Appears in 36" IEEE International Parallel and Distributed Processing Symposium (IPDPS), June 2022

Fast Convergence to Fairness for Reduced Long
Flow Tail Latency in Datacenter Networks

John Snyder and Alvin R. Lebeck
Department of Computer Science
Duke University
Email: {jsnyder, alvy}@cs.duke.edu

Abstract—Many data-intensive applications, such as dis-
tributed deep learning and data analytics, require moving vast
amounts of data between compute servers in a distributed system.
To meet the demands of these applications, datacenters are
adopting Remote Direct Memory Access (RDMA), which has
higher bandwidth and lower latency than traditional kernel-
based networking. To ensure high performance of RDMA net-
works, congestion control manages queue depth on switches,
and historically focused on moderating queue depth to ensure
small flows complete quickly. Unfortunately, one side-effect of
many common decisions is that large flows are starved of
bandwidth. This negatively impacts the flow completion time
(FCT) of large, bandwidth-bound flows, which are integral to
the performance of data-intensive applications. The FCT is
particularly impacted at the tail, which is increasingly critical
for predictable application performance. We identify the root
causes of the poor performance for long flows and measure the
impact. We then design mechanisms that improve long flow FCT
without compromising small flow performance. Our evaluations
show that these improvements reduce 99.9% tail FCT of long
flows by over 2x.

I. INTRODUCTION

In 2018, users collectively created 2.5 quintillion bytes a
day, and the amount of data created was growing rapidly [22].
To store and synthesize this data, data owners use frameworks
like Apache Spark [28] and Tensorflow [2]. These frameworks
utilise distributed systems to meet the application’s compu-
tational and storage demands. Running an application in a
distributed system enables the application to scale but may
create new performance bottlenecks.

Application performance relies on network performance in
distributed systems. If servers spend excessive time communi-
cating over the network, then application performance suffers
because servers wait for messages instead of computing. The
key metric for network performance is Flow Completion Time
(FCT) [10]. A flow is a sequence of data packets from a source
to a destination, and the FCT measures how long it takes for
the network to deliver those packets. We particularly want to
manage the tail FCT in a distributed application [9]. In a set
of flows, the tail is a high percentile of the flow completion
times.

Historically, distributed systems optimize FCT with two
metrics: low packet latency and high network throughput. Low
packet latency allows small flows to complete quickly and high
throughput enables large flows to send packets as fast as possi-
ble without causing congestion. Recently, datacenters adopted

Remote Direct Memory Access (RDMA) hardware to remove
system software from the critical path of network operations,
which improves packet latency and network throughput.

Congestion control protocols manage packet queues on
switches, which enables low packet latency and high through-
put in RDMA networks. Lower queueing delay on switches
reduce packet latency because packets spend less time sitting
in queues and more time traversing the network. RDMA net-
works are generally lossless, which means they can suffer from
Head-of-Line (HoL) blocking. HoL blocking occurs when
switch packet buffers fill and upstream switches cannot send
packets due to insufficient space. Congestion control reduces
the likelyhood of HoL blocking because packet buffers are less
likely to fill with packets and block the network. Numerous
congestion control algorithms exist for RDMA networks that
achieve these two goals [18], [20], [23], [24], [31].

We identify a third metric that influences FCT, which is
largely ignored by previous work: convergence to fairness.
Most protocols are provably fair [18], [20], [30], but few
optimize to converge quickly to fair rates. Convergence to
fairness dictates how quickly an unfair allocation of bandwidth
between end-hosts becomes fair. Faster convergence can dra-
matically impact the FCT of long flows that are bound by their
bandwidth allocation. Anytime a protocol allocates bandwidth
unfairly, a flow’s performance suffers.

We improve convergence to fair rate allocations by iden-
tifying three reasons why many existing congestion control
protocols converge to fair rates slowly: 1) conservative additive
increase 2) reducing rates once per RTT and 3) deterministic
feedback. We then identify that the bandwidth allocation often
becomes unfair when a new flow joins the network because
new flows in RDMA networks often start sending packets at
line rate [20], [23], [31]. In addition to creating unfairness, new
flows joining the network create congestion, so we infer that
network congestion indicates the bandwidth allocation may
be unfair. Based on these two observations, we introduce two
new mechanisms: Variable Additive Increase and Sampling
Frequency, which significantly improve long flow tail FCT.

We augment Swift [18] and HPCC [20] with our new
mechanisms in ns-3 [25] and show how they perform in
micro-benchmarks and datacenter simulations. While using
our mechanisms, we achieve near zero extra queueing delay,
improve convergence to fairness, and maintain high through-
put. When we improve the convergence to fair rate allocations

Appears in 36" IEEE International Parallel and Distributed Processing Symposium (IPDPS), June 2022

in HPCC and Swift, the tail FCT of long flows decreases by
2x without affecting small flow performance.

We provide background information on congestion control
in Section II. In Section III, we identify the sources of slow
convergence to fairness in HPCC and Swift and do a case
study measuring slow convergence. Next we introduce our
mechanisms and describe their implementation in Sections
IV and V, respectively. We evaluate our new mechanisms in
Section VI, and we conclude in Section VII.

II. BACKGROUND

There are numerous methods to calculate rates in a con-
gestion control protocol. Network switches in some protocols
(RCP [10], XCP [17], s-PERC [16], RoCC [26]) calculate
packet injection rates for flows and explicitly add that infor-
mation to packet headers. While these protocols are effective,
they require complex switches and are not common. Other
protocols schedule flows at the receiver [13], [15], [24], but
they are uncommon because they rely on a non-oversubscribed
network. The most common type of congestion control is
sender-side reaction protocols [18], [20], [23], [31]. These
protocols observe network state through mechanisms like
Round Trip Time (RTT) measurements, Explicit Congestion
Notification (ECN), and In-band Network Telemetry (INT). If
the sender observes congestion, it reduces its injection of pack-
ets into the network. These protocols generally use Additive-
Increase Multiplicative-Decrease (AIMD) to converge to fair
rates [8], [20].

Our work focuses on providing additional mechanisms to
sender-side protocols to improve convergence to fairness. We
augment two protocols: Swift [18] and HPCC [20]. Both
protocols effectively minimise packet latency for small flows
but fail to allocate bandwidth fairly to large flows, which
extends the tail FCT of long flows.

