Big Snapshot Stitching with Scarce Overlap
IEEE HPEC 2013, Waltham, MA

Alexandros-Stavros Iliopoulos1 Jun Hu1 Nikos Pitsianis2,1 Xiaobai Sun1

Mike Gehm1 David Brady1

1Duke University \hspace{1cm} 2Aristotle University of Thessaloniki

September 12, 2013
<table>
<thead>
<tr>
<th>1</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>De-ghosting</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
</tr>
<tr>
<td></td>
<td>Pairwise registration</td>
</tr>
<tr>
<td></td>
<td>Global bundle adjustment</td>
</tr>
<tr>
<td></td>
<td>Fusion</td>
</tr>
<tr>
<td>3</td>
<td>Illustrations</td>
</tr>
<tr>
<td>4</td>
<td>Discussion</td>
</tr>
<tr>
<td>5</td>
<td>Acknowledgments</td>
</tr>
</tbody>
</table>
Example Multi-Camera Systems

Higher-end performance through lower-end cameras

<table>
<thead>
<tr>
<th>System</th>
<th>Overlap ratio</th>
<th>Key feature</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Stanford Multi-Camera Array (mode 1)</td>
<td>~ 90%</td>
<td>high frame-rate video; synthetic aperture</td>
<td>1</td>
</tr>
<tr>
<td>B Stanford Multi-Camera Array (mode 2)</td>
<td>~ 50%</td>
<td>high resolution eFOV</td>
<td>1</td>
</tr>
<tr>
<td>C AWARE-2</td>
<td>~ 10%</td>
<td>high resolution eFOV</td>
<td>2, 3</td>
</tr>
<tr>
<td>D ARGUS-IS</td>
<td>~ 5%</td>
<td>high resolution eFOV</td>
<td>4</td>
</tr>
<tr>
<td>Single-camera sweep over stationary scene</td>
<td>variable</td>
<td>high resolution eFOV</td>
<td>5</td>
</tr>
</tbody>
</table>

overlap

- A: large, dense
- B: small, dense
- C: small, sparse
- D: small, sparse

AWARE-2 Prototype: 2 Gigapixels, 120° FOV

- Gigapixel-resolution snapshots
- Independent focus & exposure
- Complex configuration on a hemisphere
- Parallax-free design

Ghosting & De-ghosting

Ghosted image

De-ghosted using our pipeline

Both results from the AWARE-2 dataset
Ghosting & De-ghosting

Both results from the AWARE-2 dataset

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady
Ghosting & De-ghosting

Ghosted image

De-ghosted using our pipeline

Both results from the AWARE-2 dataset
Ghost Sources

- Static/systematic:
 - Deviations from design during manufacturing
 - Displacement in array mounting

- Transient/scene-dependent:
 - Variable camera viewpoints*
 - Independent camera parameters & settings
 - Thermal & mechanical drift

* The AWARE-2 design is parallax-free
Ghost Sources

- **Static/systematic:**
 - Deviations from design during manufacturing
 - Displacement in array mounting

- **Transient/scene-dependent:**
 - Variable camera viewpoints
 - Independent camera parameters & settings
 - Thermal & mechanical drift

*The AWARE-2 design is parallax-free

1 D.R. Golish *et al.* *Optics Express* 20:20, 2012
Ghost Sources

- **Static/systematic:**
 - Deviations from design during manufacturing
 - Displacement in array mounting

- **Transient/scene-dependent:**
 - Variable camera viewpoints*
 - Independent camera parameters & settings
 - Thermal & mechanical drift

*The AWARE-2 design is parallax-free

1 D.R. Golish et al. *Optics Express* 20:20, 2012
Ghost Sources

- Static/systematic:
 - Deviations from design during manufacturing
 - Displacement in array mounting

- Transient/scene-dependent:
 - Variable camera viewpoints*
 - Independent camera parameters & settings
 - Thermal & mechanical drift

*The AWARE-2 design is parallax-free
Ghost Sources

- Static/systematic:
 - Deviations from design during manufacturing
 - Displacement in array mounting

- Transient/scene-dependent:
 - Variable camera viewpoints*
 - Independent camera parameters & settings
 - Thermal & mechanical drift

The AWARE-2 design is parallax-free
Gigapixel Imaging Applications

- Survey, cataloging and monitoring of:
 - urban and suburban development\(^1\)
 - wild-life habitats\(^2\)
 - cultural legacy\(^3,4\)

- Exploration and dynamics of celestial bodies\(^5,6\)

- Recognition\(^7\)

- Surveillance\(^8\)

Stitching Software

- GigaPan Stitch1
- Autopano Giga2
- Microsoft ICE3
- Autostitch4
- Panorama Tools5
- Fiji6
- ...

