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Abstract

Instructionwindowsizeis an importantdesignparame-
ter for manymodernprocessacs. Largeinstructionwindows
offer the potentialadvantaye of exposinglarge amountsof
instruction level parallelism. Unfortunately naively scal-
ing conventionalwindowdesignscan significantlydegrade
clodk cycletime, undermininghe benefitof increasedoar-
allelism.

Thispaperpresents new instructionwindowdesigrtar-
getedat achieving the latencytoleranceof large windows
with the clock cycletime of smallwindows. Thekey obser
vationis thatinstructionsdependenon a long latencyop-
eration (e.g., cache miss)cannotexecuteuntil that source
opefmation completes.Theseinstructionsare moved out of
the corventional,small,issuequeueto a mud larger wait-
ing instructionbuffer (WIB). Whenthelong latencyopera-
tion completestheinstructionsare reinsertednto theissue
gueue In this paper we focusspecificallyon load cache
missesandtheir dependeninstructions.Simulationgeveal
that, for an 8-way processagra 2K-entry WIB with a 32-
entry issuequeuecan achieve speedupsf 20%, 84%, and
50% over a corventional32-entryissuequeuefor a subset
ofthe SPECCINT2000SPECCFP2000,andOldenbend-
marks,respectively

1 Intr oduction

Many of today's microprocessorsichiese high perfor
manceby combininghigh clock rateswith theability to dy-
namicallyprocessnultiple instructionspercycle. Unfortu-
nately thesetwo importantcomponent®f performancere
often at oddswith one another For example,small hard-
ware structuresare usually requiredto achieve shortclock
cycle times, while larger structuresare often necessaryo
identify andexploit instructionlevel parallelism(ILP).

A patrticularly importantstructureis the issuewindow,
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which is examinedeachcycle to choosereadyinstructions
for execution. A larger window can often exposea larger
numberof independeninstructionghatcanexecuteout-of-

order Unfortunatelythesizeof theissuewindow is limited

dueto strict cycle time constraints. This conflict between
cycletimeanddynamicallyexploiting parallelismis exacer

batedby long lateng operationssuchasdatacachemisses
or evencross-chipcommunicatiorf1, 22]. Thechallengds

to develop microarchitectureshat permit both shortcycle

timesandlargeinstructionwindows.

This paperintroducesa new microarchitecturghatrec-
oncilesthe competinggoalsof shortcycle timesandlarge
instructionwindows. We obsene that instructionsdepen-
dent on long latengy operationscannotexecuteuntil the
long lateng operationcompletes.This allows usto sepa-
rateinstructionsinto thosethatwill executein the nearfu-
tureandthosethatwill executen thedistantfuture. Thekey
to our designis thatthe entire chainof instructionsdepen-
denton along lateng operationis removedfrom theissue
window, placedin a waiting instructionbuffer (WIB), and
reinsertedafter the long lateng operationcompletes.Fur-
thermore sinceall instructionsin the dependencehainare
candidatedor reinsertioninto the issuewindow, we only
needto implementselectiogic ratherthanthe full wakeup-
selectrequiredby a conventionalissuewindow. Tracking
true dependencie@sdoneby thewakeuplogic) is handled
by theissuewindow whentheinstructionsarereinserted.

In this paperwe focus on toleratingdatacachemisses,
however we believe our techniquecould be extendedto
other operationswherelateng is difficult to determineat
compiletime. Specifically our goalis to explorethe design
of amicroarchitecturevith a large enought‘effective” win-
dow totolerateDRAM accessed/Ne leverageexistingtech-
niquesto provide a large registerfile [13, 34] andassume
thatalargeactive list! is possiblesinceit is not on the crit-
ical path[4] andtechniquesxist for keepingthe active list

1By active list, we referto the hardvareunit thatmaintainsthe stateof
in-flight instructions often calledthe reorderbuffer.



largewhile usingrelatively smallhardwarestructureg§31].

We explore several aspectsof WIB design,including:
detectingnstructionsdependenbnlonglateng operations,
insertinginstructionsinto the WIB, bankedvs. non-banled
organization policiesfor selectingamongeligible instruc-
tions to reinsertinto the issuewindow, andtotal capacity
For an 8-way processgrwe comparethe committedin-
structionsper cycle (IPC) of a WIB-baseddesignthat has
a 32-entryissuewindow, a 2048-entrybanked WIB, and
two-level registerfiles (128 L1/2048L.2) to a corventional
32-entryissuewindow with single-lesel registerfiles (128
registers). Thesesimulationsshav WIB speedupsver the
corventionaldesignof 20% for SPECCINT2000,84% for
SPECCFP2000,and 50% for Olden. Thesespeedupsre
a significantfraction of thoseachiezed with a 2048-entry
cornventionalissuewindow (35%, 140%,and 103%),even
ignoringclock cycle time effects.

Theremaindeof this paperis organizedasfollows. Sec-
tion 2 provides backgroundand motivation for this work.
Our designis presentedn Section3 andwe evaluteits per
formancen Sectior4. Sectionb discusseselatedwork and
Section6 summarizeghis work andpresentduture direc-
tions.

