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NANOSCALE RESONANCE ENERGY
TRANSFER-BASED DEVICES FOR

PROBABILISTIC COMPUTING
.................................................................................................................................................................................................................

DESPITE THE THEORETICAL ADVANCES IN PROBABILISTIC COMPUTING, A FUNDAMENTAL

MISMATCH PERSISTS BETWEEN THE DETERMINISTIC HARDWARE THAT TRADITIONAL

COMPUTERS USE AND THE STOCHASTIC NATURE OF PROBABILISTIC ALGORITHMS. THE

AUTHORS PROPOSE RESONANCE ENERGY TRANSFER (RET) BETWEEN CHROMOPHORES AS

AN ENABLING TECHNOLOGY FOR PROBABILISTIC COMPUTING FUNCTIONAL UNITS. RET

NETWORKS CAN IMPLEMENT EFFICIENT SAMPLERS WITH ARBITRARY PROBABILITY

DISTRIBUTIONS AND HAVE GREAT POTENTIAL FOR ACCELERATING PROBABILISTIC

ALGORITHMS.

......Modern computers largely take a
deterministic approach to computation and
are designed with deterministic algorithms
and transistor functionality in mind. How-
ever, recent challenges in CMOS scaling reveal
practical limits on performance as litho-
graphic features continue to shrink. Looking
beyond the gains that technology scaling
has traditionally supplied, recent theoreti-
cal advances in statistics and probabilistic
machine learning have demonstrated that
many application domains can benefit from
probabilistic algorithms in terms of solution
quality and efficiency.1 However, a funda-
mental mismatch exists between the deter-
ministic hardware that traditional computers
use and the stochastic nature of these new
algorithms. Furthermore, significant perform-
ance gains can be found by carefully employ-

ing alternative technologies embedded in
conventional systems to better match the
probabilistic algorithms’ requirements.

Most probabilistic computations rely on
sampling from an application-specific distri-
bution of interest, which requires control
over a parameterizable source of entropy used
for random selection. Pseudo-random num-
ber generation—for example, by linear feed-
back shift registers—can be used in a
deterministic framework to emulate a ran-
dom process but incurs significant overhead
per sampling operation (for example, hun-
dreds of instructions). A promising alterna-
tive is to use a physical process that is a
natural source of entropy.

The common physical processes used for
this fall into three categories: thermal phenom-
ena, the photoelectric effect, and quantum
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phenomena.2 Researchers have proposed using
thermal noise in electronic circuits to make
probabilistic switches with a set of tunable
parameters, but this approach requires ampli-
fying the noise to a specific magnitude that
can be energy and area inefficient.3 Further-
more, probabilistic switches essentially imple-
ment Bernoulli random variables, which are
not sufficiently general to scale and approxi-
mate arbitrary probabilistic behaviors. The
photoelectric effect and quantum phenomena
can implement many underlying distributions
but are usually difficult to parameterize.2

Within this context, we present Reso-
nance Energy Transfer (RET) as a new candi-
date technology for probabilistic computing,
based on two enabling observations:

� Molecular implementations of RET
networks with different geometries
can produce output that is a direct,
physical analog to different instances
of phase-type distributions.

� Phase-type distributions can approxi-
mate general distributions and are
easily adapted to any probabilistic
computation.

This article focuses on using RET net-
works to implement new functional units
dedicated to efficiently generating samples
that can potentially accelerate probabilistic
algorithms for different applications; a com-
prehensive architectural evaluation will be
future work.

Phase-type distributions
To qualify as a building block for im-

plementing functional units with arbitrary
probabilistic behavior, the physical device’s
intrinsic probability distribution must be
able to approximate general distributions.
Examples of such probability distributions
include mixtures of Gaussian distributions,
Gamma distributions, and phase-type distri-
butions,4–6 each of which can form a dense
set in the field of all positive-valued distribu-
tions and approximate any positive-valued
distribution. The Poisson process and expo-
nential distribution naturally exist in nano-
scale processes (such as chemical reactions,
intermolecular energy transfer, luminescence,
and electrostatics) and, more importantly,

can be flexibly convolved and mixed to form
different instances of phase-type distributions.
Thus, they provide unique opportunities
for nanoscale physical implementation and
approximating general distributions (see the
sidebar “Continuous-Time Markov Chain
and Phase-Type Distributions”).

Molecular implementation using RET
RET networks can be designed to achieve

different phase-type distributions. The RET
transfer between two chromophores (single-
molecule optical devices) is exponentially dis-
tributed in the time domain, and therefore a
molecular scale RET network is a direct, phys-
ical analog of a phase-type distribution in
which the RET network’s geometry configures
its corresponding phase-type distribution.
RET networks can be conveniently and eco-
nomically fabricated using DNA self-assembly
with subnanometer precision.7,8 Hence, RET
technology becomes a natural substrate for
implementing phase-type distributions.