Challenged by sparse, irregular, and noisy overlap

1 gigapan.com/
2 autopano.net/
3 research.microsoft.com/en-us/UM/redmond/groups/IVM/ICE/
4 www.cs.bath.ac.uk/brown/autostitch/autostitch.html
5 panotools.sourceforge.net/
6 http://fiji.sc/
FoV Overlap: Sparse, Irregular, Noisy (S.I.N.)

Note: AWARE-10 is coming out
FoV Overlap: Sparse, Irregular, Noisy (S.I.N.)

Note: AWARE-10 is coming out
Introduction

2 De-ghosting
 ■ Overview
 ■ Pairwise registration
 ■ Global bundle adjustment
 ■ Fusion

3 Illustrations

4 Discussion

5 Acknowledgments
De-ghosting: 3 Key Steps

- Pairwise registration
- Global bundle adjustment among multiple images
- Blending/fusion in the gradient domain
De-ghosting Pipeline

Raw Images, Flat-fields

1. **Geometric Alignment**
2. **Feature Extraction**
3. **Reliable Feature Matching**
4. **Global Bundle Adjustment**

Approximate Overlapping Regions

- **Block Operator**
- **Pixel-wise Operator**

Gradient Computation

Gradient Integration

Fusion → **Mosaic**

Computational bottlenecks

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady

Big Snapshot Stitching with Scarce Overlap

Duke, AUTh

Page 13/40
De-ghosting Pipeline

- **Raw Images, Flat-fields**
- **Geometric Alignment**
- **Fusion**

Steps:
- **Approximate Overlapping Regions**
- **Feature Extraction**
- **Reliable Feature Matching**
- **Global Bundle Adjustment**
- **Gradient Computation**
- **Gradient Integration**

Computational Bottlenecks:
- **Block Operator**
- **Laplacian Solver**
- **Pixel-wise Operator**

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady

Big Snapshot Stitching with Scarce Overlap
De-ghosting Pipeline

- **Raw Images, Flat-fields**
 - Geometric Alignment
 - Approximate Overlapping Regions
 - Feature Extraction
 - Reliable Feature Matching
 - Global Bundle Adjustment
 - Gradient Computation
 - Gradient Integration

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady

Big Snapshot Stitching with Scarce Overlap
De-ghosting Pipeline

Raw Images, Flat-fields

- Geometric Alignment
- Approximate Overlapping Regions
- Feature Extraction
- Reliable Feature Matching
- Global Bundle Adjustment

Block Operator
Laplacian Solver
Pixel-wise Operator

Fusion

Gradient Computation
Gradient Integration
Mosaic

computational bottlenecks

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady

Big Snapshot Stitching with Scarce Overlap

Duke, AUTh
De-ghosting Pipeline

Raw Images, Flat-fields

- Geometric Alignment
- Approximate Overlapping Regions
- Feature Extraction
 - Block Operator
- Reliable Feature Matching
 - Laplacian Solver
- Global Bundle Adjustment
- Gradient Computation
 - Pixel-wise Operator
- Mosaic

Approximate overlapping regions lead to reliable feature matching, which in turn leads to global bundle adjustment. This process is part of the de-ghosting pipeline, with computational bottlenecks highlighted.

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady

Big Snapshot Stitching with Scarce Overlap
De-ghosting Pipeline

Raw Images, Flat-fields

- Geometric Alignment

Approximate Overlapping Regions

- Feature Extraction
- Reliable Feature Matching
- Global Bundle Adjustment

- Gradient Computation
- Gradient Integration

Block Operator

Pixel-wise Operator

computational bottlenecks

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady

Big Snapshot Stitching with Scarce Overlap
De-ghosting Pipeline

- **Raw Images, Flat-fields**
 - Geometric Alignment
 - Approximate Overlapping Regions
 - Feature Extraction
 - Reliable Feature Matching
 - Global Bundle Adjustment
 - Gradient Computation
 - Gradient Integration

- **Computational Bottlenecks**
 - Block Operator
 - Laplacian Solver
 - Pixel-wise Operator

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady
Pipeline Performance

- Approaching real-time performance is important
- Moving cameras
- Video applications
- Utilization of modern architectures: multi-core and GPU
- Algorithms tailored for bridging applications and architectures
- Processing a mosaic of ~ 100 MP (10 micro-cameras)
 - $24 \times$ AMD Opteron @1.9 MHz, 64 GB RAM, NVIDIA Tesla K20c
 - Naïve serial implementation: 3.5 hours
 - Current pipeline: 50 seconds*