Swift uses RTT measurements to detect congestion severity
and then reduces packet injection based on the degree of
network congestion [18]. If Swift detects no congestion, Swift
increases the injection rate of packets additively. Swift also
pioneered Flow-based Scaling (FBS), which improves fairness
and is therefore relevant to our work. Swift calculates the
multiplicative decrease factor (mdf) with the equation

Delay — Target Delay
Delay

mdf = max(1 — [% ,max_mdf) (1)

where 0 < f,max_mdf < 1. The larger the difference
between the delay and target delay, the more severe the
decrease. Target delay is not fixed; Swift changes target delay
based on the injection rate (or congestion window) of the end
host. The process of changing the target delay is called Flow-
based Scaling (FBS). The lower the congestion window, the
higher FBS sets the target delay. If there is congestion, FBS
reduces the difference between delay and target delay and
therefore reduces the mdf.

Li et al. [20] observed that a cloud storage system caused
large packet queues on switches, which negatively impacted

the latency sensitive flows in a deep learning framework
running in the same cluster. They wanted a congestion control
algorithm that achieved near zero queues to avoid this issue.
To minimize queueing delay, they utilize In-band Network
Telemetry (INT), a new technology in some P4 [7] switches.
Switches with INT can add telemetry data to packets as the
packets pass through the switch. HPCC uses three pieces of
telemetry from network switches to determine the extent of
congestion (queue depth) and available bandwidth (transmitted
bytes and timestamps). With these metrics, HPCC achieves
near zero queueing delay and high bandwidth utilization.

While Swift and HPCC are effective congestion control
protocols, unfortunately they fail to fairly allocate bandwidth
to flows of all sizes. This negatively impacts the FCT of long
flows.

DCQCN [31] is a data center congestion control proto-
col for RDMA networks that uses Random Early Detection
(RED) marking to indicate congestion using ECN. RED marks
packets as experiencing congestion randomly if the packet
queue on the switch exceeds a threshold. If a receiver receives
an ECN marked packet, it sends a Congestion Notification
Packet (CNP) to the sender and the sender reduces its injection
of packets into the network. DCQCN does not suffer from
unfairness like Swift and HPCC because RED marking makes
it more likely for flows with more bandwidth to reduce their
rates.

III. SOURCES OF UNFAIRNESS

State-of-the-art datacenter congestion control techniques
minimize latency (queueing delay) and maximize throughput.
However, in efforts to achieve these goals, several design
decisions eschew fast convergence to fairness in favor of low
latency and high throughput. We outline these decisions and
how they lead to slow convergence. Identifying these sources
of unfairness is a critical step toward mitigating their impact.

A. Conservative Additive Increase

AIMD converges to fairness by generating congestion
events that trigger multiplicative decrease [8], [11]. In the
abscence of congestion, all flows increase their rates. The
sum of all flow rates eventually exceeds the bandwidth of
the bottleneck link because each flow is increasing its rate.
Multiplicative decrease reduces a flow’s rate by a multiple of
the rate, therefore the larger a flow’s rate, the more its send
rate decreases. This converges to fairness eventually because
the flows with more bandwidth reduce their rate by more than
the flows with less bandwidth, and all flows increase their rates
by a constant amount.

AIMD relies on introducing queueing delays to converge
to fair rates. To minimize queueing delay while still converg-
ing to fair rates, protocols set additive increase parameters
conservatively to introduce only modest congestion. Protocols
also scale the multiplicative decrease factor with the extent
of congestion [5], [18], [20]. If congestion is modest, so are
rate reductions. This enables provably fair protocols while
ensuring high throughput and low latency. However, small

Appears in 36" IEEE International Parallel and Distributed Processing Symposium (IPDPS), June 2022

multiplicative decreases and small additive increases make
the protocol converge to fair rates slower [8]. If a protocol
allocates a bandwidth bound flow too little bandwidth, its FCT
increases, which harms application performance.

Insight: Using a conservative Al value favors low latency
over fairness.

B. One Reaction Per RTT

HPCC and Swift fully react to at most one congestion
signal per RTT [18], [20]. This enables the protocols to not
react twice to the same observed congestion. Consider a flow
that sends 10 packets in an RTT, and each packet reports
a queue of about 100KB on the same switch. The queue
depth or queueing delay each packet reports is likely the same
congestion event. If the protocol reacted to each packet, it
would react to the same congestion event (a queue of about
100KB) multiple times.

Reacting only once per RTT removes a natural fairness
effect. When reacting to every acknowledgement, the flows
that have more acknowledgements are those with a larger
congestion window and therefore a higher rate, and flows with
higher rates react more often than those with lower rates. As an
example, suppose a congestion control algorithm uses ECN as
its congestion signal, and there are two flows, one of which is
allocated twice as much bandwidth as the other. The flow with
twice as much bandwidth likely receives twice as many ECN
marked packets in an RTT. If the protocol only reacts once
per RTT and divides the rate by two if any packets received
in that RTT were marked ECN, both flows divide their rates
by half. However, if the protocol reacted to every ECN marked
packet instead of every RTT, then the rate with twice as much
bandwidth and twice as many ECN marked packets would
decrease its rate twice as many times as the flow with less
bandwidth. When reacting once per RTT, less progress is made
toward achieving a fair allocation of bandwidth.

Insight: Not reacting to every congestion signal eschews
convergence to fairness for the sake of throughput.

C. Deterministic Feedback

Probabilistic feedback is more fair than deterministic feed-
back. To improve fairness in DCQCN, Zhu, et al. [31] use
probabilistic feedback and suggest the maximum probability
a switch marks a packet as experiencing congestion under
moderate congestion is 1%. Under these conditions, a flow
without many packets in the queue (low rate) has a low
probability of a packet getting marked even when the link
is congested. Therefore end-hosts sending more packets are
more likely to reduce their injection rate of packets. While this
leads to better fairness, Gao, et al. [12] showed that infrequent
congestion signals can lead to poor performance during Incast
traffic.

In contrast, INT and RTT use deterministic feedback be-
cause no matter how many packets the flow has in the queue,
it receives generally the same feedback as a flow with many
packets, since both flows experienced the same queueing delay
(RTT) or have nearly the same queue depth upon egress from

the switch (INT). Because all flows see almost exactly the
same congestion, the competing flows react the same even if
they have different bandwidth allocations. Meanwhile when
using probabilistic feedback, a flow with a higher rate is more
likely to receive feedback that indicates congestion. Flow-
based Scaling in Swift addresses this, but it is insufficient to
improve tail FCT of long flows, which we demonstrate with
experiments in Section III-E [18].

Insight: All flows receiving the same feedback leads to
unfairness.

D. Methodology

We demonstrate unfairness in an unmodified version of
HPCC and a slightly modified version of Swift. We use
ns-3 [25] code provided as an artifact from HPCC [1] to
evaluate HPCC and Swift. We run a 16-1 incast trafic pattern,
which is important to datacenter networks [27]. We expand
to datacenter simulations and larger incast patterns in Section
VI. To evaluate each protocol’s handling of incast traffic, we
use a single switch topology with 17 hosts and each host has
a 100Gbps link to the switch, and 16 of the hosts have one
flow to the 17th host. Two flows start every 20 microseconds
and each flow sends 1MB. Each link has 1us of propagation
delay.

