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ABSTRACT

Motion synchrony, i.e., the coordinated motion of a group of
individuals, is an interesting phenomenon in nature or daily
life. Fish swim in schools, birds fly in flocks, soldiers march
in platoons, etc. Our goal is to detect motion synchrony that
may be present in the video data, and to track the group
of moving objects as a whole. This opens the door to novel
algorithms and applications. To this end, we model indi-
vidual motions as video tubes in space-time, define motion
synchrony by the geometric relation among video tubes, and
track a whole set of tubes by dynamic programming. The
resulting algorithm is highly efficient in practice. Given a
video clip of T' frames of resolution X x Y, we show that
finding the K spatially correlated video tubes and deter-
mining the presence of synchrony can be solved optimally
in O(XYTK) time. Preliminary experiments show that our
method is both effective and efficient. Typical running times
are 30 — 100 VGA-resolution frames per second after feature
extraction, and the accuracy for the detection of synchrony
is more than 90% as evaluated in our annotated data set.

Categories and Subject Descriptors

1.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing; 1.4.9 [Image Processing and Computer Vi-
sion|: Applications; 1.5 [Pattern Recognition]: Design
Methodology, Applications

General Terms

Algorithms, Design, Experimentation, Measurement

1. INTRODUCTION

We study the new problem of finding motion synchrony
in a video stream. Motion synchrony is an interesting phe-
nomenon in both nature and daily life. For example, fish
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Figure 1: Video tube decomposition for selected fish
in a school. These fish move in synchrony.

synchronize their swimming behavior in order to increase
their chance for survival. People can synchronize their mo-
tions as well. Group dancing or marching often exhibit or-
dered motion with rhythms and harmonies. In soccer or bas-
ketball, people coordinate with each other to either launch
an attack or defend against the other team.

Finding motion synchrony is challenging, because telling
individuals apart is often difficult. For example, each fish in
a school looks like the others. How can each be tracked and
distinguished reliably? Moreover, given that we know the
position of each fish, how to determine if their motions are in
synchrony or not? We introduce a few innovations to answer
these questions. The general idea is to track the coordinated
motions in a collective way and use the geometric relations
between individuals to measure the degree of synchrony.

To represent coordinated motion, we decompose an image
sequence into a set of disjoint video tubes of interest. A video
tube is a space-time volume that groups the regions for a
single object in consecutive frames into a long, twisting tube.
Video tubes are richer than point trajectories. We model
each video tube as a generalized cylinder that is equipped
with a learnt object model. Different video tubes can share
the same object model and hence are not independent of
each other. The main novelty of our work is that we allow
different video tubes to be spatially correlated and we model
their spatial relation explicitly with a minimal spanning tree.

Explicit modeling of synchronous motion thus helps in
two ways: First, it keeps tubes of similar objects explicitly
distinct from each other, thereby making tracking reliable in
the face of severe and widespread ambiguity, whether one is
interested in detecting synchrony or not. Second, this new



type of motion model allows measuring synchrony when its
detection is of interest.

1.1 Literature Review

Synchronization has been studied in both audio and video
signals [6, 1, 19, 17, 5, 7]. For instance, synchrony measures
have been derived [17, 7] for associating the movement of
mouths to the oscillation of sound waves. To the best of our
knowledge, detecting motion synchrony, i.e., a coordinated
motion of separate individuals within a single video, has
not been well explored in the literature. Since synchrony is
measured in the visual domain, the challenge is equivalent
to that of tracking individual objects well. Multiple-object
tracking has been studied in the literature [15, 12, 13, 11,
18, 14, 8] but most of this work focuses on people or vehicle
detection. In one exception [8], spatial relations are used to
track similar objects. We move a step further by defining the
video tubes and using the geometric relations among them
to measure and detect motion synchrony.

1.2 Our Contributions

Our contributions are as follows: First, we propose to de-
tect the motion synchrony within a single video stream. This
opens door to novel algorithms and applications. Second, we
introduce the notion of coordinated video tubes to capture
and measure motion synchrony. Third, we give an efficient
algorithm to compute the K geometrically correlated video
tubes in a video block of T frames of resolution X X Y in
O(XYTK) running time with a small constant. The effi-
ciency of the algorithm makes our method highly practical
for fast video processing. Fourth, we collect and annotate a
data set for evaluating synchrony detection. This data set
can serve as a benchmark for further study.

