
RDMA Congestion Control: It’s Only for the
Compliant

John Snyder
Duke University

jsnyder@cs.duke.edu

Alvin R. Lebeck
Duke University
alvy@cs.duke.edu

Danyang Zhuo
Duke University

danyang@cs.duke.edu

Abstract—RDMA networks enable low latency and low CPU
utilization, and their widespread adoption in datacenters en-
ables improved application performance. However, there are
performance isolation concerns for RDMA deployed in a shared
cloud environment. In particular, we find that congestion control
enforcement and congestion control algorithms in RDMA make
the network susceptible to performance hacking attacks, which
give the attacker extra bandwidth and cause severe congestion
in the network. These attacks can increase short flow completion
times by several orders of magnitude. We surface a fundamental
tradeoff in congestion control between short flow completion
time and performance isolation. We discuss this tradeoff and
how existing approaches do not provide a robust solution.
We also advocate that researchers incorporate performance
isolation concerns into the design and evaluation of congestion
control.

I. INTRODUCTION

Datacenter applications demand high throughput, low la-
tency, and low CPU overheads. This leads to the grow-
ing adoption of Remote Direct Memory Access (RDMA).
RDMA allows applications to communicate without invoking
the system software on the data path by offloading the net-
work protocol stack processing, congestion control (CC), and
packet retransmission to hardware. Today, many technology
companies such as Alibaba [23] and Microsoft [13] deploy
RDMA networks in their datacenters, and exploring how to
use RDMA in application design has become a major topic
in the networking community [20], [21], [19], [12], [17].

The natural next step is thus to bring the benefits of
RDMA to cloud users, and this requires designing for mul-
tiple mutually untrusted users sharing an RDMA network.
Unfortunately, the CC aspect has received little attention.
TCP/UDP networks cannot assume that a user follows the
CC protocol, but since RNICs enforce CC in hardware, which
is outside the bounds of user control, RDMA users must
follow the CC protocol. In shared environments, we must
consider can malicious users gain more bandwidth than their
fair share by exploiting the current design of RDMA CC
mechanisms?

There are several production variants of RDMA [15],
[3], [26], so answering this question broadly is impossible.
However, the most common standards are Infiniband (IB) and
RoCE. RoCE is an appendix on the Infiniband specification
and implements the IB protocol layer in an Ethernet network.
We use IB and RoCE CC as a proxy for RDMA networks.

Malicious users trying to gain more bandwidth is not
new in a traditional kernel-based datacenter networking set-
ting. For example, users can open multiple TCP sockets to
gain extra bandwidth [28]. Furthermore, a user can simply
use UDP to avoid CC. To disincentivize CC avoidance,
researchers developed mechanisms that drop packets of users
who are using too much bandwidth via fair-queuing-based
approaches [29], [31].

RDMA networks differ from TCP networks in two unique
ways that render existing solutions useless. First, applications
offload communication to an RDMA NIC, and thus we
cannot have any software-based indirection on the data path.
The second and more important property is that RDMA
requires a lossless network, so we can no longer drop packets
actively in the network as in the existing fair-queuing-based
approaches.

We analyze two major RDMA CC mechanisms, DC-
QCN [34] and HPCC [23]. DCQCN is the default CC
algorithm in RoCE NICs from NVIDIA Networking, a major
RDMA NIC vendor worldwide. Alibaba deploys HPCC and
is currently in the process of being standardized by the
Internet Engineering Task Force (IETF). We uncover several
performance attacks that allow a user to take substantially
more bandwidth than is fair. These attacks include creating
more than one queue pair (parallel QP attack), sending data
through a set of queue pairs in a round-robin fashion to
completely circumvent CC (staggered QP attack), and using
multiple overlay topologies for collective communication
(shuffled overlay attack). The key property that our attacks
exploit is that RDMA CC algorithms fundamentally favor
short flows, i.e., CC is enforced on a per-queue-pair basis
and each queue pair starts at line rate.

