
Accelerating Probabilistic Computing with a
Stochastic Processing Unit

by

Xiangyu Zhang

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Alvin R. Lebeck, Advisor

Hai Li

Sayan Mukherjee

Daniel J. Sorin

Lisa Wu Wills

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Electrical and Computer Engineering

in the Graduate School of Duke University
2020

Abstract

Accelerating Probabilistic Computing with a Stochastic

Processing Unit

by

Xiangyu Zhang

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Alvin R. Lebeck, Advisor

Hai Li

Sayan Mukherjee

Daniel J. Sorin

Lisa Wu Wills

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Electrical and Computer

Engineering
in the Graduate School of Duke University

2020

Copyright c© 2020 by Xiangyu Zhang
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

Statistical machine learning becomes a more important workload for computing sys-

tems than ever before. Probabilistic computing is a popular approach in statistical

machine learning, which solves problems by iteratively generating samples from pa-

rameterized distributions. As an alternative to Deep Neural Networks, probabilistic

computing provides conceptually simple, compositional, and interpretable models.

However, probabilistic algorithms are often considered too slow on the conventional

processors due to sampling overhead to 1) computing the parameters of a distribu-

tion and 2) generating samples from the parameterized distribution. A specialized

architecture is needed to address both the above aspects.

In this dissertation, we claim a specialized architecture is necessary and feasible

to efficiently support various probabilistic computing problems in statistical machine

learning, while providing high-quality and robust results.

We start with exploring a probabilistic architecture to accelerate Markov Ran-

dom Field (MRF) Gibbs Sampling by utilizing the quantum randomness of optical-

molecular devices—Resonance Energy Transfer (RET) networks. We provide a

macro-scale prototype, the first such system to our knowledge, to experimentally

demonstrate the capability of RET devices to parameterize a distribution and run a

real application. By doing a quantitative result quality analysis, we further reveal

the design issues of an existing RET-based probabilistic computing unit (1st-gen

RSU-G) that lead to unsatisfactory result quality in some applications. By explor-

iv

ing the design space, we propose a new RSU-G microarchitecture that empirically

achieves the same result quality as 64-bit floating-point software, with the same area

and modest power overheads compared with 1st-gen RSU-G. An efficient stochastic

probabilistic unit can be fulfilled using RET devices.

The RSU-G provides high-quality true Random Number Generation (RNG). We

further explore how quality of an RNG is related to application end-point result

quality. Unexpectedly, we discover the target applications do not necessarily require

high-quality RNGs—a simple 19-bit Linear-Feedback Shift Register (LFSR) does not

degrade end-point result quality in the tested applications. Therefore, we propose a

Stochastic Processing Unit (SPU) with a simple pseudo RNG that achieves equivalent

function to RSU-G but maintains the benefit of a CMOS digital circuit.

The above results bring up a subsequent question: are we confident to use a proba-

bilistic accelerator with various approximation techniques, even though the end-point

result quality (“accuracy”) is good in tested benchmarks? We found current method-

ologies for evaluating correctness of probabilistic accelerators are often incomplete,

mostly focusing only on end-point result quality (“accuracy”) but omitting other im-

portant statistical properties. Therefore, we claim a probabilistic architecture should

provide some measure (or guarantee) of statistical robustness. We take a first step

toward defining metrics and a methodology for quantitatively evaluating correctness

of probabilistic accelerators. We propose three pillars of statistical robustness: 1)

sampling quality, 2) convergence diagnostic, and 3) goodness of fit. We apply our

framework to a representative MCMC accelerator (SPU) and surface design issues

that cannot be exposed using only application end-point result quality. Finally, we

demonstrate the benefits of this framework to guide design space exploration in a

case study showing that statistical robustness comparable to floating-point software

can be achieved with limited precision, avoiding floating-point hardware overheads.

v

To my beloved parents and wife Zhan Zhang.

vi

Contents

Abstract iv

List of Tables xi

List of Figures xii

Acknowledgements xv

1 Introduction 1

1.1 An MRF Gibbs Sampling Unit Using Emerging Technology 4

1.2 A CMOS Stochastic Processing Unit 5

1.3 Statistical Robustness . 7

1.4 Design Space Exploration with Statistical Robustness 9

1.5 Organization of Dissertation . 9

2 Background and Motivation 10

2.1 Probabilistic Statistical Machine Learning 11

2.1.1 Probabilistic Algorithms . 11

2.1.2 Probabilistic Graphical Models 13

2.2 Representative Applications . 15

2.2.1 Image Segmentation . 16

2.2.2 Motion Estimation . 19

2.2.3 Stereo Vision . 20

2.3 Sampling Overhead . 22

vii

2.4 Summary . 24

3 An MRF Gibbs Sampling Unit using Emerging Technology 25

3.1 Background . 28

3.1.1 Enabling Technology . 28

3.1.2 RET-Based Sampling Units 29

3.2 A Macro-scale RSU-G Prototype . 32

3.2.1 Prototype Setup . 32

3.2.2 Experimental Results . 34

3.3 RSU-G Precision vs. Quality . 39

3.3.1 Methodology . 40

3.3.2 RSU-G vs. Software-only Quality 42

3.3.3 RSU-G Design Parameters and Quality 44

3.3.4 Result Quality for new RSU-G 53

3.4 A High Quality RSU-G . 55

3.4.1 Qualitative Design Trade-offs 55

3.4.2 A New RSU-G Design . 56

3.4.3 Evaluation . 62

3.5 Limitations and Future Work . 65

3.6 Summary . 66

4 A CMOS Stochastic Processing Unit 68

4.1 RNGs vs. Application Result Quality 70

4.2 Exploring a CMOS Stochastic Processing Unit 73

4.2.1 SPU Pipeline . 73

4.2.2 Optimization for FPGA . 78

4.3 Evaluation . 79

viii

4.3.1 Result Quality . 80

4.3.2 FPGA . 80

4.3.3 ASIC . 82

4.4 Limitations and Future Work . 83

4.5 Summary . 84

5 Statistical Robustness 85

5.1 Three Pillars of Statistical Robustness 88

5.1.1 Pillar 1: Sampling Quality . 89

5.1.2 Pillar 2: Convergence Diagnostic 91

5.1.3 Pillar 3: Goodness of Fit . 93

5.2 Analyzing Existing Hardware . 96

5.2.1 Methodology . 96

5.2.2 Results Analysis . 97

5.3 Limitations and Future Work . 104

5.4 Summary . 105

6 Design Space Exploration with Statistical Robustness 106

6.1 A Case Study: SPU . 107

6.1.1 Evaluating Design Parameters 108

6.1.2 Evaluating RNGs . 113

6.1.3 Area and Power . 117

6.2 Limitations and Future Work . 118

6.3 Summary . 118

7 Related Work 120

7.1 Accelerating Probabilistic Computing 120

7.2 Evaluation Methodologies for Probabilistic Computing 123

ix

8 Conclusion 126

8.1 Summary of Contributions . 127

8.2 What’s Next? . 130

Bibliography 132

Biography 148

x

List of Tables

2.1 Average cycles per sample for different distributions from 109 samples
per run . 23

3.1 NIST statistical test input parameters 38

3.2 NIST statistical test result on prototype as a true RNG without post-
processing . 39

3.3 Standard deviation of VoI across 30 tested images 54

3.4 Stereo vision execution time (seconds) 63

3.5 New RSU-G area and power consumption 64

3.6 Area comparison with alternative designs 65

4.1 Resource usage and performance of various SPU implementations on
Arria 10 FPGA . 82

4.2 SPU area and power consumption . 82

6.1 Area and power (@1GHz) analysis in ASIC 117

xi

List of Figures

2.1 First-Order Markov Random Field (left) and conditional independence
(right). 14

2.2 Computer vision applications (image segmentation, motion estima-
tion, and stereo vision) using 1st-Order MRF Gibbs Sampling 15

2.3 Image segmentation on 1st-Order MRF 17

2.4 Motion estimation on 1st-Order MRF 20

2.5 Stereo vision on 1st-Order MRF . 22

3.1 Structure of RET Circuit [141] . 29

3.2 RET-based Gibbs Sampling Unit (RSU-G) [142] 31

3.3 Macro-scale RSU-G prototype . 34

3.4 Results on parameterizing pairwise relative probabilities 35

3.5 Prototype image segmentation results 37

3.6 Software-only vs. previous RSU-G result quality 42

3.7 Software-only vs. previous RSU-G stereo images 43

3.8 Result quality vs. exponential decay rate precision 46

3.9 Stereo vision teddy: scaled decay rates and probability cut-off 48

3.10 Relative error (RE) between actual probability ratios and intended
lambda ratios under different Truncations, given Timebits “ 5 50

3.11 Result quality of Timebits vs. Truncation in poster 52

3.12 RSU-G result quality for Timebits “ 5 and Truncation “ 0.5 across
applications . 53

xii

3.13 High quality RSU-G pipeline . 56

3.14 RSU-G RET circuit components . 61

4.1 A 3-bit Linear-Feedback Shift Register (LFSR) and its output random
numbers (RN) [148] . 70

4.2 Result quality analysis over RNGs with floating-point elsewhere . . . 72

4.3 Examples of teddy RNG results . 73

4.4 SPU pipeline . 74

4.5 SPU design in each stage . 75

4.6 Result quality vs. RNG output bits in the discrete sampler 78

4.7 Packing two 3-bit by 3-bit “sum of square” into a 18-bit DSP 79

4.8 Stereo vision and motion estimation result quality 80

4.9 Image segmentation result quality . 81

5.1 Determine convergence of a random variable 93

5.2 ESS per random variable in stereo vision teddy. Red regions corre-
spond to zero variance. 97

5.3 Mean overall and active ESS (higher is better) 98

5.4 Convergence percentage (higher is better) results 99

5.5 Root Mean Squared Error (lower is better). Scales are different in (a)
and (b) due to application differences. 101

5.6 Application end-point result quality (lower is better) 101

5.7 Dimetrodon end-point error difference (spu´ sw) at pixel level. End-
point error: 0.581 (software) vs. 0.567 (SPU). 103

5.8 Jensen-Shannon Divergence comparison between designs: SPU vs.
1st-gen RSU-G [142] . 103

6.1 Stereo vision sampling quality in the design points 109

6.2 Motion estimation sampling quality in the design points 111

6.3 Stereo vision convergence percentage in the design points 112

xiii

6.4 Motion estimation convergence percentage in the design points 112

6.5 Stereo vision RMSE in the design points 113

6.6 Motion estimation RMSE in the design points 114

6.7 Stereo vision application end-point result quality in the design points 115

6.8 Motion estimation application end-point result quality in the design
points . 116

6.9 Autocorrelation function on poster pixel (x,y)=(250,200). The values
between blue lines can be considered as noises. 116

xiv

Acknowledgements

Pursuing Ph.D. is a six-year journey to adventure, mostly with excitement, enrich-

ment, and satisfaction, but occasionally with anxiety and disappointment as well. I

could not imagine completing this academic expedition without the steady stream of

help and encouragement from my advisor, collaborators, instructors, friends, family,

and many more others.

To begin with, I would like to express my deepest gratitude to my advisor, Alvin

Lebeck, for his tireless guidance and generous support on my research and beyond.

His word “think as a researcher” becomes my motto as a Ph.D. student, guiding

me to appropriately approach research problems. His visionary thinking helps me

clear countless road blockers throughout the way I am chasing advanced academic

knowledge. His prompt and considerate mentoring, starting with “Hey Mike” in

emails or messages, motivates me to cope with numerous thorny situations beyond

research. Most importantly, his passion for research and rigorous attitude toward

teaching inspire me to be a responsible person.

I would also like to sincerely thank my committee members Hai Li, Sayan Mukher-

jee, Daniel Sorin, and Lisa Wu Wills, for their valuable comments and constant help

throughout the process. In particular, I am thankful to Sayan Mukherjee for his

thoughtful insights as a statistician that make the statistical robustness work pos-

sible. I am also grateful for the constructive suggestions Daniel Sorin provided on

my paper summaries in Fault-tolerant Systems class when I was in the first year as

xv

a graduate student, the most unforgettable and rewarding class I have ever taken at

Duke.

Plentiful thanks to many mentors whose great advice drives me on track. I would

like to wholeheartedly thank Chris Dwyer for his great guidance on the macro-scale

prototype work. I want to thank Omesh Tickoo, Richard Dorrance, Mahesh Sube-

dar, Srikanth Srinivasan, and other Intel researchers for financially and intellectually

supporting my research. I would like to thank Rong Ge, David Page, and Aubrey

Barnard for their insightful inputs as domain experts. I sincerely thank Benjamin

Lee and Andrew Hilton for serving on my milestone examination committees and

providing valuable feedback.

I cannot imagine finishing this dissertation without the countless support from

my awesome colleagues and peers. I would like to express my thank to my friend and

greatest collaborator Ramin Bashizade. We have collaborated on many works since

2015, none of which would be successful without his supportive efforts. I want to

thank Siyang Wang, Craig Laboda, and Yuxuan Li for their hands-on guidance when

I was a junior graduate student. I would like to thank Pulkit Misra, John Snyder,

Yicheng Wang, Chris Shin, Ceyu Xu, Cheng Lyu, and all other my classmates and

friends.

Finally but most importantly, this journey cannot conclude without concrete

support from my family. I am deeply grateful to my parents for their unconditional

love. A phone call with them is always one of the most joyful moments. I would like

to show my greatest thank to my beloved wife, Zhan Zhang, for all of her support,

company, tolerance, inspiration, and encouragement. My journey will reach a place

called “home” that she and I have created.

xvi

1

Introduction

Over the past decades, computing systems have been evolving rapidly with the con-

stant battle between the trend of providing general-purpose processors (standard-

ization) and application-specific accelerators (specialization). Starting from 1947,

the cyclical 10-year alternation of standardization and specialization in the semi-

conductor industry is known as Makimoto’s Wave [85]—another influential law be-

yond Moore’s Law. The pendulum is swinging toward specialization in the recent

decade due to the end of CMOS scaling and the wave of Artificial Intelligence (AI)

and machine learning [50], bringing both enormous challenges and opportunities on

computing systems to support large scale applications. In particular, most of the

specialized accelerators target deep learning applications (a.k.a., Deep Neural Net-

works). Examples of tide players include TPU [58], NVDLA [110], DianNao [20],

and an NPU [29].

Despite great efforts on Deep Neural Networks accelerators, insufficient attention

has been drawn on accelerating other statistical machine learning approaches, espe-

cially on probabilistic computing (or probabilistic algorithms). Statistical machine

learning often utilizes probabilistic algorithms to solve various high-dimensional prob-

1

lems, such as computer vision [35], robotics [45], natural language processing [31],

global health [44], and wireless communications [46], by iteratively generating sam-

ples from parameterized distributions. Compared with other deterministic algo-

rithms which usually require complex mathematical gymnastics, probabilistic al-

gorithms are conceptually simple and enable the potential to provide generalized

frameworks to solve wider types of problems, and sometimes are the only viable

approach, such as when a problem dimension is high or when a deterministic solu-

tion is intractable. As an alternative or complement to Deep Neural Networks, the

probabilistic approach provides easier access to interpreting why a given result is

obtained [39] through their model transparency and statistical properties. Industry

envisions that “probabilistic computing will lead to significant improvements in the

reliability, security, serviceability and performance of AI systems” [96].

Unfortunately, probabilistic algorithms can be inefficient on conventional proces-

sors. Probabilistic algorithms usually require repeatedly generating samples. For

example, Markov Chain Monte Carlo method (MCMC) takes hundreds or thousands

of iterations to converge to an acceptable result for complex problems, each of which

involves generating many samples in the inner loop [121]. The sampling process in-

cludes two steps: 1) computing the parameters of a distribution to sample from (e.g.,

the decay rate of an exponential distribution, or entries of a discrete distribution); 2)

generating samples from the parameterized distribution. Both steps are inner-loop

computation, involve complicated arithmetic and transcendental functions, and need

to be addressed to efficiently support probabilistic algorithms. A general-purpose

CPU takes at least hundreds of cycles to generate a simple distribution (e.g., 167

cycles for an exponential distribution, step-2 only), thus not efficient for sampling.

Although a general-purpose GPU has the potential to exploit the native parallelisms

in some probabilistic models, its performance and power efficiency remains to be

evaluated.

2

Therefore, we claim the following: a specialized architecture is necessary and

feasible to efficiently support various probabilistic computing problems in statistical

machine learning, while providing high-quality and robust results. To verify this

statement, we ask and answer two major questions in four subsequent works:

• Question I: what is the appropriate architecture of a stochastic processing unit

to efficiently support probabilistic computing? The stochastic nature of prob-

abilistic algorithms requires efficient sample generation from target distribu-

tions, whereas current CMOS digital circuits are intrinsically deterministic.

The first work explores the feasibility and design space of a stochastic pro-

cessing unit using a type of optical-molecular device called Resonance Energy

Transfer (RET) networks [141]. A RET network has the potential to generate

high-quality quantum randomness from various distributions. We find an ac-

celeration unit (the new RSU-G [149]) is feasible and competitive to accelerate

1st-Order Markov Random Field (MRF) Gibbs Sampling, one of the popu-

lar Markov Chain Monte Carlo (MCMC) methods. The second work further

investigates the necessity of using high-quality Random Number Generation

(RNG) by quantitatively evaluating end-point result quality of tested applica-

tions. Surprisingly, we discover the RET circuits can be replaced with a simple

CMOS RNG without reducing result quality. A CMOS stochastic processing

unit (SPU) is available to provide similar efficiency as RSU-G with the benefit

of a pure-CMOS digital circuit.

• Question II: what methodology should we use to evaluate correctness of a proba-

bilistic accelerator? A probabilistic accelerator often uses approximation tech-

niques (e.g., reduced precision, truncation, and simple RNGs) to maximize

efficiency. A methodology is needed to evaluate whether those approximations

jeopardize correctness of results. The third work points out the limitations

3

of using current methodologies that mostly only focus on the application end-

point results and omit other important statistical properties for a probabilistic

architecture. We propose a three-pillar framework that collectively and compre-

hensively evaluates statistical robustness of a probabilistic accelerator beyond

end-point result quality. The framework surfaces the design issues of the previ-

ous SPU that cannot be found only using end-point result quality. Finally, the

fourth work shows a case study on using the three-pillar framework to guide

robust hardware design.

