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Abstract

The unprecedented amount of data available today opens the door to many new ap-

plications in areas such as finance, scientific simulation, machine learning, etc. Many

such applications perform the same computations on different data, which are called

data-parallel. However, processing this enormous amount of data is challenging, es-

pecially in the post-Moore’s law era. Specialized accelerators are a promising solution

to meet the performance requirements of data-parallel applications. Among these

are graphics processing units (GPUs), as well as more application-specific solutions.

One of the areas with high performance requirements is statistical machine learn-

ing, which has widespread applications in various domains. These methods include

probabilistic algorithms, such as Markov Chain Monte-Carlo (MCMC), which rely

on generating random numbers from probability distributions. These algorithms are

computationally expensive on conventional processors, yet their statistical properties,

namely, interpretability and uncertainty quantification compared to deep learning,

make them an attractive alternative approach. Therefore, hardware specialization

can be adopted to address the shortcomings of conventional processors in running

these applications.

In addition to hardware techniques, probabilistic algorithms can benefit from

algorithmic optimizations that aim to avoid performing unnecessary work. To be

more specific, we can skip a random variable (RV) whose probability distribution

function (PDF) is concentrated on only one value, i.e., there is only one value to
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choose, and the values of its neighboring RVs have not changed. In other words, if

a RV has a concentrated PDF, its PDF will remain concentrated until at least one

of its neighbors changes. Due to their high throughput and centralized scheduling

mechanism, GPUs are a suitable target for this optimization.

Other than probabilistic algorithms, GPUs can be utilized to accelerate a va-

riety of applications. GPUs with their Single-Instruction Multiple-Thread (SIMT)

execution model offer massive parallelism that is combined with a relative ease of

programming. The large amount and diversity of resources on the GPU is intended

to ensure applications with different characteristics can achieve high performance,

but at the same time it means that some of these resources will remain under-utilized,

which is inefficient in a multi-tenant environment.

In this dissertation, we propose and evaluate solutions to the challenges mentioned

above, namely i) accelerating probabilistic algorithms with uncertainty quantifica-

tion, ii) optimizing probabilistic algorithms on GPUs to avoid unnecessary work, and

iii) increasing resource utilization of GPUs in multi-tenant environments.
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1

Introduction

Today there is more data available than ever before. This unprecedented amount of

data opens the door to many new applications in areas such as finance [26], scientific

simulation [28], machine learning [57], etc. Many such applications perform the same

computations on different data, which are called data-parallel. However, processing

this enormous amount of data is challenging, especially in the post-Moore’s law

era [92]. As a result, to address the shortcomings of general-purpose processors

in meeting the performance requirements of data-parallel applications, architects

have turned to specialized accelerators. Among these are graphics processing units

(GPUs), as well as more application-specific solutions.

One of the areas with high performance requirements is statistical machine learn-

ing, which has widespread applications in various domains [5, 12, 27, 37, 38, 54,

63, 64, 88]. These methods include probabilistic algorithms, such as Markov Chain

Monte-Carlo (MCMC), which rely on generating random numbers from probability

distributions. These algorithms are computationally expensive on conventional pro-

cessors, yet their statistical properties, namely, interpretability and uncertainty quan-

tification compared to deep learning, make them an attractive alternative approach.
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Therefore, hardware specialization can be adopted to address the shortcomings of

conventional processors in running these applications.

In addition to hardware techniques, probabilistic algorithms can benefit from

algorithmic optimizations that aim to avoid performing unnecessary work. These

algorithms operate in two modes, sampling and optimization, which provide either

the distribution of the result (sampling) or more quickly converge to the final result

(optimization). In the optimization mode, most Random Variables (RVs) tend to not

change labels very often, and the adoption of approximation techniques makes this

more likely to happen. Therefore, we can detect this scenario and further speedup

the application by skipping the computations for those RVs. To be more specific, we

can skip a random variable (RV) whose probability distribution function (PDF) is

concentrated on only one value, i.e., there is only one value to choose, and the values

of its neighboring RVs have not changed. In other words, if a RV has a concentrated

PDF, its PDF will remain concentrated until at least one of its neighbors changes.

Due to their high throughput and centralized scheduling mechanism, GPUs are a

suitable target for this optimization.

Other than probabilistic algorithms, GPUs can be utilized to accelerate a va-

riety of applications. GPUs with their Single-Instruction Multiple-Thread (SIMT)

execution model offer massive parallelism that is combined with relative ease of pro-

gramming. They provide thousands of simple cores, register files, and a memory

system that is designed to hide latency with high throughput achieved by executing

many threads concurrently. The large amount and diversity of resources on the GPU

is intended to ensure applications with different characteristics can achieve high per-

formance, but at the same time it means that some of these resources will remain

under-utilized. Moreover, the trend in moving toward cloud computing and multi-

tenant environments where infrastructure is shared among multiple applications am-

plifies the inefficiency of leaving resources under-utilized, and further highlights the
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importance of better resource utilization.

In the remainder of this chapter, we briefly introduce our proposed solutions to

the challenges mentioned above, namely i) accelerating probabilistic algorithms with

uncertainty quantification, ii) optimizing probabilistic algorithms on GPUs to avoid

unnecessary work, and iii) increasing resource utilization of GPUs in multi-tenant

environments.

1.1 Accelerating Markov Random Field Inference with Uncertainty
Quantification

A Markov Random Field (MRF) is a powerful graphical model for representing a wide

range of applications in statistical machine learning. A MRF encodes the conditional

dependence among random variables (RVs). One approach to solving problems rep-

resented by a MRF is using probabilistic algorithms such as Gibbs sampling. These

methods go through all RVs in the MRF and update them iteratively.

We propose a high-throughput accelerator for MRF inference using Gibbs sam-

pling. We design a tiled architecture that takes advantage of near-memory computing

and memory banking and communication schemes tailored to the semantics of MRF.

Additionally, we propose a hybrid on-chip/off-chip memory system to efficiently sup-

port uncertainty quantification. We implement an FPGA prototype of our proposed

architecture using high-level synthesis tools and achieve 146MHz frequency for an ac-

celerator with 32 function units on an Intel Arria 10 FPGA. Compared to prior work

on FPGA, our accelerator achieves 26ˆ speedup. ASIC analysis in 15nm technology

node shows that our design with 2048 function units running at 3GHz outperforms

GPU implementations of motion estimation and stereo vision run on Nvidia RTX

2080 Ti by 135ˆ and 158ˆ, respectively, while occupying only 7.7% of the area.
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1.2 Optimizing Markov Random Field Inference via Event-driven Gibbs
Sampling on GPUs

Probabilistic algorithms such as Gibbs sampling operate in two modes of sampling

and optimization, which provide either the distribution of the result (sampling) or

more quickly converge to the final result (optimization). We build on three observa-

tions in the optimization mode to skip updating RVs that cannot change their label

during the current iteration, hence avoiding unnecessary work: i) after the warm-up

period, most RVs tend to not change labels very often, ii) an RV can only change its

label if either it has a non-concentrated probability distribution function (PDF), or

at least one of the RVs on which it is conditionally dependent has changed its label,

and iii) approximation techniques make it increasingly likely that RVs have concen-

trated PDFs. Therefore, we introduce Event-Driven Gibbs Sampling (EDGS), which

only updates RVs when necessary. Our analysis shows that 26.3%-30.3% speedup

can be gained for two applications, motion estimation and stereo vision on a GPU

compared to a baseline that does not take advantage of EDGS. However, for image

segmentation, the overheads of our approach are higher than its benefits. In addi-

tion, our observations show that in the case of an application with a large number

of labels, the approximation technique used actually increases the output quality.

1.3 Adaptive Simultaneous Multi-tenancy for GPUs

GPUs are energy-efficient, massively parallel accelerators that are increasingly de-

ployed in multi-tenant environments such as datacenters for general-purpose com-

puting as well as graphics applications. Using GPUs in multi-tenant setups requires

an efficient and low-overhead method for sharing the device among multiple users

that improves system throughput while adapting to the changes in workload. This

requires mechanisms to control the resources allocated to each kernel, and an efficient
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policy to make decisions about this allocation.

We propose adaptive simultaneous multi-tenancy to address these issues. Adap-

tive simultaneous multi-tenancy allows for sharing the GPU among multiple kernels,

as opposed to single kernel multi-tenancy that only runs one kernel on the GPU at

any given time and static simultaneous multi-tenancy that does not adapt to events

in the system. Our proposed system dynamically adjusts the kernels’ parameters at

run-time when a new kernel arrives or a running kernel ends. Evaluations using our

prototype implementation show that, compared to sequentially executing kernels,

the system throughput is improved by an average of 9.8% (and up to 22.4%) for

combinations of kernels that include at least one low-utilization kernel.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 presents the necessary

background on probabilistic algorithms and GPUs. Chapter 3 describes the design

of our proposed accelerator for MRF inference with Gibbs sampling, which supports

uncertainty quantification, along with the evaluation results on an FPGA prototype

and ASIC analysis. The proposed optimization for Gibbs sampling which detects

stable RVs and skips updating them is explained in Chapter 4. We implement and

evaluate this optimization on a GPU, but we also discuss the limitations of the

GPU execution model and provide results that demonstrate the full potential of our

proposed approach. In Chapter 5, we present and evaluate our multi-tenant system

for GPUs, in addition to the analysis of the effectiveness of the system under various

workload scenarios. Finally, the conclusion and future directions are discussed in

Chapter 6.
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2

Background

In this chapter, we first briefly explain MRF and probabilistic algorithms (Sections

2.1 and 2.2, respectively), and then present the background on GPU execution model

(Section 2.3).

2.1 Markov Random Field

A Markov Random Field (MRF) is an undirected graphical model for representing

the dependencies among a set of RVs, which satisfies the Markov property, i.e., the

future state of the process only depends on the current state and not any previous

 
while not converged { 
    foreach x in X { 
        compute label probabilities; 
        assign new label based on the probabilities; 
    } 
} 
 

Requires sampling from 
probability distributions 

𝐸𝑥 𝑙 = 𝛼𝐸𝑥𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 𝑙  

+𝛽𝐸𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 

𝑃𝑥 𝑙 = 𝑒−
𝐸𝑥 𝑙

𝑇  

Figure 2.1: Markov Chain Monte Carlo algorithm (left) for Markov Random Field (right) infer-
ence. Note that sampling is performed in the inner loop.
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states. A MRF can be used to represent a wide range of applications in statistical

machine learning. In this dissertation, we address problems that are represented by

a first-order MRF, but we expect most of the techniques to be applicable to other

types of MRF too, albeit after undergoing some modifications.

Figure 2.1 (right) illustrates an example first-order MRF model and its connection

with the Gibbs sampling algorithm. In the model, each RV depends on its four

immediate neighbors. Due to this structure, the first-order MRF model can be

divided into two regions so that all RVs in each region are conditionally independent.

This enables us to generate a chromatic schedule to update all RVs in each region in

parallel [29, 31, 46, 91].

2.2 Probabilistic Algorithms

Bayesian inference combines new evidence and prior beliefs to update the probability

estimate for a hypothesis. Consider D as the observed data and X as the latent

random variable. The prior distribution of X is ppXq and ppD | Xq is the probability

of observingD given a certain value ofX. In Bayesian inference, the goal is to retrieve

the posterior distribution ppX | Dq of the random variable X when D is observed.

As the dimensions of D and X increase, it often becomes difficult or intractable to

numerically derive the exact posterior distribution ppX | Dq.

One approach to solving these inference problems is to use probabilistic Markov

chain Monte-Carlo (MCMC) methods, e.g., Gibbs sampling [29], that converge to

an exact solution by iteratively generating samples for RVs. Figure 2.1 shows this

process. For each label l of RV x, we calculate an energy value using the singleton

data and neighbor labels (Explq). Singleton and neighborhood energies are weighted

by parameters α and β, which are application-specific. Having Explq, a probability

Pxplq is computed for each label using expp´Esplq{T q, in which T is a per iteration

parameter. Once all label probabilities are calculated, we sample from the cumulative
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distribution function (CDF) by generating a uniform random number and seeing

where it falls in the range of the CDF. The result is the new label for RV x in the

current iteration.

Gibbs sampling may be used in one of two modes: i) pure sampling, or ii) opti-

mization. The main difference between these two modes is that in pure sampling, the

parameter T is the same for all Gibbs sampling iterations, whereas in optimization

(simulated annealing), T gradually decreases to help faster convergence to the final

solution. A more detailed explanation of Gibbs sampling is provided elsewhere [29].

In practice, MCMC becomes inefficient for many problems that have high dimen-

sionality (i.e., many RVs) and complex structure. It can require many iterations

before convergence, and the inner loop in Figure 2.1 includes generating samples

from probability distributions, which is computationally expensive for conventional

processors [95]. Therefore, massively parallel platforms such as GPUs can be utilized

to address these shortcomings.

2.3 GPU Execution Model

GPUs are massively parallel accelerators that are composed of thousands of simple

cores. A large number of cores together with cache, shared memory, 1 register files,

and some other components form streaming multi-processors (SMs). All SMs share

a last level cache. Figures 2.2 and 2.3 show the architecture of an SM and the GPU.

Figure 2.4 illustrates the structure of a kernel. GPU kernels comprise a large num-

ber of threads that execute the same instructions on different data, hence the name

Single-Instruction-Multiple-Thread (SIMT). These threads are grouped together to

form thread blocks, and a set of thread blocks is called a grid. All thread blocks in

a grid have the same dimensions, and all threads of the same thread block can only

run on a single SM. A thread block is a logical notion that helps the programmers

1 Scratchpad memory in NVIDIA terminology is called shared memory.
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Figure 2.4: Kernel structure.

reason about their code. However, a limited number of thread blocks can fit on the

device at the same time. We separate these concepts and refer to the physical thread

blocks actually running on the GPU as concurrent thread arrays (CTAs). Note that

in some other works thread blocks and CTAs are used interchangeably.

When there are enough resources on an SM to host a waiting thread block,

the block scheduler dispatches that thread block to the available SM for execution.

If there are more than one SM with enough resources, the mapping happens in a

round-robin fashion. In each SM then, the warp scheduler dispatches ready warps to

execute instructions. A warp is the smallest group of threads that execute in lockstep

to reduce the overhead of instruction fetch and control flow. The programmer has no

control over the size of a warp. Once a thread block is mapped to an SM, it continues

execution until it finishes. In other words, there is no mechanism for preemption

or yielding resources (the Pascal [68] and Volta [70] architectures perform context

switching, but the programmer does not have control over the operation).
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3

Accelerating Markov Random Field Inference with
Uncertainty Quantification

Compared to Deep Neural Networks, probabilistic algorithms make it easier to gain

insight into why a result is obtained, and to what degree we can be certain about

the results. This can be achieved by quantifying the uncertainty of the result, which

is a valuable property of probabilistic algorithms, such as MCMC, and is of utmost

importance for some applications, such as many image segmentation applications

where quantifying the uncertainty in the segmentation boundaries is crucial (e.g.,

a surgeon’s decision to resect what sections of a tumor will be impacted by the

segmentation generated by an algorithm [16, 60]).

However, the benefits of MCMC come at a price. Since MCMC requires itera-

tively sampling from probability distributions, it is often computationally intensive.

This is due to the significant overhead of sampling in conventional processors [95].

Furthermore, MCMC at first appears to be a sequential algorithm because updat-

ing each random variable (RV) depends on the latest value of all other RVs, which

means that it may take a long time to finish. Deploying pseudo-random number
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generation can help reduce the sampling inefficiency [105]. To avoid the overhead of

serial execution, though, one can take advantage of the conditional independence of

RVs, i.e., develop a schedule which allows multiple independent RVs to be updated

in parallel [29, 31, 46, 91].

In this chapter, we propose an accelerator which builds on these ideas and

fuses them with architectural contributions that allow fast and efficient execution

of MCMC and minimize the overhead of uncertainty quantification. To be more

specific, we propose a tiled architecture to exploit near-memory computing, and the

parallelism exposed by taking advantage of the conditional independence of RVs in

the first-order Markov Random Field model. We develop memory banking and on-

chip communication schemes tailored to the semantics of the model to facilitate a

stall-free pipeline.

In addition to the tiled architecture for the accelerator, we propose a hybrid on-

chip/off-chip memory system to support uncertainty quantification by maintaining

a log of the values that RVs take on, called their labels, throughout the MCMC

execution. By carefully analyzing the behavior of two image analysis applications

[9, 53], we observe that most RVs take on a limited number of unique labels during

the execution, and thus, we design this memory system such that it strikes a balance

between on-chip memory capacity and off-chip communication bandwidth.

We implemented an FPGA prototype of our proposed design using Intel High-

Level Synthesis (HLS) compiler [40], and developed the necessary runtime to verify

and evaluate our implementation using real-world applications and input datasets.

The results show that our design achieves a clock rate of 146MHz and a throughput

of 4.672B labels/sec on an Arria 10 FPGA. This is a 26ˆ speedup over the previous

work [51]. We also perform ASIC analysis on our HLS implementation using Mentor

Graphics HLS Compiler [33] and show that an accelerator with 2048 function units

running at 3GHz in 15nm technology node [65] outperforms GPU implementations
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of motion estimation and stereo vision on an RTX 2080 Ti by 135ˆ and 158ˆ,

respectively.

3.1 Motivation

One approach to solving inference problems is to use probabilistic Markov chain

Monte-Carlo (MCMC) methods that converge to an exact solution by iteratively

generating samples for RVs (Figure 2.1). In practice, MCMC becomes inefficient for

many problems that have high dimensionality and complex structure. It can require

many iterations before convergence, and the inner loop in Figure 2.1 includes gener-

ating samples from probability distributions, which is computationally expensive for

conventional processors [95] and thus, a specialized accelerator is needed to address

these shortcomings.