2 Background and Motivation
2.1 Background

Superscalaprocessorsnaximizeserialprogramperfor
manceby issuingmultiple instructionsper cycle. One of
the mostimportantaspectof thesesystemss identifying
independentinstructionsthat can executein parallel. To
identify andexploit instructionlevel parallelism(ILP), most
of today’s processorg&mploy dynamicschedulingbranch
prediction, and speculatie execution. Dynamic schedul-
ing is an all hardware techniquefor identifying and issu-
ing multiple independeninstructionsin asinglecycle [32].
The hardware looks aheadby fetching instructionsinto a
buffe—called a window—from which it selectsinstruc-
tionsto issueto thefunctionalunits. Instructionsareissued
only whenall their operandsareavailable,andindependent
instructionscan executeout-of-order Resultsof instruc-
tions executedout-of-orderare committedto the architec-
tural statein programordetr In otherwords, althoughin-
structionswithin thewindow executeout-of-orderthewin-
dow entriesaremanagedsa FIFOwhereinstructionsenter
anddepartin programorder

Theabove simplifieddesignassumethatall instructions
in thewindow canbe examinedandselectedor execution.
We notethatit is possibleo separatéhe FIFO management
(active list or reorderbuffer) from the independeninstruc-
tion identification (issuequeue)as describedbelon. Re-
gardlessthereis a conflict betweerincreasinghewindow

(issuequeue)size to exposemore ILP and keepingclock
cycle time low by using small structureq1, 22]. Histor-
ically, smallerwindows have dominateddesignsresulting
in higherclock rates. Unfortunately a small window can
quickly fill upwhenthereis along lateng/ operation.

In particular consideralonglateng/ cachemissserviced
from main memory This latengy canbe so large, that by
the time the load reacheghe headof the window, the data
still hasnot arrived from memory Unfortunately this sig-
nificantly degradegerformanceincethe window doesnot
containary executinginstructions:instructiondn theload’s
dependencehainarestalled,andinstructionsindependent
of theloadarefinished,waitingto commitin programordet
Theonly way to make progresss to bring new instructions
into thewindow. Thiscanbeaccomplishedby usingalarger
window.

2.2 Limit Study

Theremaindeof this sectionevaluategheeffectof win-
dow size on programperformance,ignoring clock cycle
time effects. The goalis to determinethe potentialperfor
mancemprovementhatcouldbeachieredby largeinstruc-
tion windows. We begin with adescriptionof our processor
model. This is followed by a shortdiscussiorof its perfor
mancefor variousinstructionwindow sizes.

2.2.1 Methodology

For thisstudy we useamodifiedversionof SimpleScalar
(version 3.0b) [8] with the SPEC CPU2000[17] and
Olden[11] benchmarlksuites.Our SPECCPU2000bench-
marks are pre-compiledbinaries obtainedfrom the Sim-
pleScaladeveloperd33] thatweregenerateavith compiler
flagsassuggestedt www.spec.og andthe Oldenbinaries
were generatedwith the Alpha compiler (cc) using opti-
mizationflag -O2. The SPEChenchmark®perateon their
referencedatasetsandfor the subsetof the Oldenbench-
markswe use theinputsare:en8d 20,000nodesarity 10;
nmst 1024 nodes;peri met er 4Kx4K image;t r eeadd
20 levels. We omit several benchmarksitherbecausehe
L1 datacachemissratiosare below 1% or their IPCsare
unreasonablyow (heal t h andanmp areboth lessthan
0.1)for our baseconfiguration.

Our processordesignis loosely basedon the Alpha
21264 microarchitecture [12, 14, 19]. We usethe same
seven stagepipeline, including speculatre load execution
andload-storewait prediction. We do not modelthe clus-
tereddesignof the21264.Instead we assume singleinte-
gerissuequeuethatcanissueup to 8 instructionsper cycle
andasinglefloatingpointissuequeuethatcanissueupto 4
instructionsper cycle. Table1 lists the variousparameters
for our basemachine. Note that both integer andfloating



Active List 128,128Int Reys, 128 FPRegs

Load/StoreQueue 64 Load, 64 Store
IssueQueue 32Integer, 32 FloatingPoint
IssueWidth 12 (8 Integer, 4 FloatingPoint)
Decodewidth 8

CommitWidth 8

InstructionFetchQueue | 8

FunctionalUnits 8 integerALUs (1-gycle),

2 integermultipliers(7-cycle),

4 FPadderq4-cycle),

2 FPmultipliers (4-cycle),

2 FPdividers (nonpipelined,12-
cycle), 2 FP squareroot units
(nonpipelined24-g/cle)
Bimodal & two-level adaptve
combined, with speculatie up-
date, 2-cycle penalty for direct
jumpsmissedn BTB, 9-cyclefor

BranchPrediction

others

Store-Wait Table 2048 entries, bits clearedevery
32768cycles

L1 DataCache 32KB, 4 Way

L1 InstCache 32KB, 4 Way

L1 Lateny 2 Cycles

L2 Unified Cache 256KB, 4 Way

L2 Lateny 10Cycles

MemoryLateny 250Cycles

TLB 128-entry 4-way associatie,

4 KB pagesize,30-g/cle penalty

Table 1. Base Configuration

point registerfiles areaslarge asthe active list. For there-
mainderof this paperwe statea singlevaluefor the active
list/registerfile size,this value appliesto both the integer
andfloating pointregisterfiles.

The simulatorwas modified to supportspeculatie up-
dateof branchhistory with history-basedixup andreturn-
address-staclepairwith the pointerand-datdixup mecha-
nism[26, 27]. We alsomodifiedthe simulatorto warmup
theinstructionanddatacachegsluringaninitial fastforward
phase Forthe SPEChenchmarksve skip thefirst four hun-
dredmillion instructionsandthenexecutethenext onehun-
dredmillion instructionswith thedetailedperformanceim-
ulator. The Oldenbenchmarksxecutefor 400M instruc-
tionsor until completion.This approachs usedthroughout
this paper We notethatour resultsarequalitatvely similar
whenusingadifferentinstructionexecutionwindow [24].