The following sections summarize each work and its contributions.

1.1 An MRF Gibbs Sampling Unit Using Emerging Technology

The increasing difficulty in leveraging CMOS scaling for improved performance places

importance on exploring alternative technologies. A promising technique is to ex-

ploit the physical properties of devices to specialize in certain computations. A re-

cently proposed approach uses molecular-scale optical devices (RET networks) [141]

to construct a RET-based Sampling Unit (RSU-G) [142] to accelerate sampling from

parameterized probability distributions. Sampling is an important component of

many algorithms, including statistical machine learning. The previously proposed

RSU-G (1st-gen RSU-G) focuses on Gibbs Sampling using MCMC solvers for Markov

Random Field (MRF) Bayesian Inference, providing 21-84ˆ speedups as a discrete

accelerator over a Titan X GPU [142].

An experimental demonstration is needed to show the operation of a theoretically

promising RSU-G. This work first introduces a macro-scale prototype to demonstrate

a RET network’s ability to parameterize a distribution and to solve real a probabilis-

tic computing problem. The macro-scale prototype is a close-looped system consist-

ing of a PC, an FPGA, laser settings, and single chromophore RET network samples.

4

The prototype shows: 1) the ability to parameterize pairwise relative probabilities

within 10% error when the ratio is below 30, and 24% for higher ratios up to 255; 2)

the ability to run a simple foreground-background image segmentation using MRF

Gibbs Sampling. Setting up the prototype as a true RNG without post-processing

passes 165/188 items in NIST statistical randomness test. The work further explores

the relationship between application result quality and RSU-G designs. By quantita-

tively analyzing the result quality across three computer vision applications (stereo

vision with 3 inputs, motion estimation with 3 inputs, and image segmentation with

30 inputs), we find 1st-gen RSU-G [142] lacks both sufficient precision and dynamic

range in key design parameters, which limits the overall result quality compared to

software-only MCMC implementations. Naively scaling the problematic parameters

to increase precision and dynamic range consumes too much area and power. Using

our developed RSU-G simulator, we identify four key RSU-G design parameters and

explore how each of these parameters influences the result quality. We arrive at a

new RSU-G design with four major circuit/microarchitecture changes: 1) improved

dynamic range, 2) a new RET circuit and peripheral circuits, 3) supporting multiple

energy functions for more applications, and 4) efficient probability conversion. The

new RSU-G keeps the same architectural interface as the previous design except for

an additional support for simulated annealing and achieves the comparable result

quality to 64-bit floating-point (FP64) results. The new design incurs 1.27ˆ power

and equivalent area, while maintaining the significant speedups of 1st-gen RSU-G

and supporting a wider set of applications.

1.2 A CMOS Stochastic Processing Unit

The new RSU-G is by all means promising except the optical-molecular device re-

quires an additional back end of line process during CMOS fabrication, increasing

manufacturing costs. Therefore, we explore the feasibility of a pure CMOS sampling

5

unit equivalent to RSU-G. One favorable property of RSU-G is the high-quality true

randomness from quantum states of RET networks, which in theory guarantees un-

repeatable and unpredictable samples. Without RET circuits, the randomness needs

to be provided by a CMOS RNG. A deterministic CMOS digital circuit only provides

pseudo randomness without an external entropy source. The key question is do we

actually need a true RNG for our target applications? If not, what RNGs are enough

to provide good result quality?

We evaluate six different RNGs (8-bit, 16-bit, 19-bit Linear-Feedback Shift Reg-

ister, Mersenne-Twister 19937, and Intel DRNG with pseudo and true randomness)

on motion estimation and stereo vision in floating-point precision. Unexpectedly, we

discover a simple 19-bit Linear-Feedback Shift Register (LFSR) is enough to provide

good application end-point result quality, and using more complicated RNGs does

not further improve the results. We observe notable drops in quality if using lower

quality RNGs than a 19-bit LFSR. The result indicates designing an efficient CMOS

sampling unit equivalent to RSU-G is feasible. Therefore, we propose a CMOS

Stochastic Processing Unit (SPU) by replacing the molecular-optical device with a

CMOS discrete sampler. The CMOS SPU design provides flexibility to be deployed

on an FPGA or fabricated in an ASIC. The SPU optimized for FPGA achieves at

least 3ˆ faster in performance and 33.7ˆ less in memory compared with an HLS

baseline with FP32 probability, indicating a human-designed architecture is needed

to improve efficiency. The ASIC SPU design with a simple 19-bit LFSR avoids

area/power overhead of a complex RNG and saves 33% in area and 57% in power,

compared with RSU-G. Note that the SPU results do not preclude other potential

benefits of true RNG in RSU-G such as unpredictable seeds, which is beyond the

scope of this dissertation.

6

1.3 Statistical Robustness

The above two works indicate our proposed probabilistic architectures can achieve

good application end-point result quality even with aggressive hardware approxima-

tions. Can we safely conclude the architectures are correct and robust?

Many specialized probabilistic accelerators utilize approximation techniques to

improve the hardware efficiency [9, 16, 67, 79, 84, 87, 100], such as reducing bit rep-

resentation, truncating small values to zero, or simplifying RNGs. Understanding

the influence of these approximations on the application results is crucial to pro-

vide correct execution of target algorithms. A common approach is comparing the

end-point result quality (“accuracy”) against accurately-measured or hand-labeled

ground-truth data using community-standard benchmarks and metrics: the hard-

ware execution is considered to be correct if it provides comparable “accuracy” to

the software-only implementations that do not have these approximations. We use

this approach in our first and second works like most other previous architecture

works.

However, we further figure out in the domain of probabilistic algorithms correct-

ness is defined by more than the end-point result of executing the algorithm, and

includes additional statistical properties that convey uncertainty and interpretability

about the end-point results. End-point “accuracy” is necessary but not sufficient to

claim correctness. Current methodologies for evaluating probabilistic accelerators

are often incomplete or adhoc in evaluating correctness, focusing only on end-point

result quality (“accuracy”) or limited statistical properties. Failure to adequately

account for domain-defined correctness can have adverse or catastrophic outcomes,

such as a surgeon failing to completely remove a tumor due to incorrect uncertainty

in a segmented image [22, 97]. It is important for hardware designers and domain

experts to look beyond end-point “accuracy” and be aware of the impact of archi-

7

tectural optimizations on other statistical properties.

This work takes a first step toward defining metrics and a methodology for quan-

titatively evaluating correctness of probabilistic accelerators beyond end-point result

quality. We propose three pillars of statistical robustness: 1) sampling quality, 2) con-

vergence diagnostic, and 3) goodness of fit. Each pillar has at least one quantitative

empirical metric: Effective Sample Size (ESS) for sampling quality; Gelman-Rubin’s

R̂ and convergence percentage for convergence diagnostic; Root Mean Squared Error

(RMSE) and Jensen-Shannon Divergence (JSD) for goodness of fit. These pillars

do not require ground-truth data and collectively enable comparison of specialized

hardware to 64-bit floating-point (FP64) software. We expose several challenges

with naively applying existing popular metrics for our purposes, including: high

dimensionality of the target applications, and random variables with zero empiri-

cal variance. Therefore, we modify the existing methodologies for sampling quality

and convergence diagnostic, and propose a new metric (convergence percentage) for

convergence diagnostic.

The three pillars can inform end-users by characterizing existing hardware. As a

case study, we demonstrate the framework in a representative probabilistic MCMC

accelerator—the SPU proposed in our second work—and show that 1) end-point

result quality alone is insufficient, particularly for predicting outcome for previously

unseen inputs; 2) FP64 is insufficient as ground-truth since in some cases more

limited precision can produce more accurate end-point results based on labeled data;

3) the accelerator achieves the same application end-point result quality as the FP64

software, confirming the previous work, but has compromised ESS and convergence

percentage results. The analysis reveals that applications need to run 2ˆ more

iterations on the accelerator to achieve the same statistical robustness as FP64,

reducing the accelerator’s effective speedup by 2ˆ.

8

1.4 Design Space Exploration with Statistical Robustness

The above work shows that architectural optimizations might have a negative in-

fluence on the statistical robustness, even though producing comparable end-point

results to FP64 software. Can we achieve desirable end-point result quality and

statistical robustness without the commensurate overhead of FP64?

To find an answer, we demonstrate the benefits of using the proposed frame-

work to guide design space exploration on the SPU. The design space exploration

exposes the design trade-offs between statistical robustness and area/power with the

following key results: 1) a simple 19-bit LFSR with 12-bit RNG outputs does not

reduce the statistical robustness or result quality across all design points; 2) con-

siderable improvement in statistical robustness, comparable to the FP64 software,

can be achieved by slightly increasing the bit precision from 4 to 6 and removing

an approximation technique, with only 1.20ˆ area and 1.10ˆ power overhead. The

expected 21-84ˆ speedups can therefore be achieved with no additional iterations.

1.5 Organization of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 introduces motiva-

tion and necessary background. Chapter 3 presents the experimental demonstration

and architectural exploration on an efficient sampling unit with emerging technology

(RSU-G). Chapter 4 evaluates RNGs’ influence on the application end-point result

quality and presents a CMOS stochastic processing unit (SPU). Chapter 5 provides

a methodology for statistical robustness and presents a case study on characterizing

the SPU using the proposed methodology. Chapter 6 performs design space explo-

ration using the proposed methodology. Chapter 7 reviews related work. Chapter 8

concludes the dissertation and provides future directions. The main content of this

dissertation is also available elsewhere: [142] (Section 7), [149], and [150].

9

2

Background and Motivation

This chapter introduces background in probabilistic statistical machine learning and

our motivation for providing specialized architectures to accelerate probabilistic algo-

rithms. We first introduce basic concepts in probabilistic statistical machine learn-

ing, which includes probabilistic algorithms, methods to solve problems by itera-

tively sampling from distributions, and probabilistic models, methods to represent

problems as probability distributions. In this dissertation, we focus on First-Order

Markov Random Field (1st-Order MRF) as the Probabilistic Graphical Model and

Gibbs Sampling as the probabilistic algorithm. We introduce three computer vision

applications that can be solved by 1st-Order MRF Gibbs Sampling: image segmen-

tation, motion estimation, and stereo vision. We use these applications as evaluation

benchmarks in the following chapters. By profiling sample generation using C++

STL library and a C++ image segmentation application, we found a specialized ar-

chitecture needs to accelerate both steps of the sampling process—parameterizing a

distribution and drawing samples from the parameterized distribution—to provide

notable speedups.

10

2.1 Probabilistic Statistical Machine Learning

2.1.1 Probabilistic Algorithms

Probabilistic algorithms are used in many statistical machine learning applications

for the simplicity and generality [102,104]. Many of those applications use Bayesian

Inference as their framework, which learns information from the combination of prior

beliefs and observed data. Suppose θ is the latent random variable of interest in

an application. In Bayesian Inference, we are interested in estimating θ given the

observed data X. Both θ and X can be scalars or vectors. The posterior distribution

ppθ|Xq is given by Bayes’ rule in Equation 2.1, where ppθq is prior distribution,

corresponding to the prior beliefs, and ppX|θq is likelihood, corresponding to the

observed data. The denominator is considered as a normalization constant to make

ppθ|Xq a valid probability.

ppθ|Xq “
ppX|θqppθq

ř

θ ppX|θqppθq
(2.1)

In most cases, the posterior distribution is primarily used to evaluate the expectation

of a function fpθq with respect to a posterior distribution (Equation 2.2), where the

integral becomes a summation in discrete cases. Analytically calculating the exact

result of this expectation can be intractable or complex.

Erfpθqs “
ż

fpθqppθ|Xqdθ (2.2)

An alternative approach is using sampling method. By drawing multiple samples of θ

from ppθ|Xq, the expectation can be estimated by Equation 2.3, where the estimation

gets close to the true expectation when N is large.

f̂pθq “
1

N

N
ÿ

l“1

fpθlq (2.3)

11

Several basic sampling methods, such as rejection sampling and importance sampling,

work well for low-dimensional problems, but become significantly inefficient when the

problem dimensionality grows due to “the curse of dimensionality” [13].

One approach to address this issue is called Markov Chain Monte Carlo (MCMC)

method. The basic idea is constructing a Markov Chain with the stationary distribu-

tion that is equivalent to the desired distribution and iteratively generating samples

from this Markov Chain. A Markov Chain consists a state space S “ ts1, s2, ..., sLu,

where each state si corresponds to a parameter value of θi in Bayesian Inference.

The transition matrix P contains the probabilities of one state moving to another

state at any time. The probability vector ν “ rν1, ν2, ..., νLs denotes the proba-

bilities of current state is in si respectively. If the detailed balance is satisfied,

the probability vector converges to a unique stationary distribution v˚ such that

limTÑ8P Tν “ ν˚, @ν. Sampling on the Markov Chain is equivalent to sampling on

the stationary distribution, regardless of the initial state [103].

One of the most commonly used MCMC methods is Metropolis Hastings algo-

rithm. To draw a sample from the desired distribution, Metropolis Hastings starts

from an initial valid state and iteratively moves between the states. In each itera-

tion, it randomly generates a proposed move from the current state. This proposal

is randomly accepted by a probability called acceptance ratio, which is determined

by the current state and the input data. After adequate iterations, it outputs all or

a subset of accepted states as samples, depending on sample quality requirements

from different applications.

We can apply a special case of Metropolis Hastings algorithm, called Gibbs Sam-

pling (Algorithm 2.1), when analytical forms of full-conditional distributions are

available. Consider in Metropolis Hastings the generated samples are drawn from

the joint distribution of θ “ tθ1, θ2, ..., θLu. If analytical forms of full-conditional

ppθi|tθj‰iu, Xq are available, we can effectively sample from the joint distribution by

12

Algorithm 2.1: Gibbs Sampling

Input: data X; initial state θ0 “ tθ01, θ
0
2, ..., θ

0
Lu

for each iteration t P t1, 2, ..., T u do
for each i do

Compute full-conditional ppθti |tθ
t´1
j‰iu, Xq

Draw sample θti „ ppθti |tθ
t´1
j‰iu, Xq

Update θt´1i “ θti
end
Record θt

end
Output: all or a subset of tθ1, θ2, ..., θT u

iteratively sampling from the full-conditional distributions using the following steps:

1) set a random initial state θ0; 2) for each i and iteration t, draw samples θti from

ppθti |tθ
t´1
j‰iu, Xq; 3) update the state of θi to the latest sample value (θt´1i “ θti); 4)

iterate step 2 and 3 until converged or the sufficient number of samples obtained.

An output sample θt is the combination of samples θti for all i. Unlike Metropolis

Hastings, Gibbs Sampling accepts every proposed sample (i.e., acceptance ratio is

always 1). Note that keeping θi most updated in step 3 is crucial to maintain Markov

property and good sampling quality, although creating strict dependencies between

samples.

2.1.2 Probabilistic Graphical Models

Recall probabilistic algorithms solve problems by sampling on the target distribu-

tions. The key to applying probabilistic algorithms then is representing problems

as probability distributions. This is, however, not usually straightforward especially

for problems with high dimensions or complicated structures, such as computer vi-

sion [35] and medical record mining [38]. Probabilistic Graphical Models [68] provide

a convenient way to represent probability distributions by describing the structural

relationship between random variables via graphs. The vertices of a graph represent

random variables and the edges represent the relationship between random variables.

13

Label
value

nbr2’s
label
value

nbr3’s
label
value

nbr4’s
label
value

nbr1’s
label
value

data

Figure 2.1: First-Order Markov Random Field (left) and conditional independence
(right).

Vertices are connected by edges if random variables are dependent and disconnected

otherwise. The probabilistic graphs can be directed such as Bayesian Networks, or

undirected such as Markov Random Fields (a.k.a., Markov Networks).

This dissertation focuses on First-Order Markov Random Field (1st-Order MRF),

an undirected probabilistic model that assumes the value of a random variable is

only dependent on its four direct neighbors (left, right, up, and down) in a two-

dimensional grid and is conditionally independent on all other random variables.

Consider each random variable is discrete and randomly picked from several possible

label values. Figure 2.1 demonstrates the dependency of a random variable in 1st-

Order MRF. The model provides embarrassingly high parallelism since independent

labels can be simultaneously evaluated in a checkerboard manner. Grey and white

labels can be updated in parallel respectively. Since full-conditional distributions

are available, the model can be solved by Gibbs Sampling. Many applications can

apply 1st-MRF Gibbs Sampling [36,106], such as computer vision [35,72], statistical

physics [99], and signal processing [67]. Section 2.2 describes three representative

computer vision applications solved by 1st-Order MRF Gibbs Sampling.

14

while(not converged):
for each pixel:

1) compute probabilities of each possible labels
2) randomly assign new labels based on the probabilities

1st-Order MRF Gibbs Sampling:

disparity map

image pair

motion vectors

video frames

image

segmentation

Image Segmentation Motion Estimation Stereo Vision

Figure 2.2: Computer vision applications (image segmentation, motion estimation,
and stereo vision) using 1st-Order MRF Gibbs Sampling

2.2 Representative Applications

This section introduces three computer vision applications that can be solved by 1st-

Order MRF Gibbs Sampling: image segmentation [35, 130], motion estimation [69],

and stereo vision [11]. We use these applications as evaluation benchmarks in the

following chapters. Figure 2.2 shows the high-level steps (1 and 2) to solve these

problems. The applications share the same process in step-2, but have different

energy functions in step-1 and different temperature annealing schedule if using sim-

ulated annealing—a technique to converge to an exact result faster. The label of each

application represents different semantics. The result of motion estimation (motion

vectors) is color-coded. The rest of this section describes these applications in detail.

