De-ghosting for Gigapixel Snapshot Processing

Alexandros-Stavros Iliopoulos1 Jun Hu1 Nikos Pitsianis2,1 Xiaobai Sun1

Mike Gehm3 David Brady1

1Duke University 2Aristotle University of Thessaloniki 3University of Arizona

March 20, 2013
Outline

1 Introduction

2 De-ghosting
 - Pipeline
 - Alignment
 - Fusion
 - Illustrations

3 Recap

4 Acknowledgments
Example Multi-Camera Systems

- Higher-end performance through lower-end cameras

<table>
<thead>
<tr>
<th>System</th>
<th>Overlap ratio</th>
<th>Purpose</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanford Multi-Camera Array (mode 1)</td>
<td>~ 90%</td>
<td>high frame-rate video; synthetic aperture</td>
<td>1</td>
</tr>
<tr>
<td>Stanford Multi-Camera Array (mode 2)</td>
<td>~ 50%</td>
<td>high resolution eFOV</td>
<td>1</td>
</tr>
<tr>
<td>AWARE-2</td>
<td>~ 10%</td>
<td>high resolution eFOV</td>
<td>2, 3</td>
</tr>
<tr>
<td>ARGUS-IS</td>
<td>~ 5%</td>
<td>high resolution eFOV</td>
<td>4</td>
</tr>
<tr>
<td>Single-camera sweep over stationary scene</td>
<td>variable</td>
<td>high resolution eFOV</td>
<td>5</td>
</tr>
</tbody>
</table>

Overlap

```
A

large
```

```
B

small
```

```
C

D
```

AWARE-2 Prototype: 2 Gigapixels, 120° FOV

- Independent focus & exposure
- Gigapixel-resolution snapshots
- Complex configuration on a hemisphere

Gigapixel Imaging Applications

- Survey, query and monitoring of:
 - urban and suburban development\(^1\)
 - wild-life habitats\(^2\)
 - archaeological sites\(^3\)
- Exploration and dynamics of celestial bodies\(^4\)
- Recognition\(^5\)
- Surveillance\(^6\)

\(^5\) L. Gueguen *et al.* *IGARSS*, 2011.
\(^6\) B. Leiningen *et al.* *SPIE* 6981, 2008.
Stitching Software

- GigaPan Stitch\(^1\)
- Autopano Giga\(^2\)
- Microsoft ICE\(^3\)
- Autostitch\(^4\)
- Panorama Tools\(^5\)
- Fiji\(^6\)
- ...

- Challenged by complex, sparse geometry & small, noisy overlap

1. gigapan.com/
2. autopano.net/
3. research.microsoft.com/en-us/UM/redmond/groups/IVM/ICE/
4. www.cs.bath.ac.uk/brown/autostitch/autostitch.html
5. panotools.sourceforge.net/
FoV Overlap: Small, Sparse, Noisy

Note: AWARE-10 is coming out; see M. Gehm’s talk
FoV Overlap: Small, Sparse, Noisy

Note: AWARE-10 is coming out; see M. Gehm’s talk
Outline

1. Introduction
2. De-ghosting
 - Pipeline
 - Alignment
 - Fusion
 - Illustrations
3. Recap
4. Acknowledgments
Ghosting & De-ghosting

Both results from the AWARE-2 (monochrome) dataset (AWARE-10 produces color images)

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady

De-ghosting for Gigapixel Snapshot Processing

Duke, AUTh, Arizona
Ghost Sources

- **Static/systematic:**
 - Deviations from design during manufacturing
 - Displacement in array mounting

- **Transient/scene-dependent:**
 - Variable camera viewpoints
 - Independent camera parameters & settings
De-ghosting: 3 Key Steps

- Pairwise registration
- Global bundle adjustment among multiple images
- Gradient-domain blending
De-ghosting Pipeline

- Raw Images, Flat-fields
- Geometric Alignment
- Feature Extraction
- Reliable Feature Matching
- Global Bundle
- Gradient Merging
- Global Bundle Fusion
- Mosaic
- Gradient Integration
- Pixel-wise Operator
- Laplacian Solver
- Block Operator

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady

Duke, AUTH, Arizona
Outline

1 Introduction
2 De-ghosting
 - Pipeline
 - Alignment
 - Fusion
 - Illustrations
3 Recap
4 Acknowledgments
Pairwise Registration

- SIFT
 - computation-intensive
 - SiftGPU by C.C. Wu

- Geometric configuration
 - anchor points

- GeCo-RANSAC
 - reliable control points
 - preconditioning
 - Global Bundle Adjustment

1. http://cs.unc.edu/~ccwu/siftgpu
Bundle Adjustment

- Adhere to geometric configuration

\[
\begin{align*}
\text{(variational form 1)} & \quad \min_{\{H_i\}} \sum_{i} \sum_{j \neq \emptyset} w_{ij} \left\| x_{k,i}^T H_i - x_{k,j}^T H_j \right\|_2^2 \\
\text{(variational form 2)} & \quad \min_{H} \left\| W E x H \right\|_2^2
\end{align*}
\]

- Fix a reference frame \(R \):

\[
L_{\bar{R}} H_{\bar{R}} = B_{R}
\]

\(L \) is the Laplace operator and \(W \) is a weight matrix.
Outline

1. Introduction

2. De-ghosting
 - Pipeline
 - Alignment
 - Fusion
 - Illustrations

3. Recap

4. Acknowledgments
Gradient Re-projection

- Place & compute gradients on the mosaic canvas
 - Pack images into non-overlapping pairs

- Custom CUDA kernels
 - Transformation back-projection; interpolation
 - Binary image erosion to remove spurious gradient border

- Speed-up by packing & GPU: 40x
Gradient-domain Blending

- Maintains high-frequency information
- Smooths intensity seams
- Invariant to camera sensor bias
- Computation-intensive integration

\[\nabla I(x) = \sum_{x \in I_i} w_i(x) \nabla I_i(x) \]

\[I = G \ast \text{div}(\nabla I) \]

- Green’s function \((G)\) is approximated via a convolution pyramid.¹
- **Speed-up** by algorithm, memory streaming, **GPU: 30x**

Outline

1. Introduction

2. De-ghosting
 - Pipeline
 - Alignment
 - Fusion
 - Illustrations

3. Recap

4. Acknowledgments
Illustrations II
Illustrations IV
Illustrations V
Illustrations VI
Outline

1. Introduction
2. De-ghosting
 - Pipeline
 - Alignment
 - Fusion
 - Illustrations
3. Recap
4. Acknowledgments
Recap

- Unconventional projective layout:
 - Sparse, Small and Noisy overlaps among multiple FoVs
- Combine static spatial/geometric knowledge and scene-dependent parameters & features
- Computation-intensive steps enabled by GPU
- Potential other applications include:
 - Sparse and adaptive sampling in video data
 - Individual tracking among a crowd
Acknowledgments

Lars Nyland
Adjunct Associate Professor, UNC
& Compute Architect, NVIDIA

Steve Feller
AWARE Project Manager, Duke

Esteban Vera Rojas
Research Associate, UA

Daniel Marks
Associate Research Professor, Duke

Changchang Wu
Software Engineer, Google

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady

De-ghosting for Gigapixel Snapshot Processing
Acknowledgments II

- NVIDIA academic research equipment support to Duke & AUTh
- Marie Curie International Reintegration Program, EU
- National Science Foundation (CCF), USA
- Defense Advanced Research Projects Agency HR0011-10-C-0073
Thank you!
References

References II

References III

References IV