We use the parameters suggested by Li et al. [20] when
evaluating HPCC. We set Additive Increase to 50 Mb/s,
utilization rate to 0.95, and increment stage to 5. We refer
to this set of parameters as “default HPCC”. In the figures,
these settings are labelled as "HPCC”. We also run HPCC
with a higher Al value of 1Gbps to demonstrate the effect
of Al on fairness. This variant is labelled as "HPCC 1Gbps”.
Additionally, we modified HPCC to use probablistic feedback,
where feedback from the network is sometimes ignored.
Feedback is disregarded based on the following equation:

Current Window < (rand()%Max Window))

This creates a linear equation for the likelihood a packet is
ignored as a function of current window size. ' If a window
size is at its max size, the information is always used. If
the window is 0, the feedback is never used. If the current
window is half the maximum size, there is a 50% chance the
packet feedback is used. This process only occurs if there is
a multiplicative decrease and the reaction would update the
reference rate, so it does not affect rate increases. This HPCC
variant is labelled "HPCC Probablistic”.

Swift does not suggest settings for multiple parameters, so
we set reasonable parameters. Like HPCC, we set additive
increase to 50 Mb/s. We set 3 (see Equation 1) to 0.8 and
the maximum mdf to 0.5. For FBS, we use the parameters in
Kumar et al. [18], except when we are running on the smaller
topology because the window is smaller, so we lower the max
target scaling window from 100 to 50 packets. For Topology-
based Scaling, we set the base RTT to 5us, and add 2us of

ICurrent Window size refers to the window based on the per-hop, per-RTT
rate not the per-ACK rate.

Appears in 36" IEEE International Parallel

and Distributed Processing Symposium (IPDPS), June 2022

HPCC 1Gbps ——
X 1 120 HPCC Probablisgc —_—
3 o HPCC ——
£ .75 <
@ £ 80
173 Q
£ 5 8
F g
< 2 40
§ .25 HPCC 1Gbps i<}
HPCC Probablistic
0 HPCC —— 0
0 .5ms 1ms 1.5ms 0 .5ms ims 1.5ms
Time Time

(a) 16-1 Incast Jain Index in HPCC (b) 16-1 Incast Queue Depth in HPCC

Swift ——
w 1 120 Swift High Al ——
3 @ Swift Probablistic
£ .75 =
7 £ 80
1% Q
£ 5 8
B E
2 40
5 .25 Swift —— 3
Swift High Al ——
0 Swift Probablistic 0
0 .5ms 1ms 1.5ms 0 .5ms 1ms 1.5ms
Time Time

(c) 16-1 Incast Jain Index in Swift (d) 16-1 Incast Queue Depth in Swift

Fig. 1. Jain Fairness Index (closer to 1 is better) and Queue depth during Incast Traffic in HPCC and Swift

140 px % ° o
X x ¢ o+
2 100 | v 4
(0]
£ L
E
5 60 » -~
® * XK
20y APCC = o %
HPCC 1Gbps +
HPCC Probablistic _ ¢ *ot X X

1ms 1.2ms 1.4ms 1.6ms

End Time

.4ms .6ms .8ms

Fig. 2. Start Time vs. Finish Time 16-1 Staggered Incast HPCC

Swift %
Swift High Al +
Swift Probablistic ¢
140 | * . o
» * +
m
2 100 | x e
(0]
g b3 * + &
‘= 60| -
[o]
%) * ex
20 * * + X
* + He
.4ms .6ms .8ms ims 1.2ms 1.4ms 1.6ms
End Time

Fig. 3. Start Time vs. Finish Time 16-1 Staggered Incast in Swift

delay per hop. We also run Swift with probablistic feedback
and a 1Gbps Al to show the effect on fairness. Swift does
not define flow start behavior, so we start flows at line rate in
Swift to fit with other RDMA congestion control protocols.

E. Unfairness in HPCC and Swift

HPCC and Swift exhibit the previously discussed character-
istics that create unfairness. Figures 2 and 3 plot the start time
versus the finish time of flows in the 16-1 incast in HPCC and
Swift respectively. The trend for both default Swift and HPCC
is the same. Flows that begin last finish first because existing

flows reduce their rates several more times than the most
recent flows to start. Increasing Al and probablistic feedback
eliminates this trend and the flows finish at generally the same
time.

Figures 1(a) and 1(c) plot the commonly used Jain Fairness
Index over time [14]. When the Jain Fairness Index is closer
to one, the rates are more fair. A lower fairness index indicates
an unfair allocation. Using the default parameter settings,
both Swift and HPCC take several hundred microseconds to
get close to an index of one. Using probablistic feedback
and a higher Al improves convergence to fair rates in both
protocols. However, this has negative effects. Figures 1(b) and
1(d) show both congestion control protocols have larger queue
oscillations with a higher additive increase.

IV. MECHANISMS FOR IMPROVED FAIRNESS

The previous results demonstrate how state-of-the-art con-
gestion control techniques trade convergence to fairness in
favor of latency and throughput. In this section we introduce
Variable Additive Increase and Sampling Frequency: two new
mechanisms that raise fairness to be on-par with latency and
throughput and can be added to many sender-side congestion
control protocols. These new mechanisms are based on two
key observations from our analysis of existing protocols: 1)
Bandwidth allocations are unfair when new flows join, and 2)
Queues on a bottleneck link increase dramatically when new
flows join.

We observe the network allocates significantly more band-
width to new flows joining the network than existing flows
because new flows generally start sending packets at line rate
in RDMA networks [20], [31]. As a very simple example of
this principle, assume there are two flows, 1 and 2, sharing
a link L with bandwidth B. The bandwidth allocation is
perfectly fair, so flows 1 and 2 have the same rate and the
sum of their rates is < B, so no queue builds up. Now
flow 3 joins and starts sending at line rate. In this situation
a queue builds up on L because the sum of the rates of all
flows exceeds B. This causes a congestion event and all the
flows reduce their rate with a multiplicative decrease, which
in this example is 2. Before the multiplicative decrease flows
1 and 2 rates were B/2 and flow 3’s rate was B. After the
decrease Flow 1 and 2 have a rate of B/4 and flow 3 has a
rate of B/2. This example shows how a new flow joining is
the primary source of unfairness since the protocol allocates

Appears in 36" IEEE International Parallel and Distributed Processing Symposium (IPDPS), June 2022

more bandwidth to the new flow than the existing flows. Given
a reasonable protocol, the rates should eventually converge
to fair rates, but while the protocol converges, flows 1 and
2’s performance suffers because they are allocated too little
bandwidth.