15

2.2.1 Image Segmentation

Algorithm 2.2: Image segmentation using 1st-Order MRF Gibbs Sampling
with simulated annealing

Data: image I, each pixel Ix,y P t0, 1, ..., 255u
Input: n labels l to segment I; Initial label values L0; initial temperature

T0; Simulated annealing rate k;
for each iteration t ăMAX ITERATION do

for each pixel px, yq do
for each possible label li do

Calculate energy: Epliq “ αpIx,y ´ liq
2 ` β

ř

r δpL
t
r, liq

δpLtr, liq “

#

0 Ltr “ li

1 otherwise

pspliq “ exp p´Epliq
T t q

end
Generate a sample ls from tl0, l1, ..., ln´1u following the discrete
distribution: ls „ tpspl0q, pspl1q, ..., pspln´1qu

Update label Ltx,y “ ls
end
Update temperature: T t`1 “ kT t

end
Output: final labels LMAX ITERATION

Image segmentation partitions a single image into multiple segments for further

analysis. Each of segment usually has common features such as color, grayscale, or

textures. We can solve image segmentation using 1st-Order MRF Gibbs Sampling

[35,130] by considering the segment of each pixel as a random variable. The detailed

procedure is provided in Algorithm 2.2. Figure 2.3 shows applying 1st-Order MRF

on a two-label image segmentation. The image is partitioned into the foreground

(the chapel) and background (the sky). Given the image data, initial label values,

and application parameters, the algorithm iteratively processes the image pixel by

pixel. For each pixel px, yq, it evaluates the probabilities of picking each possible

labels. A possible label li represents a segment in grayscale that the current pixel

possibly belongs to (e.g., foreground or background). As shown in Figure 2.3, the

16

Label
value

nbr2’s
label
value

nbr3’s
label
value

nbr4’s
label
value

nbr1’s
label
value

data

Current Pixel Neighbors

Figure 2.3: Image segmentation on 1st-Order MRF

label value of current pixel only depends on the data (singleton)—the image grayscale

of current pixel Ix,y—and the label values Ltr of its four direct neighbors (doubleton):

r P tpx ´ 1, yq, px, y ´ 1q, px ` 1, yq, px, y ` 1qu. A standard-form full-conditional

energy function is then obtained by adding singleton, the squared difference between

pixel grayscale and the possible label, to doubleton, the sum of binary differences

between the possible label and neighbor labels. α and β are the weights to decide

whether the model pays more attention to singleton (image grayscales) or doubleton

(smoothness among neighbors), learned during a training process. The energy Epliq

is then scaled by a temperature T and exponentiated to a scaled probability pspliq.

The above process corresponds to step-1 of the high-level sampling procedure. Once

the probabilities of all possible labels are obtained, step-2 draws a sample from the

computed discrete distribution and updates the label value of current pixel to the

assigned sample. The outer loop applies simulated annealing (if available) at the

end of each iteration and continues to proceed the image until convergence or a

pre-defined maximum iteration is reached.

Note that the original mathematical representation of energy is written as Equa-

tion 2.4 [130] where α “ 1{p2σ2q. We can omit the constant term ln p
?

2πσ2q in actual

energy computation since it cancels out in the later sampling process. It also applies

17

to motion estimation and stereo vision.

Epliq “ ln p
?

2πσ2q `
pIx,y ´ liq

2

2σ2
` β

ÿ

r

δpLtr, liq (2.4)

We can optionally apply simulated annealing to converge to an exact result faster

by strategically decreasing temperature T [35]. T is initially high so that every label

has a similar probability of being selected. As T decreases, labels with the lowest

energy are likely to be selected, eventually leading to convergence. Choosing the

appropriate annealing schedule is critical and determined case-by-case [106]. The

final labels after the last iteration are directly the output results. Alternatively, we

can use a constant T throughout all iterations, where T is considered as a parameter

obtained during model training. This pure-sampling method consistently generates

Gibbs samples from the targeted distribution after a burn-in period. In the end, we

can estimate the entire distribution of a pixel picking possible labels by collecting

the latest N samples. An exact result can be obtained from the mode of the esti-

mated distribution, the most frequent label. Overall, simulated annealing usually

converges faster but pure-sampling provides an estimated distribution, containing

important information on uncertainty and diagnostic. Our work in chapters 3 and 4

uses simulated annealing only in evaluation, and uses both simulated annealing and

pure-sampling methods in chapters 5 and 6.

We use a subset of Berkeley Segmentation Database (BSD300) [90] as the eval-

uation dataset. We evaluate the result quality using BISIP [146], a widely-used

evaluation package that provides four quantitative quality metrics: 1) Probabilistic

Rand Index (PRI); 2) Variation of Information (VoI); 3) Global Consistency Error

(GCE); 4) Boundary Displacement Error (BDE). Details of these 4 metrics can be

found elsewhere [146].

18

Algorithm 2.3: Motion estimation using 1st-Order MRF Gibbs Sampling
with simulated annealing

Data: Motion preceding frame I´ and following frame I`, each pixel
Ix,y P t0, 1, ..., 255u.

Input: n labels li “ p∆x,∆yq to represent the displacement vector for each
pixel from I´ to I`; initial label values L0; initial temperature T0;
Simulated annealing rate k;

for each iteration t ăMAX ITERATION do
for each pixel px, yq do

for each possible label li do
Calculate energy: Epliq “ αpI`x,y ´ I

´
li
q2 ` β

ř

r ||L
t
r ´ li||

2

pspliq “ exp p´Epliq
T t q

end
Generate a sample ls from tl0, l1, ..., ln´1u following the discrete
distribution: ls „ tpspl0q, pspl1q, ..., pspln´1qu

Update label Ltx,y “ ls
end
Update temperature: T t`1 “ kT t

end
Output: final labels LMAX ITERATION

2.2.2 Motion Estimation

Motion estimation (optical flow) estimates how objects move between two frames

in a video. The data input is usually two consecutive frames of images: preceding

frame I´ and following frame I`. The output result is a map of 2D displacement

vectors, indicating how pixels move from a preceding frame to a following frame.

Algorithm 2.3 solves motion estimation using 1st-Order MRF Gibbs Sampling.

The high-level procedure is similar to image segmentation but different in input

data (a pair of frames instead of a single image), label representation, and energy

function [69]. Figure 2.4 demonstrates how to apply 1st-Order MRF on motion input

frames. In the inner loop of Gibbs Sampling, the algorithm evaluates every possible

pixel location within a search window r ˆ c in the following frame to which the

current pixel in the preceding frame could move. The red pixel presents the current

pixel and yellow pixels represent possible locations in Figure 2.4. A possible label

19

Preceding frame

Pixel Possible Motions

Label
value

nbr2’s
label
value

nbr3’s
label
value

nbr4’s
label
value

nbr1’s
label
value

data

Following frame

Neighbors

Figure 2.4: Motion estimation on 1st-Order MRF

li “ p∆x,∆yq is a vector of signed integers that a pixel could move relative to its

current location. The label value of current pixel depends on the data values of both

frames and the label values of four direct neighbors. The energy function accumulates

singleton, the squared grayscale difference between the current pixel and the possible

destination pixel, and doubleton, the sum of squared distance between the possible

label and neighbor labels. Similar to image segmentation, we draw a sample from

the computed distribution and update to the latest label. The simulated annealing

schedule is the same as image segmentation with a different k value. The outer loop

processes the frames until convergence or the maximum iteration is reached.

We use a subset of Middlebury motion estimation benchmarks [7] as our evalua-

tion dataset and a common end-point error [7] as our result quality metric.

2.2.3 Stereo Vision

Stereo vision reconstructs the depth information of objects in an image pair by

matching the corresponding pixels that represent the same objects. The input is a

pair of images, left image IL and right image IR, taken by a stereo camera. The

output is a disparity map, indicating the depth of the corresponding objects in the

image—a larger disparity indicates a closer object.

Algorithm 2.4 solves stereo vision by 1st-Order MRF Gibbs Sampling following a

20

Algorithm 2.4: Stereo vision using 1st-Order MRF Gibbs Sampling with
simulated annealing

Data: Stereo left image IL and right image IR, each pixel
Ix,y P t0, 1, ..., 255u.

Input: n labels li “ ∆x to represent distance between a pixel in IL and its
corresponding pixel on IR; initial label values L0; initial temperature
T0; Simulated annealing rate k;

for each iteration t ăMAX ITERATION do
for each pixel px, yq do

for each possible label li do
Calculate energy: Epliq “ α|ILx,y ´ I

R
x´li,y

| ` β
ř

r |L
t
r ´ li|

pspliq “ exp p´Epliq
T t q

end
Generate a sample ls from tl0, l1, ..., ln´1u following the discrete
distribution: ls „ tpspl0q, pspl1q, ..., pspln´1qu

Update label Ltx,y “ ls
end
Update temperature: k “ k `∆k, T t`1 “ T 0{k

end
Output: final labels LMAX ITERATION

similar procedure to image segmentation and motion estimation, with different label

representation, energy function, and annealing schedule. Figure 2.5 shows using 1st-

Order MRF on stereo vision. The inner-loop computation evaluates probabilities of

each possible matching from the current pixel in the left image (red) to the candidate

pixels in the right image (yellow). Each label li corresponds to a possible disparity

of the pixel location from one image to the other. Theoretically, disparities are 2D-

vectors that represent the relative horizontal and vertical location of corresponding

pixels. In practice, algorithms typically use image pairs that are calibrated in a

standard form such that correspondence of pixels is constrained to only the horizontal

line and the disparity reduces to scalars. The label value of a pixel depends on

data value of the image pair—the greyscale differences between the current and the

possible matching pixel—and label values of four direct neighbors. Multiple types

of energy functions are available for solving stereo vision using different algorithms

21

Left image

Pixel Possible Matchings

Label
value

nbr2’s
label
value

nbr3’s
label
value

nbr4’s
label
value

nbr1’s
label
value

data

Right image

Neighbors

Figure 2.5: Stereo vision on 1st-Order MRF

[60, 125]. We experimentally find that absolute difference works best in our case,

shown in Algorithm 2.4. We replace temperature annealing schedule to T t`1 “ T 0{k,

where k is additive to a constant ∆k at the end of each iterations (k “ k `∆k).

We use Middlebury Stereo [125], a commonly used stereo benchmark in the com-

puter vision community as our test dataset. We use the common bad-pixel percent-

age (BP) and root-mean squared (RMS) error as quality evaluation metrics, and set

the bad-pixel threshold to 1, as in the previous work [125]. This means a pixel is

considered mislabeled if the distance between calculated disparity and ground-truth

disparity is larger than 1. More detailed evaluations can distinguish the dispar-

ity map for subregions such as occluded and textureless; however, for simplicity, we

provide overall result quality where all subregions are included.

2.3 Sampling Overhead

The sampling process in probabilistic algorithms includes two steps: 1) parameter-

izing a distribution (e.g., calculating the probabilities of each possible outcomes in

a discrete distribution); 2) drawing samples from the parameterized distribution.

The first step requires mapping application data values to probability parameters,

which is application and model dependent. The second step usually requires con-

22

Table 2.1: Average cycles per sample for different distributions from 109 samples per
run

Distributions Exponential Normal Discrete Gamma Binomial Poisson
Parameters µ “ 3.5 µ “ 5,σ “ 2 K=10 α “ 2,β “ 2 t “ 4,p “ 0.5 µ “ 4

Cycles/sample 167 121 465 277 523 209

verting uniform random numbers generated by a Random Number Generator (RNG)

to targeted distributions using conversion algorithms such as inverse transformation

or rejection sampling [13]. An overview of computational techniques for drawing

samples is provided elsewhere [27]. Both steps are in the inner loop of probabilistic

algorithms, and thus critical to the overall performance.

To understand the sampling overhead, we collect the average cycles per sample for

7 different distributions on Intel E5-2640 processor using C++11 STL library. The

experiment configuration is the same as the previous work [142] except the average

cycles are collected from 109 samples per run to amortize the overheads of perfor-

mance counter and allow more optimized execution in CPU. Table 2.1 shows the

distribution parameter configurations and average cycles per sample. Similar to the

previous work [142], generating a sample from a simple distribution takes hundreds of

CPU cycles. The profiling results in Intel VTune suggest that in most distributions,

80% of the total CPU cycles are spent on converting uniform random numbers to

the targeted distribution. On the other hand, merely accelerating drawing samples

is not enough to provide substantial speedups for applications. Preliminary profiling

results on an image segmentation application indicate that drawing samples takes

around 50% of total execution time. The exponential calculation, one step in param-

eterizing distributions, takes 30% execution time. These preliminary results lead to

a motivation to accelerate both steps in sampling.

23

2.4 Summary

This chapter introduces probabilistic statistical machine learning, popular probabilis-

tic algorithms and models, three computer vision applications solved by 1st-Order

MRF Gibbs Sampling, and a preliminary study on CPU sampling overhead. We

found both steps of the sampling process contribute to sampling overhead and need

to be accelerated. The following chapters provide hardware solutions to address

sampling overhead and a methodology to comprehensively evaluate the correctness

of those probabilistic hardware solutions.

24

3

An MRF Gibbs Sampling Unit using Emerging
Technology

The impending halt in CMOS scaling places increasing importance on finding al-

ternative approaches to improve computational efficiency. Architectural innovation,

such as specialization, remains critical to overcoming the challenges faced today.

Equally important is the need to explore new device technology that can augment

CMOS specialization.

Recent work investigates emerging technologies that enable specialization by

exploiting physical device properties. Memristors [76], strain-switched magneto-

tunneling junctions [64], and fluorescent molecules [105,142] have the potential to ac-

celerate certain machine learning algorithms, such as Deep Neural Networks (DNNs)

and Bayesian Inference. Wang et al. [142] recently proposed RSU-G—a molecular

optical Gibbs sampler that exploits Resonance Energy Transfer (RET) to efficiently

sample from parameterized probability distributions [141, 142]. An RSU-G is a hy-

brid CMOS-RET functional unit for accelerating Markov Random Field Bayesian

Inference problems. It operates by first computing an energy value that is used to

25

obtain a decay rate for an exponential distribution for each possible value a random

variable may take on. Samples from the commensurate exponential distributions are

used to probabilistically choose a value for the random variable.

This chapter demonstrates the feasibility and design trade-offs of RSU-G. We

first develop a macro-scale prototype to experimentally demonstrate the operation

of theoretically promising RSU-G and its ability to solve probabilistic algorithms.

The macro-scale prototype is a close-looped system consisting of a PC, an FPGA,

laser settings, and single chromophore RET network samples. The prototype shows:

1) the ability to parameterize pairwise relative probabilities within 10% error when

the ratio is below 30, and 24% for higher ratios up to 255; and 2) the ability to run

a simple foreground-background image segmentation using 1st-Order MRF Gibbs

Sampling. Setting up the prototype as a true Random Number Generator (true

RNG) without post-processing, we found the prototype with RET networks passes

165/188 items in NIST statistical randomness test compared with 19/188 when sub-

stituting RET networks with silica scattering, confirming RET network’s ability to

generate relatively high-quality randomness.

An important criterion for machine learning accelerators, CMOS and non-CMOS,

is the relationship between precision and result quality. We further ask, and answer,

several questions about application result quality and the impact of precision on the

integrated RSU-G design.

Question 1: What is the impact of precision on result quality? We use standard bench-

marking methods to compare results for three applications with widely-used data

sets: 1) stereo vision with 3 inputs, 2) motion estimation with 3 inputs, and 3)

image segmentation with 30 inputs. Our results show that the previously proposed

RSU-G fails to match software-only result quality. We identify four key RSU-G de-

sign parameters that require a specific precision or value: 1) energy computation, 2)

26

exponential decay rate, 3) time measurement, and 4) distribution truncation. Us-

ing a functional simulator of an RSU-G, we explore how each of these four design

parameters affects quality.

Our results show that overall result quality in the previous RSU-G design degrades

due to lack of both precision and dynamic range on certain parameters. Thus, we

introduce 1) decay rate scaling and 2) probability cut-off to maximize the dynamic

range at the early and late optimization iterations respectively, which significantly

improve the overall result quality. Surprisingly, we found that high result quality

can be preserved using very few unique decay rates while preserving precision and

dynamic range. We also expose a relationship between distribution truncation—

treating all samples beyond a specified threshold as infinity—and time measurement

precision that can be exploited to improve the RSU-G design.

Question 2: What, if any, changes must be made to RSU-G microarchitecture to support the

desired precision and achieve result quality comparable to software-only implementations?

Based on the required design parameters, we find that using light source intensity to

control exponential decay rates in the previous RSU-G design is not an effective tech-

nique since area/power scale with the required dynamic range. Thus, we introduce a

new RSU-G design that exploits an alternative design parameter, molecular concen-

tration [141], along with other techniques to achieve the desired precision (and result

quality) while keeping the same area and increasing power by only 1.27ˆ, relative to

the previous RSU-G design. We also propose a design where multiple RSU-Gs share

optical resources, which further reduces power/area overheads and allows the use of

conventional light sources.

Question 3: Do changes in RSU-G microarchitecture require any architectural changes?

Radical changes in RSU-G design may impose commensurate changes at the ar-

27

chitectural level since extensive delays or modified interfaces may require software

changes. Fortunately, the RSU-G proposed in this chapter is mostly a microarchitec-

tural change and can be used in place of the previously proposed unit with minimal

architectural modifications. This preserves the sizable performance improvements

demonstrated previously [142].

The remainder of this chapter is organized as follows. Section 3.1 provides an

overview of the recently proposed RSU-G and the underlying technology. Section

3.2 present a macro-scale RSU-G prototype. We perform an extensive analysis of

result quality and the impact of RSU-G design parameters in Section 3.3. Alternative

RSU-G designs are presented and evaluated in Section 3.4. Section 3.5 elucidates

limitations and future work. Section 3.6 summarizes this chapter.

3.1 Background

3.1.1 Enabling Technology

Previous work provides a theoretical foundation for constructing physical samplers

based on molecular-scale Resonance Energy Transfer (RET) networks [141]. RET

is the probabilistic transfer of energy between two optically active molecules, called

chromophores, through non-radiative dipole-dipole coupling [136]. When a donor and

acceptor chromophore pair are placed a few nanometers apart and their emission and

excitation spectra overlap, energy transfer can occur between them. A RET network

is constructed by placing multiple chromophores in a physical geometry where chro-

mophores interact through RET. A fully specified RET network can be conveniently

and economically fabricated with sub-nanometer precision using hierarchical DNA

self-assembly [70,119].