3.1.1 Example Application: Motion Estimation

To shed more light on the details of the first-order MRF inference using MCMC

algorithm, we explain how first-order MRF can be utilized to represent the motion

estimation problem and how MCMC with Gibbs sampling can solve it [53]. The

goal is to estimate the 2-D motion vectors between two time-varying images, such

as two consecutive frames of a video. Figure 3.1 (top) shows a sample input for this

problem.

In this example, the target is to compute the motion vector of the pixel in the

center of the blue box in Figure 3.1 (bottom-left). To do so, the inner loop in Figure

2.1 must be executed, which includes computing the probability values according

to the equations in the figure. In the equations, Pxplq is the probability that RV x

takes on label l, Explq is the energy of label l which depends on the singleton and

neighborhood values, and α, β, and T are application parameters. Exsingleton
depends

on two types of singleton data: i) singleton 1, which is the gray-scale value of the pixel
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Frame t Frame t+1 

Singleton 1 Singleton 2 Labels 

Figure 3.1: Data access patterns for performing first-order MRF inference using MCMC to solve
motion estimation (dimetrodon from Middlebury database [6]).

itself, and ii) singleton 2, which is the gray-scale value of each of the pixels inside the

green box in Figure 3.1 (bottom-middle), which form a 7 ˆ 7 window surrounding

the aforementioned pixel corresponding to possible labels (in this application, each

motion vector) and come from frame t` 1. The pattern of singleton 2 is application

specific. Generally, for each RV, Exneighborhood
may depend on the latest labels of

all other RVs. However, for the first-order MRF model, Exneighborhood
is calculated

using the current labels of the top, down, left, and right neighbors of the pixel, the

shaded boxes shown in Figure 3.1 (bottom-right), each of which are motion vectors

themselves. This neighborhood pattern is fixed for the first-order MRF model. Once

the probabilities for all possible labels are calculated, they are used to create a

probability distribution function (PDF), which in turn is used for sampling and

determining the new label for the pixel.
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Figure 3.2: Cumulative distribution of pixels per number of unique labels in three input datasets
[6] for motion estimation.

This process must be repeated for all pixels in frame t for a certain number of

iterations (until the algorithm converges to the final solution) to obtain their motion

vectors. CMOS specialization and pseudo-random number generation can be used

to accelerate the computations required for updating each pixel. Previous work

proposes a function unit for this purpose [105], which is briefly reviewed in Section

3.3.2. Furthermore, the structure of the MRF model provides opportunities for

parallelism (explained in Section 3.3.3). However, there are challenges in realizing

this parallelism due to the memory access patterns which require careful memory

banking and access scheduling that are discussed in Sections 3.3.3 and 3.3.3.

3.1.2 Uncertainty Quantification

Probabilistic models and algorithms are “conceptually simple, compositional, and

interpretable” [30], and provide the opportunity to determine why a given result

is obtained. This is due to two reasons: i) models such as MRF inherently have

transparent structures, and ii) these algorithms allow for quantifying the uncertainty

to evaluate the confidence in the obtained result. Uncertainty quantification can be

achieved by collecting a histogram of the RV’s labels after the warm-up period of

the MCMC (i.e., the iterations at the beginning of the algorithm before mixing has
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happened), which can then be used to derive statistics such as mode, variance, etc.,

that illuminate the uncertainty associated with the final result. In the example of

image segmentation guiding a surgeon’s decision regarding tumor resection, if the

variance in the final result is high, then the surgeon might decide to remove a larger

section to be safe, without removing too much of the tissue.

However, näıvely storing these data imposes a significant memory capacity, band-

width, and processing overhead and therefore, a more scalable solution is required for

uncertainty quantification. Fortunately, there is an opportunity for optimization be-

cause after warm-up, the RVs tend to take on only a limited number of labels. Figure

3.2 illustrates this fact. In three input datasets [6] for motion estimation, which has

49 labels, at most only 14.7% of pixels take on more than two unique labels during

the second half of the iterations (i.e., iterations 1500-3000 in this experiment). This

allows for having a limited on-chip memory space to store more frequently picked

labels, and occasionally send the rest to the off-chip memory. Section 3.3.3 presents

a hybrid on-chip/off-chip memory system for collecting the histogram of labels based

on this analysis.

3.2 Design Overview and Challenges

The characteristics of MCMC and MRF, covered in Sections 2.2 and 3.1.1, guide our

design choices for the proposed accelerator. In this section, we provide an overview

of our design, the challenges we face, and our proposed solutions.

MCMC is an iterative algorithm in which the computations of each iteration

depend on those of the previous one (Section 2.2). Therefore, we decide to use on-chip

memory to store data and intermediate iteration results to avoid frequent costly off-

chip communication that uses up significant bandwidth and imposes high latencies.

Furthermore, due to the structure of the first-oder MRF, all computations are local,

i.e., updating RVs only needs data from nearby memory locations. Thus, we propose
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to use a tiled architecture where each tile has its own memory and is responsible for

computations on the portion of the graphical model stored in its memory. This allows

us to expose the existing parallelism in first-order MRF and take advantage of near-

memory computing, and eliminates the need for complex centralized coordination.

The tile’s architecture is discussed in detail in Section 3.3.3.

The proposed architecture needs a communication infrastructure to efficiently

transfer data among tiles when needed. Particularly, due to singleton 2’s application-

specific nature, designing such a communication infrastructure for it without sacri-

ficing flexibility can be challenging. We propose a topology and data mapping scheme

tailored to the first-order MRF characteristics, which together ensure no communica-

tion longer than one hop will be required, and therefore, the overheads of a full-blown

Network-on-Chip (NoC) are avoided. Although our design is tailored to the first-

order MRF neighborhood structure, it supports arbitrary accesses to the singleton 2

memory (S2Mem). In other words, our proposed topology and data mapping scheme

for singleton 2 do not limit the MRF applications the accelerator can run. Sections

3.3.4 and 3.3.5 explain the proposed network topology and data mapping schemes.

Different types of data are involved in the computations of the MRF model (i.e.,

read-only singletons and read-write labels) and unique access patterns to these data.

Thus, we dedicate separate memories to each data type.

Moreover, exposing the potential parallelism inherent in the model requires a

suitable scheduling technique that allows updating multiple conditionally indepen-

dent RVs simultaneously. We use known techniques to develop a chromatic schedule

of conditionally independent RVs that can be updated in parallel. The implication

of this scheduling technique is that in addition to the parallelism between tiles, we

can include more than one function unit in each tile to exploit intra-tile parallelism.

However, this introduces competing accesses to S2Mem. Furthermore, labels mem-

ory (LMem) must be accessed at four different locations for each RV. Therefore, we
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Figure 3.3: Overview of the proposed accelerator’s architecture. Communication between SPEs
is bi-directional, but between SPEs and DRAM hubs and among DRAM hubs is uni-directional.
The diagonal links between SPEs are only for communicating singleton 2 data, whereas the vertical
and horizontal links transfer both label data and singleton 2 data.

utilize memory banking mechanisms for each of S2Mem (Section 3.3.3) and LMem

(Section 3.3.3) to facilitate stall-free execution in tiles.

Finally, to support uncertainty quantification, we need to track how many times

a label is chosen for a given RV. A näıve implementation requires either i) having

enough counters on the chip to keep track of all possible labels for all RVs, which

is prohibitive in terms of area, or ii) sending the result of all label updates off chip,

which needs significant communication bandwidth. Because of the limited memory

capacity on the chip, and inspired by the insights from Figure 3.2, we design a hybrid

on-chip/off-chip memory system to store the histogram for RVs during the MCMC

iterations in the form of a log, which will be helpful for uncertainty quantification.

We augment LMem entries with counters that keep track of how many times each

label has been picked, and only transfer this information to off-chip memory when

necessary (Section 3.3.3).
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3.3 Stochastic Processing Accelerator

3.3.1 Overview

Our proposed architecture for accelerating first-order MRF inference using MCMC

with Gibbs sampling is presented in this section. Figure 3.3 shows an overview

of the accelerator’s architecture. It is composed of a number of computation tiles

or SPEs (Section 3.3.3), and DRAM hubs that route communication to the off-

chip DRAM. Each SPE is responsible for processing a portion of the input to take

advantage of near-memory computing and exploit the inherent parallelism of the

model. It comprises a number of Stochastic Processing Units (SPUs) [105], which

perform the main MCMC computations (Section 3.3.2), in addition to a scheduler

which sequences through RVs (Section 3.3.3), a portion of the singleton memories

(Section 3.3.3) and the label memory (Section 3.3.3), on which it performs the MCMC

updates, and communication components that transfer data between different SPEs

and between the accelerator and the off-chip DRAM that stores the histogram log

of the labels. Each SPE is connected to all its nearest SPEs and only communicates

with those (Section 3.3.4). To ensure that communications longer than one hop

are never required, appropriate data mapping and replication schemes are adopted,

which are handled by the runtime (Section 3.3.5).

Figure 3.3 shows an overview of the proposed accelerator’s architecture. It is com-

posed of a number of computation tiles or Stochastic Processing Elements (SPEs),

and DRAM hubs that route label histogram entries to the off-chip DRAM. Each

SPE is responsible for processing a portion of the input to take advantage of near-

memory computing and exploit the inherent parallelism of the model. It comprises a

number of Stochastic Processing Units (SPUs), which perform the main MCMC com-

putations (Section 3.3.2), in addition to a scheduler which sequences through RVs

(Section 3.3.3), a portion of the singleton memories (Section 3.3.3) and the label
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memory (Section 3.3.3), on which it performs the MCMC updates, and communica-

tion components that transfer data between different SPEs and between the acceler-

ator and the off-chip DRAM that stores the histogram log of the labels. Each SPE is

connected to all its nearest SPEs and only communicates with those SPEs (Section

3.3.4). To ensure that communications with SPEs more than one hop away are never

required, appropriate data mapping and data replication schemes are adopted which

are handled by the runtime (Section 3.3.5).

3.3.2 Stochastic Processing Unit

Zhang et al. propose a Gibbs sampling function unit, called Stochastic Process-

ing Unit (SPU), that utilizes specialization and pseudo-random number generation

to accelerate MCMC computations [105]. Figure 3.4 demonstrates the microarchi-

tecture of this function unit. It is composed of four main pipeline stages, namely,

energy computation (Equation 3.1), dynamic energy scaling (Equation 3.2), energy

to probability conversion (Equations 3.3 and 3.4), and sampling.

Eplq “ αEsingletonplq ` β
ÿ

Eneighborhood (3.1)

Esplq “ Eplq ´ Emin (3.2)

Psplq “ p2
Pbits ´ 1q ˆ expp´Esplq{T q (3.3)

Ptrplq “ t2tlog2 Psplquu (3.4)

Energy computation takes the singleton data and neighbor labels, all 6-bit values,

and computes the energy of a possible label, Eplq in Equation 3.1, where α and β are

application parameters. Next, Eplq is dynamically scaled by subtracting the mini-

mum energy of all labels from it to maximize the dynamic range. Energy values (raw

and scaled) are 8-bit unsigned integers. The scaled energy Esplq is then converted
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Figure 3.4: SPU microarchitecture, reproduced from [105].

to a scaled probability represented by a 4-bit unsigned integer. The original proba-

bility (real number in r0, 1s) is calculated using expp´Esplq{T q, in which T is a per

iteration parameter. To avoid using floating-point function units, though, the proba-

bility is scaled using Equation 3.3, and then truncated using Equation 3.4. Pbits “ 4

ensures the scaled probability is in r0, 16s, which allows for representing the number

using 4 bits. Afterward, Equation 3.4 approximates the scaled probabilities to the

nearest power of two. , i.e., Ptr P t0, 1, 2, 4, 8u. The possible values of Ptrplq can be

pre-computed and stored in a look-up table (LUT). These values must be updated

if T changes. The last stage generates a sample per RV based on all Ptrplq, where

L is the number of labels, using the least significant twelve bits of a 19-bit Linear

Feedback Shift Register (LFSR) to implement the inverse transform sampling. The

SPU’s throughput is one RV update per L cycles, if it receives the appropriate input

(i.e., neighborhood labels and singleton data) at every cycle. Our goal in Sections

3.3.3 and 3.3.4 is to design an architecture that ensures this condition is realized.

The SPU can be used in one of two modes: i) pure sampling, or ii) optimization.

The main difference between these two modes is that in pure sampling, the parameter

T is the same for all Gibbs sampling iterations, whereas in optimization (simulated

annealing), T gradually decreases to help faster convergence to a final solution [29].
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Figure 3.5: Architecture of an SPE with two SPUs. For the sake of clarity, non-local outgo-
ing communications from BMem, WMem, and S2Mem modules and incoming communications to
BMem Switches, WMem Switches, and S2Mem Switches have been omitted. BMem and WMem
send data to the BMem and WMem Switches in the top, down, left, and right neighbors. S2Mem
sends data to the S2Mem Switches in all the eight neighbors shown in Figure 3.3a.

The implication of this difference is that in pure sampling mode, when the algorithm

converges to a final solution, the estimated distribution of a RV can be generated by

collecting the histogram of the latest N samples. Since in this work we are interested

in the uncertainty quantification capability of MCMC, we only focus on the pure

sampling mode. However, the proposed accelerator can operate in optimization

mode as well.

3.3.3 Stochastic Processing Element

An SPE incorporates the components that carry out the operations needed to feed the

necessary data to SPUs every cycle and write back the result of their computations

to the LMem. These operations include sequencing through RVs and generating
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memory addresses corresponding to the singleton and neighborhood data, reading

the data at those addresses and passing them to the appropriate SPU, and writing

the results of the computations back to the correct addresses in LMem. Furthermore,

to maintain the histogram of labels, it might be necessary that while writing data

back to LMem, some data should be sent to the off-chip DRAM. Figure 3.5 shows the

SPE’s components and the interactions between them. The next section is dedicated

to describing the various components inside an SPE, followed by a more detailed

explanation of scheduling and different types of memory in the SPE.

Components

Scheduler: This component’s main job is to generate the update schedule and

coordinate the operations of most of the other components in an SPE. It interacts

with SPUs and various memory blocks, and its functionalities include sending the

SPUs some parameters including the T in MCMC equations in Figure 2.1, and other

information such as whether a pixel is on the boundary or whether it is a black

or a white pixel (to determine the destination of the computations result). It also

sends the computed addresses to different memory blocks, so that they can return

the requested data to the SPU.

Singleton 1 Memory: Denoted by S1Mem in Figure 3.5, it stores singleton 1

data as the name suggests, or in the example of motion estimation in Section 3.1.1,

the data in the blue box in Figure 3.1. It receives addresses from the Scheduler and

sends data to the SPUs once for every RV.

Singleton 2 Memory: Similar to S1Mem, it is referred to as S2Mem in Figure

3.5, and stores singleton 2 data (i.e., the data in the green box in Figure 3.1).

Because each singleton 2 corresponds to an individual label, as opposed to singleton

1 which is fixed for all labels of the same RV, S2Mem receives a base address from

the Scheduler, and computes addresses for the appropriate singleton 2 data point for
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each label by reading from an offset look-up table (LUT) populated by the runtime in

an application-by-application basis. For instance, in the case of motion estimation,

the LUT stores the offsets that define the 7ˆ 7 window shown in Figure 3.1. It then

sends that data to S2Mem Switches for every label. Since this data is needed for

every label at every SPU, it is required that multiple reads from different addresses

be issued at the same cycle. We address this problem by devising a banking scheme

that is described in Section 3.3.3. Both singleton memories are read-only, meaning

they get initialized in the beginning by the runtime and will never change throughout

the execution.

Singleton 2 Switch: These switches receive data from the appropriate S2Mem,

i.e., either the local S2Mem or one of the memories in one of the eight neighbors,

and send it to the SPUs they are connected to.

Label Memories: BMem and WMem in Figure 3.5, together form the LMem.

These memories store the results of the computations done by the SPUs. They

receive addresses from the Scheduler to send neighborhood data to the corresponding

switches, which in turn send those data to the SPUs. They also receive the new labels

from SPUs. Although neighborhood data is needed only once per RV, due to the

model’s structure, multiple reads must be issued simultaneously to provide the data

necessary for beginning the computations to the SPUs. We solve this problem by

banking the LMem and pipelining accesses to them. In addition to storing the labels

computed by the SPUs, LMem is also part of the hybrid on-chip/off-chip memory

system that stores the information required for generating the labels histogram.

LMem is explained in more detail in Section 3.3.3.

Label Switches: These switches are similar in functionality to S2Mem Switches,

i.e., they receive neighborhood data from the local LMem as well as the LMems in

the top, down, left, and right SPEs and pass them to their corresponding SPU.
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Updating Order and Inter-variable Parallelism

In general, MCMC is a sequential algorithm since updating each RV depends on the

latest value of all other RVs. However, as explained in Section 3.1.1, in the first-order

MRF model, each RV is only conditionally dependent on its top, down, left, and right

neighbors. This means there is an opportunity to develop a chromatic schedule for

updating conditionally independent variables in parallel and thus, significantly reduce

the execution time. For first-order MRF, this schedule is a simple checkerboard

scheme which divides the random field into a black (BMem) and a white (WMem)

subset, where all RVs in each subset are independent [31, 46, 51]. In our proposed

accelerator, the Scheduler in each SPE is responsible for generating this schedule.

The Scheduler first goes through all black RVs, then flushes the pipeline of all other

components, and repeats the same process for white RVs.

Another benefit of this chromatic schedule is that it puts restrictions on access

types to different parts of LMem, i.e., while black variables are being updated, there

will be no writes issued to WMem and vice versa. This allows for simplifying the

memory structure by dividing it into a black and a white region, knowing that the

Scheduler takes care of avoiding conflicting accesses to these regions.