The second observation is that a new flow joining the
network leads to a large increase of the queue on the bottleneck
link. This occurs because the bottleneck link is fully or nearly
saturated before the new flow joins. The switches queue any
additional packets arriving at the link, which creates conges-
tion. Using this observation, we infer that a large increase in
congestion corresponds to a new flow joining the network.

We exploit these two observations to create two new mecha-
nisms to mitigate the sources of unfairness outlined in Section
III. The first mechanism is a Variable Additive Increase, which
increases the additive increase when the protocol believes
the bandwidth allocation is unfair. The second mechanism
is Sampling Frequency, which updates a flow’s rate after a
certain number of ACKs instead of each RTT. Variable Al
allows a user to trade off latency for the sake of fairness with
a smaller latency penalty than simply increasing a standard
additive increase parameter. Sampling Frequency allows users
to trade off bandwidth for slightly lower latency and improved
fairness. Our mechanisms extend the design space beyond the
well documented trade off between latency and bandwidth [6]
to include fairness.

A. Variable Al

Variable Al increases the Al value when the protocol detects
the rate allocation maybe unfair and decreases the Al value
when the allocation is fair to keep latency low. HPCC and
Swift use Additive Increase to enforce fairness; however, as
discussed previously the Al value is set conservatively to keep
queue oscillations small.

Algorithm 1 Generating Tokens and Setting Dampener
1: if RTT Finished then

2 if Measured Congestion > Token_Thresh then

3 AL Bank=min(1685 €18 1 Bank. Bank_Cap)
. Al_DIV

4: end if

5: if Measured Congestion>Token_Thresh then

6: dampener+ = %

7 else if AI_Bank == 0 then

8 if No Congestion then

9: dampener = 0

10: else if Measured Congestion < Token_Thresh then

11: dampener = max(dampener-1, 0)

12: end if

13: end if

14 Measured Congestion = 0

15: end if

Exploiting the observation that bandwidth allocations are
generally unfair right after a new flow joins, we make additive
increase a function of congestion. However, we make careful

Algorithm 2 Calculate Additive Increase
1: tokens = 1
tokens = min(Al_Cap, AI_Bank)
if Rate Adjustment then
AI_Bank = max(AI_Bank - tokens, 0)
end if

divisor = (dampener / Dampener_Constant) + 1

tokens
tokens = max(—

. ivisor
Additive Increase = tokens * base_AIl

® 20k ww

choices to ensure this does not lead to further congestion
during large congestion events, such as incast.

When congestion occurs, Variable Al creates Al tokens.
Algorithm 1 includes the entire protocol. The protocol pro-
duces Al tokens by dividing the difference between "Measured
Congestion” (Queue depth in HPCC and RTT in Swift) by a
configurable constant (AI_DIV) when "Measured Congestion”
exceeds a threshold (Token_Thresh). The protocol adds these
tokens to the AI_Bank, which cannot exceed Bank_Cap.

Feedback is one potential issue with Variable Al. Additive
increase causes queue oscillations, and those oscillations are
larger if additive increase is larger. Since Variable Al is
a function of congestion and additive increases can cause
congestion, Variable Al can enter a feedback loop. To prevent
feedback, we add a dampener that reduces the effect of
Variable Al if queues persist for a significant amount of time.
Dampener only resets to zero when there are no more tokens
in the Al Bank, and there is no congestion over the entire
RTT. No feedback can occur because there is no more input
from Variable Al (no Al tokens), and there is no congestion
to produce new tokens. The protocol increases dampener as
a function of congestion, which improves performance during
large congestion events like incast. If there are numerous new
competing senders, like in a 100-1 incast pattern, then Variable
Al creates many Al tokens, which causes an elevated Al for a
large period of time, which can increase congestion. In the case
with many concurrent senders, dampener increases quickly so
the elevated Al creates less congestion.

Variable Al creates new tokens every RTT; we now detail
how Variable Al spends those tokens. Algorithm 2 shows how
many tokens Variable Al uses when increasing the Additive
Increase. When calculating the additive increase, we multiply
the default AI by the minimum of two values, the AI Cap and
the number of available Al tokens. The AI Cap is the largest
number of tokens the protocol can expend in a rate update
period. If the rate decreases overall, Variable Al removes
tokens every decrease period, which is set by the Sampling
Frequency. If the rate increases, we remove tokens each RTT.
A larger Al Cap leads to higher latencies but better fairness.
Variable Al spreads the increased Al over time, which avoids
large queues.

QCN and TCP BIC have a similar mechanism to Variable
Al called Fast Recovery [4], [21]. In the face of a congestion
event, Fast Recovery assumes that transient queues cause

Appears in 36" IEEE International Parallel and Distributed Processing Symposium (IPDPS), June 2022

congestion signals. Therefore flows enter Fast Recovery, which
quickly tries to grab the bandwidth lost during congestion.
However, since Fast Recovery is designed to improve through-
put and not fairness it is designed differently. Variable Al is
more conservative because it assumes the link is fully utilized
already and is only trying to force small congestion events to
improve fairness.

B. Sampling Frequency

Sampling Frequency tunes how often a protocol reacts
to congestion signals. Section III-B detailed how reacting
only once per round trip time leads to unfairness. Sampling
Frequency determines how many acknowledgements (ACKs) a
flow receives before reducing its rate. If Sampling Frequency is
set low, the protocol reacts to more congestion signals because
it reacts after fewer packets, so the flow decreases its rate more
often.

This parameter allows users of the protocol to choose
between improving fairness and tail latency at the expense of
bandwidth. If a protocol reacts more often, the rate decreases
more often and therefore is more likely to leave unused
bandwidth. However, this reduces the chances of queueing
delay because the rates are lower, so tail latency is reduced
for latency bound flows. Most importantly, flows with more
bandwidth, which receive more ACKs, reduce their rates more
often than flows with less bandwidth.

Sampling Frequency is only invoked if the rate is decreas-
ing; it has no affect if the rate increases. If we use Sampling
Frequency to also increase rates, flows with more bandwidth
would increase their rate more often, which goes against our
goal of fairness. We recommend flows increase their rates once
per RTT.