RET networks are integrated with an on-chip light source, e.g., quantum-dot

LEDs (QDLEDs), waveguide, and single photon avalanche detector (SPAD) to create

a RET circuit, shown in Figure 3.1. Each RET circuit can contain an ensemble

28

QDLED RET
Network

Single
Photon

Avalanche
DetectorCMOS

Waveguide
RET Network

QDOT Light Source Photodetector

Figure 3.1: Structure of RET Circuit [141]

of RET networks. RET circuits can then be integrated with hybrid electro-optical

CMOS using spin coating [18], polymer doping [42], or various other back-end-of-line

processing techniques [81, 82]. SPAD arrays fabrication is demonstrated elsewhere

[30, 108]. Dark count rate of SPADs („KHz [5, 86, 113]) has negligible effects given

RSU-G frequency (1GHz).

3.1.2 RET-Based Sampling Units

Recent work [142] presents RET-based samplers for 1st-Order MRF Gibbs Sam-

pling that utilize exponential samplers. Probabilistic functional units—called RET

Sampling Units for Gibbs Sampling (RSU-G)—are constructed using CMOS special-

ization to accelerate distribution parameterization and RET networks to accelerate

obtaining a sample from the parameterized distribution, the whole inner loop of

1st-Order Markov Random Field Gibbs Sampling (recall Figure 2.2).

RSU-G utilizes the first-to-fire design based on the property of competing ex-

ponential random variables [141]. RET circuits generate samples from exponential

distributions (λe´λt) parameterized by the decay rate (λ) and record the time to

fluorescence (TTF) for each exponential sample. The decay rate is determined for

each possible label of a random variable, which depends on the neighboring ran-

dom variables’ current labels and the singleton energy. The label that produces the

shortest TTF is chosen as the result label. First-to-fire equivalently draws samples

from discrete distributions tλ1, λ2, ..., θnu, where the decay rate λi corresponds to a

29

scaled probability of picking ith random variable. The decay rate λ is physically

determined by various parameters λ “ NPePflPdλ0 when using single chromophores

as one-node RET networks. N is the number of chromophore particles in the unit

area (concentration). Pe is the probability of a single chromophore being excited by

photons, proportional to the QDLED emission intensity. Pfl refers to the probabil-

ity that an excited chromophore fluoresces a photon. Pd refers to the probability

that a fluoresced photon is detected by the SPAD. λ0 is the intrinsic decay rate

determined by chromophore types. Therefore, the decay rate λ can be tuned by

changing the concentration of RET networks, the QDLED emission intensity, the

specific chromophore, or a combination of these. The previously proposed RSU-G

uses the QDLED intensity to change λ for each label evaluated.

RSU-G inputs and outputs are integers that correspond to values of interest

depending on the application (e.g., image segment labels, pixel motion vectors, etc.).

A block diagram of an RSU-G is shown in Figure 3.2a. An RSU-G performs a series

of three operations: 1) map application values to RET inputs, 2) generate samples,

3) map RET output to application value. Steps 1 and 3 are implemented using

conventional CMOS specialization, whereas step 2 is a RET circuit that exploits the

probabilistic behavior of RET networks.

Figure 3.2b shows how the three abstract steps map to 5 stages in a pipeline that

evaluate one possible label (out of M) per cycle. These stages correspond to 1) label

decrement/input, 2) energy computation, 3) energy to intensity mapping (exponen-

tial decay rate), 4) sampling (using RET circuits), and 5) selection. Label decrement

is used to iterate over all M possible 6-bit labels. The energy computation obtains an

8-bit value, which maps through a look-up-table (LUT) to a 4-bit exponential decay

rate (QDLED intensity). The RET circuit samples the exponential distribution by

measuring the time it takes to observe an output photon after illuminating the RET

network with the appropriate QDLED intensity. The measured time for the sample,

30

(a) RSU-G block diagram.

LABEL_NBR_1 [5:0]
LABEL_NBR_2 [5:0]
LABEL_NBR_3 [5:0]
LABEL_NBR_4 [5:0]

C
O

M
PA

R
E

AN
D

 U
PD

AT
E

TI
M

E
C

O
U

N
TI

N
G

LABEL [5:0]
EN

ER
G

Y
EV

AL
UA

TI
O

N

DATA1 [5:0]
EN

ER
G

Y
TO

 IN
TE

NS
IT

Y
LU

T

LABEL_TO_EVAL
[5:0]

D
O

W
N

C
O

U
N

TE
R

CLK

SYS_CLK

8 4 4 8

RET
NetworkQDs SPAD

EN EN

4
R

ET
 C

irc
ui

t

DATA2 [5:0]

(b) RSU-G pipeline.

Figure 3.2: RET-based Gibbs Sampling Unit (RSU-G) [142]

represented by a 5-bit integer, is used in the selection block to choose the lowest

from all M possible labels. The total latency is 7+(M-1) for M possible labels since

stage 3 (RET sampling) requires 4 cycles. Replicated RET circuits are used to avoid

structural hazards caused by this multicycle stage. The four replicated RET circuits

expand the window of time for observing samples (due to the tail of the exponential)

such that 99.6% of the samples are covered; this truncates the last 0.4% of samples

for the lowest decay rate (this number is less than 0.4% for higher decay rates) and

assumes they occur at infinity (i.e., no sample is generated).

When added to a GPU, these units achieve 3ˆ and 16ˆ speedups for image seg-

mentation (5 labels) and motion estimation (49 labels), respectively for HD images.

31

A discrete accelerator with 336 RSU-G units achieves 21ˆ and 54ˆ speedups as-

suming a 336GB/s memory bandwidth limitation for HD images and up to 84ˆ for

320ˆ320 images in motion estimation. Each unit consumes low power and occupies

a very small area. Using 15nm CMOS, a single RSU-G (CMOS+RET) consumes

3.91 mW , occupies 0.0029 mm2, and generates entropy at 2.89Gb/s. Compared to

6.4Gb/s Intel DRNG [98], RSU-G only consumes 13% of the power in similar area

while also providing programmability to parameterize distributions.

The previous results are encouraging for accelerating probabilistic algorithms.

However, important works remain: 1) a working example of a RET-based sampling

unit is needed to demonstrate proof-of-concept; 2) the relationship between appli-

cation result quality and RSU-G design are to be explored. The following sections

address these two aspects.

3.2 A Macro-scale RSU-G Prototype

Although the theoretical proposal of RSU-G is promising, a complete demonstration

on the integrated circuit is ideal but difficult. We instead propose a macro-scale RSU-

G prototype to demonstrate the ability to parameterize a distribution and run a real

application. This section presents the prototype setup and experimental results.

3.2.1 Prototype Setup

The prototype follows the basic design of a generic RSU-G in Figure 3.2a, with

parameterization and RET circuits for sampling the distribution, but is different

from the exact RSU-G microarchitecture in Figure 3.2b due to the scale difference

and experimental limitation. Figure 3.3 shows the system diagram and the real

experimental setup. The un-pipelined prototype consists: a PC to parameterize

distributions and run the outer loop of Gibbs Sampling algorithm, an FPGA to

trigger laser pulses and implement an approximation of first-to-fire, a pair of intensity

32

programmable laser settings as light sources, two cuvettes of single chromophores as

RET networks, and a pair of SPADs as photodetectors.

The prototype contains two channels of RET circuits and thus can evaluate two

possible labels simultaneously. A straightforward first-to-fire design for sampling

from a two-entry discrete distribution tλ1, λ2u is to simultaneously illuminate two

RET circuits and record which channel detects the RET excited photon first. Ex-

perimentally, our FPGA implementation achieves sufficient precision to resolve 250ps

differences in photon arrival times. However, first-to-fire is able to parameterize de-

cay rate λ only if both channels detect at least one photon per laser pulse, that

is, “collection efficiency” η “ NPePflPd ą 1. Our prototype system reaches at

most η “ 0.179 limited by the experimental environment such as the optical set-

tings, maximum laser power, and re-absorption between chromophore particles. The

RET networks in both channels always present their intrinsic decay rates λ0 in this

case, regardless of intensity settings. Our experiment verifies this hypothesis, where

the probability of choosing either label is always 50%. Therefore, we instead use

Bernoulli process to approximate “first-to-fire”. Given η ă 1, we can also interpret

η as the probability of detecting a photon given a laser pulse. The sampling process

can be described as a sequence of Bernoulli trials: 1) we emit a light pulse in both

channels at t “ 0; 2) during a sufficient time window (1us in our case), if only one

channel detects a photon, we choose this channel as the winner; otherwise, we redo

the sample until one channel wins. Suppose two channels have collection efficiency

η1 and η2 where η1, η2 ! 1, we can represent the probability of channel 1 fires first

as:

P pchannel 1 fires firstq “
η1

1´ η1
¨

1

η1 ` η2 ´ η1η2
«

η1
η1 ` η2

(3.1)

The value of η can also be parameterized by light intensity and thus we can approx-

imate a two-entry discrete distribution tλ1, λ2u by tη1, η2u.

33

(a) Functional block diagram (b) Photo of prototype

Figure 3.3: Macro-scale RSU-G prototype

A complete sampling process using prototype can be described as follows: 1) a

PC software parameterizes the distribution and sets laser intensities via laser control;

2) once intensity setting is done, the FPGA triggers both lasers to emit a light

pulse in both channels; FPGA circuit is open to detect photons; 3) if either of

SPADs exclusively detects a photon in a time limit, FPGA circuit records the winning

channel and sends back to the PC; otherwise, the FPGA re-triggers the lasers until

a channel exclusively detects a photon; 4) the PC updates the label. The operation

time to generate a sample is dominated by setting intensities via proprietary laser

control („85ms). Communication between FPGA and PC can therefore use simple

RS232 without notably additional delays.

3.2.2 Experimental Results

Our first experiment demonstrates the ability to parameterize a two-entry discrete

distribution tP1, P2u by changing the ratio of collection efficiency η1{η2 (i.e., chang-

ing light pulse intensity). We characterize the curve of laser intensity vs. collection

efficiency η for accurate control. η is calibrated on FPGA by collecting the total

times of success (i.e., a photon detected with a time limit given a light pulse) in 224

Bernoulli trails. The laser controller (PicoQuant PDL 828) has 1000 intensity steps

between 0 to the maximum power. Figure 3.4a shows our intended ratios η1{η2 (blue)

34

(a) Intended vs. actual ratios of relative
probabilities from 1 to 255

(b) Intended vs. actual ratios of relative
probabilities from 1 to 10

(c) Intended vs. analytical ratios with
approximation

Figure 3.4: Results on parameterizing pairwise relative probabilities

of pairwise relative probabilities from 1 to 255 vs. the actual measured ratios P1{P2.

The results are collected from 216 samples. We switch the ratio settings η2{η1 (red)

to test the symmetry of the prototype system. The prototype can achieve desired

pairwise relative probabilities (η2{η1, red) within 10% errors when ratio is below 30,

partly shown in Figure 3.4b. For higher ratios, η2{η1 achieves desired ratios within

24% errors. Figure 3.4c shows the errors introduced by the Bernoulli process ap-

proximation which slightly overestimates intended ratios but with negligible errors.

35

High errors at large ratios and the asymmetry in the system are partially caused

by some time-relevant properties of RET networks, such as evaporation and photo-

bleaching [136]. These problems may be solved or alleviated during the fabrication

process [18,42,82]. A finer characterization and control of the prototype components

could further improve the accuracy.

We also run an image segmentation problem with only two possible labels (e.g.,

foreground and background) on the prototype. We use the same procedure as Algo-

rithm 2.2 (Chapter 2) but a different simulated annealing schedule T “ logp100{pk`

∆kqq with initial k “ 100. The PC executes the outer loop of 1st-Order MRF Gibbs

Sampling, energy computation, and intensity mapping. The FPGA and RET cir-

cuits sample from the output label distribution. An image is initialized by simply

binarizing pixels to the closest labels. Figure 3.5 shows the segmentation results of a

50ˆ67 image by software algorithm vs. the RET-based prototype. The initial labels

(0 iterations) include noise pixels in the bottom of the image. The RET functional

unit successfully reduces the noise in the bottom and segments the image into the

foreground and background after 10 iterations. Asymmetry on the two boundaries of

the “chapel” is presumably explained by asymmetry on the prototype system shown

in Figure 3.4a, which may be improved by a finer system.

Our next experiment evaluates the capability of using RSU-G prototype as a

true Random Number Generator (RNG) without post-processing. As the simplest

application, the prototype can be treated as a uniform RNG if η1 “ η2. Since the ran-

domness comes from the quantum states of RET networks [59,136], the prototype has

the capability as a high-quality true RNG. We use NIST statistical test [12], a pop-

ular statistical test on the quality of randomness. The test suite reads a sequence of

random bit inputs and comprehensively detects a variety of possible non-randomness

sources from the inputs via 15 types (188 items) of tests. A good RNG for cryp-

tography should pass all items of tests. A commercial RNG usually has complex

36

Original Picture

After 1 iteration

Sampling by

CPU

Sampling by

RET Functional Unit

After 10 iterations

Δ𝑘 = 1	(𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔) Δ𝑘 = 10	(𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔)
0 iteration

Figure 3.5: Prototype image segmentation results

post-processing steps to provide a high quality of randomness [129]. Note that the

prototype does not have any post-processing other than recording the winning labels

(i.e., 0 or 1 random bits). Randomness directly comes from the entropy source—the

RET networks.

We wonder how many tests the prototype can pass without post-processing. We

send 10 sequences of 106 random bits for the test, each with the proportion of ‘1’

between 0.499 to 0.501 by precisely controlling laser intensity. We follow the test

suite guide to set up input parameters, shown in Table 3.1. According to the test

suite guide, for all items except random excursions, at least 8 out of 10 sequences

passing the test leads to a pass in that particular item or fail otherwise. A pass or fail

in random excursions is decided by the test suite based on input random numbers.

We replace the RET networks with silica scattering samples as a comparison

group. Silica scattering per se reflects photons emitted by a laser source to a SPAD

without a stochastic process. However, the SPAD still exists a probability to detect a

37

Table 3.1: NIST statistical test input parameters
Parameters Values

Block Frequency Test - block length 128

NonOverlapping Template Test - block length 10

Overlapping Template Test - block length 10

Approximate Entropy Test - block length 14

Serial Test - block length 17

Linear Complexity Test - block length 500

photon from the laser given a light pulse and a time limit. Therefore, the prototype

with silica scattering replacement can be also considered as an RNG. Comparing

randomness results with silica scattering helps us extract the randomness directly

from the RET networks.

Table 3.2 shows the NIST test results. The prototype with RET networks passes

165 items out of 188 without post-processing, compared with 19 out of 188 if replacing

the RET networks with silica scattering. The results indicate the randomness mostly

comes from the RET network. Some non-randomness and bias from optical settings,

the FPGA, or data communication wires potentially reduce the number of passes and

could be alleviated or completely removed by post-processing. Nevertheless, using

RET networks can generate relatively high-quality random numbers without post-

processing. A commercial integrated circuit true RNG—Intel DRNG [98]—passes

all tests, but have complex post-processing steps.

In summary, we propose a macro-scale RSU-G prototype, the first such system to

our knowledge, that demonstrates the capability of a RET network to parameterize a

distribution and run a real application. The NIST statistical test confirms the RET

network produces relatively high-quality randomness without post-processing. The

following sections explore the quality/precision relationship in the integrated RSU-G

microarchitecture.

38

Table 3.2: NIST statistical test result on prototype as a true RNG without post-
processing

NIST Statistical Test RET Network Silica Scattering

1. Frequency Pass Pass

1. Block Frequency Pass Pass

2. Cumulative Sums (2 items) Pass 2/2 Pass 2/2

4. Runs Fail Fail

3. Longest Runs of Ones Pass Fail

5. Rank Pass Fail

6. Spectral Pass Fail

7. Non-overlapping Template (148 items) Pass 128/148 Pass 11/148

8. Overlapping Template Matchings Pass Fail

9. Universal Statistical Pass Fail

12. Approximate Entropy Fail Fail

10. Random Excursions (8 items) Pass 8/8 Fail

11. Random Excursion Variant (18 items) Pass 18/18 Pass 3/18

13. Serial (2 items) Pass 1/2 Fail

15. Linear Complexity Pass Pass

Total Passes 165/188 19/188

3.3 RSU-G Precision vs. Quality

Recall RSU-G accelerates statistical machine learning problems using Markov Chain

Monte Carlo (MCMC) for MRF Bayesian Inference, specifically 1st-Order MRF

Gibbs Sampling. Many factors influence result quality for statistical machine learn-

ing algorithms. For the problems we study in this chapter, a domain expert develops

a model that includes clique definitions, number of labels, conditional probabilities,

etc. This model clearly has a profound effect on the final results, but refining spe-

cific models is beyond the scope of this work. In this chapter we focus on the impact

of RSU-G circuit and microarchitectural decisions on end-point result quality for

given models. Chapters 5 and 6 discuss the impact of these decisions on statistical

robustness beyond end-point result quality.

39

3.3.1 Methodology

Our overall goal is to ensure that RET-based samplers achieve results comparable to

software-only implementations that use commodity processors or GPUs with IEEE

floating point, which theoretically generate the highest result quality. Recall that the

software-only method incurs high computation overhead to generate samples from

parameterized distributions. RSU-G accelerates this computation, but it must do so

without consuming excessive area or power.

We develop a functional simulator of an RSU-G in MATLAB that enables us

to explore the various aspects of RSU-G design with respect to result quality. This

allows running a baseline software version that uses the appropriate routines in MAT-

LAB to obtain samples and update labels in MCMC solvers for MRF problems. The

RSU-G functional simulator replaces the appropriate code sections with the RSU-G

equivalent functionality. The functional simulator uses MATLAB default Mersenne-

Twister RNG (mt19937ar) [93].

We evaluate the result quality using three applications: 1) image segmentation,

2) motion estimation (optical flow), 3) stereo vision, which are good representations

of computer vision, and can all be solved using MCMC with an MRF model. We

performed the same analysis for all three applications; for brevity, we use stereo

vision as a running example to illustrate the impact of precision on quality, since

this application has the highest bit precision requirements based on our experiments.

We use standard metrics for evaluating quality that are specific to each application

(e.g., end point error for motion estimation, and PRI, etc. for image segmentation).

Exploring result quality for applications in other areas is part of our ongoing work.

The previous RSU-G supports only squared distance energy function, which fits

well with motion estimation [69]. However, as described in Section 2.2, the other

two applications require different distance functions: binary distance for image seg-

40

mentation [130], and absolute distance for stereo vision [60, 125]. Supporting these

distance functions requires modest changes to the energy calculation stage, incurring

additional area and power, but not influencing precision. Our new design adds sup-

port for all three distance functions. For our quality vs. precision analysis, we add

this same support to the previously proposed RSU-G [142].