* ~ 25 seconds are overhead related to MATLAB-CUDA communication
Outline

1 Introduction

2 De-ghosting
 - Overview
 - Pairwise registration
 - Global bundle adjustment
 - Fusion

3 Illustrations

4 Discussion

5 Acknowledgments
Textbook Alignment: Features

- Find similar-looking locally distinctive image regions, or “features”
- But there are mismatches, or “outliers”
Textbook Alignment: RANSAC

- Correct matches are consistent with a single transformation (ideally)
- Determine transformations from small random subsets
- Choose transformation with most consenting feature matches

Pairwise Registration

Sparse, Irregular, Noisy overlapping regions

SIFT

“broken”

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady

Big Snapshot Stitching with Scarce Overlap
Pairwise Registration

Sparse, Irregular, Noisy overlapping regions

Geometric configuration

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady

Big Snapshot Stitching with Scarce Overlap
Pairwise Registration

Speed-up by algorithm & GPU: >1000x!

SIFT

computation-intensive SiftGPU by C.C. Wu

PG-RANSAC

Sparse, Irregular, Noisy overlapping regions

anchor points

reliable control points

preconditioning

Geometric configuration

“A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady

1 http://cs.unc.edu/~ccwu/siftgpu

Big Snapshot Stitching with Scarce Overlap
Placement Geometry preserving RANSAC (PG-RANSAC)

- RANSAC variants minimize a ranking function r:
 \[\theta_* = \arg \min_{\theta} \sum_{i=1}^{N} r(d_i, M(\theta), \theta_0) \]

- PG-RANSAC ranking:
 \[r(d, M(\theta), \theta_0) = f(\theta, \theta_0) \cdot \frac{\rho(d, M(\theta))}{\tau_\theta N} \]

rank points & models
Placement Geometry preserving RANSAC (PG-RANSAC)

- RANSAC variants minimize a ranking function r:
 \[\theta_* = \arg \min_{\theta} \sum_{i=1}^{N} r(d_i, M(\theta), \theta_0) \]

- PG-RANSAC ranking:
 \[r(d, M(\theta), \theta_0) = f(\theta, \theta_0) \cdot \frac{\rho(d, M(\theta))}{\tau \theta N} \]

 rank points & models

Placement Geometry preserving RANSAC (PG-RANSAC)

- RANSAC variants minimize a ranking function \(r \):
 \[
 \theta_* = \arg \min_{\theta} \sum_{i=1}^{N} r(d_i, M(\theta), \theta_0)
 \]

- PG-RANSAC ranking:
 \[
 r(d, M(\theta), \theta_0) = f(\theta, \theta_0) \cdot \frac{\rho(d, M(\theta))}{\tau_\theta N}
 \]

 \(\rho(d, M(\theta)) \) is the normalization factor.

RANSAC variants minimize a ranking function r:

$$\theta_* = \arg \min_{\theta} \sum_{i=1}^{N} r(d_i, \mathcal{M}(\theta), \theta_0)$$

PG-RANSAC ranking:

$$r(d, \mathcal{M}(\theta), \theta_0) = f(\theta, \theta_0) \cdot \frac{\rho(d, \mathcal{M}(\theta))}{\tau_\theta N}$$

where $f(\theta, \theta_0) = \frac{1}{1 + e^{-\alpha[(\theta - \theta_0) - \tau \theta]}} \cdot \frac{1}{1 + e^{\alpha[(\theta - \theta_0) - \tau \theta]}}$ (logistic “box”)

Outline

1 Introduction

2 De-ghosting
 - Overview
 - Pairwise registration
 - Global bundle adjustment
 - Fusion

3 Illustrations

4 Discussion

5 Acknowledgments
Global Bundle Adjustment*

- Adhere to geometric configuration

 (variational 1) \(\min_{\{H_i\}} \sum_{D_{ij} \neq \emptyset} \sum_{x_k \in D_{ij}} w_{ij} \left\| x_{k,i}^T H_i - x_{k,j}^T H_j \right\|_2 \)

 (variational 2) \(\min_H \|W E_x H\|_2 \)

 Edge incidence block-matrix

- Weights: \(w_{ij} = \frac{1}{|D_{ij}|} \)