RET
We propose a molecular implementation

of phase-type distributions based on chromo-
phores. A single chromophore absorbs pho-
tons of a specific wavelength and emits
photons at a longer wavelength via fluores-
cence. However, when two chromophores
are placed a few nanometers apart and
their emission and excitation spectra overlap,
energy transfer can occur between the two
chromophores through RET. RET is a quan-
tum mechanical energy-transfer mechanism
between two chromophores, in which the
donor chromophore, initially in its excited
state, transfers its energy to the acceptor chro-
mophore through nonradiative dipole-dipole
coupling (see Figure 1).9 The time to RET
transfer, after the donor is excited, follows an
exponential distribution between each chro-
mophore pair; therefore, the sequence of
RET transfers and the time from the exciton
entering the chromophore network until
leaving the network (that is, decaying) fol-
lows a phase-type distribution. The RET
transfer between a chromophore pair with a
transfer rate of kRET physically implements a
phase transition with a rate of k ¼ kRET in a
phase-type distribution; the chromophore
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Continuous-Time Markov Chain and Phase-Type Distributions
Within the context of Markov networks and Bayesian inference,

the composition of several exponential distributions becomes an

essential ingredient to make more interesting problem-specific joint

distributions. However, many problems require distributions outside

of this which do not have analytical closed forms and cannot be effi-

ciently sampled. Phase-type distributions, which Resonance Energy

Transfer (RET) networks physically realize, are a complete basis set

from which any other distribution can be synthesized. Analogous to

how a sine/cosine basis set can be used to synthesize any waveform

by way of the Fourier transform, so can RET networks be used to

physically transform a composition of phase-type distributions into

any other distribution. Here, we describe the basic mathematical tech-

niques used to analyze Markov networks and the series of states, or

chains, they produce (often in time), and we briefly describe the well-

understood connection to phase-type distributions.

Continuous-time Markov chain
A CTMC X ¼ fX ðtÞ; t � 0g is a continuous-time stochastic proc-

ess with a finite or countable state space S, in which the time spent

in each state is exponentially distributed. A CTMC’s Markov property

means that the conditional probability distribution of future states of

the process (conditional on both past and present states) depends

only on the present state and not on the sequence of events that pre-

ceded it. A CTMC is defined by its discrete state space S, a transition

matrix Q that indicates the transition rate between each pair of

states, and an initial probability distribution p(0).

If a CTMC has at least one absorbing state (that is, a state from

which there is no escape) SAi ði ¼ 1;…; nÞ, which only has incom-

ing transition rates, the probability of the system being in an ab-

sorbing state approximates 1 as time increases to infinity:

lim t!1 Prob
�

X ðtÞ 2 fSAi ; i ¼ 1;…;ng
�
¼ 1. Additionally, the ab-

sorption probability of each absorbing state SAi ði ¼ 1;…; nÞ—that

is, the probability of the system transitioning into this absorbing

state—is PAi ¼ ProbðX ð1Þ ¼ SAiÞ, which is affected by the initial

probability distribution p(0) and the transition matrix Q.1

Phase-type distributions
Given an absorbing CTMC, the time to absorption T follows a

phase-type distribution fT ðtÞ. The absorption of the system occurs

after a sequence of states, the time spent in each state is exponen-

tially distributed, and the sequence of traversed states before absorp-

tion is itself a random process. Because a phase-type distribution is a

probability distribution constructed by a mixture and convolution of

exponential distributions, we can represent it by the time to absorp-

tion of an absorbing CTMC that characterizes the exponentially dis-

tributed time in each phase and the transition between phases before

absorption. For example, an n-stage Erlang distribution, a special

instance of a phase-type distribution, can be perceived as the distribu-

tion of the time to absorption in the so-called pure birth process (that

is, state transitions strictly move along one direction) with n – 1 tran-

sition states and one absorbing state at the end (see Figure A). Other

special cases of phase-type distributions include exponential, Erlang,

hyperexponential, and Coxian distributions.