Stereo vision reconstructs the depth information of objects taken from two cam-

eras by matching the corresponding pixels between two images. Previous work

demonstrated various MCMC sampling techniques for stereo vision [11,21,125], and

we use the version based on a 1st-Order MRF model [11], which the RSU-G directly

supports. Recall 1st-Order MRF Gibbs Sampling stereo vision iterates pixel by pixel

and samples from possible labels. Each label corresponds to a possible disparity of

the pixel location from one image to the other. Disparity values directly reflect the

depth information of objects in the images: foreground objects have larger disparities

than background objects. We use Middlebury Stereo [125] as our test dataset. Since

the previous RSU-G design can support up to 64 labels, we randomly selected three

datasets teddy (56 labels), poster (30 labels), and art (28 labels) that all meet this

constraint. We use bad-pixel percentage (BP) with the threshold to 1 and root-mean

squared (RMS) error as quality evaluation metrics. A pixel is considered mislabeled

if the distance of calculated disparity vs. ground-truth is larger than 1.

Similar to previous work [11, 14], we use simulated annealing for stereo vision to

converge to a stable result. Recall simulated annealing divides the energy by a de-

creasing temperature after each iteration so that every label has a similar probability

to be chosen at the beginning, but gradually labels with lower energy are more likely

to be chosen, until finally converging to the optimal results. In the RSU-G, simulated

annealing can be implemented by updating the energy-to-intensity LUT in Figure

3.2b at the end of each iteration. Note that this method provides equivalent function-

ality to software-only simulated annealing, but causes stalls in the RSU-G pipeline.

41

0%

20%

40%

60%

80%

100%

teddy poster art

B
ad

-p
ix

e
l P

e
rc

e
n

ta
ge

Software previous_RSU-G

Figure 3.6: Software-only vs. previous RSU-G result quality

Our new RSU-G design eliminates these stalls with a new energy-to-intensity con-

version scheme described in Section 3.4. We tune simulated annealing parameters

(e.g., temperature and annealing rate) such that it can provide result quality with

acceptable simulation time. We run teddy and art with 1,000 iterations and poster

with 500 iterations. All three datasets converge.

3.3.2 RSU-G vs. Software-only Quality

We begin by first comparing the previously proposed RSU-G as defined by Wang et

al. [142] to the software-only implementation. We compare the results using both BP

and RMS error. Since they are consistent, we only show BP in Figure 3.6. Based on

teddy results [125], the only dataset of the three that has both the public-accessible

ground-truth and evaluation scores, MCMC software-only (BP 27%) can reach very

close to the quality of Graph Cuts algorithms [14] (BP 25%). Better MCMC-software

results can be obtained by fine-tuning the application parameters and running more

iterations, which is beyond the scope of this chapter (although compared to the

software implementation, RSU-G acceleration allows executing more iterations in the

same amount of time). We perform a best-effort optimization for MCMC algorithm

parameters (e.g., energy weights) and apply them throughout the evaluation.

Figure 3.7a and 3.7b show the left image of the original image pair and the

ground truth disparity, respectively. Disparity is color coded in the gray-level scale:

42

(a) Original image (b) Ground-truth

(c) Software disparity map (d) RSU-G disparity map

Figure 3.7: Software-only vs. previous RSU-G stereo images

light pixels represent high disparity values, indicating they are closer to the camera.

Darker pixels represent low disparity values and farther from the camera, except for

the black area, which means no correspondence between the image pair due to oc-

clusion. We conservatively consider all software and RSU-G results in those areas as

mislabeled pixels, making our result quality pessimistic. Clearly, the previous RSU-

G does not perform well with the three datasets, producing BP ą90%, mislabeling

nearly all pixels. Figure 3.7c and 3.7d show the disparity maps generated by the

software only algorithm and the RSU-G. The striking difference between those two

disparity maps indicates the result quality of RSU-G is unacceptable.

43

3.3.3 RSU-G Design Parameters and Quality

Given the unacceptable results for the previous design, the next step is to determine

which RSU-G design parameters cause the result quality loss. We identify three pri-

mary design parameters where bit precision may influence overall results: 1) energy

computation (Energybits), 2) exponential decay rate (Lambdabits), and 3) time mea-

surement (Timebits). These three parameters correspond directly to components in

the equations from the MRF model and how it relates to RET-based sampling [141].

A fourth parameter of interest is distribution truncation—the fraction of samples in

the exponential tail rounded up to infinity.

E “ αEsingleton ` β
ÿ

Eneighborhood (3.2)

λ “ e´E{T (3.3)

pptq “ λe´λt (3.4)

For the RSU-G pipeline shown in Figure 3.2b, the first stage of the pipeline

computes the total energy of a label based on Equation 3.2. α and β are application

parameters. Energybits refers to the precision of E, the output of this stage. The

second pipeline stage obtains the decay rate by implementing Equation 3.3 in a LUT.

Temperature T can be folded into the calculation of LUT entries. Lambdabits refers

to the number of bits used to represent λ, which also indicates the maximum unique

λ values the RSU-G can support. In stage three, the RET circuit samples from

an exponential distribution parameterized by λ, shown in Equation 3.4, to obtain

the time to fluorescence (TTF). Theoretically, TTF has no upper-bound, but to

ensure forward progress, RSU-G has a maximum TTF it can detect and rounds up

to infinity for any TTF beyond this bound. Timebits determines the finest time

resolution within RSU-G’s detection window.

44

An RSU-G that uses full IEEE floating point is theoretically possible; however,

it is impractical due to area, power, and timing limitations. Therefore, any RSU-G

design must rely on limited integer precision. The key architectural challenge is to

determine the specific value required for each RSU-G design parameter to achieve

acceptable result quality while minimizing area and power.

To answer this question, we use a sequential evaluation approach that finds the

best limited precision for only the earliest RSU-G pipeline stage, energy computation

(Energybits), while allowing the remaining parameters (Lambdabits and Timebits) to

use IEEE FP precision. Based on this result, we fix the Energybits to the best value

for all remaining experiments. Next, we vary the exponential decay (Lambdabits)

to find the lowest precision while keeping the time measurement as floating point.

Finally, we fix the energy and exponential decay rate while exploring timing precision.

Energy Computation

Our experiments confirm previous work [87] that shows 8-bit energy is sufficient for

stochastic algorithms. Fewer than 8 bits significantly degrades result quality. BP

for the three data sets on RSU-G (8-bits) and software (floats) are 27.0% vs. 27.1%,

12.6% vs. 13.3%, and 27.3% vs. 30.3% for teddy, poster, and art, respectively.

Exponential Decay Rate

Given Energybits “ 8 we explore the next RSU-G design parameter, Lambdabits.

Recall, the exponential decay rate is used to create relative probabilities for possible

label values. That is, the ratio of probabilities for any two possible labels is equal

to the ratio of the corresponding exponential decay rates (P pMiq{P pMjq “ λi{λj).

RSU-G obtains the decay rate using a LUT indexed by the energy value for a given

possible label, and this value is used to control a set of QDLEDs that illuminate

the RET network. The area and power scale with the number of unique decay rates

45

20%

40%

60%

80%

100%

3 4 5 6 7

B
ad

-p
ix

e
l P

e
rc

e
n

ta
ge

Lambda_bits

int lambda prev_RSUG

int lambda scaled

int lambda cut-off sclaed

2^n appr. cut-off scaled

2^n appr. cut-off

(a) Results for configurations in exponential decay rate

0%

20%

40%

60%

80%

100%

teddy poster artB
ad

-p
ix

e
l P

e
rc

e
n

ta
ge

int lambda scaled int lambda cut-off scaled

2^n appr. cut-off scaled 2^n appr. cut-off nonscaled

(b) Results for Lambdabits “ 4

Figure 3.8: Result quality vs. exponential decay rate precision

since it requires either more QDLEDs or introducing DACs. Naively scaling the

design with Lambdabits “ 7 requires 128 unique decay rates, expanding the RET

circuit area by 8ˆ to 12, 800um2. Therefore, it is desirable to minimize the number

of decay rates, and thus Lambdabits.

The line int lambda prev RSUG in Figure 3.8a shows the average BP results across

three stereo vision data sets for RSU-G when varying Lambdabits from 3 to 7. We

observe BP is above 90% even with Lambdabits “ 7, which means we can not achieve

our quality goal by naively increasing Lambdabits. Further analysis indicates that

high result quality requires a larger dynamic range for λ and a way to reduce the

46

accumulated error caused by limited precision. We meet these needs by introducing

decay rate scaling1 and probability cut-off, as described below.

Decay Rate Scaling Recall the key property in utilizing RET for first-to-fire is the

ratio of decay rates λi{λj for the competing exponential distributions. Theoretically

the absolute value of λi and λj does not matter. However, given limited integer pre-

cision, small λi and λj will be rounded to the same value even when their ratio λi{λj

is high (e.g., 0.4 and 0.005 are both rounded to 0, whereas their ratio is 80). This

problem becomes crucial in the early part of simulated annealing when temperature,

T , is high. Thus, we want λ as large as possible to minimize the precision loss. Given

the decay rate for each possible label (λi; i “ 0 to M ´ 1 see Equation 3.3), we scale

all decay rates λi by a factor k, such that maxi λi is equal to the maximum λ we can

support in RSU-G. From Equation 3.3, we get maximum λ when E “ 0. Thus, we

can maximize the dynamic range of λi while maintaining the invariant of constant

λi{λj ratios shown in Equation 3.5.

λi
λj
“
kλi
kλj

“
e´pEi´Eminq

e´pEj´Eminq
. (3.5)

It also indicates that we can convert λ multiplication to energy subtraction, thereby

simplifying the implementation. This produces a new set of decay rates λ1i “ kλi

which has a dynamic range from 1 to the maximum supported λ. Line int lambda

scaled in Figure 3.8a indicates that with decay rate scaling, BP decreases with in-

creasing Lambdabits and reaches about 70% when Lambdabits “ 7, however it still

does not meet the quality requirement (see Figure 3.9a).

Probability Cut-off The previous RSU-G design limits the minimum probability to

λ0 (λmin “ λ0), which corresponds to the minimum unique decay rate in a RET

1 The idea of decay rate scaling is proposed by Ramin Bashizade.

47

(a) 7 lambda bits, decay rate scaling only (b) 4 Lambda bits, with cut-off, decay
rate scaling and 2n truncation.

Figure 3.9: Stereo vision teddy: scaled decay rates and probability cut-off

circuit. Lower probabilities are rounded up to λ0. Although this design keeps all

labels active during the entire execution, it introduces noise during the later iterations

due to limited precision in Lambdabits, especially for applications with many labels.

Consider a given pixel in a late iteration of teddy with 56 possible labels. Label 0 has

a 0.98 probability to be chosen based on Equation 3.3 while the other 55 labels have

a combined 0.02 probability to be chosen. With Lambdabits “ 7 in RSU-G, label

0 is mapped to the maximum supported λ “ 128λ0, while each of the other labels

is mapped to the minimum λ0. These minimum λ0s introduce inaccuracy due to

rounding since now the probability to choose label 0 becomes 128{p128` 55q “ 0.7,

leaving 0.3 probability to choose other labels, and thus preventing convergence.

To address this problem, we use a probability cut-off (approximation) policy when

the calculated probability is small enough to ignore. The threshold is implicitly

applied during LUT value generation. E “ 0 is mapped to the largest λ. Other

values for each energy entry are calculated by Equation 3.3, multiplied by a scale

2Lambdabits , and truncated to the nearest integer. The probability is ignored (set to 0)

when the calculated value is less than one, which means this probability is not large

enough to use λ0. Using a probability cut off dramatically improves result quality, as

48

shown in Figure 3.8a. Lambdabits “ 3, 4 produce average BPs of 24.7% and 23.8%,

respectively. Lambdabits “ 4 enables a practical RSU-G implementation in terms of

area and power.

Truncating λs to the nearest 2n integer value reduces the unique number of λs

needed from 2Lambdabits to Lambdabits, without reducing quality (see Figure 3.8a), and

thus can reduce area and power. Probability cut-off must be incorporated with decay

rate scaling, otherwise all probabilities are cut off in the early annealing iterations,

leading to poor result quality, as shown in Figure 3.8a. Figure 3.8b shows BP results

across all three datasets, indicating that RSU-G can achieve quality comparable to

the software-only implementation using the above techniques, with BP of 27.8% for

teddy, 13.7% for poster, and 28.6% for art. Figure 3.9b shows the disparity map of

teddy.

Timing Precision and Distribution Truncation

The last component we analyze is timing precision. Recall in first-to-fire, a sample

is generated by parameterizing the decay rate λ of an exponential distribution and

choosing the label (corresponding to a λi) that has the shortest TTF among all

possible labels [141]. The key is to differentiate the TTF for each label and choose

the label with the shortest TTF as the new value for the random variable.

Timing precision addresses two aspects: 1) timing resolution and 2) maximum

detection time. Theoretically higher timing resolution achieves better results. How-

ever, transistor physics, such as gate and wire delays, limits the fastest detection

speed and an ultra-high clock frequency would consume unacceptable power. Fur-

thermore, TTF for exponential distribution has no upper bound and waiting too

long to cover a high percentage of TTF can cause a structural hazard in the pipeline

for TTF longer than one clock cycle. The previously proposed RSU-G uses 4 RET

circuit replicas to avoid this hazard, but does not scale well when the maximum de-

49

Figure 3.10: Relative error (RE) between actual probability ratios and intended
lambda ratios under different Truncations, given Timebits “ 5

tection time is high. Mitigating this requires a deeper analysis of timing precision’s

impact on result quality.

To analyze the time precision, we define the finest timing resolution of RSU-G as

a unit time bin (duration 1 unit). TTF within a time bin cannot be differentiated.

In the simulation, we randomly pick a label if two labels are tied in TTF, which in

the RSU-G architecture, is one bit of additional random input from any source of

RNG. We treat the sampling stage of RSU-G as an exponential sampler that, given

a positive input decay rate λ, generates output at time t; 1 ď t ď tmax following an

exponential distribution. Timebits is the number of integer bits used to represent t.

Since TTF is theoretically infinite, we define a new parameter Truncation to provide

a detection boundary from a probability perspective. Distribution Truncation refers

to the probability that TTF is longer than tmax given λ0, the lowest decay rate RSU-

G can support (Truncation “ ppTTF ą tmax|λ0q “ expp´λ0tmaxq). TTF beyond

tmax is numerically rounded to tmax.

Timebits influences result quality since fewer Timebits indicates two detected TTF

are more likely to be in the same bin—a tie. However, simulation results indicate

50

that given a fixed Timebits, Truncation also significantly influences result quality.

Recall, in the ideal case, the ratio of probabilities for choosing any two labels is

proportional to the ratio of their calculated decay rates “ λi{λj. Figure 3.10 shows

the relative error between actual probability ratios and intended lambda ratios given

Timebits “ 5 and various Truncation values. Each data point is acquired by going

through the last two RSU-G stages (sampling and comparison) and collecting 106

samples from 2 possible labels with the corresponding λmax and λi, where λmax is

the largest possible decay rate, which is 8λ0 when Lambdabits “ 4. With 2n lambda

approximation, the ratio of two lambdas can only be 1, 2, 4, and 8. We vary λi for

one label and keep the other label constant at λmax to achieve the intended λ ratio,

which is how the previously described decay rate scaling works.

The results show that the divergence between the computed probability ratio

and the intended ratio is large when Truncation is low (below 0.1 in this case)

or too high (above 0.6), while the divergence is small when Truncation is in the

middle range. Truncation has little impact when the lambda ratio is 1. Since

λ09 ´ lnpTruncationq, small Truncation leads to a larger λ0, and consequently

larger λis. According to Equation 3.4, large λi compresses the TTF into a small

range early in time, thus placing more samples into the same time bin. This causes

divergence from true probability ratios in the left side of Figure 3.10. Conversely,

a large Truncation value over-truncates the distribution for both λs and severely

changes the distribution, causing divergence in the right side of Figure 3.10. Finding

a reasonable Truncation value is critical to balance the information loss.

We explore the space of Timebits and Truncation to examine their impact on

result quality. Figure 3.11 shows the BP results for the stereo vision dataset poster.

Darker colors indicate a high BP (lower quality, lower cost) and white indicates a low

BP (higher quality, higher cost). These results show that we can improve quality by

either increasing Timebits or increasing Truncation up to a point for fixed Timebits.

51

Figure 3.11: Result quality of Timebits vs. Truncation in poster

Configurations on the dashed line produce the same result quality (we verify this

across all three applications). However, a designer has the freedom to move along

this line (up-right or down-left) to optimize the RSU-G implementation. Section 3.4

discusses the implementation trade-offs involved in moving along this line. Quali-

tatively, increasing Timebits requires either increasing clock frequency or replicating

RET circuits to provide the necessary number of timing bins, thus increasing area

and power. Reducing Timebits requires increasing Truncation to maintain result

quality. Unfortunately, for high Truncation values, it is more likely that photons

generated by one sample influence the next sample(s) since the RET network remains

excited beyond the Truncation threshold. To avoid this excitation “bleed through”,

Truncation requires RET network replicas. The red star in Figure 3.11 corresponds

to our chosen point (Timebits “ 5 with Truncation “ 0.5) which provides a good bal-

ance. In contrast, the previous RSU-G design requires very low Truncation (ă 0.01)

due to using a single RET network in the RET circuit.

52

0%

5%

10%

15%

20%

25%

30%

35%

teddy poster art

B
ad

-p
ix

e
l P

e
rc

e
n

ta
ge

Software new_RSU-G

(a) Stereo vision (b) teddy by new RSU-G

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

venus rubberwhale dimetrodon

En
d

 P
o

in
t

Er
ro

r

software new_RSU-G

(c) Motion estimation

0

1

2

3

4

2-label 4-label 6-label 8-label

V
o
I

software new_RSU-G

(d) Image segmentation

Figure 3.12: RSU-G result quality for Timebits “ 5 and Truncation “ 0.5 across
applications

3.3.4 Result Quality for new RSU-G

We run all three applications on our new RSU-G design with Energybits “ 8,

Lambdabits “ 4, Timebits “ 5, Truncation “ 0.5 and compare with software-only re-

sults using standard benchmarking metrics. We believe these benchmarks represent

the characteristics of most workloads.