Singleton Memory Structure for Multiple SPUs

According to the MCMC details explained in Section 3.1.1, there are potentially two

types of singleton data, both of which are stored in read-only memories: 1) singleton

1, which is always present and is required once for a RV, and 2) singleton 2, which,

if present, is required for each possible label a RV can take on. The implication of

singleton 2’s access pattern is that if we decide to have more than one SPU in an

SPE to amortize the area of the Scheduler and other control logic, servicing singleton

2 reads becomes a challenge. Figure 3.6a illustrates this problem with an example

of two SPUs in an SPE running in parallel. Multiple pieces of singleton 2 data at
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Figure 3.6: (a) An example of the singleton 2 access pattern for motion estimation in an SPE
with two SPUs. Boxes shaded in red and purple illustrate the singleton 2 window for RV V0, and
boxes shaded in purple and blue show that window for V1, and (b) the proposed banking scheme to
solve the multiple simultaneous accesses issue. Each color represents one bank. Locations denoted
by S00 and S01 must be accessed together, and so is the case for S480 and S481.

different addresses must be read at the same cycle. There are three possible solutions

to accommodate this access pattern:

1. S2Mem must support a read size larger than one singleton 2, and an interme-

diate register must handle the feeding of data to the appropriate SPU. This

option also allows exploiting the temporal locality of singleton 2, i.e., a piece

of data can be read once and used multiple times if it is required for multiple

RVs. However, determining when to issue new reads, shifting and moving data

around, and developing an update schedule that matches this design make it

complicated, particularly due to the application-specific patterns of singleton

2 accesses.

2. S2Mem must be a multi-port structure to be able to straightforwardly read

the required data from it. Nevertheless, multi-port memories are area- and

power-hungry and are generally not preferable [99]. This option also does not

take advantage of singleton 2’s temporal locality.

3. S2Mem must be divided into separate banks with only one port each, that are
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Figure 3.7: Memory banking scheme for white and black sections of LMem. Note that while
updating RVs in BMem, their neighbors are in WMem and vice versa.

accessed simultaneously. Similar to the previous solution, the drawback of this

design is that it too necessitates reading the same piece of data multiple times.

However, it allows for a simpler Scheduler and memory structure and therefore,

we choose this option for S2Mem.

Our proposed banking scheme exploits the knowledge of the update order dis-

cussed in Section 3.3.3. More specifically, we take advantage of the stride of two

consecutive RVs in the same row. Because we know the next RV will always be

two locations ahead and the singleton 2 access pattern is the same for all RVs, it

logically follows that the next singleton 2 will also be two locations ahead. Thus, we

put every two columns of singleton 2 in a separate bank, for a total number of banks

equal to the number of SPUs inside the SPE. Figure 3.6b demonstrates this for an

example SPE with two SPUs. The runtime is responsible for correctly populating

these banks.

Labels Memory and Labels Log

Similar to singleton 1, neighborhood data is needed once for each RV (Section 3.1.1).

Nevertheless, since in the first-order MRF the neighborhood structure consists of

four RVs, a simple monolithic single-port memory does not accommodate the re-

quirements of the model. A key difference with S2Mem, though, is that neighbor-

hood data is needed only once for each RV. Therefore, reads to the LMem can be
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pipelined to provide data to multiple SPUs in an SPE. To overcome the challenge of

accessing four locations in LMem simultaneously, we use a memory banking scheme

shown in Figure 3.7. This pattern is repeated to cover the input. It ensures that for

every RV, its top, down, left, and right neighbors reside in unique banks.

In addition to storing the labels data, LMem is also a part of the on-chip/off-

chip memory system that collects the labels histogram for uncertainty quantification.

Collecting an accurate histogram needs a counter per each possible label, in our case

64, and each counter must be able to hold the maximum number of iterations, which

could be 10-12 bits. Storing such a huge amount of data on chip is neither practical

nor efficient. Fortunately, it is not necessary either.

As Figure 3.2 shows, a significant portion of RVs take on only a few unique labels

after the warp-up period has passed. This inspired us to have room for a few labels

and their corresponding counters on chip, and once a counter is saturated or a new

label is selected that is not present in the LMem, send a message consisting of the

evicted label’s ID, the RV’s address, and the count associated with it, to an off-chip

memory. This data is stored in the form of a log, which at the end of the execution

is processed by the runtime and translated into a histogram. The operation of this

memory structure is similar to a write-back, write-allocate, no fetch-on-write cache.

The main advantage of such a design is that unlike normal caches where data travels

in both directions (i.e., on-chip to off-chip and vice versa), here data only go out from

on-chip memory and hence, with deep enough FIFOs to store the messages until they

can be sent to the off-chip memory, the computation units will not be forced to stall.

The remaining challenges are: 1) choosing an efficient replacement policy, and

2) determining the optimal size of the on-chip LMem (i.e., how many label+counter

pairs to keep per RV). We considered two replacement policies, Least Frequently

Picked (LFP), and Least Recently Picked (LRP). Intuitively, LFP makes the most

sense because we want to keep the label that is selected most often on-chip. However,
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Figure 3.8: Maximum values of Equation 3.5 for three input data sets for stereo vision [9] and
motion estimation [6] per LMem size. The replacement policy is least recently picked.

it is both more complicated to implement and more sensitive to the time we start to

collect the histogram. To be more specific, if we start collecting the histogram too

soon, i.e., before the end of the warm-up period, it is possible that a label which is

not among the top few most frequently picked labels overall is picked enough times

that it prevents the actual frequent labels from remaining in the on-chip memory.

LRP, however, avoids this by evicting the aforementioned label because it is not

selected anymore after the warm-up period. For these reasons, we choose LRP as

the replacement policy.

To determine the size of the on-chip memory, we must take into account the

trade-off between this size and the off-chip bandwidth and the size of the off-chip

log. Ideally, we want the smallest on-chip memory that the off-chip bandwidth allows.

We use Equation 3.5 to arrive at this size:

#SPUs
#Labels

˚ EvictionRate ˚MessageSize

Bandwidth
ă 1 (3.5)

#SPUs is the total number of SPUs in the accelerator, #Labels is the number of

possible labels a RV can take on (an application-specific value), EvictionRate is the

rate at which labels are evicted to off-chip memory, MessageSize is the size of the
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Table 3.1: Values used to calculate Equation 3.5 for Figure 3.8.

Parameter Value

#SPUs 2048

#Labels Stereo Vision: 28, 30, 56; Motion Estimation: 49

Message Size 32 bits

Bandwidth 512 bits/cycle

messages in bits, and Bandwidth is the available off-chip bandwidth. Equation 3.5

indicates that the amount of off-chip communication must not exceed the available

bandwidth. Figure 3.8 shows the maximum value of Equation 3.5 for three input

data sets for stereo vision [9] and motion estimation [6] for different sizes of LMem

(Table 3.1 lists the values used to compute the result of Equation 3.5). To generate

this graph, we first collect a trace of the labels of all RVs at every iteration. We then

process this trace to simulate the behavior of our proposed LMem with sizes of 1-8

label+counter pairs per RV. The figure indicates that with a LMem large enough

to hold only two label+counter pairs per RV, the off-chip bandwidth utilization will

not exceed 60% of the available bandwidth. Therefore, we select two label+counter

pairs per RV.

Given the number of label+counter pairs per RV, and the number of RVs that

the accelerator supports (1M RVs in this example), Figure 3.9 shows the structure

of a LMem entry and a message sent to off-chip memory. It is possible to change

the width of the counter and the address fields depending on the size of the target

input sets. It is also possible to reduce the required bits for addressing by directing

messages from certain SPEs to pre-defined offsets in the off-chip DRAM.

With this proposed scheme, writing to the LMem is transformed to a read-modify-

write, where depending on the current labels in the target LMem entry and the new

label, a re-ordering of the data in the entry or sending a message to the off-chip

memory may be needed.
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Label ID 
6 bits 

Count 
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LRP Label ID 
6 bits 

LRP Count 
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Figure 3.9: Structure of (a) a LMem entry, and (b) a message to off-chip memory, in which the
RV address and label ID are together the bin identifier in the histogram. For the LMem entry, we
assume a 32-bit word due to FPGA limitations. More area savings are possible in ASIC design.

Algorithm 1 Writing to the label memory.

1: procedure WriteLabel(addr, new lbl)
2: {mrp lbl, mrp cnt, lrp lbl, lrp cnt} Ð mem[addr]
3: if new lbl = mrp lbl then
4: if mrp cnt = MAX VALUE then
5: {addr, mrp lbl, MAX VALUE} Ñ DRAM
6: mem[addr] Ð {mrp lbl, 1, lrp lbl, lrp cnt}
7: else
8: mem[addr] Ð {mrp lbl, mrp cnt + 1, lrp lbl, lrp cnt}
9: else if new lbl = lrp lbl then

10: if lrp cnt = MAX VALUE then
11: {addr, lrp lbl, MAX VALUE} Ñ DRAM
12: mem[addr] Ð {lrp lbl, 1, mrp lbl, mrp cnt}
13: else
14: mem[addr] Ð {lrp lbl, lrp cnt + 1, mrp lbl, mrp cnt}
15: else
16: {addr, lrp lbl, lrp cnt} Ñ DRAM
17: mem[addr] Ð {new lbl, 1, mrp lbl, mrp cnt}

3.3.4 Accelerator Topology

There are two networks in our proposed accelerator, one that connects the SPEs

which transfers label and singleton 2 data (Section 3.3.4), and another that connects

the label memories in SPEs to the interface to off-chip memory (Section 3.3.4). These

two networks carry traffic with different characteristics and requirements, and thus,

have different topologies.
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Figure 3.10: Comparison of the estimated amount of resources needed for links and crossbars in
the proposed topology and a 2-D mesh NoC.

SPE Network

Communications among SPEs follow a regular pattern, e.g., when an SPU inside an

SPE needs a piece of data that resides in the left neighbor, the right neighbor also

needs a piece of data at that same address in the current SPE. This is true for both

label data and singleton 2 data communication, and is due to the characteristics of

the first-order MRF model and the even distribution of work to SPEs guaranteed by

the runtime.

Due to this regular pattern of communication, we propose to use a topology in

which every SPE is connected to its top, down, left, and right SPEs for transferring

label data, and to all eight nearest neighbors (as shown in Figure 3.3a) to commu-

nicate singleton 2 data. The runtime then ensures that all the data an SPE could

possibly need reside in those SPEs to which it is directly connected. This way, there

is no need for a full-fledged Network-on-Chip (NoC). Whenever SPEs need data from

their neighbors, they also push data in the opposite direction because their neighbor

needs the same type of data. This ensures a stall-free execution. Additionally, this

topology avoids the area overhead of a NoC router. Nevertheless, crossbars and links

are still required for moving data around. Figure 3.10 demonstrates the estimated
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amount of resources needed for our proposed topology compared to a 2-D mesh NoC,

for accelerators with three different dimensions in which each SPE has 2 SPUs. The

values are derived from Equations 3.6, 3.7, 3.8, and 3.9, in which D denotes the

dimension of the accelerator, S shows the number of SPUs per SPE, NN refers to

our proposed topology, and NoC indicates the 2-D mesh NoC. Also, I : O means

a crossbor with I input and O output ports. To estimate the amount of resources

needed for a crossbar, we simply multiplied its number of input and output ports.

We substituted S with 2 and added the two values for each topology to generate

Figure 3.10. Although this is not an accurate measure of the required resources (for

instance, one could argue that links and crossbars should not have the same weight),

combined with the reduced design complexity enabled by our proposed topology, we

chose that over a generic NoC.

NNLinks “ 2p2pD ´ 1qDpS ` 1q ` 2pD ´ 1q2Sq (3.6)

NNXB “ D2
p2p4 : 8q ` pS : 9Sq ` 8p2 : Sq ` p9S : Sqq (3.7)

NoCLinks “ 2p2pD ´ 1qDpS ` 1qq (3.8)

NoCXB “ D2
p2p4 : 8q ` pS : 5Sq ` 8p2 : Sq ` p5S : 5Sqq (3.9)

DRAM Hub Network

Unlike the regular communications between SPEs which depending on the appli-

cation can be intensive during some periods of execution, communications between

SPEs and DRAM Hubs are irregular and designed to be infrequent. Although we

cannot guarantee the latter is always the case, our workload characterization dis-

cussed in Section 3.3.3 demonstrates that by carefully designing the memory system,

we can achieve this in practice. Guided by this assumption, we use a tree topology for

the DRAM Hub network, as shown in Figure 3.3b. Every four SPEs are connected to

one DRAM Hub, forming a region, and then every four DRAM Hubs are connected
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Memory width = 64 

Image portion width = 32 

Memory width =  
Image portion width = 64 

A 63 pixels distance spans 
over two SPEs. 

A 63 pixels distance spans 
over only one SPE. 

(a) 

(b) 

Figure 3.11: (a) Example of an input set for stereo vision in which communications with SPEs
farther than one hop is necessary to transfer singleton 2 data, and (b) solving this problem by
replicating singleton 2 data.

to each other. This pattern continues up until the interface with the off-chip DRAM.

This topology is scalable and does not cause communication with the DRAM to be-

come a bottleneck. Furthermore, communication with the DRAM is one-way during

the execution, i.e., data only flows from the accelerator toward DRAM. Therefore,

the high latency of off-chip communication does not stall the execution pipeline of

the accelerator. At the DRAM interface, messages are aggregated to form 512-bit

lines and are written to the DRAM. A log index is kept at the DRAM interface

which is both used for writing new values to DRAM throughout the execution, and

reading valid values from the DRAM at the end of execution.
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3.3.5 Runtime

The runtime is responsible for handling memory allocation, parameter initialization,

data padding when necessary, and data placement and movement. In this section,

we only discuss data padding and data placement because the other operations are

only a matter of implementation. Data padding might be necessary depending on

the input size, because work must be distributed among SPEs evenly as the correct

communication of data between SPEs relies on this assumption. Another assumption

that our proposed communication scheme builds upon is that all the data an SPE

might possibly need, whether label or singleton 2 data, must be available in at most

a single hop distance. Although this assumption always holds for label data (only

the labels of immediate neighboring RVs are needed), it might not necessarily hold

for singleton 2 depending on its access pattern and how small the input data set is.

Figure 3.11a illustrates this with an example. In this example, the application is

stereo vision [9] in which the singleton 2 accesses could reach 63 locations to the left

of any given RV. In this case, if the width of the portion of the input assigned to

each SPE is smaller than the reach of singleton 2, then communication longer than

one hop will be necessary. Fortunately, replicating the singleton 2 is a simple fix for

this problem and the runtime can handle it.

3.3.6 Limitations and Future Work

Some limitations of our proposed accelerator are inherent to the specific Gibbs sam-

pling algorithm selected, e.g., the lack of support for continuous RVs. Some other

limitations are due to our design and implementation. For example, because of the

design choice to represent labels with six bits, the proposed accelerator cannot sup-

port problem instances with more than 64 labels. However, 64 labels is enough for

many applications [51, 79], and expanding the number of supported labels is future

work. In addition, previous work shows that slightly increasing the bit width in some
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places in the SPU datapath increases the result quality to be closer to floating-point

software implementations. Incorporating those changes in our design is future work,

and we expect the effects on the area to be small.

Another limitation specific to our design is that it only supports first-order MRF.

Although this model can represent a wide range of applications [49, 54, 88], a more

flexible label memory design is required to expand the coverage to more applications

which we intend to do in the future. In addition to the label memory, the singleton

2 memory and the interconnect between the tiles will need modification too, but we

expect that many of the same techniques used in our design will be able to guide the

design of a more generalized accelerator too.

Additionally, we plan to optimize the execution time of MCMC by avoiding un-

necessary RV updates. To be more specific, we can skip a RV whose PDF is con-

centrated on only one value, i.e., there is only one label to choose, and the labels

of its neighborhood has not changed. In other words, if a RV has a concentrated

PDF, its PDF will remain concentrated until something in its neighborhood (i.e.,

the only changing input for MCMC update) changes. We implement and evaluate

this optimization for GPUs in Chapter 4, and show that it is an effective way to gain

additional speedup. Thus, adopting this optimization in a hardware accelerator is

future work.

3.4 Methodology

3.4.1 Applications and Metrics

We use two image analysis applications to evaluate our design, namely, motion esti-

mation [53] and stereo vision [9, 79]. Motion estimation is covered in detail in Section

3.1.1. Stereo vision reconstructs the depth information of objects in a field captured

from two cameras by matching the pixels between the two images. The farther the

location of the pixel in the two images, the deeper it is in the field. Therefore, sin-
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Table 3.2: Application parameters used in evaluations.

Motion Estimation

α β T Labels Size Iters

dimetrodon 584ˆ388
rubberwhale 6 6 1 49 584ˆ388 3000
venus 210ˆ190

Stereo Vision

α β T Labels Size Iters

art 28 348ˆ278 3000
poster 6 7 2 30 435ˆ383 1500
teddy 56 450ˆ375 3000

gleton 1 data comes from the right view, and singleton 2 comes from each of the L

pixels preceding the target pixel in the left view, where L is the number of labels in

the model.

We evaluate each application using three input image sets from Middlebury [6,

79]. Table 3.2 summarizes the parameters used for each input. Parameter names

correspond to those in Figure 2.1. To generate outputs, we calculate the mode of

the labels in the last 1,000 iterations for each input. We compare the results against

a MATLAB implementation which uses double-precision floating-point to assess the

quality of the results. We use end-point error (EPE) as the metric for evaluating

motion estimation results [53], and bad-pixel (BP) percentage as the metric for stereo

vision [79].

3.4.2 HLS Implementation

To implement the FPGA prototype and perform ASIC analysis of our proposed

accelerator, we use High-Level Synthesis (HLS) to compile code written in C++ to

Hardware Description Language (HDL). We utilize Intel HLS compiler from Quartus

18.0 [40] to implement the FPGA prototype. We implement the components shown

in Figure 3.5 individually, and then connect them together using Platform Designer

[42], and synthesize the final design for a Programmable Acceleration Card (PAC)

36



with Arria 10 GX FPGA [41] using Quartus 17.1. We utilize Open Programmable

Acceleration Engine (OPAE) 1.2 to develop the runtime that controls the FPGA

prototype.