Approximating general distributions using
phase-type distributions

Phase-type distributions are often used to approximate general

distributions because a CTMC-based problem is often analytically

tractable. In theory, any positive-valued discrete or continuous distri-

bution can be approximated with a phase-type distribution to arbitrary

precision. The two common approaches to approximating a general

continuous distribution with a phase-type distribution are based on

moment matching2 and minimization of a difference (for example,

Kullback–Leibler divergence).3 However, the quality of the approxima-

tion in practice can be less than ideal for certain continuous distribu-

tions because of practical limits on the underlying phase-type

distribution’s type and size. Under such circumstances, discretizing

the continuous distribution and then approximating the discretized

distribution can improve the approximation.4 Similar to the continuous

case, a discrete phase-type distribution can be represented by the

time to absorption of an absorbing discrete-time Markov chain and

used to approximate a general discrete distribution.
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Figure A. A “pure birth” process with n

states. This process is an example of a

Markov [state] chain that follows in time (or

discrete step) only one direction in the

Markov network.
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network’s geometry controls how these
phases are convolved and mixed to form the
phase-type distribution. Specifically, the RET
transfer rate between each chromophore
pair and the decay rate of each relaxation
pathway constitute the transition matrix Q
of the absorbing continuous-time Markov
chain (CTMC) that defines the phase-type
distribution.

The rate of the RET process between a
given chromophore pair is

kRET ¼
3

2

k2

s0
D

R0

r

� �6

; (1)

where s0
D is the donor’s intrinsic fluorescence

lifetime, k2 is the mutual orientation of the
chromophore pair, r is the free space distance
between the chromophore pair, and R0 is the
F€orster radius (that is, the distance at which
the transfer efficiency is 50 percent). The
F€orster radius of a chromophore pair mainly
depends on the properties of the two chro-
mophores, such as the donor’s quantum yield
U0

D and emission spectra IDðkÞ and the
molar absorption coefficient of the acceptor
eAðkÞ.

A chromophore’s intrinsic fluorescence
lifetime s0 is determined by the rates of all
the intrinsic relaxation pathways, including
both the radiative pathway (that is, fluores-
cence) and nonradiative pathways. In the
presence of RET to another chromophore,
another relaxation pathway is added, which
has the rate kRET described in Equation 1.
The relaxation event through each pathway is
exponentially distributed with its associated
decay rate, and, as a result, the chromophore’s
deexcitation is also exponentially distributed.
Between a RET pair, the donor chromo-
phore’s excited state lifetime is shown in
Equation 2, and the transfer efficiency is
shown in Equation 3;

sD ¼
1

1=s0
D þ kRET

(2)

TE ¼ kRET

1=s0
D þ kRET

¼ 1

1þ ðr=R0Þ6
: (3)

The fundamental parameters that govern
the transfer probability between chromo-

phores are largely defined by the molecules
we choose to create the network. However,
the separation between chromophores can be
precisely controlled through DNA self-
assembly.7,8 This process can create well-
defined nanoscale networks of chromophores
with hundreds of states and a widely tunable
set of transfer probabilities.10–12

A natural CTMC
Given that a chromophore network physi-

cally implements an absorbing CTMC, the
time to exciton decay in the network follows
a phase-type distribution. (Several assump-
tions are necessary here: that the pulsed light
source excites only one donor chromophore
in the system, at most one chromophore
remains excited at any time, and nonlinear
mixing is negligible. From our experience
with real devices and networks, these are rea-
sonable assumptions.) Figure 2 shows the
energy transfer via RET and the excitation
decay via fluorescence between a chromo-
phore pair (Figure 2a) and its corresponding
CTMC model (Figure 2b). In the CTMC,
each chromophore has a transient state ST to
indicate whether it is in its excited state,
and the exciton decay through each re-
laxation pathway of each chromophore is re-
presented as an absorbing state SA. Although
it is not shown in Figure 2a, nonradiative
decay exists as an exciton relaxation pathway
and is included in Figure 2b. Equation 4a
shows the initial state vector pð0Þ, and Equa-
tion 4b shows the transition matrix Q of the
CTMC:

RET

Donor Acceptor

Figure 1. A diagram of Resonance Energy

Transfer (RET). An incident photon excites

the donor, which transfers its excited state

energy to the acceptor via RET. The

acceptor can then emit a longer wavelength

photon.

pð0Þ ¼ ½1; 0; 0; 0; 0; 0� (4a)
.............................................................
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decay
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KRET
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Kr_D Kr_A

Knr_A

KRET'

(a) (b)

Figure 2. RET between a chromophore pair. (a) Energy transfer and decay processes. (b) The

corresponding Markov network.

