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Abstract

Instructionwindowsizeis an importantdesignparame-
ter for manymodernprocessors. Largeinstructionwindows
offer thepotentialadvantage of exposinglarge amountsof
instruction level parallelism. Unfortunately, naivelyscal-
ing conventionalwindowdesignscansignificantlydegrade
clock cycletime, underminingthebenefitsof increasedpar-
allelism.

Thispaperpresentsa newinstructionwindowdesigntar-
getedat achieving the latencytoleranceof large windows
with theclock cycletimeof smallwindows.Thekey obser-
vation is that instructionsdependenton a long latencyop-
eration (e.g., cache miss)cannotexecuteuntil that source
operation completes.Theseinstructionsare movedout of
theconventional,small,issuequeueto a much larger wait-
ing instructionbuffer (WIB). Whenthe long latencyopera-
tion completes,theinstructionsarereinsertedinto theissue
queue. In this paper, we focusspecificallyon load cache
missesandtheir dependentinstructions.Simulationsreveal
that, for an 8-way processor, a 2K-entry WIB with a 32-
entry issuequeuecanachievespeedupsof 20%,84%,and
50%over a conventional32-entryissuequeuefor a subset
of theSPECCINT2000,SPECCFP2000,andOldenbench-
marks,respectively.

1 Intr oduction

Many of today’s microprocessorsachieve high perfor-
manceby combininghighclockrateswith theability to dy-
namicallyprocessmultiple instructionspercycle. Unfortu-
nately, thesetwo importantcomponentsof performanceare
often at oddswith oneanother. For example,small hard-
warestructuresareusuallyrequiredto achieve shortclock
cycle times,while larger structuresareoften necessaryto
identify andexploit instructionlevel parallelism(ILP).

A particularly importantstructureis the issuewindow,

which is examinedeachcycle to choosereadyinstructions
for execution. A larger window canoften exposea larger
numberof independentinstructionsthatcanexecuteout-of-
order. Unfortunately, thesizeof theissuewindow is limited
dueto strict cycle time constraints.This conflict between
cycletimeanddynamicallyexploitingparallelismis exacer-
batedby long latency operationssuchasdatacachemisses
or evencross-chipcommunication[1, 22]. Thechallengeis
to develop microarchitecturesthat permit both shortcycle
timesandlargeinstructionwindows.

This paperintroducesa new microarchitecturethat rec-
oncilesthe competinggoalsof shortcycle timesandlarge
instructionwindows. We observe that instructionsdepen-
dent on long latency operationscannotexecuteuntil the
long latency operationcompletes.This allows us to sepa-
rateinstructionsinto thosethatwill executein thenearfu-
tureandthosethatwill executein thedistantfuture.Thekey
to our designis that theentirechainof instructionsdepen-
denton a long latency operationis removedfrom the issue
window, placedin a waiting instructionbuffer (WIB), and
reinsertedafter the long latency operationcompletes.Fur-
thermore,sinceall instructionsin thedependencechainare
candidatesfor reinsertioninto the issuewindow, we only
needto implementselectlogic ratherthanthefull wakeup-
selectrequiredby a conventionalissuewindow. Tracking
truedependencies(asdoneby thewakeuplogic) is handled
by theissuewindow whentheinstructionsarereinserted.

In this paperwe focuson toleratingdatacachemisses,
however we believe our techniquecould be extendedto
otheroperationswherelatency is difficult to determineat
compiletime. Specifically, ourgoalis to explorethedesign
of a microarchitecturewith a largeenough“effective” win-
dow to tolerateDRAM accesses.Weleverageexistingtech-
niquesto provide a large registerfile [13, 34] andassume
thata largeactive list1 is possiblesinceit is not on thecrit-
ical path[4] andtechniquesexist for keepingtheactive list

1By active list, we referto thehardwareunit thatmaintainsthestateof
in-flight instructions,oftencalledthereorderbuffer.



largewhile usingrelatively smallhardwarestructures[31].
We explore several aspectsof WIB design,including:

detectinginstructionsdependentonlonglatency operations,
insertinginstructionsinto theWIB, bankedvs. non-banked
organization,policiesfor selectingamongeligible instruc-
tions to reinsertinto the issuewindow, andtotal capacity.
For an 8-way processor, we comparethe committed in-
structionsper cycle (IPC) of a WIB-baseddesignthat has
a 32-entry issuewindow, a 2048-entrybanked WIB, and
two-level registerfiles (128L1/2048L2) to a conventional
32-entryissuewindow with single-level registerfiles (128
registers).Thesesimulationsshow WIB speedupsover the
conventionaldesignof 20%for SPECCINT2000,84%for
SPECCFP2000,and50% for Olden. Thesespeedupsare
a significantfraction of thoseachieved with a 2048-entry
conventionalissuewindow (35%,140%,and103%),even
ignoringclockcycle timeeffects.

Theremainderof thispaperis organizedasfollows. Sec-
tion 2 providesbackgroundandmotivation for this work.
Our designis presentedin Section3 andwe evaluteits per-
formancein Section4. Section5 discussesrelatedwork and
Section6 summarizesthis work andpresentsfuture direc-
tions.

2 Background and Moti vation

2.1 Background

Superscalarprocessorsmaximizeserialprogramperfor-
manceby issuingmultiple instructionsper cycle. Oneof
the most importantaspectsof thesesystemsis identifying
independentinstructionsthat can executein parallel. To
identify andexploit instructionlevelparallelism(ILP), most
of today’s processorsemploy dynamicscheduling,branch
prediction,and speculative execution. Dynamic schedul-
ing is an all hardware techniquefor identifying and issu-
ing multiple independentinstructionsin asinglecycle [32].
The hardware looks aheadby fetching instructionsinto a
buffer—called a window—from which it selectsinstruc-
tionsto issueto thefunctionalunits. Instructionsareissued
only whenall their operandsareavailable,andindependent
instructionscan executeout-of-order. Resultsof instruc-
tions executedout-of-orderarecommittedto the architec-
tural statein programorder. In otherwords,althoughin-
structionswithin thewindow executeout-of-order, thewin-
dow entriesaremanagedasaFIFOwhereinstructionsenter
anddepartin programorder.