These attacks allow a malicious user to harm the network
performance of other well-behaving users. In our testbed
experiments, an attacker can obtain 72% of the available
bandwidth with a victim flow on a RoCE NIC using the DC-
QCN CC algorithm. Furthermore, ignoring CC causes switch
packet buffers to fill with packets. This dramatically extends
packet queuing delay. In a simulated RoCE datacenter using
DCQCN, the 99.9% tail of small flow completion times
increases by 7 times. Since RDMA networks are lossless
and can suffer from tree saturation [27], these attacks could
theoretically render an entire network unusable as congestion

spreads through the network.
In addition to identifying the above attacks, we uncover

a fundamental tradeoff between short flow completion times
and the ability to mitigate these attacks. RDMA CC protocols
start sending packets at line rate for several reasons, but
primarily to allow flows smaller than the network Bandwidth
Delay Product (BDP) to send all packets in one RTT. How-
ever, when a protocol allows a short flow to start at line rate,
a user could imitate short flow behavior by breaking a long
flow into several short flows and continuously send packets
at line rate. Therefore, anytime a CC protocol provides
exceptions for a certain flow type, it creates a vulnerability.
CC is an attack vector in RDMA networks, and performance
isolation must be considered when designing and evaluating
CC algorithms.

We provide background about enforcing CC in Section II.
We then describe the attacks in Section III and perform the
attacks in a testbed and a simulator in Section IV. In Section
V, we discuss a tradeoff between short flows and performance
isolation, and we conclude in Section VI

II. BACKGROUND

Remote Direct Memory Access allows users to directly
interface with hardware resources on an RDMA NIC (RNIC).
RoCE and IB are the most popular RDMA standards and both
follow the IB specification. In RoCE, users send messages
along Queue Pairs (QPs), which are similar to sockets in
TCP. There are many types of QPs, but we only consider
the Reliable Connection (RC) QP type in our experiments
because it is the only QP type that enables all operation
types1 and only has one destination, which works well with
CC.

When implementing RoCE/IB in hardware, there are three
choices to enforce CC. First, CC is optional in IB/RoCE, so
hardware is not required to support it. The second option is
for the hardware to enforce CC per-QP, and the third option
is to enforce per-service level (per-SL) [16]. Per-SL makes
sense in certain topologies, like a ring, where all QPs may
share a common path. However, in high radix topologies like
a Clos [5] or a fat tree [22], [2], per-QP CC is more intuitive
because not all QPs on the same SL are throttled when one
QP experiences congestion.

The dangers of per-flow fairness are well documented
[28], [30]. FairCloud [28] explored this space extensively.
They proposed several different methods of enforcing rate-
limiting to ensure that users could not simply open more
connections to increase their bandwidth allocations. However,
only one of our proposed attacks involves using multiple
QPs simultaneously to gain an advantage; the others exploit
QPs starting at line rate and only require one QP to send
packets at a time. Further, two of the proposed methods in
FairCloud require fair queueing on switches [28]. This either
requires a virtual lane per-tenant, which is unimplementable,

1The Dynamically Connected Transport available in Nvidia Networking
NICs supports all types of operations, but it is not part of the IB standard.

or to approximate fair queueing with mechanisms like Core-
Stateless Fair Queueing (CSFQ)[31] or Approximate Fair
Queueing (AFQ) [29]. However, AFQ and CSFQ require
dropping packets, so they are not suitable for RoCE/IB.
Seawall [30] enforces per-src CC, which eliminates the
improvements of opening multiple connections but causes
asymmetric bandwidth allocation. Backpressure Flow Con-
trol [11] is a promising alternative. BFC dynamically assigns
flows to queues and has a very low drop rate. However, it
still drops packets and can suffer from Head-of-Line (HoL)
blocking in certain traffic patterns.

Previous work allocates bandwidth fairly on switches. S-
perc [18] and RCP [9] add fair rates to packet headers. S-
perc uses a novel distributed max-min algorithm, and RCP
uses processor sharing to allocate bandwidth. All flows in
S-perc follow the rate assigned by the switch. However,
it provides exceptions for flows smaller than BDP, which
leaves susceptible to the performance attacks in this paper.
RCP requires a handshake to establish initial rate, which
adds an RTT of delay to short flows [8]. Receiver based
CC algorithms can achieve fair sharing quickly [14], [24].
Receiver based CC suffers from scheduling overhead and
requires a non-oversubscribed network and to our knowledge
no RDMA vendor uses receiver based CC.

