
cialization. In many ways, these systems are an evo-

lutionary unification of DSM-like custom protocols

with hardware, cachecoherent systems, which move

data in cache blocks (not pages). FLASH and Ty-

phoon provide software with full control over coher-
ence policy, unlike earlier hardwar~software protocol

hybrids (e.g., MIT Alewife [3] and Wisconsin Dirl SW

[7, 26]).

A second advantage of software protocols is that

they lead to a natural unification of message passing
with shared memory. A shared-memory program can

send messages when a user or compiler wants to by-

pass shared-memory overheads and can determine in

advance how data will be used [5, 10]. A third advan-

tage is the opportunity to develop language-specific

memory models, such as Loosely Coherent Memory
[14].

Thus far we have argued the benefits of software
coherence protocols without specifying whether the

software runs in the system (in kernel mode) or at
user level. In fact, the systems discussed above, ex-
cept Munin and Typhoon, run protocol software in
kernel mode. As with the tradeoffs between mono-

lithic operating systems and micro-kernels, incorpo-

rating protocols into a system has costs and bene-

fits. First, system-provided protocols are necessarily

limited and may not match an application’s needs.

Second, system-provided protocols must be parame-
trized and formulated in a general manner (for ex-

ample, to allow a variety of cache block sizes), which
introduces unnecessary run-time costs [27]. Finally,

system-level protocols make experimentation difficult

and time-consuming and restrict who can try new

protocols.

Protocols that run at user-level (as part of an ap-

plication) overcome these drawbacks. New protocols

can be written at will, specialized for specific uses

(by a programmer or compiler), and tested without
operating system changes. User-level protocols also
have disadvantages. First, specializing protocols may

be too difficult or expensive for most programmers

to write, particularly if a protocol must be re-written
for every machine. Second, specialized protocols may

not yield performance benefits that exceed the costs

of running at user-level (e.g., address translation over-

head). Finally, the system must ensure that incorrect

or malicious user-level protocols do not violate pro-

tection or deadlock the system. This paper addresses

the first two concerns, but not the third.

The Tempest interface [21] (Section 2) addresses

the first concern. Tempest provides a standard,

system-independent interface to mechanisms that en-
able programmers, compilers, and program libraries
to implement and use message passing, transparent

shared memory, and hybrid combinations of the two.

Tempest’s mechanisms are low-overhead messages,

bulk data transfer, virtual memory management, and

finegrain access control. Its most novel mechanism—
fine-grain access control—allows user software to tag

blocks (e.g., 32 bytes) as read-write, read-only, or in-

valid, so local memory can cache remote data trans-

parently [22]. We have implemented Tempest both in
a simulation of custom hardware [21] and directly on
a CM-5 [22]. We are currently porting Tempest to a
network of workstations.

Section 3 describes Blizzard, our Tempest implem-
entation on a Thinking Machines CM-5 [22]. 131iz-

zard consists of a modified version of the CM-5 op-

erating system and a user-level library. Blizzard uses

the CM-5’s ECC bits and page-level address transla-
tion hardware to synthesize fine-grain access control

(at cache block granularity). A Tempest application

program is compiled with a standard compiler (e.g.,
gee), linked with the Blizzard library and a Tempest-

compliant user-level protocol (e.g., Stache [21]), and
runs directly on a CM-5.

Section 4 addresses our second concern, namely,

whether tailored protocols will yield performance

gains. We optimize protocols for three applications

running on Blizzard. For each application, we be-

gin with a transparent shared memory program that

uses a standard, library-provided protocol. Through

successive refinement, we identify performance bot-

tlenecks and alter both the application and proto-
col. Custom protocols improve the performance of
the three programs ( appbt, em3d, and barnes) by fac-

tors of 5.7, 16, and 1.4, respectively (ignoring initial-
ization and the first iteration).

We achieved significant improvements with three

variations of an update protocol. The three proto-

cols differ greatly, however, depending on whether

the communication pattern is known at compile-

time (appbt), fixed for each run ( em3d), or dynamic

(barnes). While three application programs can-
not provide a definitive answer, our opinion is that

system-provided protocols are unlikely to be both

general and fast enough to compete with application-

specific protocols.