2.2.2 Varying Window Size

We performedsimulationsvaryingtheissuequeuesize,
from 32 (the base)in powersof 2, up to 4096. For issue
gueuesizesof 32,64, and128we keepthe active list fixed
at 128 entries. For the remainingconfigurations the ac-

tive list, register files and issuequeueare all equalsize.
The load and store queuesare always setto one half the
active list size,andarethe only limit onthe numberof out-

standingrequestainlessotherwisestated. Figure 1 shavs
the committedinstructionsper cycle (IPC) of variouswin-

dow sizesnormalizedto the base32-entry configuration
(Speedup = IPCheq [ IPCq) for theSPECnteger, float-

ing point, andOldenbenchmarksAbsolutelPC valuesfor

the basemachineare provided in Section4, the goal here
is to examinethe relative effectsof largerinstructionwin-

dows.

Thesesimulationsshow thereis an initial boostin the
IPC aswindow sizeincreases,pto 2K, for all threesetsof
benchmarksWith theexceptionof nst , theeffect plateaus
beyond 2K entries,with IPC increasingonly slightly. This
matchesour intuition sinceduring a 250 cycle memoryla-
teng/ 2000instructionscanbefetchedin our 8-way proces-
sor. Larger instructionwindows beyond 2K provide only
minimal benefits.Many floating point benchmarkschieve
speedupsver 2, with ar t achieving a speedupver 5 for
the 2K window. This speedugs becausehe larger win-
dow canunroll loopsmary times,allowing overlapof mary
cachemissesA similar phenomenolccursfor nst .

The above resultsmotivatethe desireto createlargein-
structionwindows. The challengefor architectsis to ac-
complish this without significantimpact on clock cycle
time. The next sectionpresentour proposedsolution.

3 A LargeWindow Design

This sectionpresent®ur techniquefor providing alarge
instruction window while maintainingthe advantagesof
small structureson the critical path. We begin with an
overview to corvey the intuition behindthe design. This
is followed by a detaileddescriptionof our particularde-
sign. We concludethis sectionwith a discussiorof various
designissuesandalternatve implementations.

3.1 Overview

In our basemicroarchitecturepnly thoseinstructionsin
theissuequeueare examinedfor potentialexecution. The
activelist hasalargernumberof entrieshantheissuequeue
(128 vs. 32), allowing completedbut not yet committed
instructionsto releaseheir issuequeueentries. Sincethe
active list is not on the critical path [4], we assumethat
we canincreassts sizewithout affecting clock cycle time.
Nonethelessn thefaceof longlateng operationstheissue
gueuecouldfill with instructionswaiting for their operands
andstall furtherexecution.

We make the obsenationthatinstructionsdependenon
long lateng operationscannotexecuteuntil the long la-
teng operationcompletesandthusdo not neecto be exam-
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Figure 1. Large Windo w Performance

inedby thewakeup-seleciogic onthecritical path.We note
this sameobsenationis exploited by Palacharlagt. al [22]
andtheir techniqueof examiningonly the headof theissue
gueuesHowever, the goal of our designis to remove these
waiting instructionsfrom theissuequeueandplacethemin
a waiting instructionbuffer (WIB). Whenthe long lateng
operationcompletesthe instructionsare moved backinto
the issuequeuefor execution. In this design,instructions
remainin theissuequeuefor avery shorttime. They either
executeproperlyor they areremoveddueto dependencen
along lateng operation.

For this paperwe focus specifically on instructionsin
thedependencehainof | oad cachemisses.However, we
believe our techniquecould be extendedto othertypes of

long lateng operations. Figure 2 shaws the pipeline for
a WIB-basedmicroarchitecturepasedon the 21264 with
two-level registerfiles (describedater).

The fetch stageincludesthe I-cache,branchprediction
andthe instructionfetch queue. The slot stagedirectsin-
structionsto the integer or floating point pipelinebasedon
theirtype. Theinstructionghengo throughregisterrename
beforeenteringthe issuequeue. Instructionsare selected
fromtheissuequeueeitherto proceedvith theregisterread,
executionandmemory/writebaclstagesr to moveinto the
WIB during the registerreadstage. Oncein the WIB, in-
structionswait for the specificcachemissthey dependnto
complete.Whenthis occurs theinstructionsarereinserted
into the issuequeueandrepeatthe wakeup-selecprocess,
possiblymoving backinto theWIB if they aredependentn
anothercachemiss. Theremainderof this sectionprovides
detailson WIB operationandorganization.

3.2 DetectingDependentinstructions

An importantcomponenbf our designis the ability to
identify all instructionsin the dependencehainof a load
cachemiss. To achieve this we leveragethe existing issue
gueuewakeup-selectogic. Under normal execution,the
wakeup-seleclogic determinedf aninstructionis readyfor
execution(i.e., hasall its operandsvailable)andselectsa
subsebf thereadyinstructionsaccordingto theissuecon-
straints(e.qg.,structuralhazardor ageof instructions).

To leveragethis logic we add an additional signal—
called the wait bit—that indicatesthe particular source
operandi.e., input registervalue)is “pretendready”. This
signalis very similar to the readybit usedto synchronize
truedependenciedt differsonly in thatit is usedto indicate
theparticularsourceoperandvill notbeavailablefor anex-
tendedperiodof time. An instructionis consideregretend
readyif oneor moreof its operandsare pretendreadyand
all theotheroperandsretruly ready Pretendeadyinstruc-
tions participatein the normalissuerequestsif they were
truly ready Whenit is issued,insteadof beingsentto the
functional unit, the pretendreadyinstructionis placedin
theWIB andits issuequeueentryis subsequentlyreed by
theissuelogic asthoughit actuallyexecuted.We notethat
a potentialoptimizationto our schemewould consideran
instructionpretendreadyas soonasoneof its operandss
pretendeady Thiswouldallow instructionso bemovedto
theWIB earlier thusfurtherreducingpressurentheissue
gueueresources.