Preliminary experiments show that our method for detect-
ing motion synchrony is both effective and efficient. A set of
video tubes in an image sequence can be found at 30 — 100
(VGA) frames per second, and the accuracy of synchrony
detection is better than 90% in our annotated data set.

2. FINDING VIDEO TUBES

Let V be a X x Y x T space-time block where T is the
number of frames and each image frame has X XY pixels. A
tube U C V is modeled as a generalized cylinder that passes
through each frame exactly once. Specifically, a tube U is
represented as a tuple U = (X, M, r) where M is the object
model, and the sequence X = (x1,x2,- -+ ,xr) specifies the
location of disk centers with radius r in each frame. The
model M is a set of suitably defined appearance features
that describes the objects of interest.

2.1 Geometric Relation among Tubes

To specify the geometric relations among multiple video
tubes, we compute the Euclidean minimal spanning tree
(EMST) among tube centers in the first frame and the tree
deforms when tracked through the video sequence. The
amount of deformation measures the deviation from syn-
chrony. The reason for working with EMST is to group all
tubes into a single component by edges of minimal lengths.

Denote the tree 7y = (Vy, &) as the result of tracking
the EMST 77 in the first frame all the way to frame f.

Here V¢ = {w{,xé, e ;ci} is the set of centers of tubes

Uy,Us, -+ ,Ug in frame f, and £ specifies the k — 1 spatial

Figure 2: Video tubes and their geometric relations
in the spatial and temporal domain.

constraints among the k tubes, as captured by the constant
topology of the spanning tree computed in the first frame.

2.2 The Coordinated Motion Model

We build video tubes frame by frame. Let My,--- , My
be the object models for tubes Uy, - - -, U. Given the set Vs
of positions of the k£ tube centers in frame f — 1, the cost of
extending these tubes to frame f is:

k

Cost(Vy) = Y B(xls M) +x Y 11665, HIF (1)

i=1 (i,§)€E

where the visual inconsistency term E(acf7 M) measures the
visual dissimilarity between the disk centered at x{ and the
object model M; associated to the i*" tube, as measured in
previous work [9, 8], and the norm of the vector

8,4, ) = (a] —af) — (@[ =] 2)

measures the pattern deformation of an edge in the minimal
spanning tree between frames f — 1 and f. The constant
A is a regularization parameter that balances the penalties
between visual inconsistency and pattern deformation.

_ The objective is therefore to find the optimal arrangement
V; for which the cost Cost(Vy) is minimal among all possible
choices of configuration Vy:

Vi = arg néin Cost(Vy) . (3)
£
This optimization problem is solved in Section 4 below.

3. MEASURES FOR SYNCHRONY

We use the spatial relation determined by the spanning
tree to measure the synchrony and account for the structural
difference between two consecutive trees. Two measures,
w1 and peo, are used to capture first-order and second-order
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Figure 3: Left: First-order synchrony pattern. Mid-
dle and right: Examples of second-order synchrony.
Each red dot represents a frame of the video tube
and the vector indicates the motion direction.

deformation (lack of synchrony), respectively.

= e nEeg s X Gl @

f=2(i,5)€e

The measure 1 for the degree of first-order deformation of
a video clip of T frames accumulates pairwise vector differ-
ences of the form (2) in consecutive frames. The actual posi-
tion of each tube is irrelevant. What matters is the changes
of their relative positions. For instance, pq is zero for pure
translation. However, p1 cannot capture nonlinear motions
(see Figure 3 for illustration). We hence introduce the other
measure u2 for the degree of second-order deformation:
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In practice, both deformation measures are used to deter-
mine the synchrony state by comparing pi,u2 to a fixed
threshold. Those video clips with sufficiently low p1 or ue
are declared to have motion synchrony.

4. THE ALGORITHM

We give an efficient algorithm to solve the optimization in
Equation (3). The speedup is significant thanks to the use
of the generalized distance transform [2], similarly to what is
done for the matching of pictorial structures in human body
parsing [3] and object recognition [4] and tracking [10].