Stereo Vision Figure 3.12a shows the BP across three datasets in stereo vision.

The new RSU-G design achieves comparable BP with only small variations (3% BP

differences in teddy, 0.1% in poster, and 0.5% in art). Figure 3.12b shows teddy

disparity map in new RSU-G.

53

Table 3.3: Standard deviation of VoI across 30 tested images
2-label 4-label 6-label 8-label

Software-only 0.63 0.71 0.71 0.79
New-RSUG 0.63 0.69 0.68 0.76

Motion Estimation Motion estimation finds pixel correspondence between two tem-

porally sequenced frames, with a 2D search space. This differs from stereo vi-

sion in two important aspects: 1) the method of energy calculation [69] and 2)

more labels (N2 labels for the N ˆ N search window). Due to the maximum-label

limit, we make the common assumption that motion is relatively small compared to

whole images [69]. Larger search windows can be obtained using an image pyramid

method [69]. We use Middlebury motion estimation benchmarks [7] and randomly

pick 3 datasets (venus, rubberwhale, and dimetrodon) that can fit in our search win-

dow. We use the common end-point error as the quality metric [7]. From Figure

3.12c, the new RSU-G produces results comparable in quality to the software imple-

mentation.

Image Segmentation We use the Berkeley Segmentation Database (BSD300) [90],

and randomly select 30 images from among 300 images. We run multiple instances

for each input with a different number of image segments (labels). We run 2, 4, 6,

and 8 segmentations across these selected images with 30 iterations for each. Result

quality is obtained using BISIP [146], a widely-used evaluation package that provides

four result quality metrics. We only present Variation of Information (V oI P r0,8q,

lower VoI is better) as an example. Figure 3.12d shows RSU-G achieves result quality

comparable to the software. We also show the standard deviation of VoI in Table 3.3.

It is possible that in some cases RSU-G outperforms software-only results due to the

stochastic property of MCMC algorithms, but overall they produce the same result

quality.

54

3.4 A High Quality RSU-G

The previous quality analysis shows that an RSU-G with Energybits “ 8, Lambdabits

“ 4, and scaling decay rates with probability cut-off provides high result quality.

From the several possible combinations of Timebits and distribution truncation, we

choose Timebits “ 5, T runcation “ 0.5 based on preliminary analysis. Importantly,

these changes are mostly microarchitectural with minimal impact on the overall

pipeline design or the architectural interface to the RSU-G, therefore the new design

retains the sizable performance improvements of the previous work [142], as summa-

rized in Section 3.1.2. The challenge is to design a new microarchitecture that meets

the specifications with minimum area and power overheads.

3.4.1 Qualitative Design Trade-offs

Section 3.3 shows that simply scaling the previous RSU-G design cannot achieve the

desired precision for high result quality. First, the existing design lacks support for

decay rate scaling and probability cut-off, and thus, fails to provide sufficient dynamic

range for λ. Simply increasing Lambdabits precision cannot improve result quality

without applying decay rate scaling. Second, the previous RSU-G does not utilize

2n lambda approximation which can reduce area and power. Using light intensity to

achieve decay rate scaling requires excessive QDLEDs for large λ values.

Furthermore, the previous design does not exploit distribution truncation. Fig-

ure 3.11 exposed a trade-off between distribution truncation and time measurement

precision, where points along the diagonal line produce similar high result quality

while minimizing cost. Finding an optimal point along this line requires evaluating

full implementations of each point. Qualitatively, increasing distribution truncation

increases the number of RET networks required for some decay rates. We cannot

re-use RET networks for consecutive label evaluations since there is a significant

55

Figure 3.13: High quality RSU-G pipeline

probability that the RET network will produce an unwanted sample during the next

label evaluation: a large number of chromophores may remain excited and are likely

to emit photons in a subsequent cycle. The previous RSU-G design used 4 replicas

to provide a distribution truncation of 0.004, each RET network had only a 0.004

probability of producing an unwanted sample. Naively scaling replicas in the cur-

rent design would require even more QDLEDs and additional SPADs, resulting in

excessive area and power.

From this discussion we conclude that we need a new RSU-G design that 1)

efficiently provides decay rate scaling and probability cut-off, 2) takes advantage

of fewer unique decay rates, and 3) balances distribution truncation with timing

precision. The remainder of this chapter describes techniques to achieve this goal.

3.4.2 A New RSU-G Design

Figure 3.13 shows our new RSU-G pipeline. This design satisfies all the criteria

outlined above while maintaining nearly the same external (architectural) interface

as the previous design, the only addition is to allow updating the temperature dy-

namically each iteration without adding additional latency or pipeline stalls, thus

achieving the same steady-state performance as the previous design. The latency

for a single pixel evaluation increases since there are more pipeline stages, but the

56

throughput remains identical to the previous design at one label evaluation completed

per cycle. However, the microarchitecture is substantially different since almost all

stages in the pipeline, except for comparison, differ from the previous RSU-G. The

important differences are in the energy evaluation, the efficient energy to λ conver-

sion, the RET circuit, and a decoupling of the pipeline into two sections such that

the back-end operates on the variable (e.g., pixel) v while the front-end processes

variable v ` 1. The remainder of this section describes the techniques we utilize

to achieve high result quality with no or modest area and power increase over the

previous design.

Support for Multiple Distances

To support a broader set of applications we add new distance calculations in the en-

ergy calculation stage of the previous RSU-G, which only supports squared distance.

Specifically, we add binary and absolute distance in the doubleton calculation and

absolute distance in the singleton calculation, which covers the majority of MCMC

MRF applications in computer vision [71]. This additional flexibility requires a LUT

to store all possible label values and additional combinational logic. We modify the

architectural interface such that users can configure the energy calculation at the

beginning of the application.

Decay Rate Scaling

Decay rate scaling is unique for each pixel evaluation and is performed by subtracting

the energy for each label from the minimum energy, E 1i “ Ei ´ Emin. This requires

observing all label energies (Ei) to find Emin and then performing the subtraction.

To implement this, we introduce a FIFO queue in the existing RSU-G pipeline for

storing all label energies. This queue decouples the pipeline stages before λ look-up

from the rest of the pipeline, enabling us to find Emin and perform scaling. We

57

use two registers to support decay rate scaling. One register stores the minimum

observed energy as new energy values are inserted into the FIFO for variable v ` 1.

A second register stores the minimum energy to use for scaling the decay rates while

processing variable v. Each cycle an energy is read from the FIFO and subtracted

from the value in the second register to perform scaling. This scaled energy is used

as the input value for energy to λ conversion. Note that at any given time during

the steady state, energies of two different variables reside in the queue (except for a

single cycle when the energy for the last label of variable v ` 1 enters, and all the

energies in the FIFO belong to that variable); one variable is going through energy

computation and thus, is constantly updating its minimum energy, and the other

has its minimum energy determined and is going through the energy to λ conversion

stage.

Efficient Energy to Lambda Conversion

Since a relatively small number of unique λ is needed due to 2n approximation, we

re-evaluate the previous LUT design for energy to λ conversion. Recall that energy

to λ conversion is based on Equation 3.3. This can be implemented in two ways:

1) using a LUT with energy as an index to load precalculated values, or 2) storing

the boundary values for each λ value and performing comparisons to determine the

interval the energy belongs to. The LUT design is more efficient when many λs are

needed since comparisons do not scale well when the number of intervals is large,

and more memory is needed to store the boundary values. However, since 4 unique

λs only generate five intervals λ “ 0, 1, 2, 4, 8, at most 4 comparisons need to be

performed for any energy value.

The comparison-based design outperforms a LUT in two ways: first, it signifi-

cantly reduces the total memory needed from 1024 bits to 32 bits. Second, updating

a 32-bit register is much faster than updating a 1K-bit LUT when updating the tem-

58

perature. With an 8-bit interface, it only takes four cycles to update all boundaries,

which would add 3 additional stall cycles in the pipeline at end of each iteration. To

eliminate these 3 additional cycles, we add additional 32-bit registers to buffer the

new boundary values so that temperature updates can occur simultaneously with

sampling. Although a wider 32-bit interface can hide this additional latency, we

choose an 8-bit interface with buffers to keep the total interface small in size. Energy

to Lambda conversion outputs a 3-bit value, using the MSB to indicate probability

cut-off and 2 other bits to indicate the unique λ used by the RET circuit. Our

area/power evaluation indicates a 0.46ˆ area and 0.22ˆ power relative to the LUT

implementation.

Implementing Decay Rates

Recall (Section 3.1.2) that RET network decay rate depends on input light intensity

and chromophore concentration [141]. These parameters lead us to the following

design alternatives: 1) keep using QDLEDs to provide four unique intensities and

have one RET network and one SPAD; 2) have one QDLED, whose voltage (and thus

intensity) is controlled by a digital-to-analog converter (DAC), and have one RET

network and one SPAD; 3) have one QDLED and add RET networks with different

chromophore concentrations, one for each desired decay rate.

As shown previously, intensity-based decay rates cannot benefit from fewer unique

λs since DACs are power hungry [19]. Instead, we use a unique concentration for

each decay rate, where a waveguide couples to 4 RET networks with concentrations

of 1ˆ, 2ˆ, 4ˆ, and 8ˆ of that corresponding to λ0, and a single QDLED. The

appropriate SPAD output corresponding to the RET network with the desired decay

rate (concentration) is selected as input to the timing circuit using a multiplexer

(see Figure 3.14). Without considering truncation, a single QDLED coupling 4 RET

networks covers all unique λs. However, as described later, distribution truncation

59

requires replicated RET circuits due to the long exponential tail.

Timing Precision

The previous quality analysis shows that we need between 4 and 8 time bits (16-256

time bins). We use a clock multiplier and a shift register to read the SPAD output

which generates the TTF for a given RET network. Assuming a 1GHz clock and

an 8ˆ multiplier, the finest resolution is 125ps for a time bin, any lower resolution

becomes impractical due to the clock multipliers. The SPAD output is sent to an

8-bit shift register to obtain a unary encoded value for the sample, with all zeros

indicating no photon observed in this 1ns cycle. Wire delay from SPADs to shift

register is negligible compared to 125ps [55]. This design provides Timebits “ 3

(8-bit unary = 3-bit binary). This is clearly not sufficient to provide high result

quality.

To increase timing precision, we extend the window for observing fluorescence to

more than one clock cycle. The number of clock cycles required for a specific time

precision is Cycles “ 2T imebits{8 and ranges from 2 to 32 cycles for 4 ď Timebits ď 8.

The number of cycles directly influences RSU-G design since this is the window

within which to potentially observe fluorescence, and replicated RET circuits are

required to avoid a structural hazard and sustain one label per cycle evaluation. Our

chosen point, Timebits “ 5 (32 bins), requires 4 replicas since our observation window

is 4 cycles (32/8).

Distribution Truncation

To truncate the tail of the distribution, we simply stop looking for fluorescence of

a given RET network and assume it never occurs (TTF “ 8). Unfortunately, the

RET network may still have excited chromophores that fluoresce at a later time,

therefore the RET network cannot be re-used until there is a sufficiently low prob-

60

Figure 3.14: RSU-G RET circuit components

ability of fluorescence. To sustain one label evaluation per cycle, we replicate the

QDLED+RET network in each RET circuit.

The previous RSU-G achieves 99.6% probability that a previous sample does

not affect a later sample; however, higher truncation rates require more replicas to

achieve this same goal, and lower truncation is preferred to minimize design overhead.

For example, with Truncation “ 0.5, we need 8 RET network replicas to achieve

99.6%. RET network replication is separate from, and can be combined with, RET

circuit replication required to obtain a specific timing precision, as described above.

Replicating RET networks necessitates multiple light sources since exciting two RET

networks with the same light source is equivalent to having no replicas, and multiple

RET circuits within a single RSU-G cannot share the light sources and waveguide

for the same reason. However, multiple RSU-Gs can share the same waveguide as

long as each RET network is not reused within the minimum interval time to reach

99.6% probability of fluorescence.

Our design, shown in Figure 3.14, allows multiple RET circuits to share the same

light source and waveguide while satisfying the minimum interval time constraint.

61

This design is based on Timebits “ 5 and Truncation “ 0.5, where our preliminary

analysis shows a good balance. Other design points incur either 1) more RET circuit

replicas to achieve higher time precision, or 2) more RET network replicas and larger

select logic to satisfy the minimum interval time constraint. Finding the optimal

design point requires synthesizing results of all points on the line.

Within a RET circuit, four RET networks with unique concentrations share a

waveguide and eight sets of RET network replicas are located on different waveg-

uides for concurrent operation. A QDLED counter increases by 1 every four cycles,

indicating which waveguide is in use. A 32-to-1 MUX selects the SPAD signal from

the desired RET network for the subsequent timing circuit. The QDLED counter and

λ input specify the RET network row and column respectively. Multiple RET cir-

cuits from different RSU-Gs can be placed on the same waveguide as long as the light

source provides sufficient intensity to drive all RET network replicas. With a proper

layout, overheads caused by the light source and the RET networks can be amortized

without incurring significant interconnection overhead. The new RSU-G design also

opens the possibility to use a different light source, such as thin-film edge emitting

lasers or VCSELs [115], since intensity control is no longer needed. Moreover, placing

multiple RET network replicas from multiple RSU-Gs on one waveguide enables the

potential to use external light sources across all RSU-Gs without a need to integrate

on-chip light sources. Previous work demonstrates selectively coupling optics from a

single light source to a desired waveguide using ring resonators [57,114,116]. Finding

the proper design and layout for a multiple RSU-G architecture is ongoing work.

3.4.3 Evaluation

The new RSU-G design described above preserves nearly the same architectural in-

terface but adds an interface for temperature updates. Since our design guarantees

no additional latency during temperature updates, speedups from the previous RSU-

62

Table 3.4: Stereo vision execution time (seconds)
320x320 SD 1920x1080 HD

10-label 64-label 10-label 64-label
GPU float 0.078 0.401 0.894 6.522
GPU int8 0.070 0.378 0.784 5.870
RSUG aug 0.025 0.071 0.220 1.067
Speedup flt 3.125 5.652 4.058 6.115

Speedup int8 2.828 5.323 3.561 5.504

G still hold [142]. However, we introduce a new application in this chapter, stereo

vision, thus we implement two GPU versions of stereo vision with float precision en-

ergy and 8-bit integer energy implementation, and compare results with an RSU-G

augmented GPU (RSU-G1) using the previous methodology [142] (i.e., best-effort

GPU implementations with packed inputs as the baseline). Table 3.4 shows the ex-

ecution time and speedup. RSU-G provides speedups similar to image segmentation

in SD images, but provides higher speedup in HD images.

We estimate the area/power of the CMOS portion of the new RSU-G using

Cacti [133] and a Verilog implementation synthesized using a predictive 15nm pro-

cess [92]. First principles are used to calculate the area/power for QDLEDs [47,127],

RET networks, and SPADs [5, 86, 113], as in the previous work [142]. Conserva-

tively, area/power analysis uses one RSU-G per light source plus waveguides, i.e.,

each RSU-G has 8 independent QDLEDs. Waveguides are straight, with pitch equal

to half width of a QDLED, and no circuitry in the spare area. Table 3.5 summarizes

our evaluation. The new RSU-G design consumes a slightly higher (1.27ˆ) power

but keeps the same area compared to the previously proposed RSU-G. Most power

increase is introduced by supporting more functionality in energy calculation. How-

ever, a single RET circuit alone consumes 0.7ˆ area and 0.5ˆ power compared to the

previous design. Sharing light sources and waveguide can further reduce area/power.

Most importantly, the new design achieves the goal of providing high result quality

63

Table 3.5: New RSU-G area and power consumption
Component Area(µm2) Power (mW)
RET Circuit 1120 0.08

CMOS Circuitry 1128 3.49
LUT 655 1.42

RSU-G Total 2903 4.99

and significant speedups for MCMC MRF models.

To further compare RSU-G with pure-CMOS designs, we estimate the area of

equivalent CMOS designs by replacing the sampling portion of RSU-G with an al-

ternative true RNG (Intel DRNG [98]) and more aggressive pseudo-RNG designs

(LFSR and mt19937 [94]). These RNGs lack programmability. As a result, gen-

erating parameterized distributions requires a LUT to store the target cumulative

distribution function (e.g., store {1,3,6,7} for the discrete probability distribution

{1,2,3,1}). The LUT size is proportional to the maximum number of supported

labels.

Table 3.6 shows the estimated area comparison. To evaluate the potential ben-

efits of RSU-G, we estimate RSU-G area in 1) a design where 4 RSU-Gs share a

light source set (RSUG 4share), and 2) an optimistic design in which many RSU-Gs

share a light source set with negligible amortized area, and CMOS circuits can re-

side underneath the waveguides (RSUG optimistic). Mt19937 RNG area is obtained

from the previous work [144] and scaled to 15nm technology [128]. We estimate

the area when using one RNG per sampling unit (mt19937 noshare), per 2 units

(mt19937 4share), and per 208 units (mt19937 208share, maximum value in [144]).

We consider only AES-256 [1] area, which is one of three stages in Intel DRNG. One

Intel DRNG can only support one sampling unit given the throughput limitation [98].

The 19-bit LFSR design is the most aggressive herein. Our preliminary quality anal-

ysis shows that the design provides result quality as good as mt19937 and RSU-G

for the selected benchmarks (stereo vision and motion estimation). However, the

64

Table 3.6: Area comparison with alternative designs
True-RNG Area(µm2) Pseudo-RNG Area(µm2)

RSUG noshare 2903 19-bit LFSR 2186
RSUG 4share 2303 mt19937 noshare 19269

RSUG optimistic 1867 mt19937 4share 6507
Intel DRNG (part) 3721 mt19937 208share 2336

result quality for other benchmarks and applications remains to be evaluated given

the relatively short period of LFSR. Our work in the following chapter explores the

possibility of a pure-CMOS design using a pseudo RNG. Previous work [117] uses

true-RNG similar to [98] for neuron firing. Unlike Gibbs Sampling Unit in [117],

RSU-G is a full functional unit. Overall, RSU-G can provide true-RNG using area

comparable to LFSR designs and the power/area benefit [142] remains.