Theabovesimplifieddesignassumesthatall instructions
in thewindow canbeexaminedandselectedfor execution.
Wenotethatit is possibleto separatetheFIFOmanagement
(active list or reorderbuffer) from the independentinstruc-
tion identification(issuequeue)as describedbelow. Re-
gardless,thereis a conflict betweenincreasingthewindow

(issuequeue)size to exposemore ILP andkeepingclock
cycle time low by using small structures[1, 22]. Histor-
ically, smallerwindows have dominateddesignsresulting
in higherclock rates. Unfortunately, a small window can
quickly fill up whenthereis a long latency operation.

In particular, consideralonglatency cachemissserviced
from main memory. This latency canbe so large, that by
the time the load reachestheheadof the window, thedata
still hasnot arrivedfrom memory. Unfortunately, this sig-
nificantlydegradesperformancesincethewindow doesnot
containany executinginstructions:instructionsin theload’s
dependencechainarestalled,andinstructionsindependent
of theloadarefinished,waitingto commitin programorder.
Theonly way to makeprogressis to bring new instructions
into thewindow. Thiscanbeaccomplishedbyusingalarger
window.

2.2 Limit Study

Theremainderof thissectionevaluatestheeffectof win-
dow size on programperformance,ignoring clock cycle
time effects. Thegoal is to determinethepotentialperfor-
manceimprovementthatcouldbeachievedby largeinstruc-
tion windows. Webegin with adescriptionof ourprocessor
model.This is followedby a shortdiscussionof its perfor-
mancefor variousinstructionwindow sizes.

2.2.1 Methodology

For thisstudy, weuseamodifiedversionof SimpleScalar
(version 3.0b) [8] with the SPEC CPU2000 [17] and
Olden[11] benchmarksuites.Our SPECCPU2000bench-
marks are pre-compiledbinariesobtainedfrom the Sim-
pleScalardevelopers[33] thatweregeneratedwith compiler
flagsassuggestedat www.spec.org andtheOldenbinaries
were generatedwith the Alpha compiler (cc) using opti-
mizationflag -O2. TheSPECbenchmarksoperateon their
referencedatasetsandfor the subsetof the Oldenbench-
marksweuse,theinputsare:em3d 20,000nodes,arity 10;
mst 1024nodes;perimeter 4Kx4K image;treeadd
20 levels. We omit several benchmarkseitherbecausethe
L1 datacachemiss ratiosarebelow 1% or their IPCsare
unreasonablylow (health andammp areboth lessthan
0.1) for ourbaseconfiguration.

Our processordesign is loosely basedon the Alpha
21264microarchitecture [12, 14, 19]. We usethe same
seven stagepipeline, including speculative load execution
andload-storewait prediction. We do not modelthe clus-
tereddesignof the21264.Instead,weassumeasingleinte-
gerissuequeuethatcanissueup to 8 instructionspercycle
andasinglefloatingpoint issuequeuethatcanissueupto 4
instructionsper cycle. Table1 lists the variousparameters
for our basemachine. Note that both integer andfloating



Active List 128,128Int Regs,128FPRegs
Load/StoreQueue 64Load,64 Store
IssueQueue 32 Integer, 32FloatingPoint
IssueWidth 12 (8 Integer, 4 FloatingPoint)
DecodeWidth 8
CommitWidth 8
InstructionFetchQueue 8
FunctionalUnits 8 integerALUs (1-cycle),

2 integermultipliers(7-cycle),
4 FPadders(4-cycle),
2 FPmultipliers(4-cycle),
2 FP dividers(nonpipelined,12-
cycle), 2 FP squareroot units
(nonpipelined,24-cycle)

BranchPrediction Bimodal & two-level adaptive
combined,with speculative up-
date, 2-cycle penalty for direct
jumpsmissedin BTB, 9-cyclefor
others

Store-Wait Table 2048 entries,bits clearedevery
32768cycles

L1 DataCache 32KB, 4 Way
L1 Inst Cache 32KB, 4 Way
L1 Latency 2 Cycles
L2 Unified Cache 256KB, 4 Way
L2 Latency 10Cycles
MemoryLatency 250Cycles
TLB 128-entry, 4-way associative,

4 KB pagesize,30-cyclepenalty

Table 1. Base Configuration

point registerfiles areaslargeastheactive list. For there-
mainderof this paperwe statea singlevaluefor theactive
list/registerfile size, this valueappliesto both the integer
andfloatingpoint registerfiles.

The simulatorwasmodified to supportspeculative up-
dateof branchhistorywith history-basedfixup andreturn-
address-stackrepairwith thepointer-and-datafixup mecha-
nism[26, 27]. We alsomodifiedthesimulatorto warmup
theinstructionanddatacachesduringaninitial fastforward
phase.For theSPECbenchmarksweskipthefirst four hun-
dredmillion instructions,andthenexecutethenext onehun-
dredmillion instructionswith thedetailedperformancesim-
ulator. The Oldenbenchmarksexecutefor 400M instruc-
tionsor until completion.Thisapproachis usedthroughout
this paper. We notethatour resultsarequalitatively similar
whenusingadifferentinstructionexecutionwindow [24].