For ASIC analysis, we use Mentor Catapult [33] and adapt our C++ code to use

Algorithmic C datatypes [61] which allow for using custom precision data types in the

HLS design. We utilize Design Compiler [87] to synthesize our design using a 15nm

library [65] to derive area and power results for non-memory logic. In addition, we

use CACTI 7.0 [93] to estimate the area and power of memory components. Since the

smallest technology node in CACTI is 22nm, we conservatively use those numbers for

area and power calculation. Power numbers are calculated by feeding the switching

activity based on a 32-label application to Design Compiler, conservatively assuming

all input ports switch every time new data arrives.

3.4.3 GPU Implementation

We implement the two applications using CUDA [66], and conduct evaluations on

an Nvidia RTX 2080 Ti GPU [71]. The same chromatic schedule for updating condi-

tionally independent RVs in parallel is used in the GPU implementation. We applied

spatial-tiling [75] to take advantage of spatial locality, i.e., we divided the input im-

age into equal-sized rectangles and assigned each region to a specific thread block.

The size of the thread blocks were 16ˆ16, which means they covered a 32ˆ16 region

(due to the chromatic schedule we use for updates).

3.5 Evaluation

Figure 3.12 demonstrates the application result quality for the two applications dis-

cussed in Section 3.4.1, using their corresponding metrics. The results are consistent

with prior work [105]. It is possible to further improve the quality of the results

by slightly modifying the bit width of some places in the SPU datapath, which is
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Figure 3.12: Comparison of output quality results between a MATLAB floating-point implemen-
tation, a GPU implementation, and our FPGA prototype.

Table 3.3: FPGA prototypes results.

Design Point 16ˆ1 16ˆ2 Device Max

Adaptive Logic Module (ALM) 182,690 247,815 427,200

20K-bit Memory Block (M20K) 1,376 1,545 2,713

DSP 160 320 1,518

Clock Rate 185MHz 146MHz 667MHz

Total Performance (Labels/sec) 2.96B 4.672B

discussed in detail elsewhere [105].

Performance

Resource requirements and clock rate for two design points on an Intel Arria 10 GX

FPGA are presented in Table 3.3. (16ˆ2 means 16 SPEs and two SPUs/SPE.) These

FPGA implementations support up to 256K RVs, big enough for the input datasets

used in our evaluations. We only implement designs with one and two SPU(s)/SPE,

because as discussed in Section 3.3.3, accesses to LMem are pipelined for SPUs in

the same SPE. The implication is that if an application has less labels than there are

SPUs in an SPE, then additional SPUs will not be utilized. Since we can guarantee

that all applications have at least two labels (otherwise there would be no problem

to solve), we implement designs with at most two SPUs/SPE.

As it is expected, the design with two SPUs/SPE occupies less than twice the
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Figure 3.13: Memory space to store data for generating labels histogram. “No Log”: results are
written to off-chip memory every iteration. “Histogram Log”: off-chip capacity used to store the
log, and the on-chip memory that stores the labels.

area of the other design, which means the area of some components (e.g., scheduler,

memory control, etc.) are successfully amortized. However, the clock rate drops due

to the more complicated routing required between the SPEs.

Equation 3.10 shows that compared with prior work on FPGAs [51], our proposed

accelerator (16ˆ2 design point) achieves 26ˆ speedup. (See Table II in [51].) This

is mainly due to the better memory design and avoiding off-chip communication as

much as possible. Nevertheless, superior performance is not the only advantage of our

work. Due to our proposed tiled architecture, efficient memory system design, and

incorporating the scheduling logic into SPEs, our design provides far more flexibility

compared to [51], which only supports MRF models up to a certain row size.

4.672 ˚ 109labels{sec

2labels{sample ˚ 88.588 ˚ 106samples{sec
“ 26.37 (3.10)

Uncertainty Quantification

The amount of memory used to store information for generating the labels histogram

in our FPGA prototype and a hypothetical design which stores all labels in off-chip

memory are compared in Figure 3.13. Another baseline would be a design that has a

counter for each possible label of each RV. However, if the counters reside on the chip,
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they require enormous area (e.g., with 10-bit counters, 80 bytes for each RVs) which

will not be utilized for applications with less than 64 labels. Even for applications

with a large number of labels, our analysis (Figure 3.2) shows that only a few unique

labels are chosen throughout the execution. Moreover, if the counters are stored in

off-chip memory, two-way communication is needed to update the counts. Therefore,

we do not include it in our comparisons. The figure shows that our hybrid on-chip/off-

chip memory system and logging scheme saves an average of 71% in memory space

for generating the histogram.

3.5.1 ASIC Analysis

We implement and synthesize ASIC designs with one, four, and 16 SPEs, each with

one and two SPU(s)/SPE. Figures 3.15-3.16 show the area and power breakdown by

component of an SPE with one and two SPU(s). Compared with the one SPU/SPE

design, we observe the area and power amortization trend in two SPUs/SPE design

for ASIC designs too. The design with two SPUs/SPE uses 20.6% less area and

21.2% less power per SPU compared to that with one SPU/SPE. In addition, another

indicator of successful overhead amortization is that the fraction of area and power

used by SPUs, which perform the main computations, increases with two SPUs/SPE
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Figure 3.15: SPE area breakdown with (a) one SPU, and (b) two SPUs. Total area: (a)
30,760µm2, and (b) 48,862µm2.

by 24.8% and 28.2%, respectively. (Note that these are post-synthesis results, place

and route might yield different numbers).

The overall accelerator area results for multiple design points are depicted in

Figure 3.14. In each design, 1K RV is assigned to each SPU, i.e., a design with 2048

SPEs with 1SPU/SPE supports the same amount of memory as a design with 1024

SPEs with 2 SPUs/SPE, and both support Full-HD images. As expected, due to the

homogeneity of the proposed tiled architecture, the area scales almost linearly with

the number of SPEs. We predict the area of an accelerator with 1024 SPEs, each with

two SPUs by extrapolating this graph and adding the area of the required DRAM

hubs to be 58mm2, which is 92.3% smaller than an RTX 2080 Ti GPU (754mm2)

[71].

In terms of performance, compared to an RTX 2080 Ti, the aforementioned ac-

celerator achieves 135ˆ and 158ˆ speedup for motion estimation and stereo vision,

respectively, as demonstrated in Figure 3.17. The implication of these numbers is

that our proposed accelerator can process Full-HD images at 30fps with 64 labels for

1500 iterations per frame.
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Figure 3.16: SPE power breakdown with (a) one SPU, and (b) two SPUs. Total power: (a)
50.076mW, and (b) 78.917mW.
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Figure 3.17: Speedup of a 1024ˆ2 SPE ASIC design at 15nm, compared to an RTX 2080 Ti GPU.
GPU execution times in ms: art: 242, poster: 303, teddy: 839, dimetrodon: 1082, rubberwhale:
1082, venus: 204.

3.6 Related Work

Methods for parallelizing Gibbs sampling based on the conditional independence of

RVs have been proposed [31, 46, 91]. Our work takes advantage of similar principles

to create a schedule to update conditionally independent RVs in parallel.

So et al. [82] present a custom data layout approach in multiple memory banks

for array-based computations. Wang et al. [96] propose a polyhedral model that

attempts to detect memory bank conflicts for generalized memory partitioning in
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Table 3.4: Qualitative comparison of our proposed accelerator with other Bayesian inference accel-
erators.

Application
Flexibility

Input
Flexibility

Memory
System

Uncertainty
Quantification

Gibbs tile [46] Medium High On-chip 5

SPU [105] Medium – – –

FlexGibbs
[51, 52]

Medium Low Off-chip High Overhead

VIP [39] High Very High 3D-stacked 5

AcMC2 [7] Very High Very High Off-chip

Trades
Accuracy for

Memory
Capacity

This work Medium High
Hybrid On-

chip/Off-
chip

Efficient and
Accurate

HLS. Cilardo and Gallo [18] present a lattice-based method that takes advantage of

the Z-polyhedral model [35] for program analysis and adopt a partitioning scheme

based on integer lattices. Escobedo and Lin [21] use memory space tessellation to

find patterns in data accesses and cover the memory access space with the found

pattern. In other works, Escobedo and Lin [22, 23] present approaches that create

the data dependence graph of memory accesses in the iteration domain, and use

graph coloring to assign data elements to memory banks. These works address the

problem of determining the proper memory structure for a specific problem that

uses HLS, whereas our goal in this paper, while being an instance of this problem,

is to design a fixed memory structure that can support a wide range of applications.

Moreover, in these works, the communication among different compute units is not

accounted for, which could further constrain the data placement solution.

Table 3.4 presents a summary of the differences between our accelerator and the

related work (Application and Input Flexibility in the table refer to the diversity of

applications and input sizes supported). To the best of our knowledge, other MCMC

and inference accelerators in the literature do not address the memory subsystem
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challenges and uncertainty quantification as comprehensively and effectively as this

work. Jonas [46] presents a tiled Gibbs sampling architecture, but does not include

an efficient memory system design and support for uncertainty quantification. Zhang

et al. [105]] propose and analyze a microarchitecture for a Gibbs sampling function

unit, but does not propose an actual accelerator design. and only includes back of

the envelope calculations for performance. Ko et al. [51, 52] design an FPGA-based

parallel Gibbs sampling accelerator for MRF, which does not provide the level of

flexibility supported in this work. Hurkat and Mart́ınez [39] propose a vector proces-

sor for deterministic inference algorithms which utilizes 3-D stacking to address high

memory bandwidth requirements. Banerjee et al. [7] design a compiler that trans-

forms probabilistic models into hardware accelerators. Although their work supports

more general models, it produces a new accelerator per model and is different from

our work, in that our goal is to design an accelerator that supports a reasonable

range of problems. Additionally, support for uncertainty quantification in their work

is limited due to the use of on-chip counters, which can impose significant overheads

when the problem size grows, and the adoption of binning and Bloom filters [25] to

approximate the histogram when the number of entries is high.

3.7 Summary

Probabilistic algorithms, such as MCMC, are an attractive approach in statistical

machine learning which offer interpretability and uncertainty quantification in the

final results. These algorithms, however, require probabilistic computations which

are not a good fit for conventional processors. We propose a specialized accelerator

to significantly improve the performance of MRF inference using MCMC compared

to general-purpose processors. Our proposed architecture takes advantage of near-

memory computing, as well as memory banking and communication schemes tailored

to the characteristics of first-order MRF model. The accelerator also supports un-
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certainty quantification by employing a hybrid on-chip/off-chip memory system. We

prototype the proposed design with 32 function units on an Arria 10 FPGA using

Intel HLS compiler and achieve a 146MHz clock rate. The FPGA implementation

outperforms the previous work by 26ˆ. ASIC analysis using Mentor Graphics HLS

compiler shows that in 15nm technology, the accelerator runs at 3GHz and achieves

135ˆ and 158ˆ speedup over GPU implementations of motion estimation and stereo

vision, respectively.
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4

Optimizing Markov Random Field Inference via
Event-driven Gibbs Sampling on GPUs

An important application with a large amount of data-parallelism that can benefit

from the high throughput offered by GPUs is statistical machine learning, which

has widespread applications such as image analysis [54], natural language processing

[27], global health [37], wireless communications [38], autonomous driving [5], etc.

[12, 63, 64, 88]. Many such approaches use probabilistic algorithms, e.g., Markov

chain Monte-Carlo (MCMC), which can be adopted to create generalized frameworks

for solving a wide range of problems, and in some cases, are the only viable approach

to solve certain classes of problems, e.g., high-dimensional inference.

Orthogonal to the techniques mentioned in Chapter 3 to parallelize the execu-

tion of Gibbs sampling, we can adopt algorithmic optimizations to avoid performing

unnecessary work and thus, further speed up the execution.

In this chapter, we build on three observations that reveal when RVs cannot

change their labels during the current iteration: i) after the warm-up period in the

optimization mode, most RVs tend to not change labels very often, ii) a RV can only
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change its label if either it has a non-concentrated probability distribution function

(PDF), i.e., it has non-zero probabilities of taking on multiple labels, or at least one

of the RVs on which it is conditionally dependent has changed its label, i.e., its PDF

has changed, and iii) approximation techniques make it increasingly likely that RVs

have concentrated PDFs.

We introduce event-driven Gibbs sampling (EDGS). In this scheme, queues are

used to keep track of RVs that must be updated. To be more specific, a RV is added

to the queue if i) another RV on which it is conditionally dependent changes its

value, or ii) it does not have a concentrated PDF. We implement EDGS for GPUs to

take advantage of the high amount of parallelism provided by them. Our evaluations

show that 26.3%-30.3% speedup can be gained for two image analysis applications,

namely, motion estimation and stereo vision, with some loss in the quality of the re-

sults. However, for another image analysis application, i.e., image segmentation, the

overheads of our approach outweigh its benefits. Our observations also indicate that

for motion estimation with a large number of labels, the approximation technique

used in our work actually increases the quality of the final results.

4.1 Motivation

4.1.1 Approximation in Gibbs Sampling

In the optimization mode, as the iterations proceed, picking the labels with higher

energy becomes less and less likely, thus making the probability distribution func-

tion (PDF) more concentrated. Since the goal in the optimization mode is to more

quickly converge to a final solution, there is an opportunity to utilize approximation

techniques to further accelerate this process. One such approximation, inspired by a

hardware Gibbs sampling accelerator [105], is truncating very small label probabili-

ties to zero to prevent the algorithm from picking them. Equation 4.1 demonstrates

this approximation.
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Figure 4.1: Number of times that RVs change labels normalized to the total number of times they
are updated, for stereo vision and motion estimation.

Ptrplq “

#

P plq, if maxlPL P plq
P plq

ă C

0, otherwise
(4.1)

In the equation, P plq is the probability of selecting label l (from all possible labels

L) before truncation, Ptrplq is the truncated probability, and C is the cutoff threshold

used for truncation. Although this approximation technique degrades the statistical

properties of the distribution generated for each RV, our observations show that in

some cases, it can improve the application endpoint quality, which is ultimately the

goal of the optimization mode.

Our goal in Section 4.2 is to detect and avoid updating the RVs that have concen-

trated PDFs and unchanged neighbors, and consequently speeding up the execution

of the algorithm.

4.1.2 Stable Random Variables

As the execution of Gibbs sampling algorithm makes progress, RVs gradually con-

verge to their final labels. This process is further accelerated in the optimization

48



mode. Therefore, it becomes unnecessary to update all RVs at every iteration be-

cause some of them simply cannot change their label. Figure 4.1 shows the number

of times RVs change labels normalized to the total number of times they are up-

dated in three input sets for two applications of stereo vision and motion estimation

each. Based on the figure, only 22%´ 46% of RV updates result in changing labels.

Consequently, there is an opportunity for up to 54% ´ 78% speedup. However, not

all of this speedup can be gained. If a RV simply does not change its label does not

necessarily mean that it cannot do so. Some other conditions must be met for us to

be able to skip updating RVs, which is explained in Section 4.2.

4.2 Event-Driven Gibbs Sampling

A RV can only change its label if i) it has more than one label with non-zero prob-

ability (i.e., non-concentrated PDF), or ii) at least one of the RVs on which it is

conditionally dependent changes its label and thus, changing this RV’s PDF. In

other words, if a previous computation resulted in a PDF concentrated on one label,

which is likely due to the decreasing T in the optimization mode and the probability

cut-off technique, the PDF is going to remain that way until something in its neigh-

borhood changes. Therefore, we update a variable in two cases, i) if at least one

of its neighbors changes, or ii) it did not have a concentrated PDF to begin with.

We call this optimization event-driven Gibbs sampling (EDGS). This technique is

similar to vertex programming in graph algorithms [56, 58], but we customize it for

the context of MRF inference with Gibbs sampling.

We utilize two queues to keep track of RVs that must be updated in alternate

rounds (i.e., a queue for black RVs and another queue for white RVs). Figure 4.2

compares EDGS and the plain vanilla update scheme that updates all RVs at every

iteration. The shaded regions show the extra work that must be done in EDGS to

read RVs from the queues and write new RVs to them. To simplify writing new
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while(iteration < max_iterations) { 
    while(black_queue not empty) { 
        update next RV in queue; 
        foreach(neighbor) { 
            if(old label != new label || 
            neighbor not concentrated) { 
                  put neighbor in white_queue; 
            } 
        } 
    } 
    while(white_queue not empty) { 
        … 
    } 
} 

while(iteration < max_iterations) { 
    foreach(black RV) { 
        update RV; 
    } 
    foreach(white RV) { 
        update RV; 
    } 
} 

(a) (b) 

Figure 4.2: Comparison of update procedure when (a) all RVs are updated at each iteration, and
(b) when EDGS is adopted. The shaded regions highlight the additional work that must be done
in EDGS compared to the baseline. The process for white RVs in EDGS is omitted for the sake of
brevity.

RVs to the queue, we check the necessary conditions when an RV’s neighbors are

being updated. This works because the conditional independence in first-order MRF

is mutual. Therefore, while updating a RV, we compare its new label with its old

label, and if the two labels do not match, we put all neighbors in their corresponding

queue. Additionally, we have to check if the neighbors have concentrated PDFs. To

do so, we use an extra matrix whose entries correspond to RVs and are set only if

the corresponding RV has a concentrated PDF.

Figure 4.3 demonstrates an example scenario to better explain when EDGS up-

dates RVs. Some intermediate steps and details in the example are omitted for the

sake of brevity. In the figure, each part shows the state of the MRF after updat-

ing the RV shown in the blue dotted circle on the left, and its PDF on the right.

RVs in red dotted circles are added to the appropriate queue for update after the
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Figure 4.3: An example scenario of updating RVs in a first-order MRF using EDGS. Circles are
RVs in the MRF, and the colors demonstrate conditional independence among them. Numbers
inside RVs are their current labels. Graphs on the right are the PDF of the RV shown in blue
dotted circle.
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computation is complete. In Figure 4.3a, the black RV being updated has a PDF

concentrated on label 3 and thus, it can only take on this label. In Figure 4.3b, the

white RV changes its label from 3 to 2. Therefore, all its neighbors must be added

to the black queue for update, because a neighbor of theirs has changed its label

and conditional dependencies in MRF are bidirectional. Next, in Figure 4.3c, the

black RV from step 4.3a is updated again despite having a concentrated PDF in the

previous iteration. The reason is that its right neighbor had added it to the black

queue for update due to changing its label. Moreover, since this RV has changed its

own label, it adds all its neighbors to the white queue for update. This time around,

the black RV does not have a concentrated PDF anymore. Thus, in Figure 4.3d,

after the white RV is updated, although it does not change its label, it adds the

right neighbor to the black queue for update because that neighbor does not have a

concentrated PDF.