We provide proof for when Sampling Frequency improves
convergence to fair rates. We use a fluid model similar to the
ones used by Zhu et al [31] and Zhu et al [30]. We model
Sampling Frequency with the equation

. s* MTU

Si(t)
where f is the frequency of the multiplicative decrease, s is
the number of ACKs between rate decreases, and S;(t) is the
injection rate for flow 7 using Sampling Frequency opposed to
per RTT. MTU is the maximum packet size. We then model
a generic multiplicative decrease function with

B x Si(t)

si = -5

where 0 < 8 < 1. If we integrate this over a decrease
interval (f), then the rate decreases by a factor of 3, which
is the desired behavior. When we substitute f, we get the full
equation

5+ S2(1)
S{)= "t/
i) s MTU
To model a protocol that decreases once per RTT, we use the
equation
R;(t
Ryt = -2+ 0

r

(R1-Ro) -(S1-So) (GB/s)

50000 100000 1.5x10° 4x10°

Time (Nanoseconds)

2x10° 2.5x10° 3x10° 3.5x10° 4.5x10°

Fig. 4. Plotting difference in fairness between to MD methods. r = 30000,
MTU=1000, s = 30, 5=.5

where r is the measured RTT of the packets, and R;(t) is
the injection rate for flow ¢ when performing decreases each
RTT. For simplicity, we use a fixed RTT to show the behavior
while the network is congested. Since multiplicative decrease
only occurs when the network is congested, this is a fair
simplification.

We now show that rates using S;(¢) converge faster under
reasonable and desirable constraints. We use two flows and
measure fairness as S (t)—So(¢) or Ry (t)— Ro(t) and initially
C, = 51(0) = Rl(O) > 50(0) = RO(O) = Co. Sampling
Frequency is more fair when

(B1(t) — Ro(t)) = (S1(t) = So(t)) > 0 2

at t = 0 the fairness metric is the same, but we show that
over time given certain constraints, S; becomes fairer faster.
We show that the gap between the two protocols fairness
metrics increases faster by showing

(R1(0) — Ro(0)) — (51(0) — S5(0)) > 0
when we simplify, we get the constrains that this is true when

1< C1+ Gy
r s * MTU

When initial injection rates are high and sampling happens fre-
quently and round trip times are long, the rates using Sampling
Frequency converge faster. This is the desired behavior. When
a new flow joins, its rate is high and it causes congestion, so
RTTs are high. Sampling Frequency converges quickly when
we size it appropriately.

To demonstrate, we graph equation 2 with reasonable pa-
rameters and show how the rates converge during congestion
in Figure 4. We use bytes per nanosecond as our units for
rates, 30,000 for the observed network RTT (r), 30 for the
Sampling Frequency (s), 1,000 bytes for packet MTU, and .5
for . The initial rates for the flows are 100Gbps and 50Gbps.
Sampling Frequency converges much faster to fair rates than
using a per-RTT decrease, which leads to a positive fairness
difference. Over time the fairness difference diminishes, but
the goal is to converge to nearly fair rates quickly, which the
mechanism achieves.

Appears in 36" IEEE International Parallel and Distributed Processing Symposium (IPDPS), June 2022

V. IMPLEMENTATION

This section details how we implement Variable Al and
Sampling Frequency in HPCC and Swift using the ns-3
network simulator. We constrain this work to HPCC and Swift,
two representative state-of-the-art congestion control proto-
cols. Nonetheless, we believe our mechanisms are broadly
applicable to other sender reaction-based protocols because
they address the fundamental issues introduced in Section III.

A. Variable Al

We implement Variable Al in HPCC and Swift, which re-
quire slightly different implementations due to different design
methods of rate increases and congestion measurements.

Variable Al in HPCC creates new tokens using queue depth,
which HPCC already requires. Based on the generic protocol
in Algorithm 1, we must determine how to generate Al tokens,
increase dampener, and reset dampener. Variable Al creates Al
tokens only if the maximum observed queue depth during the
RTT exceeds the minimum Bandwidth Delay Product (BDP)
of the network. We use minimum BDP as the Token_Thresh
because unfairness occurs when a new flow joins the network.
Assuming a new flow exists for several RTTs, the new flow
creates a queue buildup equal to the BDP of the flows path.
This BDP is at least the minimum BDP of the network. HPCC
converges to pareto optimal in terms of latency and bandwidth
using MIMD. Additive increase ensures fairness. Since HPCC
is MIMD, HPCC always multiplies the existing rate by C,
a value calculated using network feedback. If C is > 1, the
end hosts injection rate decreases. If C is < 1, the end hosts
injection rate increases. We track the maximum C observed
over a round trip time. If C < 1 for an entire RTT, we
determine there is no congestion and Variable Al can reset
the dampener.

Variable Al creates Al tokens in Swift based on RTT
measurements. If an RTT measurement exceeds “target delay”
in Swift, Swift performs a multiplicative decrease. Similar to
HPCC, we set Token_Thresh to the sum of the target delay
and the delay incurred by the minimum BDP of the network,
so the protocol likely only generates new tokens when a new
flow joins. If no packets delay exceeds “delay target” over the
RTT and the AI_Bank is empty, we reset dampener because
congestion alleviated and there cannot be any feedback since
there is no input into the system.

Variable Al has one issue that could increase unfairness. An
existing flow could experience congestion for a long period of
time and therefore have a high dampener value, which would
lead to a low AL A new flow, however, starts with a dampener
value of 0. In this case, a new flow could have a higher Al
than an existing flow. We found no way around this issue
because it is impossible to distinguish whether feedback from
the increased Al or new flows joining the network caused
the observed congestion. We ran experiments with this exact
pattern and Variable Al still improved fairness.

B. Sampling Frequency

Normally, Swift and HPCC wait one-RTT between rate
updates. Sampling Frequency instead sets how many acknowl-
edgements between multiplicative decreases. We amend Swift
and HPCC to decrease their rates after a predetermined number
of acknowledgements. Sampling Frequency only affects when
HPCC and Swift perform rate reductions. Rate increases still
happen once per-RTT. If increases happened on the Sampling
Frequency schedule, flows with a higher rate increase their
rate more often and worsen fairness.

HPCC inspired two additional change in Swift to make
Sampling Frequency more effective. HPCC has a per-ACK
and a per-RTT update schedule. HPCC maintains a “reference
rate” that rate adjustments occur from, which is updated once
per-RTT. Using Sampling Frequency the “reference rate” is
updated per-sampling period, which is a configurable num-
ber of acknowledgements. The protocol updates the actual
injection rate after every acknowledgement. The per-ACK rate
changes based on the “reference rate” and not on other per-
ACK updates. As an example, suppose a flow has an injection
rate of R. It receives an ACK that indicates congestion, so
it updates its rate to %, however the reference rate remains
unchanged from R. The flow receives another packet that
indicates congestion and again reduces its rate. However, it
reduces its rate based on the reference rate, so the injection
rate remains g. After an RTT, if congestion persists, HPCC
updates the reference rate to % If the next ACK after the
reference update indicates congestion, the rate reduces to
% We add this same functionality to Swift. It improves
performance with Sampling Frequency because when rates get
low, Sampling Frequency does not update the injection rate
often. The per-ACK adjustments allow Swift to react without
causing long lived unfairness because flows with a higher
injection rate update their per-sampling period rate more often.