2.2.2 Varying Window Size

We performedsimulationsvaryingthe issuequeuesize,
from 32 (the base)in powersof 2, up to 4096. For issue
queuesizesof 32, 64, and128we keeptheactive list fixed
at 128 entries. For the remainingconfigurations,the ac-

tive list, register files and issuequeueare all equalsize.
The load and storequeuesare always set to one half the
active list size,andaretheonly limit on thenumberof out-
standingrequestsunlessotherwisestated.Figure1 shows
thecommittedinstructionspercycle (IPC) of variouswin-
dow sizesnormalizedto the base32-entry configuration
( �����	�	
��
�������������������
����� �"! ) for theSPECinteger, float-
ing point,andOldenbenchmarks.AbsoluteIPC valuesfor
the basemachineareprovided in Section4, the goal here
is to examinethe relative effectsof larger instructionwin-
dows.

Thesesimulationsshow thereis an initial boost in the
IPCaswindow sizeincreases,up to 2K, for all threesetsof
benchmarks.With theexceptionof mst, theeffectplateaus
beyond2K entries,with IPC increasingonly slightly. This
matchesour intuition sinceduringa 250cycle memoryla-
tency 2000instructionscanbefetchedin our8-wayproces-
sor. Larger instructionwindows beyond 2K provide only
minimal benefits.Many floatingpoint benchmarksachieve
speedupsover 2, with art achieving a speedupover 5 for
the 2K window. This speedupis becausethe larger win-
dow canunroll loopsmany times,allowing overlapof many
cachemisses.A similar phenomenonoccursfor mst.

Theabove resultsmotivatethedesireto createlarge in-
structionwindows. The challengefor architectsis to ac-
complish this without significant impact on clock cycle
time. Thenext sectionpresentsourproposedsolution.

3 A Lar geWindow Design

Thissectionpresentsour techniquefor providing a large
instruction window while maintaining the advantagesof
small structureson the critical path. We begin with an
overview to convey the intuition behindthe design. This
is followed by a detaileddescriptionof our particularde-
sign. We concludethis sectionwith a discussionof various
designissuesandalternative implementations.

3.1 Overview

In our basemicroarchitecture,only thoseinstructionsin
the issuequeueareexaminedfor potentialexecution. The
activelist hasalargernumberof entriesthantheissuequeue
(128 vs. 32), allowing completedbut not yet committed
instructionsto releasetheir issuequeueentries. Sincethe
active list is not on the critical path [4], we assumethat
we canincreaseits sizewithout affectingclock cycle time.
Nonetheless,in thefaceof longlatency operations,theissue
queuecouldfill with instructionswaiting for theiroperands
andstall furtherexecution.

We make theobservationthat instructionsdependenton
long latency operationscannotexecuteuntil the long la-
tency operationcompletesandthusdonotneedto beexam-
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Figure 1. Large Windo w Performance

inedby thewakeup-selectlogiconthecritical path.Wenote
this sameobservationis exploitedby Palacharla,et. al [22]
andtheir techniqueof examiningonly theheadof theissue
queues.However, thegoalof our designis to removethese
waiting instructionsfrom theissuequeueandplacethemin
a waiting instructionbuffer (WIB). Whenthe long latency
operationcompletes,the instructionsaremoved back into
the issuequeuefor execution. In this design,instructions
remainin theissuequeuefor avery shorttime. They either
executeproperlyor they areremoveddueto dependenceon
a long latency operation.

For this paperwe focus specificallyon instructionsin
thedependencechainof load cachemisses.However, we
believe our techniquecould be extendedto other typesof

long latency operations. Figure 2 shows the pipeline for
a WIB-basedmicroarchitecture,basedon the 21264with
two-level registerfiles (describedlater).

The fetch stageincludesthe I-cache,branchprediction
andthe instructionfetch queue. The slot stagedirectsin-
structionsto the integeror floatingpoint pipelinebasedon
their type.Theinstructionsthengo throughregisterrename
beforeenteringthe issuequeue. Instructionsare selected
from theissuequeueeitherto proceedwith theregisterread,
executionandmemory/writebackstagesor to moveinto the
WIB during the registerreadstage.Oncein the WIB, in-
structionswait for thespecificcachemissthey dependonto
complete.Whenthis occurs,the instructionsarereinserted
into the issuequeueandrepeatthe wakeup-selectprocess,
possiblymoving backinto theWIB if they aredependenton
anothercachemiss.Theremainderof this sectionprovides
detailson WIB operationandorganization.

3.2 DetectingDependentInstructions

An importantcomponentof our designis the ability to
identify all instructionsin the dependencechainof a load
cachemiss. To achieve this we leveragethe existing issue
queuewakeup-selectlogic. Under normal execution,the
wakeup-selectlogic determinesif aninstructionis readyfor
execution(i.e., hasall its operandsavailable)andselectsa
subsetof thereadyinstructionsaccordingto theissuecon-
straints(e.g.,structuralhazardsor ageof instructions).

To leveragethis logic we add an additional signal—
called the wait bit—that indicates the particular source
operand(i.e., input registervalue)is “pretendready”. This
signal is very similar to the readybit usedto synchronize
truedependencies.It differsonly in thatit is usedto indicate
theparticularsourceoperandwill notbeavailablefor anex-
tendedperiodof time. An instructionis consideredpretend
readyif oneor moreof its operandsarepretendreadyand
all theotheroperandsaretruly ready. Pretendreadyinstruc-
tionsparticipatein thenormalissuerequestasif they were
truly ready. Whenit is issued,insteadof beingsentto the
functional unit, the pretendreadyinstructionis placedin
theWIB andits issuequeueentry is subsequentlyfreedby
theissuelogic asthoughit actuallyexecuted.We notethat
a potentialoptimizationto our schemewould consideran
instructionpretendreadyassoonasoneof its operandsis
pretendready. Thiswouldallow instructionsto bemovedto
theWIB earlier, thusfurtherreducingpressureon theissue
queueresources.