3.5 Limitations and Future Work

This work evaluates the result quality of three popular applications in computer vi-

sion, which we view as good representations of other applications in this field. The

new RSU-G design keeps the same maximum number of labels that can be sup-

ported as the previous work, which provides sufficient support for most applications

in this area. Nonetheless, providing support for more than 64 labels would expand

the applications that can benefit from our approach. A deeper analysis of distribu-

tion truncation vs. timing precision is also needed to determine the optimal design

parameters. Finally, although fabrication of RET technology [118,142], QDLED [47]

and SPAD [109] are individually demonstrated elsewhere, a fully integrated RSU-G is

yet to be demonstrated. We are also evaluating possible designs that use other types

of light sources, which may further simplify fabrication. Photo-bleaching, which can

degrade RET circuits, can be mitigated using known techniques [111].

Additional future work includes, but is not limited to, extending the samplers

to support more than Gibbs Sampling, support for a wider application domain, and

65

exploring sampling from phase-type distributions.

3.6 Summary

The recent advances in statistical machine learning create new opportunities and

challenges for improving overall computational efficiency. Direct support for prob-

abilistic algorithms is an intriguing path to help alleviate the challenges due to the

slowing of CMOS scaling. Several approaches that utilize emerging technologies are

being explored in the community. This chapter builds on the recent technique of uti-

lizing molecular-scale optical devices to construct efficient samplers that exploit the

physical property of resonance energy transfer (RET). The previously proposed RET

sampling unit for Gibbs Sampling (RSU-G) can be added to commodity processors

or used to create a discrete accelerator and provide significant speedups.

We first propose a macro-scale RSU-G prototype, the first such system to our

knowledge, that demonstrates the capability of a RET network to parameterize a

distribution and run a real application. The NIST statistical test results confirm the

RET network produces relatively high-quality randomness without post-processing.

We further ask and answer several questions related to the implementation of the

RSU-G and how certain design decisions affect the overall application result quality.

Using community standard metrics for three represented applications, we find that

the previously proposed RSU-G does not provide adequate result quality. We identify

four primary RSU-G design parameters and explore their impact on result quality.

We present a new RSU-G design with minimal architectural interface changes that

maintains the performance improvements of the previous design, and provides high

result quality with a negligible area overhead and modest power increases. We also

enable opportunities to further reduce power, area, and fabrication costs with a

shared light source and waveguide design.

This work takes one more step on the path toward finding methods to accelerate

66

probabilistic algorithms. Next, we explore the feasibility of a pure CMOS stochastic

processing unit that can maintain the performance, area, and power benefits of the

RSU-G.

67

4

A CMOS Stochastic Processing Unit

The new RSU-G is promising to accelerate 1st-Order MRF Gibbs Sampling algo-

rithms. Fabrication of RSU-G in an integrated circuit, however, requires an addi-

tional back-end-of-line process to integrate RET networks and optical devices onto

traditional CMOS circuits, increasing manufacturing costs. One favorable property

of RSU-G is the high-quality true randomness from the quantum states of RET net-

works, which in theory guarantees unrepeatable and unpredictable samples. Without

RET circuits, the randomness needs to be provided by CMOS RNGs. A determin-

istic CMOS digital circuit only provides pseudo randomness without an external

entropy source. A CMOS true RNG, such as Intel DRNG [98], consumes too much

area/power. The key question is do we actually need a true RNG for our target 1st-

Order MRF Gibbs Sampling applications? If not, what RNGs are enough to provide

good result quality?

In this chapter, we first explore the feasibility of a pure CMOS sampling unit

equivalent to RSU-G. We evaluate six different RNGs (8-bit, 16-bit, 19-bit LFSR,

Mersenne-Twister 19937 [94], and Intel DRNG with pseudo and true randomness) on

motion estimation and stereo vision applications with 64-bit floating-point (FP64)

68

precision elsewhere. Unexpectedly, we discover a simple 19-bit LFSR is sufficient to

provide good application end-point result quality. Using more complicated RNGs

does not further improve result quality. We observe notable drops in quality if using

lower quality RNGs than a 19-bit LFSR. The results indicate designing an efficient

CMOS sampling unit providing functional equivalence to RSU-G is feasible.

Therefore, we propose a CMOS Stochastic Processing Unit (SPU) by replacing

the RET-based sampler with a CMOS discrete sampler. The design uses the RSU-G

front-end pipeline for energy computation and probability conversion, and thus keeps

the RSU-G optimization techniques to improve the efficiency while maintaining high

result quality, including: 1) dynamic scaling, 2) probability truncation (cut-off), and

3) 2n approximation. The discrete sampler implements inverse transform sampling

fed by the least 12-bits of a 19-bit LFSR and uses mathematical approximations to

maximally simplify arithmetic computation in hardware. The SPU can be deployed

on an FPGA or fabricated in an ASIC. We further optimize a design targeted to an

Intel Arria 10 FPGA by adding an additional internal stage and packing multiple

computations into one DSP. Importantly, the SPU does not change the architectural

interface and thus maintains the sizable RSU-G speedups.

Our quality analysis on three 1st-Order MRF applications shows the SPU with

a simple 19-bit LFSR achieves the same result quality as FP64 software. An FPGA

HLS baseline is implemented to assess the option of directly using FP32 after en-

ergy computation without a specialized architecture. The SPU optimized for FPGA

achieves at least 3ˆ faster in performance and 33.7ˆ less in memory compared with

the HLS baseline, indicating a human-designed architecture is needed to improve

efficiency. The SPU avoids using a complex RNG and thus saves 33% in area and

57% in power compared with an RSU-G without light source sharing. Note that the

SPU results do not preclude other potential benefits of the true RNG in RSU-G such

as unpredictable seeds [129], which is beyond the scope of this dissertation.

69

Cycle A B C RN

0 0 0 1 1

1 1 0 0 4

2 0 1 0 2

3 1 0 1 5

4 1 1 0 6

5 1 1 1 7

6 0 1 1 3

7 0 0 1 1

A B C

Figure 4.1: A 3-bit Linear-Feedback Shift Register (LFSR) and its output random
numbers (RN) [148]

The remainder of this chapter is organized as follows. Section 4.1 explores the

relationship between RNGs and application result quality. Section 4.2 describes

the SPU pipeline and optimization details. The evaluation is provided in Section

4.3. Section 4.4 describes limitations and future work. Section 4.5 summarizes the

chapter.

4.1 RNGs vs. Application Result Quality

The key element of probabilistic algorithms is generating random samples using an

RNG. The previously discussed RSU-G uses RET networks and optical devices to

provide high-quality quantum randomness. Another example of an optical quantum

RNG is a quantum photon RNG [139]. Although quantum randomness offers “a pos-

sibility for scientific proof of randomness” [129], those RNGs require optical elements

in addition to conventional CMOS when fabricated as integrated circuits, increasing

manufacturing costs.

Alternatively, we can use conventional CMOS technology for pseudo or true RNG

without a quantum randomness guarantee. A straightforward approach is using

pseudo RNG—pure digital logic and mathematical computation to produce a se-

quence of bits that seem to be “random”. One of the simplest, yet popular, pseudo

70

RNG is a Linear-Feedback Shift Register (LFSR). Figure 4.1 shows an example of a

3-bit LFSR that can generate pseudo-random numbers between one and seven. The

key elements are a chain of shift registers, and XOR gates that feed into the begin-

ning of the chain. The locations of the XORs are determined by the maximal-length

polynomials so that every number—in this case, from one to seven—can be picked.

Note that the initial state cannot be all zeros. A 3-bit LFSR has only a seven-cycle

period: the pattern of random numbers will repeat after the seventh cycle. A more

practical 19-bit LFSR has a period of 219 ´ 1 “ 524, 287. A more complex pseudo

RNG, Mersenne Twister introduced by Matsumoto and Nishimura [94], has a pe-

riod of 219937 ´ 1 and is usually used as the default pseudo RNG in many systems

and IDEs, including MATLAB. CMOS-based true RNGs are available by utilizing

thermal noise [98], telegraph noise [51], free-running oscillator [53], etc. In theory,

a low-quality RNG can lead to biased results given a repeated pattern in a short

period. Previous experiments show that bad RNGs can lead to significantly different

results in Monte Carlo simulation [23]. More complex RNGs produce higher quality

randomness, but typically consume more hardware resources: a Mersenne Twister

needs 2.5KB of memory to buffer states; Intel DRNG [98] involves two stages of

post-processing. Chapter 3 (Table 3.6) presented a preliminary area comparison by

replacing RET circuits with other CMOS RNGs. The question is what RNGs are

good enough in our targeted applications?

We evaluate application end-point result quality of C++ stereo vision and mo-

tion estimation using six different RNGs: 8, 16, 19-bit LFSRs, Mersenne Twister

(mt19937), Intel DRNG with pseudo-random output (RDRAND), and Intel DRNG

with true-random output (RDSEED). The C++ software uses FP64 precision else-

where. Figure 4.2 shows the mean and standard deviation of result quality in

bad-pixel percentage (BP) for stereo vision and end-point result (EPE) for mo-

tion estimation. Each bar is collected from 50 MCMC runs. Theoretically, RNGs

71

0%
10%
20%
30%
40%
50%
60%
70%

art poster teddy
BP

LFSR8 LFSR16 LFSR19 MT19937 RDRAND RDSEED

(a) Stereo vision result quality over RNGs (lower is better).

0

0.2

0.4

0.6

0.8

1

1.2

dimetrodon rubberwhale venus

EP
E

LFSR8 LFSR16 LFSR19 MT19937 RDRAND RDSEED

(b) Motion estimation result quality over RNGs (lower is better).

Figure 4.2: Result quality analysis over RNGs with floating-point elsewhere

from left to right provide better randomness quality. Unexpectedly, a simple 19-bit

LFSR provides the same application result quality as more complex RNGs (mt19937,

RDRAND, and RDSEED). An example teddy result with 19-bit LFSR is provided in

Figure 4.3a. The 8-bit LFSR has a repeated pattern every 255 cycles, which signifi-

cantly degrades the result quality in 4 out of 6 benchmarks. An example result with

a stripe pattern shows in Figure 4.3b. The 16-bit LFSR produces good result qual-

ity in 5 out of 6 benchmarks and slightly worse quality in motion estimation venus.

However, since the period 65, 535 “ 255 ˆ 257 is not a prime number, for the cases

where the size of image inputs is aligned with the factors of the period, the effective

period for these inputs is reduced and the result quality can drop. Figure 4.3c shows

72

(a) Teddy with 19-bit LFSR
(BP: 29.2%).

(b) Teddy with 8-bit LFSR
(BP: 59.5%).

(c) 257 ˆ 255 cropped
teddy with 16-bit LFSR
(BP: 81.5%).

Figure 4.3: Examples of teddy RNG results

an extreme example where teddy is cropped to 257 by 255 pixels. The result quality

significantly drops compared with the original input with a size of 450 by 375. To

avoid these cases, the LFSR period needs to be a prime, such as 524,287 in a 19-bit

LFSR. These results indicate that a CMOS sampling unit providing functional equiv-

alence to RSU-G is feasible using a pseudo RNG. The next section explores such a

design.

4.2 Exploring a CMOS Stochastic Processing Unit

In this section, we explore a CMOS Stochastic Processing Unit (SPU) by replacing

the RET circuit sampler with a CMOS discrete sampler. The design provides equiva-

lent functionality to RSU-G and flexibility to be deployed on an FPGA or fabricated

in an ASIC. We demonstrate a couple of design optimization techniques for an Intel

Arria 10 FPGA.

4.2.1 SPU Pipeline

Figure 4.4 shows the block diagram of the Stochastic Processing Unit (SPU) pipeline.

It is divided into four main stages (9 internal stages) with two internal decoupling FI-

FOs and an inverse transform method is used for the discrete sampler. The front-end

73

𝑝"#(𝑖)

Label
(𝐿)

Labels
[𝐿()#* , 𝐿()#+
𝐿()#, , 𝐿()#-]

Data
[𝐷*, 𝐷+]

RNG (19-bit
LFSR)

En
er

gy
 to

Pr

ob
ab

ilit
y

𝐸(𝑖) 𝐸0(𝑖)
T

Update

Config

E
ne

rg
y

C
om

pu
ta

tio
n V

𝐸 FIFO

V+1

𝐸12(
for v

𝐸12(
for v+1

−

Valid

Discrete
Sampler

V V-1

CDF FIFO

8
4

12

6
2x6

4x6

32

Parameter Config

Figure 4.4: SPU pipeline

stages in the RSU-G before RET sampling stage is transferable to SPU. Techniques

to improve result quality in these stages also apply to SPU and the previous design

point still holds (recall Energybits “ 8 and Lambdabits “ 4 in Chapter 3). The term

“decay rate” λ is changed to “scaled probability” ps for accuracy. A discrete sampler

with a CMOS RNG replaces the RET sampling and comparison stages. The SPU

supports two operating modes: 1) pure-sampling and 2) optimization (simulated an-

nealing). Recall pure-sampling iteratively generates Gibbs samples using constant

temperature T and simulated annealing strategically decreases the temperature per

iteration for faster convergence. Compared with the related work [66, 87], the SPU

exploits the discoveries from a comprehensive design space exploration by using: 1)

full-custom precision; 2) optimization techniques including dynamic scaling (a.k.a.,

decay rate scaling), probability truncation, and 2n approximation; 3) a simple 19-bit

LFSR with the 12-bit LSB output. Below summarizes the operation of each stage.

Energy Computation and Scaling Figure 4.5a presents the block diagram of energy

computation, the first stage in the SPU. Given the data, current label, and neighbor

labels, the stage computes the total energy of a possible label Epiq per cycle. The en-

ergy Epiq is a weighted sum of singleton energy from data and doubleton energy from

neighbor labels (Equation 4.1). α and β are application parameters approximated by

74

Data
[𝐷!, 𝐷"]

Label
Counter

Label
LUT

Weights(𝛼[4],𝛽[4])
Current label (𝑙![6])

𝐸"!#$%&'(#

Shift
&

Sum

𝐸# [8]

Labels
[𝐿$%&! , 𝐿$%&"
𝐿$%&' , 𝐿$%&(]

Doubleton computation

Singleton computation

𝐸)(*+%&'(#

(a) Energy computation

𝐸!"#
!𝐸!"$

!

𝐸% [8]

𝐸!"&
! 𝐸!"'

!

T_Update [32]

< D
ec

is
io

n
Lo

gi
c 𝑝!([4]

𝐸!"$
!)# 𝐸!"#

!)# 𝐸!"&
!)# 𝐸!"'

!)#

𝑝!" = (𝐸# < 𝐸!$%)? 8
: (𝐸# < 𝐸!$&)? 4
: 	(𝐸# < 𝐸!$')? 2
: 	(𝐸# < 𝐸!$()? 1

/*default*/ :0

< < <

(b) Energy to scaled probability conversion

max 𝑐!"

Acc

+𝑝!"[4] V V-1

𝑐!" FIFO

𝑐!"[9]

Uniform
Random

Number (𝑅)
[12]

Label
(𝐿)

{𝑐!"[9],
12’h0}

𝑅#[21]

La
be
l

D
ec
is
io
n

<
×

Valid

(c) CMOS discrete sampler

Figure 4.5: SPU design in each stage

shift operations. The SPU supports three types of energy function including binary,

absolute, and squared distance. Epiq is then dynamically scaled using subtraction to

maximize the dynamic range (Equation 4.2). Both Epiq and Espiq are 8-bit unsigned

integers.

Epiq “ αEsingletonpiq ` β
ÿ

Eneighborhood (4.1)

Espiq “ Epiq ´ Emin (4.2)

Energy to Scaled Probability In the third stage, the scaled energy Espiq is converted

to a scaled probability represented in 4-bit unsigned integer. The original probability

is computed by expp´Espiq{T q which is represented as a real number between 0 and

1 using floating-point in software, where T is a fixed parameter per outer iteration.

However, the probability is scaled using Equation 4.3 and truncated using Equation

4.4 to match the unsigned integer representation, where Pbits “ 4 (Lambdabits “ 4 in

75

Chapter 3) is the number of bits in the scaled probability output ptrpiq. Additionally,

probability truncation drives all scaled probabilities that are less than one to zero

and 2n approximation rounds all scaled probabilities down to the nearest 2n integer

value (Equation 4.4). The value of ptrpiq can be pre-computed and stored in a look-up

table (LUT). The values in the LUT need updates if T changes between iterations.

pspiq “ p2
Pbits ´ 1q ˆ expp´Espiq{T q (4.3)

ptrpiq “ t2tlog2 pspiquu (4.4)

As discussed in Section 3.4.2, energy to scaled energy conversion can be imple-

mented in two ways: 1) using a LUT with energy as an index to load pre-calculated

values, or 2) storing the energy boundary values for each ptr value and performing

comparisons across the boundaries (or thresholds, Eths). The former design is more

efficient when ptr has many unique values. However, since ptr P t0, 1, 2, 4, 8u and

ptr is monotonic, we can benefit from the latter design to reduce the total memory

needed from 1024 bits to 32 bits. Figure 4.5b shows the energy to scaled probability

conversion hardware. Furthermore, simulated annealing requires updating memory

values at the end of each MCMC iteration. Reducing the memory to 32 bits signif-

icantly simplifies the update. The latency caused by memory update can be easily

hidden by double buffering (E
ptq
th and E

pt`1q
th).