III. RDMA CONGESTION CONTROL ATTACKS

We introduce three performance attacks that work against
the current IB/RoCE specification. The first attack involves
opening and sending data on several QPs simultaneously. The
second attack also sends data on several QPs but does so
sequentially, continuously changing which QP sends data.
This allows a user to ignore CC. The final attack involves
changing between multiple equal-cost communication over-
lays. By constantly changing the source-destination pairs for
communication, an application can again ignore CC com-
pletely. All attacks cause congestion and allow a malicious
user to gain extra bandwidth.

A. Parallel QP Attack

The Parallel QP attack requires a user to open several QPs
to the same destination instead of a single QP per destination.
Because IB/RoCE enforces CC on a per-QP basis, the share
of a bottleneck link is distributed based on the number of
QPs each host sends data along. The parallel QP attack is
analogous to opening multiple TCP sockets [10]. However,
since the RDMA network is lossless, switches cannot drop
packets of misbehaving users, which is a solution to the issue
in lossy networks [31], [29].

B. Staggered QP Attack

The staggered attack allows a user to ignore CC. Unlike
TCP sockets, Each new QP initially sends packets at line
rate. If a user continuously sends packets on new QPs, CC
is never triggered. An RNIC waits for at least one RTT
before it receives feedback from the network to reduce a
QP’s rate. This is because destinations generate negative

(a) Default Rings (b) New Ring

Fig. 1: Changing Ring to create more src/dst pairs.

feedback, either in the form of Backward Explicit Congestion
Notifications (BECNs) or Congestion Notification Packets
(CNPs). Sources take at least an RTT to receive congestion
feedback. Assuming that the QP does not compete for RNIC
resources, a QP can send at least BDP packets before it
throttles its rate due to congestion.

Several factors affect the utility of a staggered attack. In
a 3 tier fat tree with 100Gbps links and 1us of propagation
delay, the expected RTT of the network is 12us. This means a
QP sending at line rate can send 153KB before it throttles its
rate. As network characteristics change, such as longer delays
or more hops, a QP can send more packets. Another concern
is the size of the message. If the message size is 100MB
and the BDP is 153KB, a user would need 650+ QPs to
the same destination. While this is not impossible, using too
many QPs can cause performance degradation due to cache
misses of QPs’ metadata [7], [20]. There may be several ways
to reduce the number of QPs used. First, rates in IB/RoCE
recover over time, so when a QP is left idle while other QPs
send their data, the QPs rate eventually increases back to line
rate. DCQCN has parameters that determine how quickly QP
rates recover over time. Second, a user could destroy old QPs
and set up new QPs while other QPs send data.

This attack is unique to RDMA networks. TCP starts
a connection by only sending a single packet and slowly
increasing the window over time, so staggering connections
to have a new connection always starting harms performance.
RDMA network endpoints aggressively inject traffic and only
reduce their injection rate if they detect congestion. By
continuously starting new connections, a user can send at
line rate regardless of congestion.

C. Shuffled Overlay Attack

The shuffled overlay attack exploits common communi-
cation patterns to mitigate the effect of CC. For example,
distributed data-parallel deep learning requires an all-reduce,
which is often implemented with a ring communication
pattern to maximize bandwidth utilization. Avoiding all to
all communication allows a user to shuffle communication
overlays and thus circumvent CC.

Figure 1 shows several unique rings a user can create with
just six servers. In these rings, each server sends to a new
destination, either by reversing the original communication
direction, changing the overlay ring, or doing both. Figure
1(a) displays two rings, each going in a different direction.

Fig. 2: Experiment Dumbbell Topology

Figure 1(b) changes the overlay, so all the neighbors in
the ring are new. As the system scales, there are more
opportunities to create new rings. The number of possible
overlays is proportional to the number of servers. Assuming
all servers are connected in a clique, there are n-1 equal-cost
overlays if n > 8 where n is the number of servers [32].

New servers with multiple RNICs further exacerbate this
issue [25]. In this case, a user can create even more source-
destination pairs.

Shuffling overlays enable a user to perform the staggered
and parallel attacks even if a system enforces per-src/dst CC.
A user can perform the staggered attack by sending across a
new src/dst pair each RTT. This lets the attacker send at line
rate and ignore CC. A user can perform the parallel attack
by sending across several overlays simultaneously.