In our implementation,thewait bit of a physicalregister
is initially setby a loadcachemiss.Dependentinstructions
observethiswait bit, areremovedfrom theissuequeue,and
set the wait bit of their destinationregisters. This causes
their dependentinstructionsto be removed from the issue
queueand set the correspondingwait bits of their result
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registers. Therefore,all instructionsdirectly or indirectly
dependenton the loadareidentifiedandremovedfrom the
issuequeue. The load misssignal is alreadygeneratedin
the Alpha 21264sinceload instructionsare speculatively
assumedto hit in thecacheallowing theloadanddependent
instructionsto executein consecutivecycles.In thecaseof
a cachemiss in the Alpha, the dependentinstructionsare
retainedin theissuequeueuntil the loadcompletes.In our
case,theseinstructionsmoveto theWIB.

An instruction might enter the issue queueafter the
instructionsproducingits operandshave exited the issue
queue. The producerinstructionscould have either exe-
cutedproperlyandthe sourceoperandis availableor they
couldbe in theWIB andthis instructionshouldeventually
be moved to the WIB. Therefore,wait bits mustbe avail-
ablewherever conventionalreadybits areavailable. In this
case,during registerrename.Note that it may be possible
to steerinstructionsto theWIB after the renamestageand
beforethe issuestage,we plan to investigatethis asfuture
work. Our currentdesigndoesnot implementthis, instead
eachinstructionenterstheissuequeueandthenis movedto
theWIB if necessary.

3.3 The Waiting Instruction Buffer

The WIB containsall instructionsdirectly or indirectly
dependentonaloadcachemiss.TheWIB mustbedesigned
to satisfyseveral importantcriteria. First, it mustcontain
anddifferentiatebetweenthedependentinstructionsof in-
dividualoutstandingloads.Second,it mustallow individual
instructionsto bedependenton multiple outstandingloads.
Finally, it mustpermitfast“squashing”whenabranchmis-
predictor exceptionoccurs.

To satisfy theserequirements,we designedthe WIB to
operatein conjunctionwith the active list. Every instruc-
tion in the active list is allocatedan entry in the WIB. Al-
thoughthis may allocateentriesin the WIB that arenever
dependentonaloadmiss,it simplifiessquashingonmispre-
dicts.Wheneveractivelist entriesareaddedor removed,the
correspondingoperationsareperformedon the WIB. This
meansWIB entriesareallocatedin programorder.

To link WIB entriesto load misseswe usea bit-vector
to indicatewhich WIB locationsare dependenton a spe-
cific load. Whenan instructionis moved to the WIB, the
appropriatebit is set.Thebit-vectorsarearrangedin a two
dimensionalarray. Eachcolumnis thebit-vectorfor a load
cachemiss. Bit-vectorsareallocatedwhena load miss is
detected,thereforefor eachoutstandingloadmisswestorea
pointerto itscorrespondingbit-vector. Notethatthenumber
of bit-vectorsis boundedby thenumberof outstandingload
misses. However, it is possibleto have fewer bit-vectors
thanoutstandingmisses.

To link instructionswith aspecificload,weaugmentthe
operandwait bitswith anindex into thebit-vectortablecor-
respondingto theloadcachemissthis instructionis depen-
denton. In the casewherean instructionis dependenton
multiple outstandingloads,we usea simplefixedordering
policy to examinethe sourceoperandwait bits and store
the instructionin the WIB with the first outstandingload
encountered.This requirespropagatingthe bit-vector in-
dex with the wait bits as describedabove. It is possible
to storethe bit-vector index in the physicalregister, since
that spaceis available. However, this requiresinstructions
thataremovedinto theWIB to consumeregisterports. To
reduceregisterpressurewe assumethe bit-vectorindex is
storedin aseparatestructurewith thewait bits.



Instructionsin theWIB arereinsertedin theissuequeue
when the correspondingload miss is resolved. Reinser-
tion sharesthesamebandwidth(in our case,8 instructions
percycle) with thosenewly arrivedinstructionsthatarede-
codedanddispatchedto theissuequeue.Thedispatchlogic
is modified to give priority to the instructionsreinserted
from theWIB to ensureforwardprogress.

Note that someof the instructionsreinsertedin the is-
suequeueby thecompletionof oneloadmaybedependent
on anotheroutstandingload. Theissuequeuelogic detects
thatoneof theinstruction’s remainingoperandsis unavail-
able, due to a load miss, in the sameway it detectedthe
first loaddependence.The instructionthensetsthe appro-
priatebit in thenew load’s bit-vector, andis removedfrom
the issuequeue.This is a fundamentaldifferencebetween
the WIB andsimply scalingthe issuequeueto larger en-
tries. Thelargerqueueissuesinstructionsonly once,when
all their operandsareavailable. In contrast,our technique
couldmoveaninstructionbetweentheissuequeueandWIB
many times.In theworstcase,all active instructionsarede-
pendenton a single outstandingload. This requireseach
bit-vectorto cover theentireactive list.

The numberof entriesin the WIB is determinedby the
sizeof the active list. The analysisin Section2 indicates
that 2048entriesis a goodwindow sizeto achieve signif-
icant speedups.Therefore,initially we assumea 2K-entry
active list and1K-entry load andstorequeues.Assuming
eachWIB entry is 8 bytesthen the total WIB capacityis
16KB. The bit-vectorscan also consumea greatdeal of
storage,but it is limited by the numberof outstandingre-
questssupported.Section4 explorestheimpactof limiting
thenumberof bit-vectorsbelow theloadqueuesize.