4.3 EDGS Implementation for GPUs

To evaluate the effectiveness of EDGS, we implemented it for execution on GPUs due

to the massive parallelism provided by them. Our implementation mostly reflects

the pseudo-code shown in Figure 4.2b, with two exceptions. The first one is the

consideration of the cut-off threshold after updating the RV to determine whether

it has a concentrated PDF. If it does, the corresponding entry in the concentrated

matrix (see Section 4.2) is set.

The second difference is due to the single-instruction multiple-thread (SIMT) ex-

ecution model of the GPU, which introduces some challenges for the implementation.

To be more specific, because all threads in a warp execute more efficiently when they

are in lockstep, skipping updates of stable RVs is better done at the granularity

of warps instead of individual RVs. To address this issue, we break the MRF into

regions at least as large as a warp and keep track of the conditions for updating RVs
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at the granularity of these regions instead of individual RVs.

Although tracking RVs at a coarser granularity might decrease the opportunity

to skip updating stable RVs (because a region must be updated even only one RV

in it is not stable), an upside of this approach is lower pressure on the memory

system. Since we use queues to store the indices of RVs to be updated, tracking

regions instead of individual RVs means that much smaller queues are needed. The

actual queue size depends on the dimensions of the regions, but it will be at least

32ˆ smaller because that is the warp size on the GPU and we want our regions to

be at least as large as a warp. We perform design space exploration with different

regions sizes in Section 3.5. In addition to the smaller queue size, there will be less

contention for queue operations. This is important because adding regions to the

queues must be done atomically for the Gibbs sampling to work correctly, and atomic

operations at very fine granularity could impose a large overhead.

To ensure each RV region is added at most once to the queue, we utilize a 2D

matrix where each entry corresponds to a region in the MRF. All entries in the

matrix are initialized to zero. We use a separate matrix for each iteration to avoid

the overhead of re-initializing the matrix during the execution. Before adding a

region to the queue, we atomically exchange the value at the corresponding index in

the 2D matrix with ‘1’. If the value read from the matrix is also ‘1’, we know that

the region is already added to the queue and thus, we stop here. On the other hand,

if the value read from the matrix is ‘0’, we atomically increment a queue index

variable and put the region at the end of the appropriate queue using the index.

The process of updating regions and adding their neighbors to the alternate queue

is continued until the current queue is empty (as shown in Figure 4.2b).
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Table 4.1: Parameters for design space exploration.

Parameter Value

8ˆ8, 8ˆ16, 8ˆ32,
Region Size 16ˆ8, 16ˆ8, 16ˆ8,

32ˆ8, 32ˆ8, 32ˆ8
Thread Blocks (TB)/SM 1, 2, 4, 8, 16

Cut-off Threshold (only for EDGS) 1{2, 1{4, 1{8, 1{16

4.4 Evaluation

4.4.1 Methodology

We use three image analysis applications to evaluate our design, namely, image seg-

mentation [89], stereo vision [9, 79], and motion estimation [53]. Image segmentation

divides a single image into multiple regions. Stereo vision reconstructs the depth in-

formation of objects in a field captured from two cameras by matching the pixels

between the two images. Finally, in motion estimation, the goal is to determine the

motion vectors of pixels between two consecutive frames of a video.

We implemented these applications in CUDA [66] for both the baseline and

EDGS. Our baseline is a parallel version of Gibbs sampling that does not skip up-

dating any RVs. We used cooperative groups to synchronize all thread blocks at the

end of each iteration and therefore, avoid the overhead of numerous kernel launches

to achieve synchronization. As a consequence, the size of the grid is limited to the

capacity of the device for our kernel, i.e., all threads in the grid must be present

on the GPU simultaneously, and thus, each thread block is responsible for updat-

ing multiple regions. We used 8-bit integers for labels (i.e., our implementation can

support at most 256 labels, but this is not a hard constraint and can be easily mod-

ified to support more labels), 32-bit integers for energy values, and single-precision

floating-point representation for probability and random numbers.

We performed design space exploration in terms of region size, region structure,

number of active thread blocks per SM, and cut-off threshold for probability trun-
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Figure 4.4: Normalized slowdown of all configurations in Table 4.1 with respect to the fastest
configuration for baseline implementation of stereo vision. The fastest configuration is shown using
the dotted red rectangle. In the x-axis, the bottom row shows the region size and the top row shows
the number of thread blocks per SM.
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Figure 4.5: Normalized slowdown of all configurations in Table 4.1 with respect to the fastest
configuration for EDGS-2 implementation of stereo vision. The fastest configuration is shown using
the dotted red rectangle. In the x-axis, the bottom row shows the region size and the top row shows
the number of thread blocks per SM.

cation. Table 4.1 summarizes the values used for design space exploration. Not all

combinations of these parameters were feasible to run, therefore our graphs will have

missing points wherever this was the case. We repeated the experiments with each

set of parameters 10 times and we report average of the runs, with error bars where

appropriate. We ran all experiments on Nvidia RTX 2080 Ti GPU and used the time

for kernel execution to measure performance.

After performing the design space exploration, we select the best-performing

configurations of both baseline and EDGS with each cut-off threshold, called EDGS-
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Figure 4.6: Normalized slowdown of all configurations in Table 4.1 with respect to the fastest
configuration for EDGS-4 implementation of stereo vision. The fastest configuration is shown using
the dotted red rectangle. In the x-axis, the bottom row shows the region size and the top row shows
the number of thread blocks per SM.
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Figure 4.7: Normalized slowdown of all configurations in Table 4.1 with respect to the fastest
configuration for EDGS-8 implementation of stereo vision. The fastest configuration is shown using
the dotted red rectangle. In the x-axis, the bottom row shows the region size and the top row shows
the number of thread blocks per SM.

2, EDGS-4, EDGS-8, and EDGS-16 in the graphs, for comparison. The process for

selecting the best configuration is the following. We measured the execution time of

all benchmarks for each application using different configurations, and normalized

those execution times to that of the fastest configuration for each benchmark to

obtain the slowdown for all other configurations. Then, we averaged the slowdowns

for all benchmarks for each configuration, and selected the configuration with the

lowest average slowdown.

We evaluate image segmentation against 30 images randomly selected from Berke-
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Figure 4.8: Normalized slowdown of all configurations in Table 4.1 with respect to the fastest
configuration for EDGS-16 implementation of stereo vision. The fastest configuration is shown
using the dotted red rectangle. In the x-axis, the bottom row shows the region size and the top
row shows the number of thread blocks per SM.

Table 4.2: Application parameters used in the evaluations.

Parameter Image Segmentation Motion Estimation Stereo Vision

α 0.01 1 1
β 16 8, 2 2

initial T 10 80 10
Labels 2, 4, 8 49, 225 30-56

321ˆ481, 380ˆ420, 370ˆ447,
Size 481ˆ321 388ˆ584, 370,ˆ463,

480ˆ640 375ˆ450,
383ˆ435

Iterations 100 1000 1000

ley Segmentation Database (BSD300) [59]. For stereo vision, we used eight input

image sets from Middlebury [79], and for motion estimation, we utilized six input

image sets from Middlebury [6]. Table 4.2 summarizes the parameters used for

each application. Parameter names correspond to those in Figure 2.1. To compare

the quality of the results, we compare both baseline and EDGS against a human-

generated ground truth. We use variation of information (VoI) as the quality metric

for image segmentation [104]. For stereo vision, we use bad-pixel (BP) percentage

as the metric [79], and for motion estimation, we measure end-point error (EPE) as

the metric for evaluating the results [53].

57



In addition to the execution time and result quality, we also report the percentage

of skipped updates when using regions of RVs to quantify the effects of EDGS on the

execution of the Gibbs sampling algorithm. Moreover, we report the maximum per-

centage of skipped updates possible by implementing EDGS at RV-level granularity.

In this implementation, we do not use queues to keep track of update conditions,

instead we rely only on the PDF concentration matrix. As a result, each region in

the input is processed by the same thread block throughout all iterations.

4.4.2 Results

Stereo Vision

Figures 4.4-4.8 show the results of our design space exploration for stereo vision. The

trend in these graphs is that at each design point and region size, the performance

tends to increase up to a point and then slightly decrease. The reason is that the

extra parallelism provided by additional thread blocks per SM improves performance

until the working set exceeds the cache size, at which point the cache misses more

than offset the benefits of extra threads. In fact, even between region sizes at the

same design point, those that have the same number of threads per SM tend to have

similar performance.

For all design points running stereo vision (both baseline and EDGS), the con-

figuration with 32ˆ8 region size and four thread blocks per SM outperformed other

configurations, which is the configuration used in our comparisons. Due to the ac-

cess pattern in stereo vision, configurations with wider regions (e.g., 32ˆ8) perform

better than those with taller regions (e.g., 8ˆ32), since they can better leverage the

existing spatial locality exhibited by the application.

Figure 4.9c compares the percentages of skipped updates for two granularities

of region-level and RV-level. The figure illustrates the trend of declining skipped

updates as the cut-off threshold decreases for both granularities, which has the effect
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Figure 4.9: Speedup of EDGS (a), bad pixel percentage (b), and percentage of skipped updates
of EDGS for region-level and RV-level granularity(c) for stereo vision.

of smaller speedups as the cut-off threshold shrinks. Furthermore, it shows the best

case opportunity for skipping updates if we were to track the update conditions at

RV-level instead of region-level. Although at a finer granularity the opportunity

for skipping updates would grow by 52.5%-82.2%, the mismatch between the SIMT

execution model and RV-level updates leads to 10.9%-43.5% slowdown. On the other

hand, the highest speedup for region-level updates is 30.3%, which is achieved by

EDGS-2. However, it comes with a high quality loss in some cases. EDGS-4 limits

this loss to less than 3% and provides a 16.4% speedup.
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Figure 4.10: Normalized slowdown of all configurations in Table 4.1 with respect to the fastest
configuration for baseline implementation of motion estimation with a 15ˆ15 window. The fastest
configuration is shown using the dotted red rectangle. In the x-axis, the bottom row shows the
region size and the top row shows the number of thread blocks per SM.
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Figure 4.11: Normalized slowdown of all configurations in Table 4.1 with respect to the fastest
configuration for EDGS-2 implementation of motion estimation with a 15ˆ15 window. The fastest
configuration is shown using the dotted red rectangle. In the x-axis, the bottom row shows the
region size and the top row shows the number of thread blocks per SM.

Motion Estimation

We performed the experiments with two window sizes of 15ˆ15 and 7ˆ7 to investi-

gate the effects of the number of labels on the performance of EDGS. However, not

all benchmarks produced acceptable results with a 7ˆ7 window, i.e., they include

motion vectors that exceed this window size. Therefore, we only present results for

those that do produce output with good quality.

Figures 4.10-4.14 show the results of design space exploration for 15ˆ15. Take-
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Figure 4.12: Normalized slowdown of all configurations in Table 4.1 with respect to the fastest
configuration for EDGS-4 implementation of motion estimation with a 15ˆ15 window. The fastest
configuration is shown using the dotted red rectangle. In the x-axis, the bottom row shows the
region size and the top row shows the number of thread blocks per SM.
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Figure 4.13: Normalized slowdown of all configurations in Table 4.1 with respect to the fastest
configuration for EDGS-8 implementation of motion estimation with a 15ˆ15 window. The fastest
configuration is shown using the dotted red rectangle. In the x-axis, the bottom row shows the
region size and the top row shows the number of thread blocks per SM.

aways regarding configurations and performance are similar to stereo vision. One

key difference is the shape of the best-performing regions. Table 4.3 lists the best

performing configuration for each design point. We use these configurations in our

comparisons in the rest of this section.

Due to the large number of labels with a 15ˆ15 window, it is less likely that

regions of RVs become stable. The reason is that it is more difficult for the same

label to stand out in all RVs in a region. This can be observed in Figure 4.15c, where

the percentage of skipped updates does not exceed 4.5% for region-granularity. As a
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Figure 4.14: Normalized slowdown of all configurations in Table 4.1 with respect to the fastest
configuration for EDGS-16 implementation of motion estimation with a 15ˆ15 window. The fastest
configuration is shown using the dotted red rectangle. In the x-axis, the bottom row shows the
region size and the top row shows the number of thread blocks per SM.
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Figure 4.15: Speedup of EDGS (a), endpoint error (b), and percentage of skipped updates of
EDGS for region-level and RV-level granularity (c) for motion estimation with a 15ˆ15 window.
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Figure 4.16: Speedup of EDGS (a), endpoint error (b), and percentage of skipped updates of
EDGS for region-level and RV-level granularity (c) for motion estimation with a 7ˆ7 window.

result, the overheads of EDGS offset any gain made by the small amount of skipped

updates, which is evident in the negative speedup numbers in Figure 4.15a. Even

though tracking update conditions at RV-level improves the skipped updates by

17.8%-55.3%, it does not result in improved performance either.

Despite the lower performance of EDGS, an interesting phenomenon is observed

Table 4.3: Best performing configurations for the baseline and different design points of EDGS for
motion estimation.

Design Point Motion Estimation 7ˆ7 Motion Estimation 15ˆ15

Baseline (32ˆ8, 2)1 (8ˆ32, 4)
EDGS-2 (8ˆ8, 8) (8ˆ32, 8)
EDGS-4 (8ˆ32, 4) (8ˆ32, 8)
EDGS-8 (8ˆ32, 4) (8ˆ32, 8)
EDGS-16 (8ˆ8, 8) (8ˆ16, 8)
1Region size of 32ˆ8 and 2 TB/SM.
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in terms of quality of the output. Figure 4.15b shows that the more aggressive

the probability cut-off approximation is, the smaller the EPE becomes. The reason

is that with such high number of labels, the algorithm has too many bad choices.

When we restrict those bad choices by rounding down the low probabilities to zero,

the quality increases. One can think of this as a better annealing schedule for this

application.

With a 7ˆ7 window, the results are more similar to stereo vision. Figures 4.16a

and 4.16c show that by reducing the cut-off threshold, the amount of skipped updates

decreases, which results in lower speedup and better quality of the results. The

difference between tracking at region-level and RV-level is also less dramatic than the

15ˆ15 window scenario. The exception to the trend of decreasing skipped updates

is between EDGS-8 and EDGS-16. The reason is the larger region size in EDGS-4

and EDGS8 compared to that of EDGS-16. In general, a smaller region size allows

for skipping more updates, but this is not the only factor affecting the performance.

Overall, EDGS-4 provides comparable quality to the baseline while gaining a

10% speedup. However, if a higher loss in quality is acceptable to the application,

EDGS-2 provides a speedup of 26.3%.

Image Segmentation

Image segmentation is different from the other two applications in some aspects.

First, it operates on only one image instead of two, which means less pressure on

the cache for the baseline. Second, it converges much more quickly, which means

the temperature parameter T is still high. The implication of this is the higher

likelihood of a few RVs in a region to be unstable, even though the rest of the

region might be stable. This is a shortcoming of our approach for tracking RVs over

fixed regions. Finally, the neighborhood energy function in image segmentation is

stricter than stereo vision and motion estimation, i.e., in those two applications, the
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Figure 4.17: Speedup of EDGS (a), variation of information (b), percentage of skipped updates
of EDGS for region-level and RV-level granularity (c) for image segmentation. The x-axis shows
the number of labels used in segmentation.

neighborhood energy function calculates the absolute and square of the difference

with neighboring RVs’ labels, respectively, whereas in image segmentation it is a

delta function. The higher β to α ratio of image segmentation compared to the

other two applications, in addition to the stricter neighborhood energy function only

exacerbates the possibility of having a few unstable RVs in a mostly stable region.

The combination of the reasons mentioned above results in the benefits of our

approach being eliminated by the overheads it introduces. Figure 4.17a shows the

average speedup of EDGS among all 30 images for two, four, and eight labels. Over-

all, there is 22%-44% overhead, although it is different for each image. In fact, a few

of the images gain a speedup of up to 41%, but for the majority the overheads sup-

press the benefits. The high amount of variation in skipped updates in Figure 4.17c

supports this observation. In terms of the quality of the results, however, Figure
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4.17b demonstrates that EDGS performs very similar to the baseline.

Another observation that further confirms the difference in behavior between

image segmentation and the other two applications is that, unlike stereo vision and

motion estimation, tracking update conditions at RV-level in image segmentation

produces better performance compared to region-level, albeit still not better than

the baseline. For 2-label image segmentation, the overhead is less than 2.5%. For

4-label and 8-label cases, it is, respectively, 10% and 4.9%. Furthermore, more

individual images obtain speedups compared to the region-level case. The main

reasons contributing to this contrast are avoiding processing of the same region by

different thread blocks at different iterations, i.e., exploiting locality.

4.4.3 Takeaways

The following are the key takeaways from our experiments:

• Increasing the number of threads improves the performance until the point

where thrashing starts to happen in the cache.

• Tracking update conditions at region-level does not exploit the full opportunity

for skipping updates, but it is a good fit for the SIMT execution model of the

GPU.

• The amount of skipped updates is higher when the region size is smaller, but

this is not the only factor that affects the performance. The number of thread

blocks per SM and cache hit rate are also important contributing factors.

• In addition to the region size, among the factors that impact the amount of

skipped updates are the number of labels, number of iterations, application

behavior, i.e., α, β, and annealing schedule, as well as the energy function.

• The best region structure depends on the application memory access pattern.
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• When the application has a lower memory footprint, e.g., in image segmen-

tation, only one image is considered as opposed to in motion estimation and

stereo vision which process two images, the improvements of EDGS reduce

because the baseline can take better advantage of caches.