IV. ATTACK EVALUATION

We demonstrate the parallel and staggered attacks in a
small cluster testbed and NS-3 simulations. We focus on
the parallel and staggered attacks since the shuffled overlay
attack is comprised of these primitive attacks. All evaluations
take place on a cluster with 6 servers each with a 100Gbps
single port ConnectX5 RoCE NIC connected to a 100Gbps
Mellanox SN2100 Ethernet switch. There is a single switch,
but we emulate a dumbbell topology by connecting the switch
to itself and forcing all traffic through that link. Mellanox
NICs use DCQCN as their CC algorithm. The NICs and
the switch use the vendors default settings unless otherwise
specified.

We experiment further in NS-3 to show the impact these
attacks have in a larger setting. All simulations run with
code released by Alibaba [1], which implements DCQCN
[34] and HPCC [23]. The simulations demonstrate the effects
of the attacks in a datacenter setting. We simulate a fat-tree
[22], [2] with eight switches per pod, 16 core switches, and
each switch is connected with a 400Gbps link. Each ToR is
connected to 16 servers, and each pod has four ToRs and
four Agg switches. Each server is connected to its ToR with
a 100Gbps link. The flow size distribution is based on a
Facebook Hadoop traffic pattern [33]. To demonstrate the
severity of these attacks on network performance, we break
up long flows (>1MB) into small flows of 150KB, which
is approximately BDP. For the parallel attack, we start all
the new small flows at the same time. When simulating the
staggered attack, we space the start of each flow by the RTT
of the network.

A. Testbed Experiments

Parallel Experiment: First, we demonstrate the parallel
attack on the testbed. We run the ib write bw test on 4
servers. Figure 2 illustrates the experimental topology. Both

Fig. 3: Parallel QP Attack Testbed Results

senders and receivers are on the same side of the dumbbell,
so the source-destination pairs share the bottleneck link. On
one sender and receiver, we open several extra QPs and run
the write bandwidth test. The victim sender and receiver only
open one QP. Figure 3 shows how the attacker gains more
bandwidth as it opens more QPs in the default hardware con-
figuration. We omit error bars because all standard deviations
are within 1% of the mean.

This misallocation of bandwidth is due to CC. The bar
labeled ”16 No CC” shows the results when we disable CC
in our RDMA NICs. Fair arbitration on the switch shares the
bandwidth fairly between the two input ports.

Mellanox hardware does not allocate bandwidth on a per-
QP basis. If CC enforces per-QP allocations, we expect that
with an extra QP the attacker would get two-thirds of the
bandwidth. However, the attacker receives far less than that.
After further investigation, we discovered that our NICs did
not follow the IB specification2 and instead enforce CC per
destination. On our NICs, all QPs to the same destination
use the same send rate.

QPs on the same RNIC share CC information and send
rate but do not split the rate between the QPs. For example,
consider two sources sending to a shared destination on a
100Gbps link. Source 1 opens two QPs and source 2 opens
1 QP. Source 1 calculates that it should send to the destination
at a rate of 30Gbps. However, instead of splitting this rate
between the two QPs, both QPs send at a rate of 30Gbps.
Source 1 then sends at 60Gbps to the destination. Source
2 only sends at 40Gbps. Source 1 calculates a lower rate
than source 2 (30Gbps vs 40Gbps) because Source 1 receives
more negative feedback from the network due to its overall
higher rate (60Gbps). This results in neither per-QP fair nor
per-src/dst fair.

To trick the hardware into doing per-QP CC, we create
multiple IP addresses on the destination and open a new
QP on each IP address. This allows us to emulate the
IB/RoCE specification and per-QP CC. Figure 3 shows that in

2Mellanox (now Nvidia) owns a patent on destination based CC [4]. Some
QPs (UD and Mellanox’s DCT [6]) can send packets to multiple destinations,
so per-QP CC can throttle the rate of a QP even if the destination and
bottleneck changed.

Fig. 4: Parallel and Staggered Attack BW 1.125MB Transfer

implementations that adhere to the IB/RoCE spec, the attack
can get a far larger percentage of the bottleneck link.

Staggered Experiment: Next, we demonstrate the stag-
gered attack’s effectiveness in hardware. We run the stag-
gered attack with and without a competing flow to show
the upper bound on performance and also rerun the parallel
attack to show the superiority of the staggered attack. We
use 30 QPs, and the bandwidth delay product of our testbed’s
network is 37.5KB. This enables us to do a 1.125MB transfer
for staggered attacks. Figure 4 shows the staggered attack
results. Running the staggered attack without a competing
flow achieves a throughput of about 74Gb/s; the maximum
bandwidth we achieve on our 100Gb/s RNICs is 92Gb/s.
When we run the staggered attack with a competing flow,
the attacker receives 60Gb/s. Since the link is 100Gb/s, the
maximum bandwidth the competing flow could receive is
40Gb/s. However, since we only achieve just over 90Gb/s,
the competing flow receives less than 40Gb/s.