In ourimplementationthewait bit of a physicalregister
isinitially setby aloadcachemiss.Dependeninstructions
obsenethiswait bit, areremovedfrom theissuequeueand
setthe wait bit of their destinationregisters. This causes
their dependeninstructionsto be removed from the issue
gueueand set the correspondingwait bits of their result



Fetch Slot: Rename Issue

Register Read Execute Memory

1
i
Integer Integer

Exec

IntL1
. intege|
u Reg Fllﬁ

3 int L2 ‘ ;

| Reg File ' Data
1 ' Cache
! FP L2 !

i Reg File :

(32Kb 4Way)

FP

Register Issue
ueue
Rename ?32)
Instruction|
Cache
(32kb 4Way,
Floating Floating
Point Point
Issue
Register] Queue
Rename (32)

FP L1
Reg FiI% Exec

Figure 2. WIB-based Microarchitecture

registers. Therefore,all instructionsdirectly or indirectly
dependenbn the load areidentifiedandremoved from the
issuequeue. The load misssignalis alreadygeneratedn
the Alpha 21264 sinceload instructionsare speculatiely
assumedbo hit in thecacheallowing theloadanddependent
instructionsto executein consecutie cycles. In the caseof
a cachemissin the Alpha, the dependentnstructionsare
retainedin the issuequeueuntil theload completes.n our
casetheseinstructionsmoveto the WIB.

An instruction might enter the issue queue after the
instructionsproducingits operandshave exited the issue
gueue. The producerinstructionscould have either exe-
cutedproperlyandthe sourceoperands available or they
couldbein the WIB andthis instructionshouldeventually
be moved to the WIB. Therefore,wait bits mustbe avail-
ablewherever corventionalreadybits areavailable. In this
case,during registerrename.Note thatit may be possible
to steerinstructionsto the WIB afterthe renamestageand
beforethe issuestage we planto investigatethis asfuture
work. Our currentdesigndoesnot implementthis, instead
eachinstructionentergheissuequeueandthenis movedto
theWIB if necessary

3.3 The Waiting Instruction Buffer

The WIB containsall instructionsdirectly or indirectly
dependenvnaloadcachemiss. TheWIB mustbedesigned
to satisfy several importantcriteria. First, it mustcontain
anddifferentiatebetweenthe dependeninstructionsof in-
dividualoutstandindoads.Secondit mustallow individual
instructionsto be dependendn multiple outstandindoads.
Finally, it mustpermitfast“squashing’whenabranchmis-
predictor exceptionoccurs.

To satisfytheserequirementsye designedhe WIB to
operatein conjunctionwith the active list. Every instruc-
tion in the active list is allocatedan entry in the WIB. Al-
thoughthis may allocateentriesin the WIB that are never
dependenvnaloadmiss,it simplifiessquashinggnmispre-
dicts. Wheneeractivelist entriesareaddedor removed,the
correspondingperationsare performedon the WIB. This
meansWVIB entriesareallocatedn programorder

To link WIB entriesto load misseswe usea bit-vector
to indicatewhich WIB locationsare dependenbn a spe-
cific load. Whenan instructionis moved to the WIB, the
appropriatebit is set. The bit-vectorsarearrangedn a two
dimensionakrray Eachcolumnis the bit-vectorfor aload
cachemiss. Bit-vectorsare allocatedwhena load missis
detectedthereforefor eachoutstandindoad misswe storea
pointerto its correspondindpit-vector Notethatthenumber
of bit-vectorsis boundedy thenumberof outstandindoad
misses. However, it is possibleto have fewer bit-vectors
thanoutstandingnisses.

To link instructionswith a specificload, we augmenthe
operandvait bits with anindex into the bit-vectortablecor-
respondingo theload cachemissthisinstructionis depen-
denton. In the casewhereaninstructionis dependenbn
multiple outstandindoads,we usea simplefixed ordering
policy to examinethe sourceoperandwait bits and store
the instructionin the WIB with the first outstandingoad
encountered.This requirespropagatingthe bit-vectorin-
dex with the wait bits as describedabove. It is possible
to storethe bit-vectorindex in the physicalregister since
that spaceis available. However, this requiresinstructions
thataremovedinto the WIB to consumeegisterports. To
reduceregister pressureve assumehe bit-vectorindex is
storedin aseparatestructurewith thewait bits.



Instructionsin the WIB arereinsertedn theissuequeue
when the correspondingoad miss is resolhed. Reinser
tion shareghe samebandwidth(in our case 8 instructions
percycle) with thosenewly arrivedinstructionghatarede-
codedanddispatchedo theissuequeue.Thedispatchogic
is modified to give priority to the instructionsreinserted
from the WIB to ensureforwardprogress.

Note that someof the instructionsreinsertedn the is-
suequeueby the completionof oneload maybedependent
on anotheroutstandindoad. Theissuequeuelogic detects
thatoneof theinstructions remainingoperandss unavail-
able,dueto a load miss, in the sameway it detectedthe
first load dependenceThe instructionthensetsthe appro-
priatebit in the new load’s bit-vector, andis removedfrom
theissuequeue.This is a fundamentatlifferencebetween
the WIB andsimply scalingthe issuequeueto larger en-
tries. The larger queueissuesinstructionsonly once,when
all their operandsare available. In contrast,our technique
couldmoveaninstructionbetweertheissuequeueandWIB
mary times.In theworstcaseall active instructionsarede-
pendenton a single outstandingoad. This requireseach
bit-vectorto covertheentireactive list.

The numberof entriesin the WIB is determinecby the
size of the active list. The analysisin Section2 indicates
that 2048 entriesis a goodwindow sizeto achiese signif-
icantspeedupsTherefore,initially we assumea 2K-entry
active list and 1K-entry load and storequeues.Assuming
eachWIB entry is 8 bytesthenthe total WIB capacityis
16KB. The bhit-vectorscan also consumea greatdeal of
storage but it is limited by the numberof outstandinge-
guestssupported Sectiond explorestheimpactof limiting
thenumberof bit-vectorsbelow theload queuesize.