2 Tempest

2.1 Tempest Mechanisms

Application-specific protocols use software to implem-

ent memory system policies, but rely on system-

supplied mechanisms for memory access detection
and communication. The Tempest mechanisms [21]
are general enough that programmers, protocol li-
braries, or compilers can use them to support shared
memory, message passing, or hybrid (i.e., combina-
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tion) applications. The four types of Tempest mech-

anisms are

Low-Overhead “Active “ Messages. Tempest

supports an active message abstraction, in which each

message specifies a destination node, handler address,

and a string of arguments [25]. When a message ar-
rives at its destination, it creates a thread that runs

the handler atomically with respect to other mes-

sage handlers. Not hing guaranteea atomicit y between

a handler and the destination node’s computation

t bread, except explicit (user-level) synchronization.
Bulk Data Transfer. Tempest includes a col-

lection of synchronous and (logically) asynchronous
bulk data transfer mechanisms. Variants include a
DMA-like transfer—in which the initiator specifies

a length, initial virtual address on the source node,
and initial virtual address on the destination node

and a channel-based transfer—similar to the CM-5’s

CMMD library.

Virtual Memory Management. Virtual mem-

ory management enables user-level code to manage

virtual memory pages allocated in a special segment.

The user can map a virtual page into the physical
memory of more than one processor.

Fine-Grained Memory Access Control. Fi-

nally, Tempest allows a user to protect an aligned

memory block (e.g., 32 bytes—much smaller than a

page) as Read Write, ReadOnly, or Invalid. Inappro-
priate accesses to a block (e.g., a store into a Read-

Only block) generate faults that are vectored to a

user-level handler.

2.2 Shared Memory with Tempest

Tempest does not force programmers to use a shared

address space. The underlying process model is a
conventional distributed memory, one process-per-

processor model, in which each process has its own

private address space. Consequently, Tempest can
support most message-passing programs with its ac-

tive message and bulk data transfer mechanisms. The

power of Tempest, however, comes from its support
for a shared address space. While Tempest doea not

implement the shared address space directly, it pro-

vides mechanisms that enable user-level software to
do ~~. Applications can manage their address space
explicitly or, more likely, through a standard library.

For example, the default Tempest library pro-
vides transparent shared-memory semantics using the

Stache allocation policy [21], which is similar to Li

and Hudak’s fixed distributed manager [16]. The li-

brary allocates a region of each process’s private ad-

dress space for a shared segment. Pages in this seg-
ment are assigned a unique “home” processor node,

which provides the physical memory. Home nodes can

be allocated flexibly. The current library supports al-

locating a set of shared pages on a particular node or

round-robin across all nodes. The library maintains

a user-level page table to map a shared address to its
home node.

The Stache policy allows a page’s home node to

access it directly. However, all other nodes must

first map it to their Stache—a region of local mem-

ory that the library manages as a second- (or third-)

level cache for remote data. On the first reference to

a remote page, the library (invoked by the page fault
handler) allocates a corresponding “stache” page to

hold local copies of requested data blocks. Initially,

all blocks in a stache page have their access control
tags set to Invalid.

For both home and stache pages, the library in-

stalls a unique set of default handlers that dictate the

protocol actions. The default coherence protocol—

Stache128-closely resembles an all-software imple-

mentation of LimitLESS [3], except that the block

size is 128 bytes. For example, when a processor tries

to read an Invalid stache block, the Stachel 28 han-

dler sends an active message to the home node re-
questing a read-only copy. The message handler per-
forms any necessary protocol actions before respond-

ing with the requested data block.

The Stache128 protocol provides sequentially-

consistent shared-memory semantics, wit h 128-byte

blocks. However, the protocol is easily modi-

fied, because it is implemented in user-level han-

dlers. As a trivial example, changing the block

size to 32 bytes—to reduce false sharing in a fine-
grain application-simply requires recompiling the

Stache128 protocol. Furthermore, Tempest allows
multiple protocols to co-exist by specifying differ-

ent handlers for different pages. Thus an appli-

cation could use Stachel 28 to maintain most data

structures, but specify Stache32—or some other cus-

tomized protocol—for a data structure that exhibits
false-sharing.

2.3 Implementing Tempest

Tempest’s messaging and virtual memory support

are largely conventional. Active message abstrac-
tions can be implemented very efficiently with cus-
tom hardware [6, 18], but also have reasonable perfor-
mance on existing machines [25]. Tempest’s virtual
memory mechanisms can be implemented as a user-

level library on a system that provides remap() and

mumnap () or with custom kernel modifications [19].