We can’t achieve the same performance as no contention
because of switch parameters and per-port fair sharing on the
switch. If the victim’s injection rate is at least half of line-rate,
then the victim receives its fair share because the switch only
allocates more bandwidth to the attacker’s port if the victim’s
port does not send enough traffic to saturate the link. Because
the attacker only sends 1.125MB and the switch does not
mark packets until the switch queue depth exceeds 200KB,
the victim does not reduce its rate enough for the attacker to
achieve line rate in our system. To demonstrate that a longer-
lived attack would be more detrimental to the victim flow,
we lower the marking threshold to 8KB, so the victim backs
off earlier. Figure 4 shows that ”Staggered Low Marking”
matches the theoretical limit of the staggered attack.

B. Datacenter Simulations

To show the drastic effect these attacks have on overall
network health, we run 10ms of random traffic with flow
sizes based on Hadoop traffic from Facebook [33]. We
perform three experiments. First, we run DCQCN with per-
QP fairness. We rerun the same traffic except we break every

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 1000 10000 100000 1x10
6

D
C

Q
C

N
 F

C
T

 S
lo

w
d

o
w

n
 (

9
9

%
ile

)

Flow Size (Bytes)

No Attack
Parallel Attack

Staggered Attack

Fig. 5: Victim Traffic DC Simulation

flow >1MB into smaller flows of 150KB each, so a 1MB
flow becomes six 150KB flows and one 100KB flow. We start
all these flows at the same time. In our third experiment, we
simulate the staggered attack and break up the large flows
but wait for 13us (RTT of the network) before starting each
new flow. Figure 5 plots the 99% FCT slowdown of victim
flows from the three experiments. The FCT slowdown is
the relative slowdown to the flow’s theoretical completion
time without congestion (propagation delay plus serialization
delay). Victim flows are smaller than 1MB because they did
not break into smaller flows to get more bandwidth. The
parallel and staggered attacks devastate the performance of
small flows. The 99% slowdown of flows less than BDP
goes from about ∼20x without the attacks to over ∼80x
with the parallel attack and ∼140x with the staggered attack.
We observe similar trends when we performed the same
experiments with HPCC [23]. No matter the CC algorithm,
these attacks create congestion because they allow a user to
ignore the CC.

V. POTENTIAL SOLUTIONS AND FUTURE WORK

The current IB/RoCE specification leaves the network
susceptible to several performance attacks, and solutions to
the hacks expose a fundamental tradeoff between starting
flows at line rate and performance isolation. These attacks
exist because CC is enforced per-QP and QPs start sending
packets at line rate. Changing CC enforcement to per-src/dst
easily renders the staggered and parallel attacks useless.
However, enforcing CC on a per-QP granularity and allowing
QPs to start at line rate is a performance optimization. It
allows short flows to send all their bytes as quickly as
possible. By enforcing CC on a per-src/dst granularity and
potentially throttling the rate of flows when they start, short
flows do not complete as quickly. This trade-off between
isolation and short flow completion time is summarized in
Table I. We also include the susceptibility of our Mellanox
hardware. If CC allows short flows to start at line-rate, a long
flow could pretend to be short and hack the system.

To demonstrate the trade-off between small flow tail la-
tency and performance isolation, we run datacenter simula-
tions. However, instead of showing this trade-off in DCQCN,
we run simulations with HPCC. This is because the trade-

IB Spec. CTX-5 Per-src/dst CC
Parallel Vulner. Vulner. Secure

Staggered Vulner. Secure Secure
Shuffled Overlay Vulner. Vulner. Vulner.