3.3.1 WIB Organization

We assumea banked WIB organizationandthatonein-
struction can be extractedfrom eachbank every two cy-
cles. Thesetwo cyclesincludedeterminingthe appropriate
instructionand readingthe appropriateNI1B entry There
is a fixed instructionwidth betweenthe WIB and the is-
suequeue.We setthe numberof banksequalto twice this
width. Therefore,we cansustainreinsertionat full band-
width by readinginstructiondrom the WIB’ s evenbanksin
onecycle andfrom odd banksin the next cycle, if enough
instructionsareeligible in eachsetof banks.

Recall, WIB entriesare allocatedin programorder in
conjunctionwith active list entries. We performthis allo-
cation using round-robinacrossthe banks,interleaving at
theindividual instructiongranularity Therefore entriesin
eachbank are also allocatedand releasedn programor-
der, and we can partition eachload’s bit-vectoraccording
to which bank the bits mapto. In our case,a 2K entry
WIB with a dispatchwidth to the issuequeueof 8 would

have 16 bankswith 128entrieseach.Eachbankalsostores
its local headandtail pointersto reflectprogramorder of

instructionswithin the bank. Figure 3 shows the internal
organizationof the WIB.

During a readaccessachbankin a set (even or odd)
operatesndependentlyto selectan instructionto reinsert
to the issuequeueby examining the appropriatel28 bits
from eachcompletedoad. For eachbankwe createa sin-
gle bit-vectorthat is the logical OR of the bit-vectorsfor
all completedoads.Theresultingbit-vectoris examinedto
selectthe oldestactive instructionin programorder There
are mary possiblepolicies for selectinginstructions. We
examinea few simplepolicieslaterin this paper but leave
investigationof moresophisticategbolicies(e.g.,dataflow
graphorderor critical path[15]) asfuture work. Regard-
lessof selectionpolicy, the resultis that onebit out of the
128is set,which canthendirectly enablethe outputof the
correspondingVIB entry without the needto encodethen
decodethe WIB index. The processs repeatedvith anup-
datedbit-vectorthatclearsthe WIB entryfor theaccesgust
completedandmayincludenew eligible instructionsif an-
otherload misscompletedduringtheaccess.

The above policiesaresimilar to the selectpoliciesim-
plementedy theissuequeuelogic. This highlightsanim-
portantdifferencebetweernthe WIB anda corventionalis-
suequeue. A corventionalissuequeuerequireswakeup
logic that broadcastsa register specifierto each entry.
The WIB eliminatesthis broadcasby usingthe completed
loads’bit-vectorsto establisithe candidatenstructionsfor
selection. The issuequeuerequiresthe register specifier
broadcasto maintaintrue dependenciesln contrast,the
WIB-basedarchitectureleveragesthe much smallerissue
gueuefor this taskandthe WIB canselectinstructionsfor
reinsertionin any order

It is possiblethat thereare not enoughissuequeueen-
tries available to consumeall instructionsextractedfrom
the WIB. In this case,oneor morebankswill stall for this
accesandwait for the next accesgtwo cycleslater)to at-
temptreinsertingts instruction.To avoid potentiallivelock,
on eachaccessve changethe startingbankfor allocating
theavailableissuequeusslots. Furthermoreabankremains
atthe highestpriority if it hasaninstructionto reinsertbut
wasnot ableto. A bankis assignedhe lowestpriority if it
insertsaninstructionor doesnothave aninstructionto rein-
sert. Livelock could occurin a fixed priority schemesince
theinstructionsn thehighestpriority bankcouldbedepen-
dent on the instructionsin the lower priority bank. This
could producea continuousstreamof instructionsmoving
fromtheWIB to theissuequeuethenbackto theWIB since
their producinginstructionsarenot yet complete.The pro-
ducinginstructionswill nevercompletesincethey arein the
lower priority bank. Althoughthis scenaricseemaunlikely
it did occurin someof our benchmarksand thus we use
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round-robinpriority.

3.3.2 SquashingWIB Entries

Squashingnstructionsrequiresclearingthe appropriate
bits in eachbit-vector and resetingeachbanks’ local tail
pointer The two-dimensionabit-vectororganizationsim-
plifiesthebit-vectorclearoperatiorsinceit is appliedto the
samebits for every bit-vector Recall,eachcolumncorre-
spondsto an outstandingoad miss, thuswe canclearthe
bitsin therows associateavith the squashedhstructions.

3.4 RegisterFile Considerations

To supportmary in-flight instructionsthe numberof re-
nameregistersmustscaleproportionally Thereareseveral
alternative designsfor large registerfiles, including multi-
cycleaccessmulti-level [13, 34], multiple bankg[5, 13], or
gueue-basedesigng6]. In this paper we usea two-level
registerfile [13, 34] that operateson principlessimilar to
the cachehierarchy Simulationsof a multi-bankedregister
file shov similar results. Furtherdetailson the registerfile
designsandperformanceareavailableelsavhere[20].

3.5 Alternative WIB Designs

The above WIB organizationis one of several alterna-
tives. Onealternatie we considereds a large non-banled
multicycle WIB. Althoughit maybepossibleo pipelinethe
WIB accessit would not producea fully pipelinedaccess
andour simulations(seeSectiord) indicatepipeliningmay
notbenecessary

Another alternative we considereds a pool-of-blocks
structurefor implementingthe WIB. In this organziation,
whena load missesin the cacheit obtainsa free block to
buffer dependeninstructions. A pointer to this block is
storedwith theloadin the load queue(LQ) andis usedto

depositdependeninstructionsin the WIB. Whenthe load

completesall the instructionsin the block are reinserted
into theissuequeue Eachblock containsa fixednumberof

instructionslotsandeachslot holdsinformationequialent
to issuequeueentries.