STD STA SA1 SA2 SA3 SA4

Q ¼
� KRET � Kr D � Knr D KRET Kr D 0 Knr D 0
KRET 0 � KRET 0 � Kr A � Knr A 0 Kr A 0 Knr A

04X 2 04x4

2
4

3
5 : (4b)

Figure 3a shows the state probabilities of

the four absorbing states in Equation 4b:

pSAðtÞ¼ ½pSA1ðtÞ; pSA2ðtÞ; pSA3ðtÞ; pSA4ðtÞ�
(SA1: donor fluoresces, SA2: acceptor fluores-

ces, SA3: donor nonradiative decay, and SA4:

acceptor nonradiative decay). Their sum

monotonically approximates 1, because the

input exciton is increasingly likely to have

decayed as time passes. Specifically, the

gray in Figure 3a correspond to the two

absorbing states for the fluorescence of the

two chromophores (the donor molecule is

named AF488 and the acceptor molecular

is named AF594). By taking the derivative

of the gray solid curves in Figure 3a and

normalizing each, we can achieve the

conditional probability density function

(PDF) of the time to fluorescence from

each chromophore, fT ðt jX ð1Þ¼SA1Þ and

fT ðt jX ð1Þ¼SA2Þ (see Figure 3b). For a

larger RET network with more than two

chromophores, its CTMC will simply

enclose more states and the transition rates

between them (see Figure 4), and results sim-
ilar to Figure 3 can be derived.

Using a RET circuit to sample from a
general distribution

What remains to be shown is a systematic
method by which probabilistic algorithms
can exploit the natural random process in
RET networks. We will describe the structure
of a RET circuit and how to use it as a func-
tional unit dedicated to generating samples
for practical applications in probabilistic
computing.

RET circuit
Once we design the network geometry

and chromophore types, we can fabricate a
RET network with subnanometer precision
using hierarchical DNA assembly.7,12,13 We
can then deposit the fabricated network
between an optical waveguide, which delivers
an input pulse of light, and a photodetector,
which detects the output from the network,
to implement what we call a RET circuit.

..............................................................................................................................................................................................
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Figure 5 illustrates a proposed RET circuit fab-
ricated on top of a CMOS substrate that uses
quantum dot LEDs (QD-LEDs) as a light
source coupled through a waveguide to a RET
network with multiple donors and a single
accepter, and a single photon avalanche detec-
tor (SPAD) to detect fluorescence. This RET
circuit shows a RET network with two RET
pairs, two donors, and one acceptor (more pairs
per network are possible). A RET network is
very small and can reside in a thin layer (less
than 20 nm � 20 nm � 2 nm) above the
SPAD. The QD-LEDs also require a very small
area ð0:15 lm2Þ;14,15 thus, the SPAD
ðabout 100 lm2Þ dominates RET circuit
area.16,17 RET circuits can be used to imple-
ment probabilistic functional units integrated
with conventional CMOS.

Continuous distribution
Chromophore fluorescence occurs only

when the network finds an absorbing state in
the RET-based CTMC. The time to fluores-
cence (TTF) after an initial input pulse fol-
lows a phase-type distribution, which we can
use to implement a general continuous distri-
bution. The SPAD provides photon detec-
tion events, and the histogram of these event
times approximates the PDF of the TTF.
Therefore, a RET circuit implements a func-
tional unit that can generate samples from a
general continuous distribution.

With the RET pair in Figure 2, the PDF
of the TTF at the wavelength of the donor
fluorescence is the dotted curve and the PDF
of the TTF at the wavelength of the acceptor
fluorescence is the solid curve in Figure 3b.
When the back transfer from the acceptor to
the donor is negligible, the PDF of the donor
TTF is an exponential distribution and the
PDF of the acceptor TTF is a two-phase
hypoexponential distribution. A functional
unit with this RET circuit would sample
from the two-phase distribution.

Discrete distributions
In addition to continuous distributions,

discrete distributions are often necessary in
common probabilistic algorithms. For exam-
ple, a continuous distribution can be made
discrete and then approximated to improve
accuracy when the phase-type distribution is
constrained in size. Similar to its continuous
counterpart, a discrete phase-type distribution
can be defined by a discrete-time Markov
chain (DTMC) and can approximate a general
discrete distribution. A DTMC can be con-
structed conveniently by discretizing the con-
tinuous time domain of a CTMC with a time
increment Dt . Hence, the RET-based CTMC
can be used to construct a DTMC that
approximates a general discrete distribution.

We explored two approaches to imple-
ment a discrete distribution with RET-based
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Figure 3. The continuous-time Markov chain (CTMC) solution for a chromophore pair. (a) The state probabilities of the four

absorbing states in the Markov network in Figure 2b and their sum. (b) The conditional probability density function (PDF) of the

time-resolved fluorescence from each chromophore. This theoretical derivation of the time-dependent evolution of the CTMC

is a precise description of the observable physical process of RET.
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phase-type distributions for Bernoulli and
exponential functional units. They both rely
on a small-scale RET network, are conven-
ient to design, and could serve as the basis for
a discrete sampler useful in many probabilis-
tic algorithms.