• Although approximation leads to degrading the statistical properties of the

algorithm, it might improve the application end result quality under certain

circumstances, e.g., when the number of labels is large.

To summarize, EDGS performs best when there is the right balance between

the number of threads, cache hit rate, and skipped updates. Optimizing for each

of this factors alone is not enough to obtain the optimal performance. The balance

among these factors is influenced by application characteristics, such as algorithm

parameters and memory footprint. Additionally, the SIMT execution model of the

GPU does not allow for exploiting the full opportunity for skipping stable RVs.

Another framework that is a better match for the irregular access pattern arising

from the convergence of some RVs, e.g., a specialized hardware accelerator, will

potentially offer higher speedups.

4.5 Related Work

There have been works that implement Gibbs sampling for execution on GPUs.

Suchard et al. [85] present a CUDA implementation for Gibbs sampling. Terenin et

al. [91] break down the Gibbs sampling operations into multiple stages and use li-

braries and custom kernels to run them on the GPU. There are also more application-

specific implementations [4, 19, 102]. Although we do not target the general Gibbs

sampling problem on the GPU, our focus is on a wide class of problems represented

by first-order MRF models. We exploit the model’s structure, as well as an approx-

imation technique to accelerate the Gibbs sampling computations. Moreover, the
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detection of stability in RVs is orthogonal to other techniques used for accelerating

Gibbs sampling.

Vertex programming is a popular programming interface for graph processing

[56, 58, 86]. In this model, the graph algorithm is represented by operations on

a single vertex and its edges, and each vertex processes incoming edges from other

active vertices, i.e., those who have been updated in the last iteration. This is similar

to MRF inference in our work, which is a special case of vertex programming for a

general graph. However, the addition of the approximation technique and tracking

concentrated PDFs is what actually makes this connection more meaningful because

it creates the notion of active vertices. Without it, all vertices are always active.

Using approximations in MCMC and machine learning accelerators in general is

commonplace, because they allow for simplifications in hardware by trading off accu-

racy [50, 51, 83, 106, 108]. Zhang et al. [106] study the effects of precision at different

places in an MCMC accelerator from an empirical perspective. There are also works

that study the effects of approximation in MCMC and Monte Carlo simulations in

general [8, 17, 76, 81]. A more detailed survey is presented elsewhere [78]. However,

to the best of our knowledge, the effects of the particular approximation technique

we used have not been studied. Our empirical results show acceptable effects on the

result quality, and in some cases even quality improvement, but a deeper theoretical

analysis of the effects on the statistical behavior of the MCMC is also important.

4.6 Summary

A Markov Random Field (MRF) is a powerful graphical model for representing nu-

merous applications. It encodes the conditional dependence among random variables

(RVs). Probabilistic algorithms such as Gibbs sampling [29] can be used to solve

problems represented by MRF. Gibbs sampling is an iterative method which goes

through all RVs in the MRF and updates them until converged to the final result.
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The update process needs sampling from probability distributions, which is compu-

tationally intensive. Therefore, it is desirable to avoid unnecessary RV updates if

possible. To this end, in this paper we propose event-driven Gibbs sampling (EDGS)

and implement EDGS for GPUs. In this scheme, we divide the first-order MRF into

smaller regions and track these regions to see if they are stable and thus, can be

skipped for updates. Our evaluations using two image analysis applications show

that speedups of 26.3% and 30.3% can be gained, although with some loss in result

quality. This loss can be bounded to smaller values by trading off speedup. Never-

theless, our experiments demonstrate that for image segmentation, which operates

on a smaller amount of data and converges more quickly compared to the other appli-

cations, the overheads of our approach outweigh the benefits. Our observations also

show that although using approximation techniques degrades the statistical prop-

erties of the algorithm, it can improve the application end result quality when the

application has a large number of labels. In this case, using approximation limits

the bad choices in the algorithm by rounding very small label probabilities to zero,

which performs similar to a better annealing schedule for this case.
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5

Adaptive Simultaneous Multi-tenancy for GPUs

Graphics Processing Units (GPUs) are massively parallel accelerators that were origi-

nally intended to execute graphics applications, but their high throughput and energy

efficiency motivates their use in broader application domains. In the previous chap-

ter, we utilized GPUs to accelerate a certain class of applications, i.e., first-order

MRF inference using Gibbs sampling. In this chapter, however, we broaden our

focus to improve the resource utilization of GPUs for more general applications in

multi-tenant settings such as cloud environment.

Numerous cloud service providers offer GPUs as part of their solutions [3, 32, 62].

In such environments, a large number of kernels with different memory access and

compute behaviors request running on GPUs. Running only one kernel on the GPU

in these environments underutilizes resources, since a single kernel cannot utilize all

resources on the device most of the time [72]. Therefore, always dedicating the entire

GPU to only a single kernel is not cost-efficient either for the service provider or for

the customer. One example to address this issue is Amazon Web Services’ elastic

GPUs for applications that have high compute, storage, or memory needs that still
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could benefit from additional GPU resources[3]. Another example is the capability of

NVIDIA GPUs that started with the Volta architecture to support statically dividing

the GPU into multiple smaller virtual GPUs [70].

Sequential execution of kernels on GPUs in multi-tenant environments, such as

datacenters, leads to long wait times and reduces system throughput. Overcoming

this limitation requires a method for sharing the device among multiple users that

is efficient and adaptive to the events in the system, i.e., the arrival and departure

of kernels. NVIDIA GPUs support simultaneous execution of multiple kernels and

memory operations in a single application via Hyper-Q technology [67]. In addi-

tion, the CUDA Multi-Process Service (MPS) [69] facilitates concurrent execution

of kernels and memory operations from different applications. However, the first-

come-first-served (FCFS) and left-over resource allocation policies make concurrent

execution on existing GPUs inefficient. The reason is that the FCFS policy creates a

head-of-line blocking situation where the running kernel blocks other kernels until it

has all its thread blocks mapped to Streaming Multi-processors (SMs). Additionally,

simply allocating the left-over resources of the running kernel to the waiting kernels

might not be the optimal solution, since such a policy ignores the different require-

ments of the kernels and only depends on the order in which the kernels arrive at the

GPU. The Volta and newer architectures try to overcome this head-of-line blocking

by adding the capability to statically divide the GPU into smaller virtual GPUs, but

the above problems apply to each virtual GPU too.

An effective and low-overhead scheme for sharing the GPU among multiple ker-

nels should address both the resource underutilization and the adaptiveness issues.

This requires overcoming the head-of-line blocking problem in thread block schedul-

ing on the GPU to address the adaptiveness problem, and having a simple yet ef-

fective policy for resource allocation to tackle the underutilization issue. Previous

work attempted to support multi-tenancy on the GPU either by a software-based
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approach [15, 101] or by adding the necessary hardware support [73, 90]. These

works solely support preemption to make the system responsive, i.e., to force low-

priority kernels to yield control of the GPU to high-priority kernels, and hence, do

not alleviate the resource underutilization problem. A different class of work ad-

dresses multi-tasking on the GPU by modifying the hardware [1, 44, 55, 74, 97, 103]

or artificially fusing the kernels from different applications together [34, 55, 72, 100].

In the hardware-based work, the resource allocation policy is fixed and cannot be

changed. Furthermore, most of the necessary hardware support is not present in ex-

isting GPUs. Software-based approaches that rely on merging applications together

are impractical in real world scenarios since it requires merging every possible combi-

nation of kernels beforehand. Our work does not suffer from these shortcomings since

we use a low-overhead software approach to solve the GPU multi-tenancy problem

at run-time.

These challenges inspired us to design a system that realizes multi-tenancy for

commodity GPUs. In this chapter, we propose adaptive simultaneous multi-tenancy

for GPUs. Our system dynamically adjusts the resources allocated to kernels based

on the requirements of all kernels requesting execution on the GPU at run-time.

We achieve this by adopting a cooperative approach between applications and a

host-side service, supported via minimal application modifications and a lightweight

API. Our approach focuses on a single server, as the problem of assigning work to

specific servers in datacenters is addressed elsewhere [77]. Therefore, we assume that

the work assigned to this machine is optimized by the higher level scheduler. This

means that we execute all kernels assigned to the server simultaneously, and do not

aim to select an optimized subset of kernels that may result in better performance

since this problem is shown to be NP-complete [43].

In our proposed system, we manage the resources allocated to each kernel and

control the mapping of kernels’ thread blocks to SMs. Näıvely applying resource
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allocation policies can lead to unintended mappings of thread blocks to SMs and

result in further underutilization of resources. To avoid this, we build on the concept

of persistent threads [36] with a few modifications to implement our desired map-

ping policy on the GPU. Our work differs from previous work that uses persistent

threads to support preemption [15, 101] in that we show how to control the assign-

ment of thread blocks to SMs and use it to have control over resource allocation to

kernels. Moreover, support for preemption comes almost for free when we adopt this

approach.

To realize adaptive simultaneous multi-tenancy, we implement a host-side service

with which applications communicate to obtain launch parameters for their kernels.

The service monitors the kernels running on the GPU and makes decisions for launch

parameters based on the adopted allocation policy. In this work, we use offline

profiling of kernels and implement a greedy policy using this data with the goal

of minimizing the maximum execution time among all running kernels, or in other

words, maximizing system throughput (STP). We show that using our design, STP

is improved by an average of 9.8% (and up to 22.4%) for combinations of kernels that

include at least one low-utilization kernel, with respect to the sequential execution

of the kernels. Compared to a system in which persistent threads transformation is

applied to the kernels, the average STP improvement for these kernel combinations

is 4.3%. We do not compare our system with other software-based multi-tenant

systems [15, 101], since the target of those systems is to improve the turnaround time

of high-priority kernels whereas our goal in this work is to improve the throughput of

the whole system. Improving STP, assuming Service Level Agreements (SLAs) are

not violated, translates into less energy consumption of the datacenter by allowing

for reduction in the number of servers for the same amount of work, or in higher

scalability by doing more work with the same number of servers, both of which are

crucial factors in determining the Total Cost of Ownership (TCO) [13].
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In summary, we make the following contributions in this work:

• We identify the need for sharing the GPU among multiple kernels by charac-

terizing the behavior of a set of benchmark kernels. Our observations show

that running only one kernel at a time leads to underutilization of different

types of resources on the GPU. On the other hand, simply running two kernels

together without considering resource utilization does not realize the potential

STP gains.

• We use the concept of persistent threads to control the resources allocated to

each kernel at run-time. This allows us to solve the head-of-line blocking in

the GPU block scheduler.

• We design and implement an adaptive simultaneous multi-tenant prototype

system that runs on current GPUs. Adaptive simultaneous multi-tenancy is a

generalization of single-kernel multi-tenancy [15, 101], and static simultaneous

multi-tenancy supported by the NVIDIA Volta architecture and newer architec-

tures, in which the GPU is divided between multiple kernels at the same time.

Our system is composed of a host-side service that makes decisions regarding

the allocation of resources to kernels and preemption/relaunch of running ker-

nels, and an application-side API that encapsulates the communications with

the service in a few function calls.

• We evaluate the proposed system against a set of benchmark kernels using

a full prototype on real GPUs and show the effectiveness of our approach in

terms of improving STP.
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Figure 5.1: Spatial utilization of different re-
source types in SMs for the benchmark kernels.
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Figure 5.2: Issue slot utilization for the bench-
mark kernels.

5.1 Motivation

5.1.1 Resource Requirements

Figure 5.1 shows the amount of SM resources occupied by the benchmark kernels.

The data are obtained from the system described in Section 5.3.1 using NVIDIA pro-

filer and the details of the benchmarks are discussed in Section 5.3.2. This figure does

not show how often each of these resources are used, but demonstrates how much of

each type is occupied by kernels when run in isolation. To distinguish the utilization

of resources over time, we refer to this metric as spatial resource utilization. There

is a limiting resource for every kernel, i.e., the kernels exhaust one or two types of

resources while there are more of the other types left unused. This creates opportuni-

ties to simultaneously accommodate more kernels with complementary requirements

to maximize the throughput of the system. For instance, MD5Hash kernel needs

more than 70% of the registers on the device, but uses no shared memory. It can be

combined with lavaMD kernel which needs more than 90% of the shared memory to

improve the spatial resource utilization of the GPU. Taking advantage of this oppor-

tunity requires a method that shares each SM among multiple kernels, because sharing

the GPU among multiple kernels while each SM is dedicated to a single kernel does

not alleviate the SM resource underutilization.
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5.1.2 Issue Slot Utilization

A different metric for utilization is Issue Slot Utilization (ISU). ISU refers to the

percentage of issue slots that issued at least one instruction. It is an indication

of how busy the kernel keeps the device. Figure 5.2 shows ISU for the benchmark

kernels. The contrast between ISU and spatial resource utilization is visible in Figures

5.1 and 5.2. The former suggests that MD5Hash and lavaMD are good candidates

to be combined for throughput improvement, whereas the latter shows that both

kernels keep the device busy more that 70% of the time. Thus, although the resource

requirements of the two kernels are complementary, there are not many stall cycles

during the execution of each of them that the other kernel can take advantage of.

Based on the ISU values, lavaMD and tpacf are better candidates to run together,

because despite their similar resource requirements, they have complementary ISUs.

On the other hand, without complementary resource requirements, it is impossible

to fit both kernels on the GPU. Therefore, an efficient solution is needed to tune

the resources allocated to each kernel such that the requirements for both metrics are

met.

5.1.3 Non-overlapping Execution

CUDA MPS [69] combines multiple CUDA contexts into one to allow for simultane-

ous execution of multiple kernels from different applications on the GPU. However,

our observations show that the block scheduling algorithm on the GPU does not

properly take advantage of this capability. This issue is covered in prior work too

[15]. When multiple applications want to launch kernels on the GPU, their thread

blocks are queued in the order they have arrived at the device. As the resources

become available by completion of older thread blocks, newer ones are assigned

to SMs. This FCFS policy leads to a head-of-line blocking situation where more

resource-consuming kernels that arrived earlier block the execution of less resource-
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consuming kernels, even though there might be enough resources to accommodate

thread blocks of the smaller kernels. To address this issue, we use persistent threads

[36] to restrict the number of CTAs of each kernel on the device, thus constraining

the resources it uses.

To summarize, the challenges to sharing a GPU among multiple kernels are i)

managing the resources allocated to each kernel such that the GPU can accommodate

all kernels at the same time, ii) allocating resources to kernels to create complemen-

tary utilizations, iii) addressing the head-of-line blocking at the GPU block scheduler

caused by the FCFS policy on the GPU, and iv) doing all of these at run-time in an

adaptive fashion.

5.2 Adaptive Simultaneous Multi-tenancy

Our proposed solution to the challenges mentioned in Section 5.1 is adaptive simulta-

neous multi-tenancy. This concept is a generalization of single-kernel multi-tenancy

proposed in previous works [15, 101], and static simultaneous multi-tenancy first

supported by the NVIDIA Volta architecture [70]. The idea is to adaptively tune

the resources allocated to each kernel to accommodate more kernels on the GPU

while supporting kernel preemption to enhance the throughput of the multi-tenant

system. To this end, we propose kernel code transformations and an application API

to add flexibility to kernels, and employ a host-side service that monitors the kernels

running on the GPU to make decisions regarding resource allocation which are then

communicated to applications. In the rest of this section, we explain the details of

our design.

5.2.1 Overview

Our proposed system is composed of a host-side service that manages the resources

allocated to each kernel and determines when kernel adaptation (i.e., preemption

77



. 
. 

. 

Host-side 
Service 

MPS 

Application #1 

Application #N 

API 

API 

Kernel 
Wrapper 

Kernel 
Wrapper 

GPU 

Figure 5.3: Overview of the proposed adaptive simultaneous multi-tenant system.

for reducing the grid size and relaunch for increasing the grid size) needs to occur,

and an API for programmers to utilize the service. Figure 5.3 shows the overview

of the adaptive simultaneous multi-tenant system. On the arrival of a new kernel

or the departure of a running one, the service takes the following actions: i) it asks

the applications for the number of thread blocks their kernels have executed, used

in estimation of the remaining execution time. The remaining execution times are

used in combination with profiling data in the allocation policy to maximize STP

(addressing the challenge in Section 5.1.2); ii) it computes new parameters for the

kernels that are going to run on the GPU. The parameters, which in this work is the

number of CTAs but could be extended to different types of resources such as the

number of registers or the amount of shared memory, must not cause the resources

required by the kernels to exceed the available resources on the GPU (addressing the

challenges in Sections 5.1.1 and 5.1.3); iii) it communicates the new parameters to

the applications.

On the application side, the kernel launch is wrapped inside a function that

communicates with the host-side service. We provide an API for the common actions

that need to be taken when an application wants to launch a kernel. Ideally, these

function calls would be included in the CUDA libraries so that the programmer does

not have to add anything to their code, but for now they need to be included in the
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application code manually or via a source-to-source transformation.

In short, the applications that want to run kernels on the GPU have to contact

the host-side service using the provided API. The service controls when and which

applications should preempt/relaunch kernels and the kernel launch parameters. The

kernel launch parameters are passed via the API to the kernel wrapper function

that launches the kernel. MPS intercepts kernel calls and merges them in a single

context to run on the GPU concurrently. The fact that all concurrent kernels share a

virtual address space creates security concerns in a multi-tenant environment. This

issue is addressed in the Volta architecture by supporting the separation of virtual

address spaces for kernels that run on different SMs. Since we share SMs among

multiple kernels, this capability does not eliminate the security limitation of our

work. However, adding a software address translation layer [80] can isolate the

address spaces of different applications with minimal overhead when required.

5.2.2 Host-side Service

Applications communicate to the service via the API (Section 5.2.3) at two occasions:

i) launching a kernel, and ii) starting the execution of the last thread block. The

reason that we notify the service at this point, and not once the kernel is finished,

is that after the last thread block begins execution, no changes can be made to the

number of CTAs of the kernel. Therefore, by sending the notification before the

kernel finishes, we can overlap the communications with and the parameter compu-

tation at the host-side service with the execution of the last round of thread blocks

of the kernel, effectively hiding the latency of these operations without affecting the

number of kernel’s CTAs.