An importantdifferencein this approachcomparedto
the techniquewe useis thatinstructionsare storedin de-
pendencechain order, and blocks may needto be linked
togetherto handleloadswith long dependencehains.This
complicatessquashingsincethereis no programorderas-
sociatedvith theWIB entries.Althoughwe could maintain
informationon programorder, thelist managementf each
load’s dependencehain becomestoo complex and time
consumingduring a squash. Although the bit-vector ap-
proachrequiresmorespacejt simplifiesthis management.
The pool-of-blocksapproachasthe potentialof deadlock
if therearenot enoughWIB entries. We are continuingto
investigatetechniquego reducethe list managementver-
headandhandledeadlock.

3.6 Summary

TheW!IB architectureeffectively enlagestheinstruction
window by removing instructionsdependenon load cache
missedrom theissuequeue andretainingthemin the WIB
while themissesareservicedIn achiesing this,weleverage
the existing processorssuelogic without affectingthe pro-
cessorcycle time andcircuit compleity. In the WIB archi-
tecture,instructionsstayin the issuequeueonly for a short
period of time, thereforenew instructionscan be brought
into theinstructionwindow muchmorerapidly thanin the
corventionalarchitecturesThe fundamentadlifferencebe-
tweena WIB designanda designthatsimply scalesup the
issuequeueis that scalingup the issuequeuesignificantly
complicateghewakeuplogic, whichin turn affectsthepro-
cessorcycletime [1, 22]. However, a WIB requiresa very
simpleform of wakeuplogic asall the instructionsin the



dependencehain of a load miss are awakenedwhen the
missis resohed. Thereis no needto broadcasandhave all
theinstructionsmonitortheresultbuses.

4 Evaluation

In this sectionwe evaluatethe WIB architecture. We
begin by presentingthe overall performanceof our WIB
designcomparedo a corventionalarchitecture.Next, we
explore the impactof variousdesignchoiceson WIB per
formance. This includeslimiting the numberof available
bit-vectors limited WIB capacity policiesfor selectingin-
structionsfor reinsertioninto the issuequeue andmulticy-
clenon-banledWIB.

Thesesimulationsreveal that WIB-basedarchitectures
canincreaseperformancejn termsof IPC, for our setof
benchmarkby anaverageof 20%,84%,and50%for SPEC
INT, SPECFPR, andOlden, respectrely. We alsofind that
limiting the numberof outstandingloadsto 64 produces
similarimprovementdor the SPECINT andOldenbench-
marks,but reduceghe averageimprovementfor the SPEC
FPto 45%. A WIB capacityaslow as 256 entrieswith
a maximumof 64 outstandindoadsstill producesaverage
speedup®f 9%, 26%, and 14% for the respectie bench-
marksets.

4.1 Overall Performance

We begin by presentingthe overall performanceim-
provementin IPC relative to a processomwith a 32-entry
issuequeueandsinglecycle accesgo 128registers,hence
a 128-entryactive list (32-1Q/128). Figure 4 shows the
speedups(I PChew/IPC,q) for various microarchitec-
tures.Althoughwe presentesultsfor an8-issueprocessar
theoverallresultsarequalitatively similar for a4-issuepro-
cessorTheWIB barcorrespondso a 32-entryissuequeue
with our banked WIB organization,a 2K-entry active list,
and 2K registers,using a two-level register file with 128
registersin thefirst level, 4 readportsand4 write portsto
the pipelinedsecondlevel that hasa 4-cycle lateng. As-
sumingthe 32-entryissuequeueand 128 level oneregis-
terssetthe clock cycle time, the WIB-baseddesignis ap-
proximatelyclock cycle equivalentto the basearchitecture.
Fortheseexperimentghenumberof outstandindoads(thus
bit-vectors)is notlimited, we explorethis parametebelow.
Table2 shaws the absolutelPC valuesfor the baseconfig-
urationandour bankedWIB design,alongwith thebranch
directionpredictionrates,L1 datacachemissrates,andL2
unifiedcacheocal missratesfor the baseconfiguration.

For comparisonwe alsoincludetwo scaledversionsof
a corventionalmicroarchitecture.Both configurationsuse
a 2K-entry active list andsingle cycle accesgo 2K regis-
ters.Oneretainsthe 32-entryissuequeug(32-1Q/2K) while

Benchmark| Base| Branch| DL1 | UL2 Local | WIB

IPC Dir Miss Miss IPC

Pred Ratio Ratio

bzip2 1.19 0.94 0.03 0.47 1.59
gcc 1.34 0.94 0.01 0.09 1.38
gzip 2.25 0.91 0.02 0.04 2.25
parser 0.83 0.95 0.04 0.22 0.95
perlbmk 0.96 0.99 0.01 0.28 0.95
vortex 1.52 0.99 0.01 0.06 1.68
vpr 0.49 0.90 0.04 0.41 0.86
HM 1.00 - - - 1.24
applu 4.17 0.98 0.10 0.26 4.28
art 0.42 0.96 0.35 0.73 1.64
facrec 1.47 0.99 0.05 0.48 3.02
galgel 1.92 0.98 0.07 0.26 3.97
mgrid 2.58 0.97 0.06 0.42 2.57
swim 2.41 1.00 0.21 0.27 3.98
wupwise 3.38 1.00 0.03 0.25 3.99
HM 1.42 - - - 3.02
em3d 2.28 0.99 0.02 0.16 2.27
mst 0.96 1.00 0.07 0.49 2.51
perimeter 1.00 0.93 0.04 0.38 1.16
treeadd 1.05 0.95 0.03 0.33 1.28
HM 1.17 - - - 1.61

Table 2. Benchmark Performance Statistics

the otherscalesthe issuequeueto 2K entries(2K-1Q/2K).
Theseconfigurationshelpisolatethe issuequeuefrom the
active list andto provide an approximateupperboundon
our expectedperformance.