 - Normalize edge contribution to solution
 - “Weak” edges may be down-weighted

* Note that here we are only concerned with the 2D mosaic, not the 3D structure of the scene
Global Bundle Adjustment – Fast & Robust Solution

\[
\begin{bmatrix}
W_{R,2} \\
W_{R,3} \\
\vdots \\
W_{R,6} \\
W_{2,3} \\
W_{2,6}
\end{bmatrix}
\begin{bmatrix}
x_{R,2} \\
x_{R,3} \\
\vdots \\
x_{R,6} \\
x_{2,3} \\
x_{2,6}
\end{bmatrix}
- \begin{bmatrix}
x_{2,R} \\
0 \\
\vdots \\
0 \\
x_{3,2} \\
0
\end{bmatrix}
- \begin{bmatrix}
x_{3,R} \\
0 \\
\vdots \\
0 \\
x_{6,2} \\
0
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
\vdots \\
0 \\
x_{6,R} \\
x_{6,2}
\end{bmatrix}
\]

\[
\begin{bmatrix}
X_{R,2} \\
X_{R,3} \\
\vdots \\
X_{R,6} \\
X_{2,3} \\
X_{2,6}
\end{bmatrix}
- \begin{bmatrix}
x_{2,R} \\
0 \\
\vdots \\
0 \\
x_{3,2} \\
0
\end{bmatrix}
= \begin{bmatrix}
x_{3,R} \\
0 \\
\vdots \\
0 \\
x_{6,2} \\
0
\end{bmatrix}
\]

Fix frame \(R \); normal/Laplace equation, \(\mathbf{L}_{\tilde{R}} \mathbf{H}_{\tilde{R}} = \mathbf{B}_R \)

\[
\mathbf{L}_{\tilde{R}} =
\begin{bmatrix}
\sum_j (x_{2,j}^\top w_{2,j}^2 x_{j,2}) \\
-x_{3,2}^\top w_{2,3}^2 x_{3,2} \\
\sum_j (x_{3,j}^\top w_{3,j}^2 x_{j,3}) \\
-x_{6,2}^\top w_{2,6}^2 x_{2,6} \\
\sum_j (x_{6,j}^\top w_{6,j}^2 x_{j,6})
\end{bmatrix}
\]

\[
\mathbf{H}_{\tilde{R}} =
\begin{bmatrix}
H_{R} \\
H_{2} \\
H_{3} \\
H_{6}
\end{bmatrix}
\]

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady

Big Snapshot Stitching with Scarce Overlap
Global Bundle Adjustment – Fast & Robust Solution

- **W**
 \[
 \begin{pmatrix}
 W_{R,2} \\
 W_{R,3} \\
 \vdots \\
 W_{R,6} \\
 W_{2,3} \\
 W_{2,6}
 \end{pmatrix}
 \]
 - **E**
 \[
 \begin{pmatrix}
 x_{R,2} & -x_{2,R} & 0 & \cdots & 0 \\
 0 & x_{2,3} & -x_{3,2} & \cdots & 0 \\
 0 & 0 & x_{3,6} & \cdots & -x_{6,2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 \end{pmatrix}
 \]
 - **H**
 \[
 \begin{pmatrix}
 H_R \\
 H_2 \\
 H_3 \\
 H_6
 \end{pmatrix}
 \]

- Fix frame R; normal/Laplace equation, $L_{\bar{R}} H_{\bar{R}} = B_R$

$$
L_{\bar{R}} = \begin{pmatrix}
\sum_j \left(x_{2,j}^T w_{2,j}^2 x_{j,2} \right) & -x_{2,3}^T w_{2,3}^2 x_{3,2} & \cdots & -x_{2,6}^T w_{2,6}^2 x_{6,2} \\
-x_{3,2}^T w_{3,2}^2 x_{3,2} & \sum_j \left(x_{3,j}^T w_{3,j}^2 x_{j,3} \right) & \cdots & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
-x_{6,2}^T w_{6,2}^2 x_{2,6} & 0 & \cdots & \sum_j \left(x_{6,j}^T w_{6,j}^2 x_{j,6} \right)
\end{pmatrix}
$$

Strong overlap

Weak overlap
Global Bundle Adjustment – Fast & Robust Solution

\[
\begin{pmatrix}
W_{R,2} \\
W_{R,3} \\
\vdots \\
W_{R,6} \\
W_{2,3} \\
W_{2,6}
\end{pmatrix}
\begin{pmatrix}
x_{R,2} \\
x_{R,3} \\
\vdots \\
x_{R,6} \\
x_{2,3} \\
x_{2,6}
\end{pmatrix}
\begin{pmatrix}
x_{2,R} & 0 & -x_{3,R} & \cdots & 0 \\
0 & x_{2,3} & -x_{3,2} & \cdots & 0 \\
0 & 0 & x_{2,6} & \cdots & -x_{6,2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\end{pmatrix}
\begin{pmatrix}
H_R \\
H_2 \\
H_3 \\
\vdots \\
H_6
\end{pmatrix}
\]