Implementation 1: Bernoulli functional units.
We could implement a Bernoulli random
variable using a RET circuit by observing the
presence or absence of photon detection
events within a specified time period after
excitation. Consider a single chromophore
pair excited by one QD-LED at time t ¼ 0.
Given a detection interval [0, T], the SPAD
outputs “1” if it detects any photons within
this interval, and “0” otherwise. When the
back transfer from the acceptor to the donor
is negligible, the probability that the SPAD

fails to detect any photons from the donor in
the interval is

PB ¼ ½1� PePDF Pd ð1� e–kDT Þ�N (5a)

kD ¼ kd0 þ kRET ¼ kdr þ kdnr þ kRET (5b)

PDF ¼
kdr

kdr þ kdnr þ kRET
: (5c)

In Equation 5, kD is the decay rate of the
excited state of the donor chromophore in
the presence of RET to the acceptor, which is
the sum of its intrinsic excited state decay
rate kd0 and the RET transfer rate kRET : PDF

is the probability that the donor fluoresces
after it is excited, which is the ratio between
its radiative decay rate kdr and kD ¼
kdr þ kdnr þ kRET : Pe is the probability of
the donor being excited by the QD-LED,
and Pd is the SPAD’s photon detection effi-
ciency. The cumulative distribution function
of an exponential distribution in the inner
parenthesis accounts for the donor’s TTF,
and taking the complement of the probabil-
ity PePDF Pd ð1� e�kDT Þ results from the fact
that we are evaluating the probability of not
detecting photons from a single RET net-
work in the time interval [0, T]. We assume
that many copies of the RET network are
integrated in a RET circuit for ease of fabrica-
tion and reliability, and N is the number of
RET networks in the ensemble that can be
excited. This is sufficient to implement a
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Figure 4. A larger RET network. (a) Energy transfer and decay processes. (b) The

corresponding Markov network.
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Figure 5. Illustration of a proposed RET circuit fabricated on top of a CMOS

substrate. CMOS-integrated photonics are an important enabling aspect of

this work.
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Bernoulli random variable with the parame-
ter p ¼ PB.

Given a certain configuration of the other
parameters, Figure 6 shows the dependence
of PB of a RET circuit on the RET transfer
rate kRET ; PB is approximately 0 when
kRET ¼ 0 and monotonically approximates 1
when kRET increases. As a result, the RET
transfer rate kRET alone is enough for reach-
ing different values of p in the range (0,1),
even when the other parameters are fixed or
limited (for example, fixed QD-LED inten-
sity, limited types of available chromophores,
fixed number of RET networks in the ensem-
ble, and fixed time interval T ).

Therefore, we can use a RET circuit as a
Bernoulli functional unit that generates
binary samples with a parameter p. Multiple
Bernoulli functional units can be composed
to create higher-level functional units for dis-
crete distributions in the same way that
probabilistic switches are used to implement
discrete distributions.3 Consider a discrete
random variable X with M possible out-
comes {0, 1, …, M – 1} with the probabil-
ities fPðX ¼ 0Þ ¼ p0; PðX ¼ 1Þ ¼ p1; …;
PðX ¼ M � 1Þ ¼ pM�1g ðp0 þ p1 þ � � � þ
pM�1 ¼ 1Þ. The discrete random variable X
can be implemented using M Bernoulli ran-
dom variables X0; X1; …; XM�1 that corre-
spond to the M outcomes 0, 1, …, M�1.
The parameters of the M Bernoulli random
variables X0; X1; X2; …; XM�1 are, respec-

tively, p0;
p1

1�p0
; p2

1�p0�p1
;…; pM�1

1�
XM�2

i¼0
pi

.

When X0; X1; …; XM�1 are sequentially
sampled, the outcome corresponding to the
first Bernoulli random variable whose sam-
ple is “1” is considered one sample of X.

Implementation 2: exponential functional
units. A RET network’s TTF is a phase-type
distribution, and the SPAD can be used to
sample from the phase-type distribution. The
exponential distribution is simply a one-stage
phase-type distribution; thus, it can conven-
iently be extracted from a RET network.
Consider a single RET pair excited by one
QD-LED at time t ¼ 0. When the back
transfer from the acceptor to the donor is
negligible, the donor’s TTF is exponentially
distributed with a decay rate kD (Equation
5b). Because the SPAD detects photons

beginning at t ¼ 0, the time to the first pho-
ton detection has an exponential distribution
with a decay rate k:

k ¼ NPePDF PdkD ¼ NPePd kdr (6a)

kD ¼ kd0 þ kRET ¼ kdr þ kdnr þ kRET (6b)

PDF ¼
kdr

kdr þ kdnr þ kRET
; (6c)

where all the parameters are the same as in
Equation 5. Although k is independent of
the RET transfer rate, its value can still be
engineered by changing the concentration of
RET networks (N), the emission intensity of
the QD-LED ðPeÞ, and even the donor chro-
mophore (kdr ). In addition, as we will
explain, we can use a set of such exponential
distributions to implement a target discrete
distribution, and only the relative ratio
between their decay rates, rather than their
exact values, matters.