3.3.1 WIB Organization

We assumea bankedWIB organizationandthatonein-
structioncan be extractedfrom eachbank every two cy-
cles.Thesetwo cyclesincludedeterminingtheappropriate
instructionandreadingthe appropriateWIB entry. There
is a fixed instructionwidth betweenthe WIB and the is-
suequeue.We setthenumberof banksequalto twice this
width. Therefore,we cansustainreinsertionat full band-
width by readinginstructionsfrom theWIB’sevenbanksin
onecycle andfrom oddbanksin thenext cycle, if enough
instructionsareeligible in eachsetof banks.

Recall, WIB entriesare allocatedin programorder in
conjunctionwith active list entries. We performthis allo-
cationusing round-robinacrossthe banks,interleaving at
the individual instructiongranularity. Therefore,entriesin
eachbank are also allocatedand releasedin programor-
der, andwe canpartition eachload’s bit-vectoraccording
to which bank the bits map to. In our case,a 2K entry
WIB with a dispatchwidth to the issuequeueof 8 would

have16 bankswith 128entrieseach.Eachbankalsostores
its local headandtail pointersto reflectprogramorderof
instructionswithin the bank. Figure 3 shows the internal
organizationof theWIB.

During a readaccesseachbank in a set (even or odd)
operatesindependentlyto selectan instructionto reinsert
to the issuequeueby examining the appropriate128 bits
from eachcompletedload. For eachbankwe createa sin-
gle bit-vector that is the logical OR of the bit-vectorsfor
all completedloads.Theresultingbit-vectoris examinedto
selecttheoldestactive instructionin programorder. There
are many possiblepolicies for selectinginstructions. We
examinea few simplepolicieslater in this paper, but leave
investigationof moresophisticatedpolicies(e.g.,dataflow
graphorderor critical path [15]) asfuture work. Regard-
lessof selectionpolicy, the result is thatonebit out of the
128is set,which canthendirectly enabletheoutputof the
correspondingWIB entry without the needto encodethen
decodetheWIB index. Theprocessis repeatedwith anup-
datedbit-vectorthatclearstheWIB entryfor theaccessjust
completedandmayincludenew eligible instructionsif an-
otherloadmisscompletedduringtheaccess.

The above policiesaresimilar to the selectpoliciesim-
plementedby theissuequeuelogic. This highlightsanim-
portantdifferencebetweentheWIB anda conventionalis-
suequeue. A conventional issuequeuerequireswakeup
logic that broadcastsa register specifier to each entry.
TheWIB eliminatesthis broadcastby usingthecompleted
loads’bit-vectorsto establishthecandidateinstructionsfor
selection. The issuequeuerequiresthe register specifier
broadcastto maintaintrue dependencies.In contrast,the
WIB-basedarchitectureleveragesthe much smaller issue
queuefor this taskandtheWIB canselectinstructionsfor
reinsertionin any order.

It is possiblethat therearenot enoughissuequeueen-
tries available to consumeall instructionsextractedfrom
theWIB. In this case,oneor morebankswill stall for this
accessandwait for thenext access(two cycleslater) to at-
temptreinsertingits instruction.To avoid potentiallivelock,
on eachaccesswe changethe startingbankfor allocating
theavailableissuequeueslots.Furthermore,abankremains
at thehighestpriority if it hasan instructionto reinsertbut
wasnot ableto. A bankis assignedthe lowestpriority if it
insertsaninstructionor doesnothaveaninstructionto rein-
sert. Livelockcouldoccurin a fixedpriority schemesince
theinstructionsin thehighestpriority bankcouldbedepen-
dent on the instructionsin the lower priority bank. This
could producea continuousstreamof instructionsmoving
from theWIB to theissuequeuethenbackto theWIB since
their producinginstructionsarenot yet complete.Thepro-
ducinginstructionswill nevercompletesincethey arein the
lower priority bank.Althoughthis scenarioseemsunlikely
it did occur in someof our benchmarksand thus we use
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round-robinpriority.

3.3.2 SquashingWIB Entries

Squashinginstructionsrequiresclearingtheappropriate
bits in eachbit-vectorand resetingeachbanks’ local tail
pointer. The two-dimensionalbit-vectororganizationsim-
plifiesthebit-vectorclearoperationsinceit is appliedto the
samebits for every bit-vector. Recall,eachcolumncorre-
spondsto an outstandingload miss, thuswe canclear the
bits in therowsassociatedwith thesquashedinstructions.

3.4 RegisterFile Considerations

To supportmany in-flight instructions,thenumberof re-
nameregistersmustscaleproportionally. Thereareseveral
alternative designsfor large registerfiles, including multi-
cycleaccess,multi-level [13, 34], multiplebanks[5, 13], or
queue-baseddesigns[6]. In this paper, we usea two-level
registerfile [13, 34] that operateson principlessimilar to
thecachehierarchy. Simulationsof a multi-bankedregister
file show similar results.Furtherdetailson theregisterfile
designsandperformanceareavailableelsewhere[20].

3.5 Alter nativeWIB Designs

The above WIB organizationis oneof several alterna-
tives. Onealternative we consideredis a largenon-banked
multicycleWIB. Althoughit maybepossibleto pipelinethe
WIB access,it would not producea fully pipelinedaccess
andoursimulations(seeSection4) indicatepipeliningmay
notbenecessary.

Another alternative we consideredis a pool-of-blocks
structurefor implementingthe WIB. In this organziation,
whena load missesin the cacheit obtainsa free block to
buffer dependentinstructions. A pointer to this block is
storedwith the load in the load queue(LQ) andis usedto

depositdependentinstructionsin the WIB. Whenthe load
completes,all the instructionsin the block are reinserted
into theissuequeue.Eachblockcontainsafixednumberof
instructionslotsandeachslot holdsinformationequivalent
to issuequeueentries.