The visual inconsistency E(z!; M;) can be evaluated in
O(1) or constant time [9, 8] with the help of the integral-
image structure. In order to optimize the cost model, we
start from the leaves in the spanning tree. We compute the
optimal position for each leaf a:lf € Vy, given each possible

position x,’: of the leaf’s parent:

opty(«}) = argmin[E(z]; Mi) + |6(Lp, H)*] - (6)

zy

Then, recursively, we compute the minimum-cost position
for each intermediate node z/ — tracing back from leaf nodes
— for all the possible positions 1’{; of that node’s parent:

opt, () = arg mi [E(x]; My) + 116G, p, £)]°
+ > opt;(])] (M)
JEC;

where C} is the set of the children of a:{ in the spanning tree.

Finally, we compute the cost of the root z:

Figure 5: The Fish data set contains random fish
motion (left) and fish circling in synchrony (right).

opt,.(z]) = argmifn{E(mf;Mr) + Z opt]—(xf)} . (8)

Zr JjEC

If implemented naively, this dynamic programming scheme
would take time O(X?Y2K). The complexity is further low-
ered to O(XY K) by using the generalized distance trans-
form. We refer to the paper [2] for details.

The overall algorithm is simple: First, compute tube mod-
els M; and their minimum spanning tree 7; in the first
frame. For subsequent frames, do the following:

Step 1: Use the algorithm above to find the optimal Vy
defined in Equation (3)

Step 2: Extend the video tubes to frame f and update de-
formation measures (4) and (5)

Step 3: Set f < f+ 1 and repeat until f =T

Computing EMST takes O(K log K) time. In applications,
log K < XY, so the overall running time is O(XY KT).

5. EXPERIMENTS

Typical video sequences are very long and objects often
come in and out of the field of view. We therefore chop long
sequences into clips of small duration and apply our method
for finding correlated video tubes and motion synchrony to
these short video clips. We collect 4 video sequences and
chop them into 200 short video clips. We annotate each
video clip by visual inspection as to whether it contains mo-
tion synchrony (See Figure 5 for examples).

We use SIFT features [16] for the tube models M; and
nearest neighbor matching [9] to evaluate visual inconsis-
tency in Equation (1). Object models are constructed from
a few windows specified by a user around some of the ob-
ject in the first frame. Except for SIFT feature detection,
running times range from 30 to 100 frames per second de-
pending on how many video tubes are found. The program
is mostly written in C++/MEX with the visual interface
implemented in MATLAB.

Sample results are shown in Figure 4 and synchrony de-
tection accuracy is shown in Table 1. The average accuracy
for detecting synchrony is more than 90%. The code and
data is available at http://www.cs.duke.edu/ yuanqi/.

6. CONCLUSIONS

We give an efficient algorithm to track synchronous mo-
tions in video, and use variations in the spatial pattern of
the objects to measure the degree of motion synchrony. Pre-
liminary results show that our method achieves more than
90% detection accuracy.
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Figure 4: The left column show the query images. The rest show detected examples of motion synchrony.

Learning joint statistical models for audio-visual

Table 1: Motion synchrony for 4 categories. fusion and segregation. In NIPS, 2001.

Sequences Airplane Birds Fish Horses [7] S. Gu and C. Tomasi. Phase diffusion for the
. . hronization of heterogenous sensor streams. In
# frames in the video 1025 2000 2200 1875 syne
# chopped clips 50 50 50 50 ICASSP, pages 1841-1844, 2009.
# synchronous clips 35 21 23 30 [8] S. Gu and C. Tomasi. Branch and track. In CVPR,
# true positive 31 19 15 28 2011.
# true negative 14 28 26 20 9] S. Gu, Y. Zheng, and C. Tomasi. Efficient visual
# correctly classified 45 47 41 48 object tracking with online nearest neighbor classifier.
Detection accuracy 0.90 0.94 0.82 0.96 In ACCV, pages 267-277, 2010.

[10] S. Gu, Y. Zheng, and C. Tomasi. Linear time offline
tracking and lower envelope algorithms. In ICCV,

2011.

Video tubes can also be used in other applications such as [11] R. Hess and A. Fern. Discriminatively trained particle
automatic object highlighting, interactive object retrieval, filters for complex multi-object tracking. In CVPR,
and efficient memory storage of video segments. Our algo- pages 240-247, 2009.
rithm is efficient for these tasks. We leave the investigation [12] Z. Khan, T. Balch, and F. Dellaert. Mcmc-based
of these applications for future work. particle filtering for tracking a variable number of

interacting targets. PAMI, pages 1805-1918, 2005.
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