The key challenge in implementing Tempest is sup-

porting fine-grain access control. Schoinas, et al. [22],
showed that many good access control techniques ex-
ist, even for existing machines. At one extreme, the
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proposed Wisconsin Typhoon system adds a custom

network interface processor to the cache-coherent bus

of a workstation-like processing node to get (simu-

lated) shared-memory performance comparable to a

conventional directory-based cache-coherent machine
(e.g., Stanford DASH [15]). At the other extreme,
fine-grain access control can be supported with no
hardware changes by rewriting the executable files

[13] to insert software tests.

3 Blizzard

This section describes Blizzard, the Tempest imple-

mentation that we use to study the performance of

application-specific protocols. Blizzard implements

the Tempest mechanisms on a Thinking Machines

CM-5 [22]. The CM-5 is a distributed-memory,

messag~passing parallel computer, in which each

processing node contains a 33 MHz SPARC micro-

processor with a 64KB direct-mapped unified cache,
memory management unit, up to 128MB of memory,

a custom network interface chip, and optional cus-

tom vector units [8]. Blizzard does not use the vector

units.

Blizzard consists of an augmented version of the

CM-5’s CMOST operating system, a user-level li-

brary containing the interface to the Tempest mech-
anisms, and libraries of default user-level protocols.
Blizzard uses a variant of the “executive interface”

extensions developed for the Wisconsin Wind Tunnel
[19]. This interface provides user-level virtual mem-

ory management routines and fine-grain access con-

trol functionality needed by Tempest. Blizzard’s ex-

ecutive interface implementation is faster than the

Wind Tunnel’s, because handlers run in the same

address space (context) as the application and be-

cause we tuned its performance (e.g., by eliminat-

ing SPARC register window overflows on commonly-

executed paths).

To make Tempest’s message and fault handlers

atomic (with respect to each other) without invok-
ing system calls to re-enable interrupts, we use an in-

terrupt masking scheme similar to Stodolsky et al.’s
[24]. Critical sections set a “software-disable” flagon

entry and check a “deferred-interrupt” flagon exit. If

an interrupt encounters a “software-disable” flag, the

handler queues the interrupt and sets the “deferred-
interrupt” flag.

Tempest’s active messages are more general than

those in CMAML [25] or TMC’S CMMD message-

passing library. In particular, Tempest allows mes-
sages larger than the CM-5 packet size. This gen-
erality makes Tempest protocols independent of a

particular implementation, but degrades performance

on the CM-5 because messages must be divided into

packets and reassembled. Blizzard mitigates the ef-

fect of this feature by buffering packets only when

they arrive out of order, which is typically 10-20% of

packets in our applications.

Blizzard uses ECC bits to implement fine-grain
memory access control (as does the Wisconsin Wind

Tunnel [20]). It synthesizes the Invalid state by inten-
tionally setting incorrect ECC values on affected kJca-
tions. The Read Only state requires write protecting

the page containing the block. Writes to Read Write

blocks on the same page as a ReadOnly block cause a

protection exception that the system detects and sup-

presses to complete the write operation. Surprisingly,

this use of ECC bits does not reduce ECC coverage

[20].

ECC bits, however, are not required to implement

Tempest. Schoinas, et al. [22], showed that a Bliz-

zard variant that added an explicit, software test be-

fore shared-memory loads and stores runs from 108%

slower to 2’70 faster than Blizzard using ECC. The
software version is not always slower, because it does

not have to pay the ECC trap overhead on each miss.

The performance of this variant could also be im-

proved by optimizing the tests.

To provide a reference point to gauge the absolute
performance of Blizzard, Schoinas, et al. [22] com-

pared a 32-node Blizzard to a Kendall Square Re-

search KSR- 1 [9]. On six benchmarks Blizzard ranged
from 18% to 120% of the speed of a KSR-1. The

variation occurs because the ratio of computation to

communication differed in each program. These re-

sults are encouraging given that the CM-5 was not

designed to run Tempest and that, without vector

units, the CM-5 has much lower floating-point per-

formance than a KSR-1.

4 Custom Protocols

This section describes the three applications that we
studied. In each case, we first used a variety of tech-

niques to improve a program’s performance under

transparent shared memory as far as possible. We

then implemented a custom protocol for the applica-

tion and compared the resulting performance against

the best shared memory version.