The service receives messages on a shared message queue in a loop. Whenever

it sees a message in this queue, it keeps reading until the queue is empty to aggre-

gate the effects of back-to-back messages from different applications on the system
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in a single step. After reading all messages in the queue, the service opens two

dedicated message queues for communication with each client application that has a

kernel to run. These queues are used for sending preemption commands and launch

parameters, and receiving the progress of the kernel.

When the service is notified by an application of a new event, i.e., a new kernel is

arriving or an existing kernel begins the execution of its last thread block, it queries

other applications for kernel progress via dedicated message queues. Previous work

[101] used elapsed time for this purpose, and thus, there was no need to query the

application. Nevertheless, this metric is not suitable for our purpose. Elapsed time

can be used to measure the progress when only one kernel runs on the GPU at a time,

whereas in our proposed system multiple kernels share the device simultaneously and

therefore, do not make progress with the same rate as they do when they run in

isolation. To overcome this issue, we use the number of executed thread blocks as

an indicator of kernel progress.

The service then waits for the response from all applications, as those data are

necessary for making allocation decisions. We use asynchronous memory copy opera-

tions to overlap these queries with kernel execution. Having the number of executed

thread blocks and kernels profiling data, we then estimate the remaining execution

time of the kernels (Section 5.2.6). Once this operation is done, the parameters

for each kernel are sent to the corresponding application via the dedicated message

queues and the application makes the appropriate adjustments.

5.2.3 Application Side

On the application side, we initialize the shared and dedicated message queues,

obtain launch parameters for the kernel, wait for notifications from the service for

preemption and new launches, and release the resources on completion of the kernel.

Table 5.1 summarizes the application API to support these actions.
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Table 5.1: Application API.

Function Description

init(kernel args)
Initializes the necessary variables for
communication with the service and
launching new instances of the kernel.

obtainParame-
ters(kernel name,
total blocks,
block dim)

Contacts the service with kernel’s
information and obtains the number of
CTAs to launch the kernel. Furthermore,
upon receiving the response, it creates
threads for listening to the service and
monitoring kernel progress.

release() Releases the allocated resources.

init(): On a kernel launch, the application host code initializes the necessary

variables. These include shared and dedicated message queues, necessary memory

allocations for communication between the host and the GPU, and streams for asyn-

chronous memory operations and kernel launches. The dedicated message queues are

created based on the process ID of the application to ensure uniqueness. There are

also pointers to kernel input arguments (kernel args) that are used when launching

a new instance of the kernel.

obtainParameters(): Once the initialization is complete, the host code obtains

parameters for the kernel it wants to launch from the host-side service. To this end,

it sends a message composed of the kernel name (kernel name, to retrieve its corre-

sponding profiling data at the host-side service), the names of the dedicated message

queues (created using process ID, to open connections to the queues at the service),

the total number of thread blocks the kernel wants to run (total blocks, to be used for

remaining execution time estimation), dimensions of a thread block (block dim, to

be used for resource usage calculation), and indication that this message is a request

for a new kernel (as opposed to notification for the beginning of the execution of

the last thread block of an existing kernel). After the message is sent, the host code

waits to receive a response from the service. Once the response arrives, the kernel is
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launched and two threads are created: one for listening to the host-side service for

new launch parameters, and the other for monitoring the progress of the kernel. The

first thread uses the stream for memory operations to asynchronously read the num-

ber of executed thread blocks from the device and to write to the memory location

holding the preemption variable (max blocks in Figure 5.4).

Once a new message with launch parameters comes from the service, there are

three possible scenarios: i) the new number of CTAs is less than what the kernel

is currently running with, ii) the new and old numbers of CTAs are equal (i.e., no

actions required), or iii) the new number is greater than the old number of CTAs.

In the first case, the thread preempts the proper number of CTAs to match the

new parameter by writing to the preemption variable (described in the following

section). In the last case, the thread launches a new instance of the kernel on a new

stream to run in parallel with the current instance. The second thread is responsible

for sending notification to the service once the last thread block of the kernel has

started execution.

release(): Finally, when the kernel finishes, the host code deallocates all re-

sources used for these communications.

5.2.4 Kernel Code Transformation

To have control over the number of CTAs and consequently, the resources allocated

to the kernel, we use persistent threads [36]. The concept of persistent threads refers

to limiting the number of threads to a value that the GPU can run simultaneously.

In addition to control over resources, using persistent threads provides support for

preemption at thread-level granularity. Preempting kernels only at thread completion

mitigates the need for handling any remaining work due to preemption.

Using a persistent thread transformation, we override the blockIdx variable in

CUDA, which refers to the logical thread block index. Figure 5.4 shows the required
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1  __global__ void TransformedKernel(/*Original Arguments*/, 
2                                    int grid_size, 
3                                    int *block_index, int *max_blocks, 
4                                    volatile int *concurrent_blocks) { 
5      int smid = get_smid(); 
6      __shared__ int logicalBlockIdx; 
7      __shared__ int physicalBlockIdx; 
8      if(threadIdx.x == 0) { 
9          physicalBlockIdx = atomicAdd(&(block_index[smid + 1]), 1); 
10     } 
11     __syncthreads(); 
12     while(physicalBlockIdx < *max_blocks) { 
13         if(threadIdx.x == 0) { 
14             logicalBlockIdx = atomicAdd(&(block_index[0]), 1); 
15             *concurrent_blocks = logicalBlockIdx; 
16         } 
17         __syncthreads(); 
18         if(logicalBlockIdx >= grid_size) { 
19             break; 
20         } 
21         /* 
22         ... 
23         Kernel Code 
24         ... 
25         */ 
26     } 
27     if(threadIdx.x == 0) { 
28         atomicSub(&(block_index[smid + 1]), 1); 
29     } 
30 } 

Figure 5.4: The kernel transformation required for supporting persistent threads and preemption.

transformation to the kernel code to implement persistent threads. It also includes

support for preemption and control over the assignment of CTAs to SMs.

We add four input arguments to the original kernel: i) the size of the original

grid to check whether the execution of the kernel has finished, ii) an array of block

indices to keep the last logical block index and the last CTA index per SM, iii) a

pointer to a memory location that keeps the maximum number of CTAs per SM,

and iv) a pointer to a pinned memory location (as opposed to a pageable memory

location) on the host memory that keeps the last logical block index for the host to

read it.
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At the kernel start, we determine the CTA index on the hosting SM. This requires

the SM ID which is read from the %smid register on NVIDIA GPUs (line 5). Then,

in one of the threads of the thread block, we atomically add to the value stored at the

corresponding location to the hosting SM in the indices array, and store the result

in a variable in shared memory (lines 8-10). We use shared memory for this purpose

because it is faster than global memory. This is followed by a barrier to ensure all

threads in the thread block observe the operation (line 11). This CTA index is then

compared to the maximum number of CTAs per SM at every iteration of the loop so

that the extra CTAs are preempted when necessary (line 12). Note that this feature,

i.e., indexing CTAs on SMs to control the number of CTAs running on each SM,

is our contribution and is not part of the original persistent threads transformation

(the reason this is required is explained in Section 5.2.7 with the example scenario).

Inside the while loop that wraps the original kernel code, a new logical block is

obtained in one of the threads of the thread block by atomically adding to the value

stored at the memory location holding the last logical block index (lines 13-16). In

addition, the last logical block index is written to the pinned memory pointed to by

the concurrent blocks variable (line 15). We allocate this memory on the host by

calling the cudaMallocHost() function. This type of memory is accessible by both

the host and the GPU. This way, we can monitor the progress of the kernel at any

time without doing an explicit memory copy operation. After the new block index

is obtained, all threads in the thread block are synchronized to observe it (line 17).

Then, by comparing the logical block index to the size of the original grid, we can

determine whether the execution of the kernel is finished (lines 18-20). If the logical

block index is less than the size of the original grid, the original kernel code that has

the blockIdx variable replaced by logicalBlockIdx is executed and the loop proceeds

to the next iteration (lines 21-26).

The while loop terminates due to either completion of the kernel or preemption.
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If the reason is preemption, we need to update the last CTA index on the SM (lines

27-29). This is necessary since it is possible that later on, we need to launch more

CTAs of the same kernel, because, for instance, another kernel is completed and there

is more room for other kernels on the GPU. In this case, the newly added CTAs must

have valid indices in case in the future another preemption needs to occur.

5.2.5 Profiling and Pruning the Parameter Space

We use offline profiling of kernels in isolation to help estimate the remaining execution

time of kernels in a multi-tenant environment, which is consumed by our allocation

policy (Section 5.2.6). Once the transformation in Section 5.2.4 is applied to the

kernel, we can use the number of CTAs as the control knob for the amount of

resources allocated to it. After these data have been obtained (we will discuss the

results of our profiling in Section 5.3.3), we sort the configuration points based on

the number of CTAs and then prune the space such that the execution times of the

remaining set of configurations monotonically decrease. In other words, this means

that we eliminate all points for which another configuration exists that uses less

resources and executes faster. Once the pruning is done, we store the remaining

set of configurations in an array in the host-side service to be later retrieved by the

allocation algorithm. Equation 5.1 shows how we use the profiling data for estimation

of the remaining execution time of the kernel in a multi-tenant environment:

T c
m “ T c

i ˆ
TBt ´ TBe

TBt

(5.1)

In Equation 5.1, T c
m is the remaining execution time of the kernel in multi-tenant

environment when it is running with c CTAs, T c
i is its execution time in isolation

when it has c CTAs, TBt is the total number of its thread blocks, and TBe is the

number of thread blocks it has executed so far.
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5.2.6 Sharing Policy

The policy that we implemented aims to minimize the maximum remaining execution

time among the kernels to maximize STP. For this purpose, we use the execution

times of the kernels in isolation as an estimation for their execution time in a multi-

tenant environment (Equation 5.1).

Algorithm 2 Greedy resource allocation algorithm

1: procedure AllocateResources(KernelsList)
2: Allocate the minimum resources to each kernel
3: Descendingly sort kernels based on their estimated remaining execution times
4: marked Ð 0
5: while marked ď KernelsList.size() do
6: if KernelsList [marked ].nextConfig() then
7: KernelsList [marked ].advanceToNextConfig()
8: if New configurations fit the device then
9: Re-sort the KernelsList from marked onwards

10: else
11: KernelsList [marked ].rollBackToPrevConfig()
12: marked++

13: end if
14: else
15: marked++

16: end if
17: end while
18: end procedure

Our policy is a greedy method, in which the service starts at the point where

all kernels have minimum resources, i.e., one CTA per kernel (line 2 in Algorithm

2.) The algorithm then descendingly sorts the kernels based on their estimated

remaining execution times and initializes a variable, marked, to indicate the kernels

whose resource allocation is determined (lines 3-4.) It then iteratively advances to

the next configuration point for the first unmarked kernel (lines 6-7) until all kernels

are marked. If this kernel currently has all the resources it can use, it is marked (line

15) and the loop proceeds to the next iteration. Note that due to sorting the kernels,

86



this operation minimizes the maximum remaining execution time among all kernels.

If the new configuration fits the device, i.e., the resources required for it do not

exceed those available on the GPU, the kernels are re-sorted and the loop proceeds

to the next iteration (lines 8-9.) Otherwise, the operation is rolled back and the

kernel is marked (lines 11-12.) It continues until no kernel can have more resources

allocated to it. Note that these steps occur only in the host-side service and the final

result is communicated to the applications, i.e., the incremental resource allocation

is only in computation, we do not incrementally add to the CTAs a kernel runs

with. Algorithm 2 shows the pseudo-code for this policy. If no feasible configuration

exists, we simply launch all kernels with one CTA. In this case, kernels will be queued

at the block scheduler on the GPU and will start execution once resources become

available. The complexity of this algorithm is linear with respect to the number of

configurations of all kernels, i.e., Op
ř

kPK

Ckq where Ck is the number of configurations

for kernel k and K is the set of all kernels that want to run.

It must be noted that any other policy can be easily plugged into our proposed

system without affecting any of the parts related to the mechanisms necessary for

supporting simultaneous multi-tenancy. The only requirement is that the policy

needs to take a list of kernels and their profiling data as the input and determine the

configurations for each kernel.

5.2.7 Example Scenario

An example scenario of two applications running kernels on the GPU concurrently

is presented in Figure 5.5. At step 1 , Application #1 contacts the host-side service

requesting to run kernel A on the GPU. The service runs the resource allocation

algorithm and responds to Application #1 to run kernel A with five CTAs per SM,

and consequently Application #1 launches A with the specified number of CTAs.

Then at step 2 , Application #2 sends a message to the host-side service and
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Figure 5.5: An example scenario of two applications running kernels on the GPU simultaneously.
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requests to run kernel B on the device. The service queries Application #1 about

the progress of kernel A at step 3 , and Application #1 responds with the number

of thread blocks that A has executed. Based on that information, the service runs

the allocation algorithm and sends new launch parameters, i.e., three CTAs for each

of A and B, to Applications #1 and #2 at step 4 . At this step, Application #1

compares the new number of CTAs with what A is running with currently. Since

the new number is smaller than the old one, preemption has to happen. Therefore,

Application #1 writes the new value to the max blocks location mentioned in Section

5.2.4. At the next iteration of the internal loop of A, the last two CTAs in each SM

will preempt and make room for CTAs of kernel B. In parallel with this operation,

Application #2 launches B with three CTAs per SM. Thread blocks of B will wait at

the block scheduler on the GPU until resources become available to start execution.

Since CTAs of kernel A can preempt in an arbitrary order, it is possible that at

some point all SMs are still occupied, except one with enough resources to host more

than three CTAs of kernel B (normally we would want to fill SMs with as many CTAs

as possible, but there are exceptions that having fewer CTAs will result in better

performance as shown in [48] and also discussed in Section 5.3.3). For instance,

suppose two CTAs of A preempt on SM1 before any of its CTAs preempt on SM2 or

SM3. This makes enough room to accommodate four CTAs of B on SM1. The block

scheduler on the GPU has nine CTAs of B waiting to be mapped on SMs, and since

the mapping happens as soon as there are enough resources on the SM, four CTAs of

B will be assigned to SM1 instead of the three intended. However, when this occurs

in our system, extra CTAs will automatically terminate because their indices will

exceed the value at max blocks. This prevents having extra CTAs per SM, but in

the end the total number of CTAs will be less than what is desired because some of

them terminated early. To address this, applications that preempt CTAs can notify

the host-side service, and then the service can notify those applications that launch
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kernels to correct the number of CTAs if needed. However, since in our observations

this situation did not occur, we did not include this fix in our implementation.

Once kernel B grabs its last thread block at step 5 , Application #2 notifies the

host-side service. This triggers running the allocation algorithm again. The service

sends the new number of CTAs to Application #1, and since the new number is

greater than the old one, new CTAs have to be launched. At step 6 , Application

#1 does so in a separate stream (CTAs inside the dotted rectangle), in order for

them to run in parallel with the previous instance of the kernel. Kernel A grabs its

last thread block at step 7 and Application #1 notifies the service of this event.

Finally, Application #1 is finished and the GPU is empty.

5.2.8 Limitations and Future Work

A limitation of our work is that the host-side service logically shares a single SM

among all kernels, and then extrapolates that configuration to all other SMs, although

there might be kernels that benefit from having the entire SM to themselves due to

their intensive usage of cache. This is an area for future work. One way to alleviate

this shortcoming is to launch placeholder kernels from the host-side service to occupy

a subset of SMs and force the GPU block scheduler to assign thread blocks to the

free SMs. The overhead associated with this approach is expected to be minimal,

since the placeholder kernels are only required for the short period of time between

arriving a kernel launch request at the host-side service and the launch of the kernel

at the GPU.

There are other limitations imposed by the choice of platform. One is due to the

use of MPS in our system. NVIDIA GPUs do not support dynamic parallelism [47]

while running MPS. Therefore, our system does not support running kernels that use

this feature. The other, perhaps more important, limitation is that NVIDIA GPUs

prior to the Volta [70] do not support running kernels with separate virtual address
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Table 5.2: NVIDIA Tesla K40c specifications.

Resource Value

Threads per SM 2048
Registers per SM 65536

Shared Memory per SM 48 KB
Warps per SM 64

Thread Blocks per SM 16

spaces, which creates security concerns. As discussed earlier in the chapter, adding a

software address translation layer [80] can solve this problem by isolating the address

spaces of different applications.

5.3 Evaluation

In this section, we first describe the platform for our experiments. Then we dis-

cuss the characteristics of the benchmark kernels we used. After that, the effect of

the transformation in Section 5.2.4 on the performance of the benchmark kernels is

evaluated. Finally, we present results for multi-kernel evaluations.

5.3.1 Platform

The machine we used for the experiments has an Intel Xeon E5-2640 CPU, and the

experiments are conducted on an NVIDIA Tesla K40c GPU. The OS is Ubuntu 16.04,

and NVIDIA driver version 375.26 and CUDA 8.0 were used to compile and run the

benchmarks. Table 5.2 shows the specifications of the GPU card accounted for while

making decisions about the feasibility of kernel configurations in the host-side service.

5.3.2 Benchmark Kernels

Our goal was to have a mixture of kernels from various areas with different behaviors

and requirements. To this end, we picked seven benchmark kernels, binomialOp-

tions, FDTD3d, lavaMD, MD5hash, nbody, particlefilter, and tpacf, from CUDA

SDK samples [66], Rodinia [14], SHOC [20], and Parboil [84] benchmark suites, for
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Table 5.3: Benchmark kernels characteristics.