The second change is to always perform an additive increase
regardless of congestion like in HPCC. This improves the
functionality of Variable Al since the tokens are always spent.
This can have a small latency penalty, but it should only incur
an additional latency equal to when latency causes the MD to
equal the AI, which is a small amount of delay.

VI. EVALUATION

We implement our mechanisms and evaluate them as addi-
tional parameters in HPCC and Swift. Results show that these
mechanisms improve fairness and throughput.

A. Methodology

We use the same parameters as Section III-D. In addition to
the 16-1 incast traffic, we run three new benchmarks. First, we
run a 96-1 incast pattern to show our mechanisms work with a
higher incast degree. Then we run two datacenter simulations.
The first is based on a hadoop traffic trace from Facebook
[29]. The hadoop traffic contains mostly small flows (95%
<300KB) and a small number of large flows (2.5% > 1MB).
The second datacenter benchmark is flow size distributions
from two applications mixed together to simulate a shared

Appears in 36" IEEE International Parallel and Distributed Processing Symposium (IPDPS), June 2022

HPCC 1Gbps
L] A120 HPGG Probablistc
3) HPCC ——
2 5 X HPCC VAI SF ——
@ £ 80
Q
£ 5 a
& 8
= HPCC 1Gbps —— 2 40
g .25 HPCC Probablistic —— f¢]
HPCC ——
0 HPCC VAI SF —— 0
0 .5ms 1ms 1.5ms 0 .5ms ims 1.5ms
Time Time

(a) 16-1 Incast Jain Fairness Index (b) 16-1 Incast Queue Depth

Fig. 5. Jain
Swift ——
x 1 120 Swift High Al ——
3 o Swift Probablistic
= < Swift VAI SF ——
£ .75
P < 80
] a
2 53
= 5 a
£ . g
c SWift =— g 40
5 .25 Swift High Al —— 5
Swift Probablistic ——
0 Swift VAI — 0
0 .5ms 1ms 1.5ms 0 .5ms 1ims 1.5ms
Time Time

(a) 16-1 Incast Jain Fairness Index (b) 16-1 Incast Queue Depth

(c) 96-1 Incast Jain Fairness Index

(c) 96-1 Incast Jain Fairness Index

Jain Fairness Index

Jain Fairness Index

0
0 2ms

HPCC Probablistic
HPCC

HPCC 1Gbps
HPCC VAI

F —

8ms

4ms 6ms

Time

Swift =—

Swift High Al ——
Swift Probablistic
Swift VAl SF ——
8ms

0 2ms 4ms 6ms

Time

240 HPCC Probablistic
HPCC ——

g S ITE
=160
Q
[
o
(0]
3 80
=]
l¢]

0

0 2ms 4ms 6ms 8ms

Time

(d) 96-1 Incast Queue Depth

Fairness Index (closer to 1 is better) and Queue depth during Incast Traffic with HPCC

Swift ——

Swift High Al
Swift Probablistic
Swift VAI SF ——

N
=
o

KT

\“‘ U’
i

4ms
Time

(d) 96-1 Incast Queue Depth

||
|

Queue Depth (KB)
>
S

o]
o

I ‘
HM‘ M‘\ 1».1\\“\\\“)\“»‘

6ms

M

8ms

I

0 2ms

Fig. 6. Jain Fairness Index (closer to 1 is better) and Queue depth during Incast Traffic with Swift

Key:
400Gbps
D D D D ...12 more spine link
B switches... 100Gbps
link

LJLILIL T LJL L]
LI L]

...3 more

pods...
(2] (2] w (2] w w (2 w
) 5] 5]) 5] o 5])
ezlezleze: Lzlezeze
[[0 [[[[[[
w (] w w () () w w

Fig. 7. Fat-tree topology used in simulations

environment. The first application is a Microsoft WebSearch
traffic pattern with many long flows (30% > 1MB), and
the second application is a Alibaba storage workload with
almost exclusively small flows (96% <128KB and 100% <
2MB). The full flow size distributions for each benchmark
are publicly available [1]. The datacenter benchmarks run the
network at 50% load for 50ms.

For the datacenter simulation, we use the same topology
as Li et al. [20]. The simulation has 320 end-hosts connected
in a 3 layer fat-tree [3], [19]. Figure 7 shows the topology
we use in simulations. Each host has a 100Gbps link to its
ToR switch. There are five 2-layer pods; each pod has 4 Agg
switches and 4 ToR switches, so there are a 20 Agg switches
and 20 ToR switches. There are 16 spine switches. The ToR to
Agg and Agg to Spine connections have 400Gbps links. The

maximum number of hops between two hosts is 5, and each
link’s propagation delay is 1us.
140 px * w
X X w
3 100 | * X v
Q
IS X Xvv
£
5 60 XK 1
@ T KK
20 CAE SO
HPCC *
HPCCVAISF v | vk X
4ms .6ms .8ms ims 12ms 1.4ms 1.6ms
End Time
Fig. 8. 16-1 Incast Traffic Start Time vs Finish Time with HPCC
140 * v 1
* v v
2 100 | x w]
[0}
IS * v v
£
E 60 | * v 1
@ W
20 v ovX A
Swift ¥
Swift VAISF__v WK
4ms .6ms .8ms ims 1.2ms 1.4ms 1.6ms
End Time

Fig. 9. 16-1 Incast Traffic Start Time vs Finish Time with Swift

Appears in 36" IEEE International Parallel and Distributed Processing Symposium (IPDPS), June 2022

For Sampling Frequency, we decrease the injection rate of
packets every 30 ACKs in both Swift and HPCC when they use
Sampling Frequency. For Variable Al, we set Token_Thresh
to the minimum BDP of the network, which is about S0KB.
For Swift, we use 4us plus target delay, which is a base target
delay of 5us and 2us are added per-hop for Topology-based
Scaling. 4us is the delay incurred when queue depth is SOKB.
In HPCC, Variable AI produces 1 Al token for every KByte
of queue depth (AI_DIV) and set bank cap to 1000 tokens.
In Swift, we produce an Al token for every 30ns of queueing
delay, and cap the number of tokens at 1000. Variable Al
for both HPCC and Swift can only use 100 tokens at a time
(AI_Cap). We set dampener constant to 8 in Swift and HPCC.

