Due Date: October 27, 2005

Problem 1: Let R be a set of n rectangles in the plane. Describe an algorithm that reports all k pairs of intersecting rectangles in time $O(n \log n + k)$ time.

(Hint: Use a sweep-line algorithm and maintain a segment tree.)

Problem 2: Show that the space requirement of the 2-dimensional orthogonal range searching can be improved to O(n), provided we allow query time to be $O(n^{\epsilon})$, for any arbitrarily small constant $\epsilon > 0$. Of course, the constant of proportionality depends on ϵ . What is the preprocessing time? (**Hint:** Store the secondary structures only at certain levels of the primary tree.)

Problem 3: A circular disk of radius r centered at point $c \in \mathbb{R}^2$ is the set $D = \{x \mid ||x - c|| \le r\}$. Let $\mathcal{D} = \{D_1, \ldots, D_n\}$ be a set of n circular disks in the plane. Let U be the union of the disks in \mathcal{D} . Show that U has O(n) vertices. Describe an algorithm for computing U.

(**Hint:** Show that each D_i can be mapped to a halfspace H_i in \mathbb{R}^3 so that each point in U maps to $\bigcap_i H_i$.)

Problem 4: The *farthest neighbor Voronoi diagram* of a set S of points in \mathbb{R}^d , denoted by $\operatorname{Vor}_f(S)$, is the decomposition of \mathbb{R}^d into maximal connected regions so that the farthest point of S from any point within each region (under the Euclidean metric) is the same.

- (i) Show that $Vor_f(S)$ in the plane is a tree.
- (ii) What is the complexity of $\operatorname{Vor}_f(S)$ in \mathbb{R}^d ?