For each application, we include a table that re-

ports timings—for 32 processors—for a series of im-
plementations of that application. In these tables, a

line separates the results for best transparent shared

memory implementation from those for implementa-
tions that rely on Tempest-specific mechanisms. All

performance improvements given in this section ig-

nore the first iteration, because production runs of
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all three applications

of iterations.

4.1 APPBT

Appbt is one of the

would require a large number

NAS Parallel Benchmarks [1]

p;oduced by NASA Ames as representative of the

computation and communication patterns in three-

dimensional computational fluid dynamics applica-

tions. At each time step, appbt performs three com-

putation phases in each of three dimensions. In phase

one, it calculates a block tridiagonal matrix A. In the

second phase, it solves AZ = b for z using Gaussian
elimination. In the third phase, it recomputes the

right hand side vector b. The first computation haa

no dependence in all three dimensions. In the sec-

ond and third phase, the values of a grid point are

computed based on the values from neighboring grid

points in the dimension being solved. Our results are

for 60 iterations with 32x32x32 cubes.

4.1.1 Transparent Shared Memory

As part of a parallel computation course project at

Wisconsin, Doug Burger and Sanjay Mehta converted

appbt to C and parallelized it for shared memory in

the following manner. First, they reorganized matrix

A to make processors responsible for grid points in the

interior of a subcube, so communication occurs only

on subcube faces. Next, they parallelized the first

and third phase by having each processor work on

its subcubes independently. Wherever possible, they

computed bordering elements redundantly to reduce
communication. Finally, they parallelized the second
phase using the natural parallelism in two dimensions
and pipelining to overcome the dependence in the

t bird dimension.

Our initial implementation, appbt-spin, preserves

dependence in the second phase by spin waiting on

a shared array of counters. To understand how this

works, consider the case of a single vector where each

element residea on a separate processor and each el-

ement, except the first, depends on the value of the
previous element. These dependence are preserved

with a counter, c, which is initially O. The proces-

sor that owns element x cannot execute until c = x.
Once c = z, the processor performs its computation
and then increments the counter to z + 1. A simple

extension to three dimensions requires N2 counters.
Blocking the matrix into subcubes of size BxBxB

reduces this to N2/B2.

4.1.2 Synchronization

The counters that manage the pipeline are simple

and effective, but require more message traffic than

Version Performance Summary
7ns/iter I nw/iter I

II (1) I (2:60) I I

m

Table 1: Blizzard Execution Time (ms/iteration) for

appbt.

necessary. Consider what happens when a proces-
sor updates a counter. First, invalidation messages

are sent to all processors to its right in the pipeline.
These processors immediately request new copies of

the counter, because they are spinning on it. Only

one processor terminates its spinning as a result of the

update. Our second implementation, appbt-sigwait,

uses signal and wait to exploit this property. When

a processor finishes, it signals the next processor in
the pipeline, which previously posted a wait. Signal

uses active messages provided by the Tempest inter-

face. Appbt-sigwait is 1.5 times faster than appbt-

Spin .

4.1.3 Block Size

Grid points consist of either a vector of 5 double pr~

cision numbers or a 5x5 matrix. Processors request
this data in 128-byte cache lines. Our t bird imple-
mentation, appbt-512, replaces the default Stachel 28
protocol with Stache512 to reduce the number of re-

quests. Appbt-512 is 22% percent faster than appbt-

sigwait. Stache512 is an inappropriate protocol for

counters, because long lines increase both the unused

data in a line and the effects of false sharing. To

use Stache512 effectively, counters (and other simi-

lar data types) must be allocated on a separate page

managed with Stache32 or replaced by signal and

wait.

4.1.4 User-level Update Protocol

Our final implementation, appbt-update, forwards

data at synchronization boundaries, to exploit the

completely static sharing patterns in appbt. In the

second phase, the data is simply forwarded along

with a signal. In the other two phases, barrier syn-

chronization is replaced with calls to forward data
and perform pairwise synchronization. Appbt-update

uses the Stache protocol in the first iteration to al-
locate the necessary pages in each processor’s stache,

adding a slight (570) overhead to the execution time.
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In subsequent iterations, processors call protocol rou-

tines that copy the data directly from the producing

processor into the stache of the consuming processor,

giving appbt-update a factor of 3.1 times performance

improvement over appbt-512.