Fromtheresultsshovn in Figure4, we make thefollow-
ing obsenations.First, the WIB designproducespeedups
over 10% for 12 of the 18 benchmarks. The average
speedupis 20%, 84%, and 50% for SPECINT, SPEC
FR andOlden, respectiely. The harmonicmeanof IPCs
(shovnin Table?) increasefrom 1.0to 1.24for SPECINT,
from 1.42to 3.02for SPECFPR, andfrom 1.17to 1.61for
Olden.

For most programswith large speedupgrom the large
2K issuequeuethe WIB designis ableto capturea signif-
icantfraction of the availablespeedupHowever, for a few
programghe 2K issuequeueproducedargespeedupsihen
the WIB doesnot. ngri d is the most striking example
wherethe WIB doesnot produceary speedupvhile the2K
issuequeueyieldsaspeedumf overtwo. Thisphenomenon
is aresultof the WIB regycling instructionsthroughtheis-
suequeue.Thisconsumesssuebandwidththatthe2K issue
gueueusesonly for instructionsreadyto execute. As evi-
denceof this we track the numberof timesan instruction
is insertedinto the WIB. In the bankedimplementatiorthe
averagenumberof timesaninstructionis insertedinto the
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Figure 4. WIB Performance

WIB is four with amaximumof 280. Investigation®f other
insertionpolicies(seebelow) reduceghesevaluesto anav-
eragdnsertioncountof oneandamaximumof 9, producing
aspeedumf 17%.

We alsonotethatfor severalbenchmarkgustincreasing
the active list producesnoticablespeedupsin somecases
evenoutperformingheWIB. Thisindicategheissuequeue
is not the bottleneckfor thesebenchmarksHowever, over-
all the WIB significantly outperformsan increasedactive
list.

Due to the size of the WIB and larger registerfile, we
alsoevaluatedan alternatve useof that spaceby doubling
thedatacachesizein the baseconfiguratiorto 64KB. Sim-
ulation resultsreveal lessthan 2% improvementsin per
formancefor all benchmarksexceptvort ex that shavs
a 9% improvement,over the 32KB datacache,indicating
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Figure 5. Performance of Limited Bit-Vectors

the WIB maybe a betteruseof this space We explore this
tradeof morelaterin this section.

We also performedtwo sensitvity studiesby reducing
the memory lateng from 250 cycles to 100 cycles and
by increasingthe unified L2 cacheto 1MB. The results
matchour expectations. The shortermemorylateng re-
ducesWIB speedupso averagef 5%, 30%,and17%for
the SPECINT, SPECFR andOldenbenchmarksrespec-
tively. The larger L2 cachehasa smallerimpacton the
speedupsachierzedwith aWIB. Theaveragespeedupsvere
5%, 61%,and38%for the SPECINT, SPECFR andOlden
benchmarksrespectiely. The larger cachehasthe most
impacton the integer benchmarkswhich shov a dramati-
cally reducedocal L2 missratio (from an averageof 22%
to 6%). Cachesxploit locality in the programs reference
streamand can sometimede suficiently large to capture
the programs entireworking set. In contrastthe WIB can
exposeparallelismfor toleratinglateng in programswith
very largeworking setsor thatlack locality.

For the remainderof this paperwe presentonly the av-
erageresultsfor eachbenchmarlsuite. Detailedresultsfor
eachbenchmarlareavailableelsavhere[20].

4.2 Limited Bit-Vectors

The numberof bit-vectorsis importantsince eachbit-
vectormustmapthe entireWIB andthe arearequiredcan
becomeexcessie. To explore the effect of limited bit-
vectors(outstandingoads),we simulateda 2K-entry WIB
with 16,32, and64 bit-vectors.Figure5 shovs theaverage
speedupsver the basemachine,including the 1024 bit-
vector configurationfrom above. Theseresultsshav that
evenwith only 16 bit-vectorsthe WIB canachieve average
speedupof 16% for SPECINT, 26% for SPECFR and
38% for the Olden benchmarks.The SPECFP programs
(particularlyar t ) areaffectedthe mostby the limited bit-
vectorssincethey benefitfrom memorylevel parallelism.
With 64 bit-vectors(16KB) the WIB canachieve speedups
of 19%, 45%, and 50% for the threesetsof benchmarks,
respectiely.
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4.3 Limited WIB Capacity

ReducingWVIB areaby limiting thenumberof bit-vectors
is certainly a useful optimization. However, further de-
crease$n requiredareacanbe achiezedby usinga smaller
capacityWIB. This sectionexploresthe performancem-
pact of reducingthe capacityof the WIB, active list and
registerfile.

Figure6 shavstheaveragespeedupfor WIB sizesrang-
ing from 128to 2048with bit-vectorslimited to 64. These
resultsshow thatthe 1024-entryWIB canachiere average
speedupsf 20%for the SPECINT, 44%for SPECFP, and
44%for Olden. This configurationrequiresonly 32KB ex-
tra space(8KB for WIB entries,8KB for bit-vectors,and
8KB for each1024-entryregisterfile). Thisis roughlyarea
equivalentto doublingthe cachesizeto 64KB. As stated
above, the 64KB L1 datacachedid not producenoticable
speedupgor our benchmarksandthe WIB is a betteruse
of thearea.

4.4 WIB to IssueQueuelnstruction Selection

Our WIB designimplementsa specific policy for se-
lecting from eligible instructionsto reinsertinto the issue
gueue. The currentpolicy choosesnstructionsfrom each
bankin programorder Sincethe banksoperateindepen-
dently andon alternatecycles, they do not extractinstruc-
tionsin true programorder To evaluatethe impactof in-
structionselectionpolicy we useanidealizedWIB thathas
singlecycle accesgime to the entirestructure.Within this
designwe evaluatethe following instructionselectionpoli-
cies: (1) the currentbanked scheme(2) full programor-
derfrom amongeligible instructions(3) roundrobinacross
completedioadswith eachload’s instructionsin program
order and (4) all instructionsfrom the oldestcompleted
load.