SF. Penalty? No Yes Yes

TABLE I: Various Environments Susceptibility to Attack.
Note: Vulner. = Vulnerable. SF. = Short Flow.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1000 10000 100000 1x10
6

 1x10
7

H
P

C
C

 F
C

T
 S

lo
w

d
o

w
n

Flow Size (Bytes)

Per-QP 99%
Per-src/dst 99%

Per-QP 99.9%
Per-src/dst 99.9%

Fig. 6: 99% and 99.9% tail latency of HPCC flows with
different CC enforcement. The vertical line shows BDP.

off is more apparent in protocols with a congestion window
and that do not define idle behavior. DCQCN allows a flows
rate to recover over time. Per-src/dst still causes performance
issues in DCQCN, but they were not as pronounced in our
experiments.

Figure 6 shows the results of 50ms of Hadoop traffic in
a network using HPCC with different CC enforcement. The
99.9% FCT slowdown of flows between the size of 20KB-
110KB goes from 5-10x to 6-34x. This is a dramatic increase
for flows that are smaller than the BDP (denoted with a
vertical line in the Figure) of the network. The 99% of
flows also take longer to complete, but the difference is less
pronounced.

We garner two insights from this result. First, that im-
proving performance isolation in CC protocols can have
an impact on the performance of the application. Second,
researchers should design and evaluate CC algorithms with
performance isolation in mind. We demonstrated that CC
enforcement dramatically impacts performance and that it is
vital to improving performance isolation.

Further, HPCC and other CC algorithms, like Timely
and Swift, omit characteristics that should be defined. For
example, designers should consider the idle behavior of a
CC algorithm. In DCQCN, the rate of a flow increases
over time, while in HPCC an idle flow’s rate does not
change. Recovering the rate over time in HPCC may improve
performance.

We need to explore this trade-off more extensively and
determine how best to navigate it. There may be mechanisms
that make the trade-off less severe without compromising
performance isolation. Further, we need to determine the
optimal idle behavior of a CC algorithm. If rates recover too
quickly, the protocol may again be susceptible to attacks.

Additionally, per src/dst fairness only solves the parallel

and staggered attacks; solving the shuffled overlay attack
requires a more complex solution. Because the src-dst pairs
change completely, the solution is unlikely to be imple-
mentable on a NIC. Therefore, we plan on pursuing in-
network solutions. Solutions to similar problems required in-
network computing [29], [31], and we plan to look at these
for inspiration on how to enforce fairness on switches in a
lossless network.

VI. CONCLUSION

Congestion Control ensures a network functions efficiently
and users share the network fairly. However, this is only true
if end users cannot abuse their network access abstractions.
We found several issues with the IB/RoCE specification that
allow a misbehaving user to gain an unfair advantage over
other users through CC. We describe several performance
attacks and show their effectiveness in hardware and in large-
scale simulations. When exploring the solution space for
this issue, we uncover a fundamental tradeoff between the
completion time of small flows and performance isolation.
Because of performance isolation issues, we advocate for
several changes to how researchers design and evaluate CC.
This issue is critical as applications that depend on small
short-flow tail latencies move into shared environments.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation (CNS-1616947).

REFERENCES

[1] https://github.com/alibaba-edu/High-Precision-Congestion-Control,
July 2020.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity
data center network architecture. SIGCOMM Comput. Commun. Rev.,
38(4):63–74, Aug. 2008.

[3] M. S. Birrittella et al. Intel® omni-path architecture: Enabling scalable,
high performance fabrics. In 2015 IEEE 23rd Annual Symposium on
High-Performance Interconnects, pages 1–9. IEEE, 2015.

[4] N. Bloch, B. Shlomo, E. Zahavi, and Z. Yaakov. Destination-based
congestion control, Apr 2014.

[5] C. Clos. A study of non-blocking switching networks. Bell System
Technical Journal, 32(2):406–424, 1953.

[6] D. Crupnicoff, M. Kagan, A. Shahar, N. Bloch, and H. Chapman.
Dynamically-connected transport service, Apr 2014.

[7] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. Farm: Fast
remote memory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414, Seattle, WA,
Apr. 2014. USENIX Association.

[8] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown.
Processor sharing flows in the internet. In International Workshop
on Quality of Service, pages 271–285. Springer, 2005.

[9] N. Dukkipati and N. McKeown. Why flow-completion time is the
right metric for congestion control. SIGCOMM Comput. Commun.
Rev., 36(1):59–62, Jan. 2006.

[10] L. Eggert, J. Heidemann, and J. Touch. Effects of ensemble-tcp. ACM
SIGCOMM Computer Communication Review, 30(1):15–29, 2000.

