, 10–15 Jul 2018. PMLR.

Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D.,
and Holtham, E. Reversible architectures for arbitrarily
deep residual neural networks. In Association for the
Advancement of Artificial Intelligence (AAAI), 2018a.

Chang, B., Meng, L., Haber, E., Tung, F., and Begert, D.
Multi-level residual networks from dynamical systems
view. In International Conference on Learning Represen-
tations, 2018b.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In JMLR
W&CP: Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics (AISTATS
2010), volume 9, pp. 249–256, May 2010.

Greff, K., Srivastava, R. K., and Schmidhuberr, J. Highway
and residual networks learn unrolled iterative estimation.
In Proceedings of International Conference on Learning
Representations (ICLR), 2017.

Hardt, M. and Ma, T. Identity matters in deep learning. In
the International Conference on Learning Representa-
tions (ICLR), 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, June 2016.

Hinton, G. E. Learning translation invariant recognition
in a massively parallel networks. In PARLE Parallel
Architectures and Languages Europe: Volume I: Parallel
Architectures, pp. 1–13, 1987.

Huang, F., Ash, J., Langford, J., and Schapire, R. Learning
deep ResNet blocks sequentially using boosting theory.
In Dy, J. and Krause, A. (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80

of Proceedings of Machine Learning Research, pp. 2058–
2067, Stockholmsmssan, Stockholm Sweden, 10–15 Jul
2018. PMLR.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger,
K. Q. Deep networks with stochastic depth. In European
Conference on Computer Vision, pp. 646–661. Springer,
2016.

Jastrzebski, S., Arpit, D., Ballas, N., Verma, V., Che, T.,
and Bengio, Y. Residual connections encourage itera-
tive inference. In International Conference on Learning
Representations, 2018.

Kawaguchi, K. Deep learning without poor local minima.
In Advances In Neural Information Processing Systems,
pp. 586–594, 2016.

Krähenbühl, P., Doersch, C., Donahue, J., and Darrell, T.
Data-dependent initializations of convolutional neural
networks. In Proceedings of International Conference on
Learning Representations (ICLR), May 2016.

Krogh, A. and Hertz, J. A. A simple weight decay can im-
prove generalization. In Moody, J. E., Hanson, S. J., and
Lippmann, R. P. (eds.), Advances in Neural Information
Processing Systems 4, pp. 950–957. Morgan-Kaufmann,
1992.

Li, S., Jiao, J., Han, Y., and Weissman, T. Demystifying
resnet. arXiv preprint arXiv:1611.01186, 2016.

Liao, Q. and Poggio, T. Bridging the gaps between residual
learning, recurrent neural networks and visual cortex.
arXiv preprint arXiv:1604.03640, 2016.

Littwin, E. and Wolf, L. The loss surface of residual net-
works: Ensembles and the role of batch normalization.
arXiv preprint arXiv:1611.02525, 2016.

Mishkin, D. and Matas, J. All you need is a good init. In
Proceedings of International Conference on Learning
Representations (ICLR), May 2016.

Orhan, A. E. and Pitkow, X. Skip connections eliminate
singularities. In Proceedings of International Conference
on Learning Representations (ICLR), 2018.

Veit, A., Wilber, M., and Belongie, S. Residual networks
behave like ensembles of relatively shallow networks.
Conference on Neural Information Processing Systems,
pp. 550–558, 2016.

Zaeemzadeh, A., Rahnavard, N., and Shah, M. Norm-
preservation: Why residual networks can become ex-
tremely deep? arXiv preprint arXiv:1805.07477, 2018.

Identity Connections in Residual Nets Improve Noise Stability

A. Empirical Baseline
Our experiments are conducted on CIFAR-10 data set that
contains 50k training samples and 10k testing samples from
10 classes. Each image in the data set is RGB image of size
32 × 32. The simplified network architectures are shown
in Figure 4. PlnNets (or ResNets) of L layers are for us
the concatenation of a convolutional layer with ReLU, three
groups, namely G0, G1, and G2, with N plain (or residual)
blocks each, an average pooling layer and a final, fully-
connected layer followed by a soft-max layer. There are
L = 3N + 2 trainable layers in total. All the filters have
size 3 × 3 in our architecture. Each of the first N + 1
convolutional layers has 16 filters. The first convolutional
layer in both G1 and G2 doubles the number of output
channels but halves the input width and height; the rest of
the convolutional layers keep the size of input and output
the same. The output of the last convolutional layer has
64 channels with each channel of size 8× 8. The average
pooling layer has window size of 8 × 8 so that the result
after pooling layer is a vector of 64 entries. The final output
of the networks is a vector of size 10 × 1 that represents
soft-max scores for the 10 classes.