We made only three changes to the program to sup-

port this update protocol. First, we peeled the first
iteration off the loop and added a call to the proto-

col library to mark its end. Second, we replaced the

signal with a call to signal+ updat e. Third, we re-

placed barrier synchronizations with calls to routines
that forward data and perform pairwise synchroniza-

tion. This version is not a messagepassing program,
because the address of the transmitted data remains

the same on both the sender and the receiver.

In summary, appbt-update is a factor of 5.7 times

faster than the appbt-spin.

4.2 EM3D

EM3D models the propagation of electromagnetic

waves through objects in three dimensions [4]. The
problem is formulated as a computation on a bipartite

graph with directed edges from E nodes, which repre-

sent electric fields, to H nodes, which represent mag-

netic fields, and vice versa. The computation models

the changes in the fields over time.

EM3D consists of an initialization phase and a

main computation phase. The initialization builds

the graph and performs some precomputation to im-
prove the performance of the main loop. TO build

the graph, each processor allocates a set of E nodes

and a set of H nodes. The edges are generated ran-

domly with a user-specified fraction crossing proces-

sor boundaries. Edges that have a source on one pro-

cessor and a sink on another processor are called re-

mote edges. The main loop computes the change in

E and H values over time. In each iteration, new E

values are computed from the weighted sum of neigh-
boring H nodes, and then new H values are computed

from the weighted sum of neighboring E nodes.

We first wrote two implementations of EM3D for

transparent shared memory. Then, we improved the

program’s performance dramatically with three suc-

cessive refinements of a user-level update protocol.

Table 2 summarizes the different versions of EM3D

and its execution times for the compute phase (100

iterations) of a problem with 1000 H nodes and 1000 E
nodes per processor and 10 edges per node, of which
20% are remote. We only list numbers for the com-

pute phase because it should dominate the computa-

tion time of practical runs of this application.

Version

TSM
Value

Update

Vector

Channel

Performance Summary

msjiter I ms/iter 1
(1) I (2:100) 1 J

746 I 693 I Naive shared memory

516 I 448 I Optimized shared I

758

731

630

I memory

I 71 Update protocol,

single values

38 Update protocol,

bulk messages

28 Update protocol,

I I Tempest channels

MP II 28 32 I Message-passing ~

Table 2: Execution Time (ins/iteration) for EM3D

4.2.1 Transparent Shared Memory

Our first implementation, which we call EM3D-TSM,

is a naive parallelization of EM3D. First, each proces-

sor allocates the appropriate number of E and H nodes

and randomly generates both local and remote edges.

These data structures are shared among the proces-
sors. Then, each processor executes the main loop,
which computes new values for its nodes. References

to values corresponding to remote edges are handled

by the Stache protocol. This version is very easy to

understand, but it is much slower than EM3D-MP,

a carefully tuned message passing implementation for

two reasons. First, EM3D- TSM does not exploit spa-

tial locality for remote nodes, since a node’s value

field is intermixed with the rest of its fields, even

though the main loop only accesses the value field

of remote nodes. As a result, most of the data trans-
mitted on Stache misses are unused. And second,

an invalidate protocol (like Stache) performs poorly

for producer-consumer communication, because it re-

quires four messages to update a remote value. Con-

sider an H node on Processor P that has an edge to
an E node on Processor Q. In the first iteration, Pro-

cessor Q incurs a remote miss to retrieve the initial

value of H (two messages). When Processor P is ready
to compute a new value for H, it invalidates the copy

of H in Processor Q’s cache (two messages), which
causes Processor Q to miss on its reference to H at

the beginning of the next iteration.

Our second implementation, EM3D-value, im-
proves spatial locality by moving the value field out

of the node into a separate vector. This optimization
improves performance by 55% in the main loop. We

use this improved version aa the basis for the other

implementations.

4.2.2 User-level Protocols

Below, we consider three increasingly complex user-

level protocols to improve the performance of EM3D.
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Our first refinement, EM3D-update, uses a user-

level update protocol to correct the difficulty that

invalidate protocols have with producer-consumer

communicational As mentioned earlier, Stache re-

quires four messages to update a remote value. An
update protocol uses only one message, once the shar-
ing pattern is determined. The protocol for EM3D-

update has two phases. In the first iteration of the

main loop, the protocol looks very much like the

Stache protocol. References to remote data cause a

cache miss that is serviced by the owner of the remote

data. In addition to sending back the necessary data,

the owner records the requested address and the iden-

tity of the requester for later use. Because the graph

does not change over time, the sharing patterns from

the first iteration hold for the rest of the loop. Subse-

quent iterations switch to using an update protocol.
At the end of each half step, each processor uses its

sharing information from the first iteration to update

remote copies with newly computed values.