We can use a RET circuit as an expo-
nential functional unit that generates expo-
nentially distributed samples. Multiple
exponential functional units can be com-
posed to create higher-level functional units
for discrete distributions based on the prop-
erty of competing exponential random varia-
bles.18 Given M exponential random
variables Xi ði ¼ 1; …; MÞ with decay rates
kiði ¼ 1; …; M Þ, the probability the ith
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Figure 6. The parameter p of an implemented Bernoulli random variable

depends on the RET transfer rate kRET . The ability to precisely control kRET

implies that many p can be realized.
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exponential random variable is the minimum
among all the M random variables is

P
�

Xi ¼ min ðX1;…;XM Þ
�
¼ kiXM

j¼1
kj

:(7)

Consider a discrete random variable X with
M possible outcomes f0; 1; …; M � 1g
with the probabilities fPðX ¼ 0Þ¼ p0;
PðX ¼ 1Þ¼ p1;…; PðX ¼M �1Þ¼ pM�1g
ðp0þp1þ…þ pM�1¼ 1Þ. The discrete
random variable X can be implemented using
M RET-based exponential random variables
X0; X1;…; XM�1 that correspond to the M
outcomes 0, 1, …, M – 1. The decay rates
of the M exponential random variables
X0; X1;…; XM�1 are such that their relative
ratio equals the relative ratio between
p0; p1;…; pM�1 (that is, k0 : k1 : …: k2¼ p0 :
p1 : …: pM�1). We can generate samples of
the M-outcome discrete random variable X as
follows. At time t ¼ 0, the QD-LEDs in the
M RET circuit simultaneously send a delta
pulse to excite their RET networks, and all the
SPADs are turned on simultaneously. We con-
sider the outcome corresponding to the RET
circuit whose SPAD detects the first photon
before all the other RET circuits to be a sam-
ple of X. The functional unit input is the sig-
nal to turn on the QD-LEDs and start the
SPADs, whereas the output is the sample of X.

Suitable probabilistic algorithms
Repeated random sampling from known

distributions is the core of Monte Carlo
methods, which are widely used for optimiza-
tion, numerical integration, and sampling
from a target probability distribution. Specif-
ically, Monte Carlo Markov chain (MCMC),
a subset of Monte Carlo methods, is a critical
approach to solving Bayesian inference prob-
lems. When very many samples are required,
directly generating samples from RET-based
functional units can accelerate Monte Carlo
methods in the absence of the overhead
required to computationally generate samples
from a continuous or discrete distribution
(for example, inverse transform sampling and
rejection sampling). In addition, designing
hardware based on generating samples for
probabilistic algorithms could bring savings
in energy efficiency and circuit area.3,18

Moreover, the natural entropy used to gener-

ate random samples from a RET circuit
makes it a natural, or true, random number
generator that could suffer less from distribu-
tional bias.

Many probabilistic algorithms can po-
tentially benefit from RET circuits, includ-
ing Bayesian networks, probabilistic cellular
automata, and random neural networks.
Although these probabilistic algorithms can
use the samples generated in RET circuits,
the required sampling distributions and the
procedure for exploiting the generated sam-
ples to achieve the final result often depend
on the target probabilistic algorithm. Here,
we show two examples of using RET circuits
for probabilistic algorithms—f-divergence-
based model selection and inference in a
Bayesian network—to illustrate two different
approaches to incorporating RET-based sam-
ple-generating functional units into probabil-
istic algorithms.

Case study: f-divergence-based model selection
Given two model distributions fM1ðxÞ

and fM2ðxÞ and an input set of observations
generated from an unknown true distribution
xi 	 fM ðxÞði ¼ 1;…;N Þ, a common task
in statistics is to select the model that best
describes the observations. We can calculate
the goodness of fit in several ways depending
on our interpretation of what distance meas-
ures are sensible for the problem. Likelihood
measures are common and calculated byYN

i¼1
fM1ðxiÞ and

YN

i¼1
fM2ðxiÞ for all

observations and models. The model with a
higher likelihood is most likely the model
from which the observations were generated.
We can show that, in the limit of an infinite
number of observations, the likelihood ratio

test—that is,
YN

i¼1
fM1ðxiÞ/

YN

i¼1
fM2ðxiÞ

—is equivalent to calculating the difference
in the Kullback–Leibler (KL) divergence, a
measure of entropic dissimilarity, between
the true distribution M and each model dis-
tribution DKLðM jM1Þ � DKLðM jM2Þ. As
a result, the likelihood-based model selection
essentially locates the model that has the
minimum KL divergence from the true
distribution.

