Due Date: October 27, 2005

Problem 1: Let R be a set of n rectangles in the plane. Describe an algorithm that reports all k pairs of intersecting rectangles in time $O(n \log n+k)$ time.
(Hint: Use a sweep-line algorithm and maintain a segment tree.)
Problem 2: Show that the space requirement of the 2-dimensional orthogonal range searching can be improved to $O(n)$, provided we allow query time to be $O\left(n^{\epsilon}\right)$, for any arbitrarily small constant $\epsilon>0$. Of course, the constant of proportionality depends on ϵ. What is the preprocessing time?
(Hint: Store the secondary structures only at certain levels of the primary tree.)
Problem 3: A circular disk of radius r centered at point $c \in \mathbb{R}^{2}$ is the set $D=\{x \mid\|x-c\| \leq r\}$. Let $\mathcal{D}=\left\{D_{1}, \ldots, D_{n}\right\}$ be a set of n circular disks in the plane. Let U be the union of the disks in \mathcal{D}. Show that U has $O(n)$ vertices. Describe an algorithm for computing U.
(Hint: Show that each D_{i} can be mapped to a halfspace H_{i} in \mathbb{R}^{3} so that each point in U maps to $\left.\bigcap_{i} H_{i}.\right)$

Problem 4: The farthest neighbor Voronoi diagram of a set S of points in \mathbb{R}^{d}, denoted by $\operatorname{Vor}_{f}(S)$, is the decomposition of \mathbb{R}^{d} into maximal connected regions so that the farthest point of S from any point within each region (under the Euclidean metric) is the same.
(i) Show that $\operatorname{Vor}_{f}(S)$ in the plane is a tree.
(ii) What is the complexity of $\operatorname{Vor}_{f}(S)$ in \mathbb{R}^{d} ?