An importantdifferencein this approachcomparedto
the techniquewe useis that instructionsarestoredin de-
pendencechain order, and blocks may needto be linked
togetherto handleloadswith longdependencechains.This
complicatessquashingsincethereis no programorderas-
sociatedwith theWIB entries.Althoughwecouldmaintain
informationon programorder, thelist managementof each
load’s dependencechain becomestoo complex and time
consumingduring a squash. Although the bit-vector ap-
proachrequiresmorespace,it simplifiesthis management.
Thepool-of-blocksapproachhasthepotentialof deadlock
if therearenot enoughWIB entries.We arecontinuingto
investigatetechniquesto reducethe list managementover-
headandhandledeadlock.

3.6 Summary

TheWIB architectureeffectivelyenlargestheinstruction
window by removing instructionsdependenton loadcache
missesfrom theissuequeue,andretainingthemin theWIB
while themissesareserviced.In achieving this,weleverage
theexisting processorissuelogic without affectingthepro-
cessorcycle time andcircuit complexity. In theWIB archi-
tecture,instructionsstayin theissuequeueonly for a short
periodof time, thereforenew instructionscan be brought
into the instructionwindow muchmorerapidly thanin the
conventionalarchitectures.Thefundamentaldifferencebe-
tweena WIB designanda designthatsimply scalesup the
issuequeueis that scalingup the issuequeuesignificantly
complicatesthewakeuplogic, whichin turnaffectsthepro-
cessorcycle time [1, 22]. However, a WIB requiresa very
simple form of wakeuplogic asall the instructionsin the



dependencechain of a load miss are awakenedwhen the
missis resolved.Thereis no needto broadcastandhaveall
theinstructionsmonitortheresultbuses.

4 Evaluation

In this sectionwe evaluatethe WIB architecture. We
begin by presentingthe overall performanceof our WIB
designcomparedto a conventionalarchitecture.Next, we
explore the impactof variousdesignchoiceson WIB per-
formance. This includeslimiting the numberof available
bit-vectors,limited WIB capacity, policiesfor selectingin-
structionsfor reinsertioninto theissuequeue,andmulticy-
clenon-bankedWIB.

Thesesimulationsreveal that WIB-basedarchitectures
can increaseperformance,in termsof IPC, for our setof
benchmarksby anaverageof 20%,84%,and50%for SPEC
INT, SPECFP, andOlden,respectively. We alsofind that
limiting the numberof outstandingloads to 64 produces
similar improvementsfor theSPECINT andOldenbench-
marks,but reducestheaverageimprovementfor theSPEC
FP to 45%. A WIB capacityas low as 256 entrieswith
a maximumof 64 outstandingloadsstill producesaverage
speedupsof 9%, 26%, and14% for the respective bench-
marksets.

4.1 Overall Performance

We begin by presentingthe overall performanceim-
provementin IPC relative to a processorwith a 32-entry
issuequeueandsinglecycle accessto 128registers,hence
a 128-entryactive list (32-IQ/128). Figure 4 shows the
speedups( ���������#�$�%�����&� �"! ) for various microarchitec-
tures.Althoughwe presentresultsfor an8-issueprocessor,
theoverall resultsarequalitatively similar for a4-issuepro-
cessor. TheWIB barcorrespondsto a 32-entryissuequeue
with our banked WIB organization,a 2K-entry active list,
and 2K registers,using a two-level register file with 128
registersin the first level, 4 readportsand4 write portsto
the pipelinedsecondlevel that hasa 4-cycle latency. As-
sumingthe 32-entryissuequeueand128 level one regis-
terssetthe clock cycle time, the WIB-baseddesignis ap-
proximatelyclockcycleequivalentto thebasearchitecture.
For theseexperimentsthenumberof outstandingloads(thus
bit-vectors)is not limited, weexplorethisparameterbelow.
Table2 shows theabsoluteIPC valuesfor thebaseconfig-
urationandour bankedWIB design,alongwith thebranch
directionpredictionrates,L1 datacachemissrates,andL2
unifiedcachelocalmissratesfor thebaseconfiguration.

For comparisonwe alsoincludetwo scaledversionsof
a conventionalmicroarchitecture.Both configurationsuse
a 2K-entry active list andsinglecycle accessto 2K regis-
ters.Oneretainsthe32-entryissuequeue(32-IQ/2K)while

Benchmark Base Branch DL1 UL2 Local WIB
IPC Dir Miss Miss IPC

Pred Ratio Ratio

bzip2 1.19 0.94 0.03 0.47 1.59
gcc 1.34 0.94 0.01 0.09 1.38
gzip 2.25 0.91 0.02 0.04 2.25
parser 0.83 0.95 0.04 0.22 0.95
perlbmk 0.96 0.99 0.01 0.28 0.95
vortex 1.52 0.99 0.01 0.06 1.68
vpr 0.49 0.90 0.04 0.41 0.86
HM 1.00 - - - 1.24

applu 4.17 0.98 0.10 0.26 4.28
art 0.42 0.96 0.35 0.73 1.64
facrec 1.47 0.99 0.05 0.48 3.02
galgel 1.92 0.98 0.07 0.26 3.97
mgrid 2.58 0.97 0.06 0.42 2.57
swim 2.41 1.00 0.21 0.27 3.98
wupwise 3.38 1.00 0.03 0.25 3.99
HM 1.42 - - - 3.02

em3d 2.28 0.99 0.02 0.16 2.27
mst 0.96 1.00 0.07 0.49 2.51
perimeter 1.00 0.93 0.04 0.38 1.16
treeadd 1.05 0.95 0.03 0.33 1.28
HM 1.17 - - - 1.61

Table 2. Benc hmark Performance Statistics

the otherscalesthe issuequeueto 2K entries(2K-IQ/2K).
Theseconfigurationshelp isolatethe issuequeuefrom the
active list and to provide an approximateupperboundon
ourexpectedperformance.