This implementation required the largest change

to the original program. First, we added calls to rou-

tines provided by the new protocol to initialize the

sharing data structure before the start of the main

computation and to signal the end of the first iter-

ation. Second, we replaced a barrier in the original
program with a call to a protocol routine that sig-
nals that the updates can proceed. However, since
EM3D-update is 6.3 times faster than EM3D-value,

these changes were amply rewarded.

EM3D-update updates each value in a separate

message. Our next implementation, EM3D-vector,

improves performance with the old observation that

bulk transfer is the most efficient way to communi-

cate large amounts of data. With this protocol, a pro-
cessor batches all updates destined for another pro-

cessor into one message. This improves performance

by sending 37% fewer network packets and by reduc-
ing the frequency of message handler invocation on

the receiver from once per remote value to once per

pair of processors. EM3D-vector is 86% faster than
EM3D-update.

Our final implementation, EM3D-channel, uses

Tempest virtual channels,2 rather than bulk sends, to

transfer updates. Channels reduce handshaking over-

1An earlier paper on the proposed Typhoon system also

used EM3D as an example of an application-specific protocol

[21]. This paper significantly extends that work by looking at

a wide spectrum of user-level protocols and evaluating them

on the Blizzard system.

‘Tempest’s virtual channels, which are part of the bulk data

transfer library, are similar to the Virtual Channels provided by

the CM-5’s CMMD Library. They reduce overhead by allowing

a pair of processors that repeatedly communicate to handshake

once and then to transfer data without further handshaking in

the message library.

head and eliminate buffering of out-of-order packets.

EM5’D-channel is 36% faster than EM3D-vector and

its performance is nearly identical to the message-

passing version of this program (EM3D-MP). In sum-
mary, EM3D-channel is a factor of 16 faster than
our best transparent shared memory implementation,
EM3D-value.

4.3 BARNES

Barnes, one of the SPLASH benchmarks [23], simu-

lates the evolution, over time, of bodies in a gravita-

tional system. Each body is modeled as a point mass

and exerts gravitational force on other bodies in the

system. At each time step, the program computes
new positions and velocities for all bodies. The naive

algorithm for this problem requires N2 pairwise force

calculations. Barnes reduces the work by using the

observation that the force one body exerts on another

falls rapidly with distance. As a result, the force ex-

erted by a collection of bodies beyond a certain dis-

tance can be approximated by the force exerted by a

point mass at the center of mass of the collection.

The main data structure in Barnes is an oct-tree

that represents the location of bodies in 3-space. Inte-
rior tree nodes, called cells, represent regions in space

that hold more than one body. A cell represents one
octant of its parent’s region. The root oft he tree rep-
resents the entire space. The tree leaves contain bod-

ies. The tree is not balanced and is much deeper in a

region that contains many bodies. Also, the program

does not incrementally modify the tree, but rather

rebuilds it in every iteration to track bodies moving

in space.

To calculate the force on a particular body B, the

algorithm performs a depth-first traversal of the tree
from the root. Upon encountering a body, the algo-

rithm computes the force that the body exerts on B.

Upon encountering a cell, the algorithm first deter-
mines if the bodies in the cell are distant enough to be

approximated as a point mass. This calculation com-

pares the ratio of the length of the cell’s region and

the distance from B to the center of mass of the bod-

ies contained in the cell’s region with a user-specified

threshold. If the ratio is less than the threshold, the
bodies in the region are approximated as a point mass

located at the region’s center of mass. Otherwise, the

algorithm traverses the cell’s eight subtrees.