B. Experimental Results

1) Incast: First, we run the 16-1 incast congestion and com-
pare our VAI SF variants with the existing baselines. Figures
8 and 9 show the start versus finish time of HPCC and Swift
with default settings versus their VAI SF variants. Omitting
the other baselines avoids clutter. The finish time of the flows
is much closer together when using our mechanisms. Figures
5(a) and 6(a) further demonstrate the improved fairness. Our
mechanisms converge to a Jain Index of nearly 1 much quicker
than with default settings and about as quickly as the high Al
and probablistic variants. Figure 5(b) shows that when using
VAI and SF, HPCC still maintains near 0 queues. Figure 6(b)
shows that Swift with VAI and SF sustains smaller queues than
all other variants likely because we do not use FBS, which
increases the tolerated queueing delay. Swift VAI SF also has
small queue oscillations.

The same trends continue when we scale the incast to
96-1. Figures 5(c) and 6(c) show that when using VAI and
SF, the system becomes fair quickly. Figure 5(d) shows that
HPCC VAI SF again maintains near zero queues like the
default HPCC configuration. Meanwhile the other variants
sustain queues throughout the experiment. In Figure 6(d),
Swift maintains the smallest queue because it does not use
FBS, and smaller oscillations because it has a small Al in the
steady state.

50 : :
HPCC 99.9%

45| HPCC VAI SF 99.9%
w0l Swift 99.9%
Swift VAI SF 99.9%

35
30
25
20 +
15
10
5 ':_\"‘";',‘*M\MM"‘-—‘__-:_‘_'V/

FCT Slowdown

10000 100000 1x10® 1x10’

Flow Size (Bytes)

1000

Fig. 10. 99.9% FCT for various flow sizes in Hadoop Traffic

40 \
HPCC 99.9% ——
35| HPCC VAISF 99.9% ——

Swift 99.9%
| Swift VAI SF 99.9%
30
c
g 251
S
3 20}
n
5 151 _,
LL
10 |]

=

10000 100000
Flow Size (Bytes)

a4

1000 1x108 1x10”

Fig. 11. 99.9% FCT for various flow sizes in WebSearch and Storage Traffic

2) Datacenter Simulations: We found that a slow conver-
gence to fair rates significantly impacted the performance
of long flows, particularly at the tail. Figure 10 shows how
the unfairness affects long flows in a Hadoop traffic pattern.
We plot the FCT slowdown as a function of flow size and
each data point represents 1% of flows. We take the 99.9%
from each flow size. The FCT Slowdown divides the achieved
FCT by the theoretical minimum FCT (propagation delay
+ serialization delay). Because Swift and HPCC keep small
queues and enable low packet queueing delay, small flows
complete quickly. However, as the flow sizes increase and
FCT becomes a function of bandwidth allocation, the FCT
slowdowns start to increase. For flow sizes greater than 1MB,
HPCC and Swift without our mechanisms perform poorly.
Flows take 20-40x longer to complete than the theoretical min-
imum. When we add our mechanisms, long flow performance
improves substantially. Our mechanisms halve the tail FCT of
long flows; the FCT slowdown goes from 30-40x without our
mechanisms to 10-15x with our mechanisms.

16 T :
HPCC 50%
14 | HPCC VAI SF 50%
Swift 50%
12 1 Swift VAI SF 50%
s
3 10t
©
3 8t
»
G 6f
[T
4 L
oL /
O L L L L
1000 10000 100000 1x10° 1x107
Flow Size (Bytes)
Fig. 12. Median FCT for various flow sizes in Hadoop Traffic

Appears in 36" IEEE International Parallel and Distributed Processing Symposium (IPDPS), June 2022

HPCC 50%
45| HPCC VAISF 50%

' Swift 50%
4| Swift VAISF 50%

c
£ 35
©
3 s}
%]
5 25¢
[T
2,
15

10000 100000 1x10®
Flow Size (Bytes)

1000 1x107

Fig. 13. Median FCT for various flow sizes in WebSearch and Storage Traffic

Figure 11 shows the same trend with the Websearch and
Storage benchmark. The FCT slowdown of flows greater
than 1MB grows to several times compared to smaller flows.
Meanwhile with our mechanisms the FCT stays several times
lower. This improves the performance of any workload that
relies on long flows and needs small tail latencies like big-
data and deep-learning.

VAI and SF improve the tail FCT with no significant
repercussions on median FCT. Figures 12 and 13 show the
median FCT slowdown in the Hadoop and Websearch/Storage
workloads respectively. This shows that VAI and SF do not
incur any extra queueing delay in the common case. The
median FCT slowdown in Hadoop for Swift is significant.
Swift only uses a single, constant additive increase, which
may cause rates to recover slowly even if there is significant
available bandwidth. The slowdown is not present in the
Websearch/Storage workload. Swift may benefit from a hyper
additive increase setting like in Timely [23], which can help
grab available bandwidth. Raising the target delay improves
long flow FCT, but increases short flow FCT. Our target delay
covers the network’s serialization and propagation delay, so it
is reasonable.

VII. CONCLUSION

Data-intensive applications require large amounts of band-
width to move data within a distributed system. While the
physical infrastructure enables this, the congestion control
algorithms deployed in datacenters favor small flows, which
harms large flow FCT. We identify that 1) conservative ad-
ditive increase 2) one reaction per-RTT and 3) deterministic
feedback cause some protocols to converge slowly to fair
rates. We observe that unfairness occurs when a new flow
joins the network, and we can infer unfairness at the end-host
by an increase in congestion. To exploit these observations
and improve convergence to fairness, we create two generic
mechanisms that can improve fairness in sender-side reaction
based protocols: 1) Variable Additive Increase and 2) Sampling
Frequency. Adding these mechanisms to HPCC and Swift
improves convergence to fairness while still maintaining small

queues and high throughput. Variable Al and Sampling Fre-
quency could be used with a multitude of congestion control
algorithms and require minimal changes on end hosts. Our
mechanisms significantly improve convergence to fairness,
almost no impact on queue size during incast or datacenter
traffic, and improve large flow tail FCT by 2x.

VIII. ACKNOWLEDGEMENTS

We thank Danyang Zhuo and the anonymous reviewers for
their helpful feedback on this work. This work was supported
in part by the National Science Foundation (CNS-1616947).