Most programsshow very little changein performance
acrossselectionpolicies. ngri d is the only oneto shav
significantimprovements. As mentionedabove, ngri d
shavs speedupover the banked WIB of 17%, 17%, and
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Figure 7. Non-Banked W!IB Performance

13%for eachof thethreenew policies,respectiely. These
speedupsire dueto betterschedulingof the actualdepen-
dencegraph. However, in somecaseghe schedulecanbe
worse. Threeprogramsshow slovdowns comparedo the
banked WIB for the oldestload policy (4): bzi p 11%,
par ser 15%,andf acer ec 5%.

4.5 Non-BankedMulticycle WIB Access

We now explore the benefitsof the banked organization
versusamulticycle non-banlkedWIB organization Figure7
shavstheaveragespeedup$or thebanlkedandnon-banied
organizationsover the basearchitecture. Exceptthe dif-
ferent WIB accesdatencies,the 4-cycle and 6-cycle bars
bothassumea non-banlkedWIB with instructionextraction
in full programorder Theseresultsshowv that the longer
WIB accesslelayproducenly slightreductionsn perfor
mancecomparedo the bankedscheme This indicatesthat
we may be ableto implementmore sophisticatedgelection
policiesandthatpipeliningWIB accesss notnecessary

5 RelatedWork

Our limit studyis similar to that performedby Skadron
et al. [28]. Their resultsshown that branchmispredictions
limit the benefitsof largerinstructionwindows, that better
branchpredictionandbetterinstructioncachebehaior have
synegistic effects,andthatthebenefitof largerinstruction
windows andlargerdatacachegradeoff andhave overlap-
ping effects. Their simulationassumeaverylarge8MB L2
cacheandmodelsaregisterupdateunit (RUU) [29], which
is aunifiedactive list, issuequeue andrenameregisterfile.
In their study only instructionwindow sizesup to 256 are
examined.

There has beenextensie researchon architecturede-
signsfor supportingargeinstructionwindows. In the mul-
tiscalar[30] and trace processorg23], one large central-
izedinstructionwindow is distributedinto smallerwindows
among multiple parallel processingelements. Dynamic
multithreadingprocessor§?] dealwith the complexity of a



largewindow by emplaying a hierarchyof instructionwin-
dows. Clusteringprovidesanotherapproachwherea col-
lection of small windows with associatedunctional units
is usedto approximatea wider anddeepeiinstructionwin-
dow [22].

RecentresearcH7, 18] investigatesssuelogic designs
that attempto support large instruction windows with-
out impedingimprovementson clock rates. Michaud and
Sezned21] exploit the obsenationthatinstructionsdepen-
denton long lateng operationsunnecessarilyoccupy is-
suequeuespacefor a long time, andaddresghis problem

by preschedulingnstructionsbasedon datadependencies.

Otherdependence-baséssuequeuedesignsarestudiedin
[9, 10, 22]. Zilles etal.[35] andBalasubramoniastal. [4]
attacktheproblemcausedy longlateng operationdy uti-
lizing a future threadthat can usea portion of the issue
gueueslotsand physicalregistersto conductprecomputa-
tion. As power consumptiorhasbecomeanimportantcon-
siderationn processodesignresearchersave alsostudied
low power instructionwindow design[3, 16].

6 Conclusion

Two importantcomponent®f overall executiontime are
the clock cycle time andthe numberof instructionscom-
mitted per cycle (IPC). High clock ratescan be achieved
by usinga smallinstructionwindow, but this canlimit IPC
by reducingthe ability to identify independeninstructions.
This tensionbetweenlarge instructionwindows and short
clock cycle timesis animportantaspecin modernproces-
sordesign.

This paperpresentsa new techniquefor achieving the
lateng toleranceof large windows while maintainingthe
high clock ratesof smallwindow designs.We accomplish
this by remaoving instructionsfrom the conventionalissue
queueif they aredirectly or indirectly dependenbn along
latengy operation.Thesenstructionsareplacedinto await-
ing instructionbuffer (WIB) andreinsertedinto the issue
gueuefor executionwhenthelong lateng operationcom-
pletes.By moving theseinstructionsout of thecritical path,
their previously occupiedssuequeueentriescanbefurther
utilized by the processoto look deepinto the programfor
more ILP. An importantdifferencebetweenthe WIB and
scaled-ugonventionalissuequeuess thatthe WIB imple-
mentsa simplified form of wakeup-selectThisis achieved
by allowing all instructionsin the dependencehainto be
consideredor reinsertioninto theissuewindow. Compared
to the full wakeup-selectn conventionalissuequeuesthe
WIB only requiresselectlogic for instructionreinsertion.

Simulationsof an 8-way processomwith a 32-entryis-
suequeuereveal thataddinga 2K-entry WIB canproduce
speedupsf 20%, 84%, and50% for a subsetof the SPEC
CINT2000, SPECCFP2000,and Olden benchmarksye-

spectvely. We alsoexploreseveral WIB designparameters
and shav that allocating chip areafor the WIB produces
signifcantly higher speedupghan using the sameareato
increasethe level one datacachecapacityfrom 32KB to
64KB.

Our future work includesinvestigatingthe potentialfor
executingthe instructionsfrom the WIB on a separatesx-
ecutioncore, eithera corventionalcore or perhapsa grid
processof25]. The policy spacefor selectinginstructions
is an areaof currentresearch. Finally, register file de-
signandmanagemen(e.q.,virtual-physical multi-banked,
multi-cycle, prefetchingn atwo-level organizationyequire
furtherinvestigation.
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