Each iteration is composed of two phases. The first
rebuilds the tree. Each processor is responsible for a

set of bodies. Processors insert bodies into the tree,

in parallel, with the following algorithm: Start at the
root of the tree, which is a cell containing eight slots,
and determine which octant should contain the body.
If the slot corresponding to an octant is empty, store
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Version

MCS

ML

Chunk

Chunk+ML

FSE

Update

Performance

=

I
81 80

42 37
33 26

32 25

26 21

26 15

Summary

MCS locks

+ grouped bodies

ML locks

Chunk allocation

+ MCS locks

Chunk allocation

+ ML locks

Split body

structure

Update protocol

Table 3: Blizzard Execution Time (see/iteration) for

Barnes.

the body into the slot and process the next body. If

the slot contains a cell, recursively apply this algo-

rithm. If the slot contains a body, allocate a new

cell, insert the old body into the new cell, store the

cell in the slot, and insert the original body into the
new cell using this algorithm.

The second phase consists of a force calculation,

which computes new accelerations and velocities for

the bodies, and a position update, which computes

bodies’ new positions. Again, each processor is re-
sponsible for its group of bodies. As the computation

progresses, each processor references portions of the
tree, which copies these nodes into its local stache.

Since the tree does not change in this phase, subse-

quent references are local, until the tree is rebuilt in

the next phase.

Our initial implementation, Barnes-IWCS, differs

from the SPLASH version in that ours assigns re-

sponsibility, in the first iteration, for groups of bodies

rather than assigning a single body at a time. The

program runs on 16,384 bodies for four iterations with

0.01250 as the time step and 0.50 as the tolerance.

4.3.1 Synchronization

In our initial implementation, locks protect a pool of

free cells and the cells in the tree. Contention for the
free cell pool is very high. We tried two approaches

to improve performance: reduce the cost of lock op-

erations and reduce the frequency of locking.

Our second implementation, Barnes-ml, replaced
MCS locks with message passing locks. MCS locks

use memory reads and writes to pass messages [17].
As a result, they are expensive in high contention

situations (requiring as many as eight messages for

a lock/unlock pair; however, successive lock/unlock
pairs by the same processor on an MCS lock do not
require any communication). Message-passing locks,

on the other hand, require only four messages for a

lock/unlock pair. This change merely required replac-

ing the MCS lock library with a message passing lock

library. The result is worth the effort, as Barnes-ml

ran 2.2 times faster than Barnes-MCS.

Barnes-chunk, our next implementation, changed

the way in which cells are allocated. Originally, the
free cell pool was a vector and each time a processor

needed a new cell, it acquired the pool’s lock, took

the next free cell, and released the lock. Our first

change split the vector into 32 regions and allowed

each processor to allocate cells only from its region.

Our second change put each processor’s region in its

local portion of shared memory. This change used the

local allocation mechanism, which allocates space in

the global address space with the provision that the
memory’s home processor will be the allocating pro-

cessor. The first change eliminated a lock, since each

processor allocates only from its own pool. The sec-

ond change improved locality, because the processor

that allocates a cell makes most of the references to

that cell. These changes improve performance dra-
matically. Barnes-chunk, which still used MCS locks

for tree cells, ran 3.1 times faster than Barnes-MCS.

Barnes-chunk-ml combined these the optimizations

of distributing the free cell pool and using message
passing locks for the tree cells. Since contention for

tree cell locks is low, the two optimization only im-

proved performance by 4% over Barnes-chunk alone.

4.3.2 False Sharing Elimination

During the force calculation, a body’s owner writes

the acceleration, velocity, phi, and cost fields of a

body. During the same phase, both the body’s owner

and other processors read the mass and position

fields. To reduce the false sharing caused by these

reads, our next implementation, Barnes-fse, split the

body data structure into two pieces: mass, position,

and type; and acceleration, cost, phi, and velocity. In
addition, we deferred writing the cost, which is com-

puted during the calculation phase, until the position

update phase. These changes improved performance

by 19% over Barnes-chunk-ml.

4.3.3 User-level Update Protocol

Following the force calculation, each processor up-

dates its bodies’ positions, which invalidates the

copies cached in other processors. Because bodies
do not move very far in any iteration, it is very likely

that a processor will touch the same bodies in sub-

sequent iterations. So, bodies invalidated at the end

of one iteration will be re-requested in the next itera-

tion. A similar phenomenon occurs with each body’s
cost .

Our final implementation, Barnes-update, used an

update protocol to eliminate these unnecessary inval-
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idations (and subsequent requests) and split bodies

in a slightly different way than Barnes-jse, to allow

more fields to be updated.