REFERENCES

[1] “https://github.com/alibaba-edu/High-Precision-Congestion-Control,”
Jul. 2020.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265-283.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, p. 63-74, Aug. 2008. [Online]. Available:
https://doi.org/10.1145/1402946.1402967

[4] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan,
B. Prabhakar, and M. Seaman, “Data center transport mechanisms: Con-
gestion control theory and ieee standardization,” in 2008 46th Annual
Allerton Conference on Communication, Control, and Computing, 2008,
pp. 1270-1277.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP
(DCTCP),” in Proceedings of the ACM SIGCOMM 2010 Conference,
ser. SIGCOMM °10. New York, NY, USA: ACM, 2010, pp. 63-74.
[Online]. Available: http://doi.acm.org/10.1145/1851182.1851192

[6] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: Trading a little bandwidth for ultra-low
latency in the data center,” in Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI’12. USA:
USENIX Association, 2012, p. 19.

[71 P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87-95, Jul. 2014. [Online].
Available: https://doi.org/10.1145/2656877.2656890

[8] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks,” Comput.
Netw. ISDN Syst., vol. 17, no. 1, p. 1-14, Jun. 1989. [Online].
Available: https://doi.org/10.1016/0169-7552(89)90019-6

[9] J. Dean and L. A. Barroso, “The tail at scale,” Communications
of the ACM, vol. 56, pp. 74-80, 2013. [Online]. Available:
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

[10] N. Dukkipati and N. McKeown, “Why flow-completion time is the
right metric for congestion control,” SIGCOMM Comput. Commun.
Rev., vol. 36, no. 1, p. 59-62, Jan. 2006. [Online]. Available:
https://doi.org/10.1145/1111322.1111336

[11] S. B. Fred, T. Bonald, A. Proutiere, G. Régnié, and J. W.
Roberts, “Statistical bandwidth sharing: A study of congestion
at flow level,” in Proceedings of the 2001 Conference on

Applications, Technologies, Architectures, and Protocols for Computer
Communications, ser. SIGCOMM °01. New York, NY, USA:
Association for Computing Machinery, 2001, p. 111-122. [Online].
Available: https://doi.org/10.1145/383059.383068

[12] Y. Gao, Y. Yang, T. Chen, J. Zheng, B. Mao, and G. Chen, “Dcqcn+:
Taming large-scale incast congestion in rdma over ethernet networks,” in
2018 IEEE 26th International Conference on Network Protocols (ICNP),
2018, pp. 110-120.

[13] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore,
G. Antichi, and M. Wdjcik, “Re-architecting datacenter networks and
stacks for low latency and high performance,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM °17. New York, NY, USA: ACM, 2017, pp. 29-42.
[Online]. Available: http://doi.acm.org/10.1145/3098822.3098825

Appears in 36" IEEE International Parallel and Distributed Processing Symposium (IPDPS), June 2022

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

R. Jain, D.-M. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
ArXiv, vol. ¢s.N1/9809099, 1998.

N. Jiang, L. Dennison, and W. J. Dally, “Network endpoint
congestion control for fine-grained communication,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’15. New York, NY,
USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2807591.2807600

L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown, “A distributed
algorithm to calculate max-min fair rates without per-flow state,” in
Abstracts of the 2019 SIGMETRICS/Performance Joint International
Conference on Measurement and Modeling of Computer Systems,
ser. SIGMETRICS °’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 57-58. [Online]. Available:
https://doi.org/10.1145/3309697.3331472

D. Katabi, M. Handley, and C. Rohrs, “Congestion control for
high bandwidth-delay product networks,” in Proceedings of the 2002
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM °02. New York,
NY, USA: Association for Computing Machinery, 2002, p. 89-102.
[Online]. Available: https://doi.org/10.1145/633025.633035

G. Kumar, N. Dukkipati, K. Jang, H. M. G. Wassel, X. Wu,
B. Montazeri, Y. Wang, K. Springborn, C. Alfeld, M. Ryan,
D. Wetherall, and A. Vahdat, “Swift: Delay is simple and effective for
congestion control in the datacenter,” in Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for
Computer Communication, ser. SIGCOMM ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 514-528. [Online].
Available: https://doi.org/10.1145/3387514.3406591

C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient
supercomputing,” IEEE Transactions on Computers, vol. C-34, no. 10,
pp. 892-901, 1985.

Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, and M. Yu, “Hpcc: High precision
congestion control,” in Proceedings of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 44-58. [Online].
Available: https://doi.org/10.1145/3341302.3342085

Lisong Xu, K. Harfoush, and Injong Rhee, “Binary increase congestion
control (bic) for fast long-distance networks,” in IEEE INFOCOM 2004,
vol. 4, 2004, pp. 2514-2524 vol.4.

B. Marr, “How much data do we create every day? the mind-blowing
stats everyone should read,” Forbes, May 2018.

R. Mittal, T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based
congestion control for the datacenter,” in Sigcomm ’15, 2015.

B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A
receiver-driven low-latency transport protocol using network priorities,”
in Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, ser. SIGCOMM °’18. New
York, NY, USA: ACM, 2018, pp. 221-235. [Online]. Available:
http://doi.acm.org/10.1145/3230543.3230564

G. F. Riley and T. R. Henderson, “The ns-3 network simulator.” in
Modeling and Tools for Network Simulation, K. Wehrle, M. Giines,
and J. Gross, Eds. Springer, 2010, pp. 15-34. [Online]. Available:
http://dblp.uni-trier.de/db/books/collections/Wehrle2010.htmlRileyH10
P. Taheri, D. Menikkumbura, E. Vanini, S. Fahmy, P. Eugster, and
T. Edsall, “Rocc: Robust congestion control for rdma,” in Proceedings
of the 16th International Conference on Emerging Networking
EXperiments and Technologies, ser. CONEXT ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 17-30. [Online].
Available: https://doi.org/10.1145/3386367.3431316

V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe
and effective fine-grained TCP retransmissions for datacenter

communication,” in Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication, ser. SIGCOMM ’09. New
York, NY, USA: ACM, 2009, pp. 303-314. [Online]. Available:
http://doi.acm.org/10.1145/1592568.1592604

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in 9th

[29]

[30]

[31]

{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 12), 2012, pp. 15-28.

H. Zeng, J. Bagga, G. Porter, and A. Snoeren, “Inside the social
network’s (datacenter) network,” ACM SIGCOMM Computer Commu-
nication Review, vol. 45, pp. 123-137, 08 2015.

Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye, “Ecn or delay: Lessons
learnt from analysis of deqen and timely,” in Proceedings of the 12th
International on Conference on Emerging Networking EXperiments and
Technologies, ser. CONEXT ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 313-327. [Online]. Available:
https://doi.org/10.1145/2999572.2999593

Y. Zhu, M. Zhang, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, and M. Yahia, “Congestion control for
large-scale rdma deployments,” ACM SIGCOMM Computer Communi-
cation Review, vol. 45, pp. 523-536, 08 2015.