As an initial empirical baseline, we trained simplified
PlnNets and ResNets (whose building blocks are shown
in Figure 5 (a) and (b) respectively) of depths 20, 32, and
44. Plain networks are typically initialized by the Kaiming
Weight Initialization (KWI) method (He et al., 2015). In
this method, biases are set to zero, and the weights of a
C × U × V convolutional kernel are set to samples from a
Gaussian distribution with mean 0 and standard deviation

σp =

√
2

S
where S = CUV . (3)

Initialization of the parameters of a residual network is
similar, except that σp is replaced by

σr =
1

S
, (4)

which is typically much smaller than σp. This pre-
scription, called Hartz-Ma Weight Initialization (HMWI)
method (Hardt & Ma, 2017), reflects the observation that
residual weights are generally smaller than plain weights.
Table 1 shows training loss L and test error E after 200
epochs of training, when the loss stabilizes.

We observe that 1) ResNets have smaller L and E than the
PlnNets of equal depth, and the performance discrepancy
between ResNets and PlnNets increases with the depth of
the network. 2) PlnNets exhibit an obvious degradation
problem, as L increases 6.85 (0.4950/0.07227) times from
depth 20 to depth 44. This problem is much smaller for
ResNets, as L increases 1.73 (0.07397/0.04287) times from
depths 20 to 44. 3) The test error E for PlnNets increases

x
conv layer: 16⨉3⨉3⨉3

ReLU

G16
N layers

conv layer: 16⨉16⨉3⨉3

ReLU

G64
N layers

conv layer: 64⨉32⨉3⨉3

ReLU

conv layer: 64⨉64⨉3⨉3

ReLU

G32
N layers

conv layer: 32⨉16⨉3⨉3

ReLU

conv layer: 32⨉32⨉3⨉3

ReLU

avg pooling: 8⨉8

fcnn: 64⨉10

softmax

y

ReLU

ReLU

ReLU

(a)

x
conv layer: 16⨉3⨉3⨉3

ReLU

G16
N layers

G32
N layers

avg pooling: 8⨉8

fcnn: 64⨉10

softmax

y

conv layer: 16⨉16⨉3⨉3

ReLU

ReLU

conv layer: 32⨉16⨉3⨉3

ReLU

conv layer: 32⨉32⨉3⨉3

ReLU

G64
N layers

ReLU

conv layer: 64⨉32⨉3⨉3

ReLU

conv layer: 64⨉64⨉3⨉3

ReLU

ReLU

(b)

Figure 4. The architecture of (a) plain network and (b) the corre-
sponding residual network. There are three groups of N layers
each: G16, G32, and G64. The entire network has L = 3N + 2
layers. The number of weights of both networks of same depth
equals. The inputs from CIFAR-10 data set are 32× 32× 3 RGB
images and the output is a vector of size 10 × 1 that represents
soft-max scores for the 10 classes.

significantly with depth, but remains roughly constant for
ResNets.

In summary, our simplified ResNets outperform our sim-
plified PlnNets in terms of both training loss and test error,
and ResNets suffer much less from the degradation problem.
Thus, our network simplification preserves the phenomena
we wish to study.

B. Equivalent Training of Equivalent Nets
PlnNets and ResNets can only be trained equivalently in
ideal case. Empirically, we observed some small discrep-
ancies as a result of rounding errors. Specifically, Table 2
shows the results of the same experiment performed for
Table 1, except that the two networks are initialized to be
equivalent. We used double precision in the experiments,
and performed all calculations on the same CPU to avoid
possible hardware differences between different GPUs or
CPUs.

We explain these discrepancies based on the following obser-
vations. After one iteration of training, some outputs of the
second convolutional layer differ by about 10−16 between
the two networks, as a result of rounding errors (the relative
accuracy of double-precision floating-point arithmetic is

Identity Connections in Residual Nets Improve Noise Stability

PlnNet ResNet
depth L C E L C E

20 0.07227 0.07304 0.1263 0.04287 0.04338 0.1131
32 0.1225 0.1234 0.1349 0.04847 0.04903 0.1143
44 0.4950 0.4962 0.2213 0.07397 0.07459 0.1182

Table 1. Training loss L, training cost C and test error E of PlnNets and ResNets for increasing depth and after training for 200 epochs on
the CIFAR-10 dataset. The initial learning rate was 10−3 for the depth-44 plain network, and 10−2 for the other 5 networks. The reason
for the exception is that the training loss for the depth-44 plain network does not decrease with larger learning rates. The learning rate was
divided by 10 after epochs 120 and 160 for all networks. The parameter λ of weight decay is 10−4. Loss L is generally over 80 times
more than the weight decay term. Figures are reported with four significant decimal digits.

conv layer

x

ReLUy = p(x)

p(x)

(a)

conv layer x
identity

ReLU

p(x)

y = p(x) + x

x

(b)

Figure 5. Simplified (a) plain block and (b) corresponding residual
block.