Kernel TBs1
TB
Size

Regs /
T2

Shmem /
TB3 Time4

ISU

binomialOptions
(BO) [66]

1024 128 28 524 5.476
73.6

FDTD3d (FD)
[66]

288 512 58 3848 8.821
27.5

lavaMD (LM)
[14]

512 128 64 7208 8.958
87.3

MD5Hash (MD)
[20]

25432 384 30 8 71.475
97.4

nbody (NB) [66] 128 256 49 8208 39.155
89.1

particlefilter
(PF) [14]

512 128 16 8 43.105
48.6

tpacf (TP) [84] 201 256 49 13320 11.23
34.8

1 Thread Blocks.
2 Registers per Thread.
3 Shared Memory per Thread Block in Bytes.
4 Execution Time in ms.

our evaluations. Figure 5.6 shows the behavior of these benchmarks that are rep-

resentative of a variety of kernels. The values on the axes are on a scale of 0-10

and are obtained from NVIDIA profiler. The figure shows that some kernels are

compute-intensive (MD5Hash, lavaMD), some demonstrate intensive use of memory

and cache (FDTD3d), and some have a mixture of requirements (binomialOptions,

nbody, particlefilter, tpacf).

Table 5.3 summarizes the characteristics of these benchmark kernels, after under-

going the transformations to support adaptive simultaneous multi-tenancy explained

in Section 5.2.4. The abbreviations in front of kernels’ names are used in multi-kernel

evaluation figures.
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Figure 5.6: Utilization of various resource types in (a) binomialOptions, (b) FDTD3d, (c) lavaMD,
(d) MD5Hash, (e) nbody, (f) particlefilter, and (g) tpacf kernels.

5.3.3 Single Kernel Performance

Figure 5.7a shows the normalized execution time of the transformed kernels with

respect to the original code. As the figure illustrates, applying the transformation

to the kernels has a negligible impact of 1.7% on the average performance of all

kernels. However, it increases the register and shared memory usage of the kernels

due to introducing additional variables. The register usage is increased by 23%, as

shown in Figure 5.7b. Increasing the number of registers per thread might result in
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Figure 5.7: (a) Performance and (b) register usage of benchmark kernels under persistent threads
transformation.

fewer CTAs fitting on the GPU. Nevertheless, as shown in Figure 5.8, increasing the

number of CTAs has a marginal gain and after some point, the performance does

not considerably improve. Nonetheless, a possible solution for reducing the register

overhead of the proposed code transformations is to restrict the compiler to compile

kernels with fewer registers. This incurs some performance overhead to the kernels,

but based on our observations, accepting a 2% performance overhead results in the

elimination of register usage overhead. The reason that we did not take this into

consideration is that the same could be applied to the original kernels for register

reduction. Thus, we picked the best-performing register configuration for both the

original and transformed kernels. We did not include the shared memory usage

figures, because all kernels need a fixed eight bytes additional shared memory to

store the logical block index and CTA IDs in SMs required for the persistent threads

transformation.

As stated in Section 5.2.4, applying persistent threads transformation to kernels

allows us to control the allocated resources by running them with the desired num-

ber of CTAs. Figure 5.8 shows the performance of transformed kernels for varying

numbers of CTAs per SM. We use these data as input for our greedy allocation algo-

rithm. Most of the time, there is a direct trade-off between the number of CTAs of a

kernel and its performance. However, there are some exceptions for binomialOptions
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Figure 5.8: Performance of (a) binomialOptions, (b) FDTD3d, (c) lavaMD, (d) MD5Hash, (e)
nbody, (f) particlefilter, and (g) tpacf kernels with different numbers of CTAs.

and nbody that are distinguished with red dotted circles. We omit these points from

the decision-making process in the allocation algorithm, since they do not offer any

beneficial trade-off. In other words, there exists another point in the space that uses

less resources but delivers higher performance.

5.3.4 Multi-Kernel Performance

In this section, we report two metrics that are common for measuring the perfor-

mance of multi-program workloads [24]: i) system throughput (STP), and ii) average

normalized turnaround time (ANTT) for kernels. We use the time it takes for all
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Figure 5.10: Normalized STP under different
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kernels to finish, i.e., the completion time of the last kernel that finishes minus the

start time of the first kernel that begins, as an indication for STP. ANTT is the ratio

of the time it takes for a kernel to finish in a multi-tenant environment and the time

it takes for the same kernel to finish in isolation. Unfortunately, we cannot report

ISU for multi-kernel experiments since NVIDIA profiler does not report it when MPS

is running.

We also report results for two systems: i) a system in which there is no host-side

service, but persistent thread transformation is applied to the kernels (PT), and ii)

our proposed adaptive simultaneous multi-tenant system (SiM).

We repeated our experiments five times for every ordering of the kernels (e.g.,

for the combination of BO+FD, five times when BO arrived at the service first, five

times when FD was the first, and for SiM only, five times when both arrived at almost

the same time such that their effects were aggregated), and report the average of the

results.

Kernels with Low ISU

We refer to kernels with an ISU of less than 50% as low ISU kernels. During the

execution of such kernels, the execution units are idle for more than half of the

cycles due to various reasons, including synchronization, data request, execution

dependency, busy pipeline, etc. It is expected that co-scheduling these kernels with
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another kernel results in higher STP, since the idle cycles can be taken advantage of.

Figure 5.9 demonstrates the normalized STP for kernel combinations that include at

least one kernel with low ISU. On average, PT improves STP by 5.3% with respect

to the sequential execution of kernels. This improvement is due to the alleviation

of the head-of-line blocking in the GPU block scheduler explained in Section 5.1.3.

Nevertheless, addressing this issue alone is not sufficient to realize the potential STP

improvement created by the underutilization of resources. To this end, by tuning

the resources allocated to each kernel, SiM increases STP by 9.8%.

Not all kernel pairs experience similar improvements in STP. The higher the ISU

of one of the kernels is, the less opportunities there are for STP improvement. This

is evident in FD+MD and MD+TP pairs, because MD kernel has an ISU of 97.4%.

This means that MD alone can utilize the device very well. There are other factors

that impact the achieved STP improvement as well, such as the resource requirement

of the kernels, the execution time of a single thread block of the kernels, and non-

optimal allocation of resources by our greedy algorithm. The first one shows itself

in the high STPs achieved when running BO+TP and FD+TP pairs, since these

kernels utilize different units on the device. The other two, however, explain the low

STP improvement for LM+TP. In this kernel pair, whenever LM arrives first, there is

no room for TP to run any thread blocks until the first round of thread blocks of LM

are completed and preemption can occur. This takes long enough to offset a large

enough fraction of the improvement achieved by the co-run of the rest of the thread

blocks of the two kernels to cause lower improvements than simply running the two

kernels with persistent thread transformation. In addition, the launch parameters

determined by the greedy algorithm for the two kernels do not result in the best

possible output. This highlights the need for a more accurate and sophisticated

allocation policy, which is part of our future work.

The gains in STP come at the expense of 49.2% increase in ANTT. We must note
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that improving STP and keeping ANTT low are at odds with each other, and the

goal of our allocation policy is to maximize STP. If ANTT is an important factor

in the system, other allocation algorithms can replace our greedy algorithm without

affecting other parts of the system. Besides, we did not define priorities for kernels

in our work. The works that target improving ANTT do so for high priority kernels

since it is impossible to improve this metric for all kernels in the system.

Kernels with High ISU

The STP improvement is not significant when all kernels running on the GPU can

utilize it well enough when executed in isolation. Figure 5.10 shows the normalized

STP for pairs of kernels that both have high ISUs (i.e., greater that 50%). In

these cases, the overheads of preemption and multiple launches, as well as cache

thrashing, result in a negligible STP improvement of 0.3% in SiM. PT even imposes

a 0.5% overhead on STP. The other downside of running high-ISU kernels together

is a large increase in ANTT (78.7%.)

These observations mean that adaptive simultaneous multi-tenancy is more ef-

fective when individual kernels are not highly optimized to have high ISUs. The

positive side is that this also means that without putting extra effort into optimizing

kernels, a higher STP can be achieved by merely running multiple kernels together.

5.4 Related Work

Gupta et al. [36] studied the different use cases of persistent threads for a single

kernel. In independent works, Chen et al. [15] and Wu et al. [101] proposed taking

advantage of persistent threads for supporting preemption. EffiSha only supports

the execution of one kernel at any given time on the GPU [15]. FLEP, on the other

hand, has limited support for executing two kernels on the GPU at the same time,

only in the case that one of the kernels is small enough to entirely fit on the GPU
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[101]. Supporting preemption in these works helps favoring the high priority kernels

over the low priority ones, but it does not solve the underutilization of resources on

the device.

Pai et al. [72] proposed Elastic Kernels and showed that sharing the GPU among

multiple kernels improves utilization. They artificially fuse multiple kernels together

to form a super-kernel in a single GPU context. There are other works that adopt

a similar approach [34, 55, 100]. This allows for concurrent execution of kernels,

but such a scenario is impractical in the real world, since merging the kernels from

different clients into a single kernel at run-time is impossible. We avoid this limitation

by using a host-side service and taking advantage of MPS. Furthermore, in this work

we focus on a different part of the solution. We propose a system to solve the problem

of multi-tenancy while Elastic Kernels proposes various policies that can be employed

in our host-side service.

Preemptive Kernel Model proposed by Basaran and Kang [10] slices the kernel

into smaller grids, which in turn allows for sharing the GPU among multiple kernels.

Several other works also rely on kernel slicing [44, 107]. This approach incurs the

overhead of multiple launches that cannot be avoided even if we do not need to

preempt the kernel at all. By taking advantage of the persistent threads model, our

approach eliminates the unnecessary launch overhead introduced by kernel slicing.

The NVIDIA Volta architecture [70] and newer architectures support static simul-

taneous multi-tenancy. In other words, it is possible to divide the GPU into multiple

smaller virtual GPUs. There are also works that introduce hardware extensions to

support preemption or multi-programming. Tanasic et al. [90] proposed context

switching and draining by supporting preemption in hardware. Park et al. [73] ex-

tended this work by identifying idempotent kernels to faster preempt the running

kernel by flushing the SMs.

Adriaens et al. [1] proposed spatial multi-tasking. In this approach, each SM is
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entirely allocated to one kernel. Wang et al. [97] propose partial context switching,

which is similar to our approach in that it only preempts a portion of SMs. Never-

theless, they use different allocation policies and hardware support is necessary for

its implementation. Xu et al. [103] propose a software-hardware mechanism that

similarly shares an SM among multiple kernels. Park et al. [74] propose GPU Mae-

stro that based on performance predictions, switches between spatial multi-tasking

and partial context switching at run-time.

Jog et al. [45] proposed a method for making memory scheduling decisions based

on misses-per-kilo-instructions and bandwidth information in multi-application en-

vironments in GPUs. We did not investigate the efficiency of memory operations in

this work. Moreover, Wang et al. [94] demonstrated the effects of thread-level par-

allelism on the overall performance of the system when multiple kernels are running

together, and showed that making bandwidth management decisions considering all

kernels is more effective than allocating resources to each individual kernel based on

its performance metrics in isolation. We did not study the effects of memory band-

width on kernels’ performance in this work. In addition, in their work each SM is

dedicated to a single kernel as opposed to our proposed solution to share SMs among

multiple kernels to improve resource utilization.

Aguilera et al. [2] investigated the fairness of spatial multi-tasking and proposed

task assignment methods to improve fairness. Wang et al. [98] proposed quality of

service support for fine-grained sharing on GPUs. Fairness was not our main goal in

this paper, although our resource allocation policy can be easily swapped with any

other policy that improves fairness or other desired metrics.

5.5 Summary

We identify the challenges of using GPUs in a multi-tenant environment. We pro-

pose adaptive simultaneous multi-tenancy for GPUs to overcome these challenges.
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Our approach comprises a host-side service that makes decisions about the kernel

launch parameters and when the kernels should preempt. We also provide an API

to facilitate using the system for programmers and allow kernels to dynamically

adapt resource usage at runtime. Our approach requires minimal kernel modifica-

tions. Evaluation of our prototype system on NVIDIA K40c GPUs shows that, on

average, the system throughput is improved by 9.8% for combinations of kernels

that include at least one low-utilization kernel. This improvement is achieved at the

cost of 49.2% increase in the average normalized turn around time. Combinations of

high-utilization kernels do not benefit from our system. Our observations indicate

that using adaptive simultaneous multi-tenancy allows programmers to avoid highly

optimizing their kernels to have high ISUs by providing higher STP for concurrent

execution of low-utilization kernels.
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6

Conclusions

Executing data-parallel applications in the age of big data is challenging, because it

needs a significant amount of computational power. Furthermore, the end of Moore’s

law only exacerbates this issue as we can no longer rely on scaling transistors to

gain higher performance. Consequently, meeting the performance requirements of

data-parallel applications necessitates the adoption of specialized accelerators such

as Graphics Processing Units (GPUs) and more application-specific solutions. Fur-

thermore, software techniques and algorithmic optimizations can be used in addition

to hardware specialization.

In this dissertation, we identify multiple data-parallel application domains that

are suitable targets for hardware acceleration and algorithmic optimization. First,

we focus on statistical machine learning, and in particular, probabilistic algorithms

such as Markov Chain Monte-Carlo (MCMC). These algorithms are computation-

ally expensive, yet their statistical properties make them an attractive alternative

approach to DNNs. We target accelerating these algorithms for Markov Random

Field (MRF) inference in Chapter 3. We observe that problems represented by a

first-order MRF exhibit a high degree of spatial locality in memory accesses, and
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also have a regular memory access pattern. Thus, we design a tiled architecture

to exploit near-memory computing, which allows us to avoid frequent costly off-

chip communication. In addition, we design optimal communication schemes that

take memory access patterns into account to eliminate the need for a full-blown

network-on-chip. Our proposed accelerator achieves significant speedup compared

to general-purpose processors and even GPUs. Furthermore, we are able to support

uncertainty quantification by employing a hybrid on-chip/off-chip memory system,

which is inspired by workload characterization for two image analysis applications.

Our observations indicate that most Random Variables (RVs) only take on a few

labels, and therefore, by caching the most recently picked labels on the chip and

sending other labels to off-chip memory, we can strike a balance between the on-chip

memory capacity and off-chip communication bandwidth.

Nevertheless, hardware specialization alone does not provide the optimal per-

formance. Taking domain knowledge into consideration and tackling the problem

from an algorithmic perspective can deliver sizable performance gains. To this end,

orthogonal to hardware techniques, we demonstrate that algorithmic optimizations

can and should be adopted to further accelerate probabilistic algorithms. In Chap-

ter 4, we highlight the relation between MRF inference and the concept of vertex

programming in graph algorithms. Moreover, we show that many RVs update oper-

ations do not result in new labels. Running MCMC in the optimization mode and

using approximation techniques only amplifies this behavior, resulting in many RVs

having Probability Distribution Functions (PDFs) concentrated on only one label,

which then allows us to skip updating those RVs in the next iteration if the PDF

remains unchanged. Based on these observations, we propose Event-Driven Gibbs

Sampling (EDGS) to detect when RVs are stable and accelerate the application by

skipping the update operation for those RVs.

Considering that we approached the problem of accelerating MRF inference using
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MCMC from the hardware and algorithmic perspectives separately, an area for future

work is enhancing the MRF inference accelerator by incorporating EDGS. Although

the proposed accelerator in Chapter 3 achieves high performance, especially in the

sampling mode, it can still benefit from EDGS in the optimization mode. However,

the integration of EDGS will not be without challenges. The proposed accelerator

relies heavily on the regular memory access and communication pattern in the MRF,

whereas EDGS breaks that order. To be more specific, EDGS accelerates Gibs

sampling by skipping some RV updates, and this creates load imbalance in a tiled

architecture because not all regions in the input converge at the same rate. As a

result, the tiled architecture will not be able to exploit the full potential offered by

EDGS, mainly because the performance of the accelerator will be determined by the

slowest tile. To alleviate this issue, a centralized scheduler may be a better option.

Moreover, implementing EDGS for other platforms is another area of future work.

GPUs offer high throughput and require relatively low programming effort. How-

ever, their SIMT execution model limits the effectiveness of EDGS. Other platforms

that support fine-grained parallelism more efficiently might be able to gain higher

performance.

In addition to probabilistic algorithms, GPUs can be utilized to accelerate a wide

range of applications. GPUs offer massive parallelism by providing a variety of re-

sources, including thousands of simple cores, register files, etc. The large amount

and diversity of resources on the GPU ensures that diverse workloads with differ-

ent characteristics achieve high performance, but at the same time, in Chapter 5,

we show that it leads to under-utilization of some of the resources, which is ineffi-

cient in a multi-tenant environment. We identify the challenges to efficiently share a

GPU between multiple kernels in such an environment, which include adaptiveness

to the events in the system, and flexibility in terms of allocating resources to ker-

nels. We propose a system to address these challenges by exploiting appropriate code
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transformations, facilitated through an API provided by us, and a host-side service

responsible for making decisions about what resources are allocated to each kernel,

and when kernels need to resize. We analyze the effectiveness of the system under

different workload scenarios and show that for combinations of kernels that include

at least one low-utilization kernel, it improves the system throughput. As a result,

programmers can avoid highly optimizing their kernels to have high resource uti-

lization, because using our system for concurrent execution of low-utilization kernels

enhances the system throughput.

Implementing more mapping, allocation, and scheduling algorithms for adaptive

simultaneous multi-tenancy for GPUs is an area for future work. Our observation

of some kernels’ behaviors indicate that more sophisticated mapping algorithms and

allocation policies to support asymmetric mapping of thread blocks to SMs can

further improve the performance of our proposed system. This way, cache-intensive

kernels can benefit from having the entire L1 cache to themselves. Additionally,

more intelligent scheduling algorithms for dispatching thread blocks to SMs can

improve locality and reduce destructive interference in L2 cache. Despite all of this,

however, our observations show that due to the overheads of communication with the

host and coarse granularity of thread block preemption, the full potential of sharing

a GPU among multiple kernels is better realized with a hybrid hardware-software

approach that enables quick and flexible context switches, control over mapping and

scheduling, and takes kernel resource utilization information into consideration.
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