Fix frame \(R \); normal/Laplace equation, \(\mathbf{L}_{\bar{R}} \mathbf{H}_{\bar{R}} = \mathbf{B}_R \)

\[
\mathbf{L}_{\bar{R}} = \begin{pmatrix}
\sum_j \left(x_{2,j}^T W_{2,j} x_{j,2} \right) & -x_{2,3}^T W_{2,3} x_{j,3} & \cdots & -x_{2,6}^T W_{2,6} x_{6,2} \\
-x_{3,2}^T W_{3,2} x_{2,3} & \sum_j \left(x_{3,j}^T W_{3,j} x_{j,3} \right) & \cdots & \sum_j \left(x_{3,j}^T W_{3,j} x_{j,3} \right) \\
\vdots & \vdots & \ddots & \vdots \\
-x_{6,2}^T W_{6,2} x_{2,6} & 0 & \cdots & \sum_j \left(x_{6,j}^T W_{6,j} x_{j,6} \right)
\end{pmatrix}
\]
Fusion in the Gradient Domain: Advantages

- Smooths intensity seams
- Preserves high-frequency information
- Invariant to camera sensor bias
平行融合操作在拼贴画布上
- 将图像分组并打包成非重叠集—图着色问题
- 用于CUDA内核的自定义
- 转换反投射；插值
- 二进制图像侵蚀以移除多余的梯度边界

- **加速打包与GPU**：40倍
Gradient-domain Blending

- Computation-intensive integration
 \[\nabla I(x) = \sum_{x \in D_i} w_i(x) \nabla I_i(x) \]

- Green’s function (\(G\)) is factored approximately via a convolution pyramid.\(^1\)
- **Speed-up** by algorithm & GPU: 30x

Outline

1. Introduction
2. De-ghosting
 - Overview
 - Pairwise registration
 - Global bundle adjustment
 - Fusion
3. Illustrations
4. Discussion
5. Acknowledgments
Illustrations I

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady

Big Snapshot Stitching with Scarce Overlap
Illustrations II

A.S. Iliopoulos, J. Hu, N. Pitsianis, X. Sun, M. Gehm, D. Brady
Illustrations IV

Big Snapshot Stitching with Scarce Overlap
Illustrations V

Big Snapshot Stitching with Scarce Overlap
Illustrations VI

Big Snapshot Stitching with Scarce Overlap
Outline

1. Introduction
2. De-ghosting
 - Overview
 - Pairwise registration
 - Global bundle adjustment
 - Fusion
3. Illustrations
4. Discussion
5. Acknowledgments
Recap

- Unconventional projective layout:
 - Sparse, irregular and noisy (S.I.N.) overlap among multiple FoVs
- Combine static spatial/geometric knowledge and scene-dependent parameters & features
- Computation-intensive steps made tractable through GPU
- Potential other applications include:
 - Sparse and adaptive sampling in video data
 - Individual tracking among a crowd
Future Work

- Develop a statistical foundation for the PG-RANSAC framework
 - Currently investigating a scheme based on matrix perturbation\(^1\) and adaptive sample weighting\(^2\)
- Allow arbitrary reference planes in GBA
- Investigate flat-field weighting schemes to remove “rings”
- Extend to color stitching for big snapshots

\(^1\) A. Criminisi et al. *Image and Video Computing* 17, 1999.
Outline

1. Introduction
2. De-ghosting
 - Overview
 - Pairwise registration
 - Global bundle adjustment
 - Fusion
3. Illustrations
4. Discussion
5. Acknowledgments
Acknowledgments

Lars Nyland
Adjunct Associate Professor, UNC
& Compute Architect, NVIDIA

Esteban Vera Rojas
Research Associate, UA

Changchang Wu
Software Engineer, Google

Steve Feller
AWARE Project Manager, Duke

Daniel Marks
Associate Research Professor, Duke
Acknowledgments II

- NVIDIA academic research equipment support to Duke & AUTh
- Marie Curie International Reintegration Program, EU
- National Science Foundation (CCF), USA
- Defense Advanced Research Projects Agency HR0011-10-C-0073
Thank you!