0 25 50 75 100 125 150 175 200
epoch

10 1

100

lo
ss

PlnNets
ResNets

(a)

0 25 50 75 100 125 150 175 200
epoch

10 13

10 11

10 9

10 7

10 5

10 3

10 1

ab
so

lu
te

 lo
ss

 d
iff

er
en

ce

(b)

Figure 6. Left: Semi-logarithmic plots of L for plain (blue) and
residual (red) networks of depths 20, initialized with equivalent
parameter values. Right: Semi-logarithmic plots of the absolute
differences.

10−17) and of the different orders of magnitude of the ID
weights between plain and residual network (ID weights are
of the order of 10−3 for residual networks, and the corre-
sponding plain ID weights are close to 1). As numerical
errors propagate through ReLU functions, slightly negative
numbers are truncated to zero, while slightly positive ones
are left unchanged. These small deviations sometimes com-
pound through a sort of ratcheting effect, in which they
accumulate in one of the two networks but not the other.
For instance, we observed a value −2.4980× 10−13 being
truncated to zero by a ReLU, while the corresponding value
2.6903× 10−10 in the other network remained unchanged
as it passed through the ReLU, and repeated operations in-
creased the divergence. Figure 6 supports this explanation
by showing a very slow divergence over training time.

C. Evolution of Weight Distribution
The left column in Figure 7 shows two views of the distri-
butions χ(z,p0) (blue) and χ(z, t0) (red) of PlnNets and
ResNets of depth 32 just after initialization. The plot in the
top row shows these two distributions in full with the y-axis
clipped to 800. The plot in the bottom row only shows the
histogram for the ID entries in the transferred parameter
vector t0.

The distribution of the “plain” weights p0 is clearly visible
in blue in the overall view at the top. The distribution of
the component with zero-mean Gaussian of “transferred”
weights is also visible in red, but the variance is very small
compared to that of the “plain” weights. In addition, the
distribution of the component with one-mean Gaussian for
the transferred weights t0 (red) is also visible in the overall
view, since the y-axis is clipped to a small number.

After 200 training epochs (right column in Figure 7), the
two distributions have not changed much, relative to 1: The
blue plots are qualitatively similar to what they were before,
and the narrow red peaks, both at 0 and 1, have spread
out. However, the second row of the Figure, which displays
histograms for the ID entries only, shows that the mode for
these entries is still high, around 0.9, in t200, while very
few weights in p has magnitude above 0.7 (first row), either
before (left: 1 entry bigger than 0.7) or after training (right:
26 entries bigger than 0.7).

Table 3 shows some additional statistics for the weight dis-
tributions, including the total weight mass, defined as the
L1 norm of a parameter vector, for (i) all the parameters;
(ii) the parameters with magnitude greater than 0.25, and
(iii) all ID entries. This table shows in particular that even
after training, the total mass of the ID entries in the residual-
equivalent parameter vector t200 still accounts for more than
76 percent (1000/1300) of the mass of all the entries greater
than 0.25. In contrast, the overall mass of the ID entries in
p0, initially very small (67), barely changes in p200, where
it increases to 72, a mere 10.29 percent (72/700) of the mass
of all the entries greater than 0.25.

In summary, for this experiment, training modifies the pa-

Identity Connections in Residual Nets Improve Noise Stability

PlnNet ResNet
depth L C E L C E

20 0.04132 0.04183 0.1121 0.04287 0.04338 0.1131
32 0.04880 0.04936 0.1085 0.04847 0.04903 0.1143
44 0.07345 0.07407 0.1159 0.07397 0.07459 0.1182

Table 2. Training loss L, training cost C and test error E of equivalently initialized ResNets and PlnNets of depth 20, 32, and 44 after
training for 200 epochs on the CIFAR-10 dataset. The initial learning rate was 10−2, and the rate was divided by 10 after epoch 120 and
160. The parameter λ of weight decay is 10−4. Loss L is generally over 50 times more than weight decay term. All the experiments
are conducted on the same CPU to guarantee the two networks have exactly the same training process. Figures are reported with four
significant decimal digits.

p0 p200 t0 t200
Mean 0.000 062 −0.0061 0.0023 −0.0056

Standard Deviation 0.070 0.071 0.048 0.071

Mass
All Weights 25 000 25 000 1900 20 000

|Weights| ≥ 0.25 420 700 1100 1300
Weights of ID Entries 67 72 1100 1000

Table 3. Statistics of the parameter vectors p and t before and after training for a network of depth 32. Figures are reported with two
significant decimal digits.

Before Training After Training

A
ll

W
ei

gh
ts

W
ei

gh
ts

of
ID

E
nt

ri
es

Figure 7. Distribution of all the weights (top row) for depth-32
plain network p32(x,pe) (blue) and residual-network-equivalent
plain network p32(x, te) (red), and the weights of the ID entries
(bottom row) for p32(x, te) before training (e = 0, left column)
and after 200 epochs (e = 200, right column).

rameters of a network by a small extent, when compared to
the differences between the initialization vectors p0 and t0.