In our protocol, a processor’s first reference to a

body causes a miss that is handled by the Stache

protocol. These references occur during force calcula-

tion. At the end oft he force calculation, the program

updates its bodies and calls a protocol routine. This
routine forwards updates to the Stache directory that

is responsible for the body. The directory then for-

wards the update to any processor that requested the

body in the past. As a result, a processor misses only

on its first reference to a body. Some processors that

no longer reference a body continue to receive up-

dates under this scheme. This is not a serious prob-
lem in our current implementation, because bodies

move slowly and we simulated only four time steps.

If it becomes an issue, we see two solutions. The first
is to clear the directory update list periodically. The

second is to have each processor track bodies that it

touches and periodical y flush unnecessary ones.

The field split in Barnes-update is different than
in Barnes-fse. A body is now split into three pieces:

type and mass; cost and position; and acceleration,
phi, and velocity. The first two are allocated as

shared structures. The third is allocated in private

memory. These fields are only used by the current

owner of the body and their current values move from

processor to processor via explicit requests when the
owner of a body changes; effectively, we implement

a migratory protocol using private memory and ex-

plicit messages. In addition, this version automati-

cally invalidates the stached cells at the end of every

iteration. This eliminates the invalidations that need

to be sent when the cells are used again to build the

tree during the next iteration. Barnes-update is 40%

faster than Barnes-fse, our best transparent shared

memory implementation.

5 Discussion and Conclusions

Most cach~coherent shared-memory systems provide

a single coherence policy for all programs and com-

pilers. A “one size fits all” protocol is a serious bot-
tleneck when it causes excess communication because

of a program’s sharing patterns. The Munin [2] and

Stanford FLASH [1 I] systems enabled a programmer
to select from a collection of system-provided proto-
cols. The Tempest interface, implemented in hard-
ware like Typhoon or as a fine-grain DSM system
like Blizzard, combines the flexibility of DSM sys-

tems, which implement coherence protocols in soft-
ware, with the fim+grain access control of hardware

shared memory.

This paper examined the performance improve-

ment made possible by the Tempest interface, which

permits a coherence protocol to be tailored to an ap-

plication. Application-specific protocols improve the

performance of appbt, em3d, and barnes by factors of

5.7, 16, and 1.4, respectively (ignoring initialization

and the first iteration which is slowed by at most

18Yo) over the best transparent shared memory ver-

sion. These results indicate that significant perfor-

mance gains are possible by moving beyond trans-

parent shared memory and customizing a protocol to

an application. Not surprisingly, we also found that

writing protocols from scratch is difficult and error-

prone, so we are investigating ways of encapsulating

user-level protocols to make customization easier.

These large performance improvements are due, in

part, to the high cost of an access-control miss on

the Blizzard system. The performance improvements
would likely be smaller on systems like FLASH or Ty-
phoon that have extensive hardware support. On the

other hand, clusters of workstations will have higher
communication latencies than the CM-5 and could

benefit even more than Blizzard from the reduction

in communication made possible by these protocols.

The other issue raised in this research is whether

user-level protocols are necessary or whether all im-

portant protocols can be incorporated into a system.

For our three applications, the dramatic improve-

ments came from update protocols. These three up-

date protocols, however, were quite different. Appbt’s

communication pattern is known at compile-time. Its

update protocol allocates pages in the first itera-

tion and then uses explicit messages to distributed

updates in subsequent iterations. EM3D’s nodes

share information through a list of nodes that is

fixed for the duration of a computation, but is un-

known at compil=time. EM5’D’s update protocol

finds the sharers in the first iteration and then uses
the list to communicate directly in subsequent iter-

at ions. Barnes’ sharing is dynamic, which requires

the least common denominator protocol that sends

each update to a home node, which forwards it to the
current list of sharers.

Perhaps, then, only three update protocols are nec-

essary in a system? This seems unlikely, since our
three update protocols differ in whether updates oc-

cur immediately or are batched at synchronization
points and whether they update one, two, or many

data fields. It seems impossible to anticipate all use-
ful combinations in efficient, even if parameterized,
protocols. This dilemma is a variant of the well-

known policy versus mechanisms distinction. System-
provided policies often omit an important feature

needed by some users or incur the cost of generality by

running slower [27]. Mechanisms allow users to build
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the policies appropriate for their programs. While

three application programs cannot provide adefini-

tive answer, our opinion is that system-provided pro-

tocols are unlikely to be both general and fast enough

to compete with application-specific protocols.
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