Fromtheresultsshown in Figure4, wemakethefollow-
ing observations.First, theWIB designproducesspeedups
over 10% for 12 of the 18 benchmarks. The average
speedupis 20%, 84%, and 50% for SPEC INT, SPEC
FP, andOlden, respectively. The harmonicmeanof IPCs
(shown in Table2) increasesfrom 1.0to 1.24for SPECINT,
from 1.42 to 3.02 for SPECFP, andfrom 1.17 to 1.61 for
Olden.

For mostprogramswith large speedupsfrom the large
2K issuequeue,theWIB designis ableto capturea signif-
icant fractionof theavailablespeedup.However, for a few
programsthe2K issuequeueproduceslargespeedupswhen
the WIB doesnot. mgrid is the most striking example
wheretheWIB doesnotproduceany speedupwhile the2K
issuequeueyieldsaspeedupof overtwo. Thisphenomenon
is a resultof theWIB recycling instructionsthroughtheis-
suequeue.Thisconsumesissuebandwidththatthe2K issue
queueusesonly for instructionsreadyto execute. As evi-
denceof this we track the numberof timesan instruction
is insertedinto theWIB. In thebankedimplementationthe
averagenumberof timesan instructionis insertedinto the
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Figure 4. WIB Performance

WIB is four with amaximumof 280.Investigationsof other
insertionpolicies(seebelow) reducesthesevaluesto anav-
erageinsertioncountof oneandamaximumof 9,producing
aspeedupof 17%.

We alsonotethatfor severalbenchmarksjust increasing
the active list producesnoticablespeedups,in somecases
evenoutperformingtheWIB. This indicatestheissuequeue
is not thebottleneckfor thesebenchmarks.However, over-
all the WIB significantly outperformsan increasedactive
list.

Due to the sizeof the WIB and larger registerfile, we
alsoevaluatedan alternative useof that spaceby doubling
thedatacachesizein thebaseconfigurationto 64KB. Sim-
ulation resultsreveal less than 2% improvementsin per-
formancefor all benchmarks,exceptvortex that shows
a 9% improvement,over the 32KB datacache,indicating
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theWIB maybea betteruseof this space.We explorethis
tradeoff morelaterin this section.

We also performedtwo sensitivity studiesby reducing
the memory latency from 250 cycles to 100 cycles and
by increasingthe unified L2 cacheto 1MB. The results
matchour expectations. The shortermemory latency re-
ducesWIB speedupsto averagesof 5%,30%,and17%for
the SPECINT, SPECFP, andOldenbenchmarks,respec-
tively. The larger L2 cachehasa smaller impact on the
speedupsachievedwith aWIB. Theaveragespeedupswere
5%,61%,and38%for theSPECINT, SPECFP, andOlden
benchmarks,respectively. The larger cachehasthe most
impacton the integerbenchmarks,which show a dramati-
cally reducedlocal L2 missratio (from anaverageof 22%
to 6%). Cachesexploit locality in the program’s reference
streamandcansometimesbe sufficiently large to capture
theprogram’sentireworking set. In contrast,theWIB can
exposeparallelismfor toleratinglatency in programswith
very largeworking setsor thatlack locality.

For the remainderof this paperwe presentonly the av-
erageresultsfor eachbenchmarksuite.Detailedresultsfor
eachbenchmarkareavailableelsewhere[20].

4.2 Limited Bit-Vectors

The numberof bit-vectorsis importantsinceeachbit-
vectormustmapthe entireWIB andthe arearequiredcan
becomeexcessive. To explore the effect of limited bit-
vectors(outstandingloads),we simulateda 2K-entryWIB
with 16,32,and64 bit-vectors.Figure5 shows theaverage
speedupsover the basemachine,including the 1024 bit-
vectorconfigurationfrom above. Theseresultsshow that
evenwith only 16 bit-vectorstheWIB canachieveaverage
speedupsof 16% for SPECINT, 26% for SPECFP, and
38% for the Oldenbenchmarks.The SPECFP programs
(particularlyart) areaffectedthemostby the limited bit-
vectorssincethey benefitfrom memorylevel parallelism.
With 64 bit-vectors(16KB) theWIB canachieve speedups
of 19%, 45%, and50% for the threesetsof benchmarks,
respectively.
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4.3 Limited WIB Capacity

ReducingWIB areaby limiting thenumberof bit-vectors
is certainly a useful optimization. However, further de-
creasesin requiredareacanbeachievedby usinga smaller
capacityWIB. This sectionexploresthe performanceim-
pact of reducingthe capacityof the WIB, active list and
registerfile.

Figure6 showstheaveragespeedupsfor WIB sizesrang-
ing from 128to 2048with bit-vectorslimited to 64. These
resultsshow that the 1024-entryWIB canachieve average
speedupsof 20%for theSPECINT, 44%for SPECFP, and
44%for Olden.This configurationrequiresonly 32KB ex-
tra space(8KB for WIB entries,8KB for bit-vectors,and
8KB for each1024-entryregisterfile). This is roughlyarea
equivalent to doubling the cachesize to 64KB. As stated
above, the 64KB L1 datacachedid not producenoticable
speedupsfor our benchmarks,andthe WIB is a betteruse
of thearea.

4.4 WIB to IssueQueueInstruction Selection

Our WIB designimplementsa specific policy for se-
lecting from eligible instructionsto reinsertinto the issue
queue. The currentpolicy choosesinstructionsfrom each
bank in programorder. Sincethe banksoperateindepen-
dentlyandon alternatecycles,they do not extract instruc-
tions in true programorder. To evaluatethe impactof in-
structionselectionpolicy we useanidealizedWIB thathas
singlecycle accesstime to theentirestructure.Within this
designwe evaluatethefollowing instructionselectionpoli-
cies: (1) the currentbanked scheme,(2) full programor-
derfrom amongeligible instructions,(3) roundrobinacross
completedloadswith eachload’s instructionsin program
order, and (4) all instructionsfrom the oldest completed
load.