Unfortunately, the likelihood calculation
can be computationally expensive, particu-
larly as the number of observations increases.
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Within this context, we present an alternative
approach to model selection that uses RET-
based functional units to generate samples
and needs only minimal numerical computa-
tion. In practical applications, sensors can
collect observations and map them to the
time domain through specific techniques
such as amplitude-to-time conversion.19 Two
RET circuits implement two continuous
model distributions, fM1ðtÞ and fM2ðtÞ.
With N observations tiði ¼ 1;… N Þ, we can
locate the model closer to the true distribu-
tion fM ðtÞ behind these observations by
repeatedly sampling from the two model
RET circuits as shown in Figure 7.

The scores of the two models are zero at
the beginning. With each input observation
ti, each of the two model RET circuits is
excited by a pulse to generate a sample: tM1

and tM2. Because of the limited precision of
photon detection time, the samples are dis-
cretized and fall into narrow bins in the time
axis. When at least one of the two samples
tM1 and tM2 matches the current observation
ti, the score of the corresponding model is
incremented by 1, and it moves on to the
next input observation tiþ1. Otherwise, two
new samples tM1 and tM2 are generated until
at least one of them matches the current
observation ti. After all the N input observa-
tions are evaluated, the model with the higher
score is considered closest to the true distri-
bution behind these observations.

The mathematical proof for this sam-
pling-based approach is straightforward (see
the sidebar “A New f-Divergence Measured

through Sampling”). Because KL divergence
is also an f-divergence, with the f function
being f ðtÞ ¼ t ln t , this method simply uses
another f-divergence for model comparison.
But unlike the likelihood-based method, the
method we present here is mainly based on
sampling and requires minimal numerical
computation.

Case study: inference in a Bayesian network
A Bayesian network is a probabilistic

graphical model that describes the condi-
tional dependencies between a set of random
variables via a directed acyclic graph (DAG).
It has important applications in various
fields, including medical diagnosis, computer
vision, natural language processing, and
weather forecasting. Given a Bayesian net-
work describing a problem, the joint proba-
bility distribution of all random variables can
be derived, and unobserved random variables
can be inferred. For example, the classic
“sprinkler problem”1 is a Bayesian network
that models the belief that on any given
cloudy day (or not), either rain or a sprinkler
is the cause of any observed wet grass. The
task at hand is to then calculate the joint dis-
tribution and conditional distributions over
the various binary states of the system: C
(cloudy), S (sprinkler), R (rain), and W (wet
grass). Each of the various conditional distri-
butions—for example, that the wet grass is
due to only the sprinkler, PðS ¼ true j
W ¼ true; R ¼ falseÞ—is calculated using
the conditional probability tables (CPTs) for
each random variable. The CPTs are

SM1=0; SM2=0;                                       // initial scores of M1 and M2 start at 0 

for(i=1:N) {                                       // iterate over all observations

do {

tM1 ~ fM1(t); tM2 ~ fM2(t);         // generate one sample from each model RET circuit

if(tM2 == ti) 

SM1++;                               // M1 matches the observation 

if(tM2 == ti)

SM2++;                               // M2 matches the observation 

} while (tM1 != ti) && (tM2 != ti);   // continue until at least one model matches 

} // the model with the largest score is most likely closer to the real distribution 

Figure 7. One possible implementation of a model selection algorithm that exploits sampling from a RET circuit.

.............................................................
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individually derived from various beliefs, or
even data, about the underlying process (that
is, the weather and lawn maintenance). For
example, the CPT for the R state relates the
probability PðR ¼ trueÞ and PðR ¼ falseÞ as
a function of C ¼ true and C ¼ false.