[11] P. Goyal, P. Shah, K. Zhao, N. K. Sharma, M. Alizadeh, and T. E.
Anderson. Backpressure flow control, 2019.

[12] J. Gu et al. Tiresias: A {GPU} cluster manager for distributed deep
learning. In 16th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 19), pages 485–500, 2019.

[13] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn.
Rdma over commodity ethernet at scale. In Proceedings of the 2016
ACM SIGCOMM Conference, SIGCOMM ’16, page 202–215, New
York, NY, USA, 2016. Association for Computing Machinery.

[14] M. Handley et al. Re-architecting datacenter networks and stacks for
low latency and high performance. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, SIGCOMM
’17, pages 29–42, New York, NY, USA, 2017. ACM.

[15] InfinibandTM Trade Association. Supplement to InfiniBandTM Ar-
chitecture Specification, 9 2014. Volume 1 Release 1.2.1.

[16] InfinibandTM Trade Association. InfiniBandTM Architecture Specifi-
cation, 4 2020. Volume 1 Release 1.4.

[17] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo. A unified archi-
tecture for accelerating distributed {DNN} training in heterogeneous
gpu/cpu clusters. In 14th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 20), pages 463–479, 2020.

[18] L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown. A distributed
algorithm to calculate max-min fair rates without per-flow state.
Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 3(2):1–42, 2019.

[19] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter rpcs can be
general and fast. In 16th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 19), pages 1–16, 2019.

[20] A. Kalia, M. Kaminsky, and D. G. Andersen. Design guidelines for
high performance {RDMA} systems. In 2016 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 16), pages 437–450, 2016.

[21] A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst: Fast, scalable and
simple distributed transactions with two-sided ({RDMA}) datagram
rpcs. In 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), pages 185–201, 2016.

[22] C. E. Leiserson. Fat-trees: Universal networks for hardware-efficient
supercomputing. IEEE Transactions on Computers, C-34(10):892–901,
1985.

[23] Y. Li et al. Hpcc: High precision congestion control. In Proceedings of
the ACM Special Interest Group on Data Communication, SIGCOMM
’19, page 44–58, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[24] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout. Homa: A
receiver-driven low-latency transport protocol using network priorities.
In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’18, pages 221–235, New
York, NY, USA, 2018. ACM.

[25] Nvidia. Nvidia dgx a100 the universal system for ai infrastructure.
Technical report, 2020. [Online].

[26] C. Peterson, J. Sutton, and P. Wiley. iwarp: a 100-mops, liw micro-
processor for multicomputers. IEEE Micro, 11(3):26–29, 1991.

[27] G. F. Pfister and V. A. Norton. “hot spot” contention and combining
in multistage interconnection networks. IEEE Transactions on Com-
puters, 100(10):943–948, 1985.

[28] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica. Faircloud: Sharing the network in cloud computing.
SIGCOMM Comput. Commun. Rev., 42(4):187–198, Aug. 2012.

[29] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy. Approximat-
ing fair queueing on reconfigurable switches. In Proceedings of the
15th USENIX Conference on Networked Systems Design and Imple-
mentation, NSDI’18, page 1–16, USA, 2018. USENIX Association.

[30] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Sharing the
data center network. In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, NSDI’11, page
309–322, USA, 2011. USENIX Association.

[31] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing:
Achieving approximately fair bandwidth allocations in high speed
networks. In Proceedings of the ACM SIGCOMM ’98 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’98, page 118–130, New York, NY, USA,
1998. Association for Computing Machinery.

[32] T. W. Tillson. A hamiltonian decomposition of k2m∗, 2m≥ 8. Journal
of Combinatorial Theory, Series B, 29(1):68–74, 1980.

[33] H. Zeng, J. Bagga, G. Porter, and A. Snoeren. Inside the social
network’s (datacenter) network. ACM SIGCOMM Computer Commu-
nication Review, 45:123–137, 08 2015.

[34] Y. Zhu et al. Congestion control for large-scale rdma deployments.
ACM SIGCOMM Computer Communication Review, 45:523–536, 08
2015.

	Introduction
	Background
	RDMA Congestion Control Attacks
	Parallel QP Attack
	Staggered QP Attack
	Shuffled Overlay Attack

	Attack Evaluation
	Testbed Experiments
	Datacenter Simulations

	Potential Solutions and Future Work
	Conclusion
	References