Most programsshow very little changein performance
acrossselectionpolicies. mgrid is the only oneto show
significant improvements. As mentionedabove, mgrid
shows speedupsover the banked WIB of 17%, 17%, and
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13%for eachof thethreenew policies,respectively. These
speedupsaredueto betterschedulingof the actualdepen-
dencegraph. However, in somecasesthe schedulecanbe
worse. Threeprogramsshow slowdowns comparedto the
banked WIB for the oldest load policy (4): bzip 11%,
parser 15%,andfacerec 5%.

4.5 Non-BankedMulticycle WIB Access

We now explore thebenefitsof thebankedorganization
versusamulticyclenon-bankedWIB organization.Figure7
showstheaveragespeedupsfor thebankedandnon-banked
organizationsover the basearchitecture. Except the dif-
ferent WIB accesslatencies,the 4-cycle and6-cycle bars
bothassumea non-bankedWIB with instructionextraction
in full programorder. Theseresultsshow that the longer
WIB accessdelayproducesonly slightreductionsin perfor-
mancecomparedto thebankedscheme.This indicatesthat
we maybeableto implementmoresophisticatedselection
policiesandthatpipeliningWIB accessis not necessary.

5 RelatedWork

Our limit studyis similar to thatperformedby Skadron
et al. [28]. Their resultsshow that branchmispredictions
limit the benefitsof larger instructionwindows, thatbetter
branchpredictionandbetterinstructioncachebehavior have
synergisticeffects,andthatthebenefitsof largerinstruction
windowsandlargerdatacachestradeoff andhaveoverlap-
pingeffects.Theirsimulationassumesaverylarge8MB L2
cacheandmodelsa registerupdateunit (RUU) [29], which
is aunifiedactive list, issuequeue,andrenameregisterfile.
In their study, only instructionwindow sizesup to 256are
examined.

There hasbeenextensive researchon architecturede-
signsfor supportinglargeinstructionwindows. In themul-
tiscalar [30] and traceprocessors[23], one large central-
izedinstructionwindow is distributedinto smallerwindows
among multiple parallel processingelements. Dynamic
multithreadingprocessors[2] dealwith thecomplexity of a



largewindow by employing a hierarchyof instructionwin-
dows. Clusteringprovidesanotherapproach,wherea col-
lection of small windows with associatedfunctional units
is usedto approximatea wider anddeeperinstructionwin-
dow [22].

Recentresearch[7, 18] investigatesissuelogic designs
that attemp to support large instruction windows with-
out impedingimprovementson clock rates. Michaudand
Seznec[21] exploit theobservationthatinstructionsdepen-
dent on long latency operationsunnecessarilyoccupy is-
suequeuespacefor a long time, andaddressthis problem
by preschedulinginstructionsbasedon datadependencies.
Otherdependence-basedissuequeuedesignsarestudiedin
[9, 10, 22]. Zilles et al. [35] andBalasubramonianet al. [4]
attacktheproblemcausedby longlatency operationsby uti-
lizing a future threadthat can usea portion of the issue
queueslotsandphysicalregistersto conductprecomputa-
tion. As powerconsumptionhasbecomeanimportantcon-
siderationin processordesign,researchershavealsostudied
low power instructionwindow design[3, 16].

6 Conclusion

Two importantcomponentsof overallexecutiontimeare
the clock cycle time and the numberof instructionscom-
mitted per cycle (IPC). High clock ratescan be achieved
by usinga small instructionwindow, but this canlimit IPC
by reducingtheability to identify independentinstructions.
This tensionbetweenlarge instructionwindows andshort
clock cycle timesis an importantaspectin modernproces-
sordesign.

This paperpresentsa new techniquefor achieving the
latency toleranceof large windows while maintainingthe
high clock ratesof smallwindow designs.We accomplish
this by removing instructionsfrom the conventionalissue
queueif they aredirectly or indirectly dependenton a long
latency operation.Theseinstructionsareplacedinto await-
ing instructionbuffer (WIB) and reinsertedinto the issue
queuefor executionwhenthe long latency operationcom-
pletes.By moving theseinstructionsoutof thecritical path,
theirpreviouslyoccupiedissuequeueentriescanbefurther
utilized by theprocessorto look deepinto theprogramfor
more ILP. An importantdifferencebetweenthe WIB and
scaled-upconventionalissuequeuesis thattheWIB imple-
mentsa simplifiedform of wakeup-select.This is achieved
by allowing all instructionsin the dependencechainto be
consideredfor reinsertioninto theissuewindow. Compared
to the full wakeup-selectin conventionalissuequeues,the
WIB only requiresselectlogic for instructionreinsertion.

Simulationsof an 8-way processorwith a 32-entryis-
suequeuereveal thataddinga 2K-entryWIB canproduce
speedupsof 20%,84%,and50%for a subsetof theSPEC
CINT2000, SPECCFP2000,and Olden benchmarks,re-

spectively. We alsoexploreseveralWIB designparameters
and show that allocatingchip areafor the WIB produces
signifcantly higher speedupsthan using the sameareato
increasethe level one datacachecapacityfrom 32KB to
64KB.

Our future work includesinvestigatingthe potentialfor
executingthe instructionsfrom the WIB on a separateex-
ecutioncore,eithera conventionalcoreor perhapsa grid
processor[25]. The policy spacefor selectinginstructions
is an areaof current research. Finally, register file de-
signandmanagement(e.g.,virtual-physical,multi-banked,
multi-cycle,prefetchingin atwo-levelorganization)require
furtherinvestigation.
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