Instead of numerically calculating the
joint distribution PðC ; S;W ;RÞ and condi-
tional distributions for different queries, such
as PðCÞ, PðSjW Þ, and PðSjW ;RÞ, using
variable elimination and belief propagation,
we can generate samples from the Bayesian
network to fulfill these tasks.18 We can gener-
ate a sample ½c; s; w; r�i from the joint dis-
tribution by sequentially sampling each
random variable given its parents using the
CPT associated with this random variable in
the order of C ! fS; Rg ! W . To imple-

ment a discrete sampler functional unit, a row
of RET circuits can be fabricated to match
each row in the CPT of a random variable
and generate a sample for the random variable
given its parents’ values. With a large number
of samples ½c; s; w; r�i ði ¼ 1;…; N Þ itera-
tively generated this way, the joint and
conditional distributions can be approxi-
mated by analyzing these samples. For exam-
ple, to approximate PðSjW ¼ T ; R ¼ F Þ,
all the m samples ½c; s;w; r�ki

ð1 
 k1 <
� � � < km 
 N Þ that satisfy w ¼ T and
r ¼ F are extracted, and within the m sam-
ples the percentage of samples with s ¼ T
(or s ¼ F ) approximates PðS ¼ T jW ¼
T ; R ¼ F Þ or PðS ¼ F jW ¼ T ; R ¼ F Þ.

Although the sprinkler problem is simple,
large-scale and complex Bayesian networks

..............................................................................................................................................

A New f-Divergence Measured through Sampling
The input observations follow the true distribution: ti 	 fMðtÞ ði ¼ 1;…;NÞ. With each of these obser-

vations ti , two samples tM1 and tM2 are generated from the two model Resonance Energy Transfer circuits.

The probability that tM1ðtM2Þ is in the same time bin with ti is fM1ðtiÞ � DtðfM2ðti Þ � DtÞ, where Dt is the

width of each time bin. When the time bin is narrow enough, the probability that tM1 and tM2 both match ti is

negligible. As a result, the probability that M1 receives one increment is fM1ðtiÞ=ðfM1ðti Þ þ fM2ðtiÞÞ, and the

probability that M2 receives one increment is fM2ðtiÞ=ðfM1ðti Þ þ fM2ðtiÞÞ. When the number of input obser-

vations is large enough, the difference between the scores of the two models is shown in Equation A:

SM1 � SM2 � N �
ð

fMðtÞ
fM1ðtÞ � fM2ðtÞ
fM1ðtÞ þ fM2ðtÞ

dt ðAÞ

SM1 � SM2 �N �
ð

fMðtÞ
fM1ðtÞ � fM2ðtÞ
fM1ðtÞ þ fM2ðtÞ

dt

�N �
ð

fM1ðtÞ �

fM1ðtÞ
fM2ðtÞ

� 1

fM1ðtÞ
fM2ðtÞ

þ 1

dt ðBÞ

�N �
ð

fM1ðtÞ
fM2ðtÞ

�

fM1ðtÞ
fM2ðtÞ

� 1

fM1ðtÞ
fM2ðtÞ

þ 1

� fM2ðtÞdt

When M1 is the true distribution fMðtÞ ¼ fM1ðtÞ, Equation B shows that ðSM1 � SM2Þ=N approximates

the f-divergence between fM1ðtÞ and fM2ðtÞ, where the f function is f ðtÞ ¼ tððt � 1Þ=ðt þ 1ÞÞ. From the

properties of f-divergence, ðSM1 � SM2Þ is nonnegative and equals 0 only when fM1ðtÞ and fM2ðtÞ are

identical. Similarly, when M2 is the true distribution fMðtÞ ¼ fM2ðtÞ, then ðSM2 � SM1Þ is nonnegative and

equals 0 only when the models are identical. When the true distribution is between the two models, the

scores of the two models reflect the divergence between the true distribution and each model distribution.

Therefore, this model-selection method can select the better model given enough observations, and it is

based on the new f-divergence, which can be measured through repeated sampling.
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are used in real-world applications where the
numerical approach to inferring random var-
iables becomes more computationally expen-
sive. For such applications, the sampling
approach combined with RET-based func-
tional units dedicated to efficiently generat-
ing samples becomes an attractive new
direction.

T he implication of precise molecular-
scale self-assembly and the control of

physically stochastic quantum processes on
computing has only recently begun to be
studied. Unlike classical quantum computing
or communication systems that rely on deli-
cate quantum states, RET circuits have dem-
onstrated robust, long-lived molecular states
and offer an opportunity to exploit quantum
effects (other than entanglement) in a practi-
cal fashion for probabilistic computing.
Many challenges remain, specifically in dem-
onstrating the integration of molecular RET
circuits with existing on-chip photonic tech-
nology. Important measures of feasibility that
are often ignored in basic science—such as
the RET circuit longevity, microarchitecture,
and sampler-to-memory bandwidth—must
all be ironed out before any conclusive state-
ment about relative performance can be
made.

We have presented RET as a promising
candidate technology for probabilistic com-
puting and shown the early evidence that it
may be a good hardware match to such prob-
lems. A full architectural evaluation of per-
formance, power, and area is planned as
future work. MICRO
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