Discrete Sampling The final stage of SPU generates a discrete sample per variable

based on the probabilities of all possible label values tptrp0q, ptrp1q, ...u using the least

12-bits of a 19-bit LFSR to implement the inverse transform sampling [27]. A 19-bit

LFSR generates a 19-bit uniform random number per cycle and update its internal

states from St to St`1 by Equation 4.5, where sti is the i-th bit of St starting from

76

the least significant bit s0.

st`118 “ st0 XOR st1 XOR st2 XOR st5

st`1i “ sti`1, i P t0, ..., 17u
(4.5)

Next, we take the least 12-bits of LFSR state S as the uniform random output R

to generate a discrete random sample per variable. The logic behind picking 12 bits

is provided later. Given the truncated scaled probability ptr of all possible labels, we

accumulate a scaled Cumulative Distribution Function (CDF) ctrpiq “
ři
j“0 ptrpjq for

all possible labels and obtain the largest scaled CDF maxpctrq from the last possible

label. The original inverse transform sampling picks label i` 1 if

ctrpiq

maxpctrq
ă

R

Rmax

ď
ctrpi` 1q

maxpctrq
(4.6)

or picks label 0 if R{Rmax ď ctrp0q{maxpctrq. Rmax “ 212 ´ 1 is the maximum

possible value of a uniform random output. To maximally avoid expensive divisions

and multiplications, our discrete sampler turns divisions into multiplications and

approximates Rmax to Rmax ` 1 “ 212 so that a couple of multiplications become

simple padding zeros. We pick label i` 1 if

ctrpiqpRmax ` 1q ď maxpctrqR ă ctrpi` 1qpRmax ` 1q (4.7)

or pick label 0 if maxpctrqR ă ctrp0qpRmax ` 1qq. Only maxpctrqR requires an actual

hardware multiplier. The comparison operators are deliberately switched to com-

pensate approximation errors. Figure 4.5c shows the CMOS discrete sampler. It

contains an internal decoupling by a CDF FIFO. The phase before the FIFO ac-

cumulates a scaled CDF and the phase after decides an output label based on the

scaled CDF and a random number.

A full output of the LFSR is a 19-bit integer. Picking a full or a subset of

RNG output is a design trade-off: a narrower output increases bias introduced by

77

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Ba
d-

pi
xe

l P
er

ce
nt

ag
e

#RNG output bits

poster
teddy
art

(a) Stereo vision

0
0.5
1

1.5
2

2.5
3

3.5
4

1 2 3 4 5 6 7 8 9 10

En
d-

po
in

t E
rr

or

#RNG output bits

venus
rubberwhale
dimetrodon

(b) Motion estimation

Figure 4.6: Result quality vs. RNG output bits in the discrete sampler

quantization and Rmax`1 approximation whereas a wider output raises the hardware

cost of the subsequent logics. Figure 4.6 shows stereo vision and motion estimation

result quality vs. RNG output bits in the discrete sampler. A narrower output

significantly degrades result quality. Result quality plateaus after 9-bits of RNG

output. We conservatively pick 12-bits since it theoretically improves the precision

and only incurs 48µm2 area overhead in the discrete sampler compared with 9-

bits in a preliminary 15nm synthesis. A design that outputs all 19-bits incurs an

additional 120µm2 overhead and we consider it unnecessary given the theoretical

quality improvement is very marginal.

4.2.2 Optimization for FPGA

Compared with RSU-G, the CMOS SPU provides flexibility to be deployed on an

FPGA or fabricated in an ASIC. We further optimize the above design specifically for

an Intel Arria 10 FPGA by adding an additional internal stage in energy computation

and packing multiple “sum of square” computations into one DSP. Adding an internal

stage (i.e., 10 internal stages in total) increases Fmax from 321MHz to 374MHz. A

fully-registered DSP can further improve Fmax. An unverified design with 11 total

internal stages brings Fmax to 408MHz, close to the DSP Fmax limit (459MHz) in

78

𝑎! 𝑎"
𝑎!# + 𝑏!#

×

×𝑏! 𝑏"

𝑎"# + 𝑏"#

DSP

+

18-bit Input

37-bit Output

3-bit 3-bit
7-bit 7-bit

Figure 4.7: Packing two 3-bit by 3-bit “sum of square” into a 18-bit DSP

the specific FPGA model. Note that SPU operation frequency is jointly determined

by SPU Fmax and a system-level architecture. A thorough optimization should

incorporate with the system-level architecture and performing such an optimization

is beyond the scope of this dissertation.

Placing more SPUs on an FPGA accelerator generally provides higher speedups.

Without considering a system-level architecture, the maximum number of SPUs can

be synthesized in the specific Arria 10 FPGA (10AX115N2F40E2LG) is limited by

the total number of DSPs. Each SPU takes 6 DSPs: 4 for doubleton, 1 for singleton,

and 1 for the discrete sampler. Each DSP can compute an at-most 18-bit by 18-

bit “sum of square”. The SPU implements four 3-bit by 3-bit “sum of square”

for doubleton computation, each takes an entire DSP with most bits unutilized.

We found it is mathematically possible to pack two of such computations into one

DSP without interfering with each other by using the highest and lowest 3-bits of

DSP inputs respectively, demonstrated in Figure 4.7. This technique reduces SPU

DSP usage from 6 to 4 and thus creates the capability to place more SPUs into an

FPGA accelerator, increasing the potential speedups. The next section shows the

full synthesis results.

4.3 Evaluation

We implement the SPU in Verilog and Chisel, and High-Level Synthesis (HLS).

The Verilog and Chisel implementation is verified in QuestaSim simulation and HLS

79

0%

5%

10%

15%

20%

25%

30%

art poster teddy

Ba
d-

pi
xe

l P
er

ce
nt

ag
e

(lo
w

er
 is

 b
et

te
r)

FP64 software SPU

(a) Stereo vision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

dimetrodon venus rubberwhale

En
d-

po
in

t E
rro

r
(lo

w
er

 is
 b

et
te

r)

FP64 software SPU

(b) Motion estimation

Figure 4.8: Stereo vision and motion estimation result quality

implementation is verified in an FPGA prototype. This section presents SPU result

quality, FPGA synthesis results, and ASIC synthesis results.

4.3.1 Result Quality

We use QuestaSim simulation to evaluate the end-point result quality of Verilog

SPU implementation. The applications and datasets are the same as those assessed

in Chapter 3: image segmentation (30 images), motion estimation (3 datasets), and

stereo vision (3 datasets). The FP64 software baseline is implemented in MATLAB.

Figure 4.8 shows the result quality comparison between the FP64 software and the

SPU for stereo vision and motion estimation. Figure 4.9 shows the mean and stan-

dard deviation of 30 image segmentation results in four quality metrics. Each result

is collected by a single run per dataset in optimization mode (simulated annealing).

We validate that the SPU with a simple 19-bit LFSR as its RNG achieves the same

result quality as the FP64 software. We also obtain similar high-quality application

results on an Intel Arria 10 FPGA prototype.

4.3.2 FPGA

We evaluate four different implementations of the SPU on an Intel Arria 10 FPGA: 1)

a hand-written Verilog for ASIC (verilog-asic), 2) a hand-written Verilog optimized

80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 labels 4 labels 6 labels 8 labels

PR
I

(h
ig

he
r i

s
be

tte
r)

FP64 software SPU

(a) PRI

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

2 labels 4 labels 6 labels 8 labels

Vo
I (

lo
w

er
 is

 b
et

te
r)

FP64 software SPU

(b) VoI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 labels 4 labels 6 labels 8 labels

G
C

E
(lo

w
er

 is
 b

et
te

r)

FP64 software SPU

(c) GCE

0

5

10

15

20

25

2 labels 4 labels 6 labels 8 labels

BD
E

(lo
w

er
 is

 b
et

te
r)

FP64 software SPU

(d) BDE

Figure 4.9: Image segmentation result quality

for FPGA (verilog-fpga), 3) a High-Level Synthesis (HLS) implementation (hls-int)

that matches the hand-written Verilog (but using HLS basic integer data-types), and

4) an HLS implementation with a 32-bit floating-point (FP32) back-end after energy

computation (hls-fp), eliminating the energy scaling stage. Hls-fp is developed in

order to assess the option of directly using FP32 representation inside the SPU for

probability conversion and sampling. Table 4.1 shows the synthesis results. As

discussed previously, verilog-fpga increases Fmax by adding an internal stage and re-

duces DSP usage by packing computations. Hls-int is close to verilog-fpga in terms

of performance (frequency and initiation interval), but consumes more resources.

The resource usage of hls-int can be further decreased by using reduced-precision

81

Table 4.1: Resource usage and performance of various SPU implementations on Arria
10 FPGA

Parameter Verilog-asic Verilog-fpga Hls-int Hls-fp

Frequency (MHz) 321 374 369 320

ALMs 313 321 1,189 4,407

Registers 620 680 2,551 7,932

Memory Bits 1,472 1,472 10,688 49,536

DSPs 6 4 10 25

Initiation Interval (Cycles) 1 1 1 3

Table 4.2: SPU area and power consumption
Component Area(µm2) Power (mW)
Circuitry 1428 1.72
Memory 529 0.45

SPU Total 1957 2.17

integers. Hls-fp consumes 13.7ˆ ALMs, 33.7ˆ memory, 6.3ˆ DSPs compared to

verilog-fpga and most importantly performs remarkably worse due to its lower fre-

quency and throughput (initiation interval) caused by the FP addition [54]. Clearly,

naively implementing the SPU in FP32 consumes too many resources and signifi-

cantly reduces the performance benefits. A human-designed architecture is needed

to improve efficiency.

4.3.3 ASIC

We estimate the ASIC area/power for SPU implemented in Chisel. Compared with

Verilog, Chisel provides easier access to design space exploration used for Chapter 6.

Circuitry elements written in Chisel are synthesized in a predictive 15nm library [92]

using Synopsys Design Compiler. Memory elements, including a 64ˆ8-bit energy

FIFO, a 64ˆ9-bit CDF FIFO, and a 64ˆ6-bit label LUT, are estimated using Cacti 7

[8] in 22nm technology, the smallest supported technology. Table 4.2 summarizes the

results. Total area/power is the sum of 15nm circuitry and 22nm memory elements.

Power is estimated at 1GHz. Since Cacti requires widths in multiples of bytes,

82

we estimate a 64-byte LUT and scale it to the label LUT (97.5 ˆ 0.75 µm2 and

0.8ˆ 0.75 mW). Similarly, the CDF FIFO is estimated from a 64-byte FIFO (215ˆ

1.125 µm2 and 0.18 ˆ 1.125 mW). The SPU saves 33% in area and 57% in power

compared with an RSU-G without light source sharing (cf. Table 3.5). RSU-G

requires a timing detection clock running 8ˆ faster in RET circuits and notable

power saving is observed in the SPU without those circuits. The SPU can run

up to 3.3GHz, bounded by the SPU energy computation stage. Importantly, the

SPU keeps the same architectural interface as RSU-G and thus maintains sizable

performance benefits from RSU-G: 21-84ˆ speedups as a discrete accelerator over a

Titan X GPU [142].

4.4 Limitations and Future Work

Using CMOS technology enables the potential to address several limitations in the

RSU-G, including 1) the maximum number of possible labels is limited to 64 per

random variable; 2) the supported solver is limited to Gibbs Sampling, with the

support of simulated annealing; 3) graphical model is limited to a 1st-order MRF.

Addressing these limitations is our future work, which leads to a more generalized

stochastic processing unit in a wider scope of probabilistic computing. Our work

evaluates RNGs vs. application result quality using an empirical approach, as pre-

vious work does in the field of Monte Carlo simulation [23,24, 126]. Related work is

discussed in Chapter 7. An analytical approach is ideal, but difficult to our knowl-

edge given the complexity of MCMC methods. The effect of a 19-bit LFSR on other

applications remains to be assessed. Finally, like most previous work in hardware ac-

celerators, our result quality analysis in this chapter focuses only on end-point result

quality using application community-standard benchmarks and metrics, which omits

other important statistical properties in probabilistic computing. The next chapter

proposes a comprehensive methodology to address those statistical properties.

83

4.5 Summary

In this chapter, we evaluate the feasibility of a CMOS sampling unit to accelerate

1st-Order MRF Gibbs Sampling using a pseudo RNG. We empirically explore the

relationship between six RNGs with different theoretical quality and end-point result

quality in 1st-Order MRF applications. We unexpectedly found a simple 19-bit LFSR

is sufficient to provide empirically good result quality in the tested applications.

Using more complicated RNGs does not further improve the result quality. We

propose a CMOS Stochastic Processing Unit (SPU) functionally equivalent to the

RSU-G by replacing the RET-based sampler with a CMOS discrete sampler. The

design produces the same end-point result quality as FP64 software in three assessed

applications. The simple 19-bit LFSR avoids area/power overhead of a complex

RNG and saves 33% in area and 57% in power, compared with RSU-G. The CMOS

SPU design provides a starting point to explore a generalized architecture in a wider

scope of probabilistic computing.

In the next chapter, we re-examine the methodology used in this chapter, as

used in many previous works, for evaluating quality of a probabilistic accelerator.

We expose limitations on the current methodology focusing only on end-point result

quality and propose a new framework to address statistical robustness.

84

5

Statistical Robustness

The previous chapters present two MCMC acceleration units for 1st-Order MRF

Gibbs Sampling. Many specialized accelerators, including RSU-G and SPU, are

proposed to address the sampling inefficiency of probabilistic algorithms [9,16,67,79,

84,87,100], by utilizing approximation techniques to improve the hardware efficiency,

such as reducing bit representation, truncating small values to zero, or simplifying the

random number generator. Understanding the influence of these approximations on

the application results is crucial to meet the quality requirement in real applications.

A hardware accelerator should provide correct execution of target algorithms.

A common approach to evaluating correctness is to compare the end-point re-

sult quality (“accuracy”) against accurately-measured or hand-labeled ground-truth

data using community-standard benchmarks and metrics: the hardware execution is

considered to be correct if it provides comparable “accuracy” to the software-only

implementations that do not have these approximations. However, in the domain

of probabilistic computing/algorithms, correctness is defined by more than the end-

point result of executing the algorithm, and includes additional statistical properties

that convey uncertainty and interpretability about the end-point result. End-point

85

“accuracy” is necessary but not sufficient to claim correctness: 1) given the un-

certainty of input data, the observed end-point result quality has no indication of

“accuracy” for unseen data, and thus just making statements on the observed “ac-

curacy” is not enough; 2) many applications look beyond the end-point “accuracy”

and consider uncertainty quantification; 3) measuring “accuracy” may not always

be possible as ground-truth data is not always accessible. Current methodologies

for evaluating probabilistic accelerators are often incomplete or adhoc in evaluating

correctness, focusing only on end-point “accuracy” or limited statistical properties.

Failure to adequately account for domain-defined correctness can have adverse or

catastrophic outcomes, such as a surgeon failing to completely remove a tumor due

to incorrect uncertainty in a segmented image [22, 97]. Therefore, a probabilistic

architecture should provide some measure (or guarantee) of statistical robustness.

This chapter takes a first step toward defining metrics and a methodology for

quantitatively evaluating correctness of probabilistic accelerators beyond end-point

result quality. We propose three pillars of statistical robustness: 1) sampling quality,

2) convergence diagnostic, and 3) goodness of fit. Each pillar has at least one quan-

titative empirical metric, does not require ground-truth data, and collectively these

pillars enable comparison of specialized hardware to 64-bit floating-point (FP64)

software implementation. We expose several challenges with naively applying exist-

ing popular metrics for our purposes, including: high dimensionality of the target

applications, and random variables with zero variance. Therefore, we modify the ex-

isting methodologies for sampling quality and convergence diagnostic, and propose

a new metric for convergence diagnostic. Below is a summary of each pillar.

Pillar I) Sampling Quality. The intrinsic nature of MCMC methods creates

dependency between samples. A sufficient number of independent samples are needed

to converge and produce high-quality results. We use Effective Sample Size (ESS)

[79, 132] to measure the number of independent samples drawn from an MCMC

86

run, and report the arithmetic mean as a scalar metric. The existing method does

not consider a practically possible case that a random variable empirically produces

zero variance. We modified the method to report “overall” and “active” ESS values

separately to account for possible biases. Low ESS indicates that more iterations

may be required to generate sufficient independent samples.

Pillar II) Convergence Diagnostic. The total running time of an MCMC run is

determined by when it converges. Convergence can be measured by Gelman-Rubin’s

R̂ [15], but this metric is undefined for variables with zero variance. Therefore, we

propose a process to determine convergence that accounts for zero variance and a

new metric—convergence percentage—based on R̂, to measure the total percentage

of converged results. Low convergence percentage indicates that more iterations are

required for the model to converge.

Pillar III) Goodness of Fit. In the absence of ground-truth data (labeled data), it

is important to understand the differences between the baseline FP64 and hardware

end-point results to evaluate the overall quality of hardware. We provide two “good-

ness of fit” approaches: 1) Root Mean Squared Error (RMSE) on application specific

data relative to a software reference, and 2) Jensen-Shannon Divergence (JSD) [73] to

evaluate all possible data inputs in the binary label case and provide the worst-case

distribution divergence.

The three pillars can inform end-users by characterizing existing hardware and

inform hardware designers by using the pillars in design space exploration. This

chapter presents the first scenario in a case study. We demonstrate the framework

in a representative probabilistic accelerator—the SPU proposed in Chapter 4—and

show that 1) end-point result quality alone is insufficient, particularly for predicting

outcome for previously unseen inputs; 2) FP64 is insufficient as ground-truth since

in some cases more limited precision can produce more accurate end-point results

based on labeled data; and 3) the accelerator achieves the same application end-

87

point result quality as the FP64 software, confirming the previous chapter, but has

compromised ESS and convergence percentage results. The analysis reveals that

applications need to run 2ˆ more iterations on the accelerator to achieve the same

statistical robustness as FP64, reducing the accelerator’s effective speedup. The next

chapter demonstrates how the three pillars can be used for architectural design space

exploration, using the SPU as a case study.

The remainder of this chapter is organized as follows. Section 5.1 introduces three

pillars of statistical robustness and their insights. Section 5.2 describes the analysis

of statistical robustness on existing probabilistic hardware. Section 5.3 discusses

limitations and future work and Section 5.4 summarizes this chapter.

5.1 Three Pillars of Statistical Robustness

To identify appropriate measures of hardware statistical robustness, we draw on

known techniques utilized by domain experts to evaluate their models and algo-

rithms. Ideally, we could formally prove bounds on relevant metrics [33, 56]. Unfor-

tunately, some hardware optimizations (e.g., truncation to zero) make formal proofs

extremely difficult or impossible. A provable architecture introduces more compli-

cated hardware. Therefore, we rely on existing empirical diagnostic tests for MCMC

techniques, based on foundations in statistics, to establish three pillars for assessing a

probabilistic accelerator’s statistical robustness: 1) sampling quality [132], 2) conver-

gence diagnostic [26], and 3) goodness of fit. Each pillar has at least one quantitative

measure, and provides insight to application users and to hardware designers. Col-

lectively these pillars help in understanding/explaining end-point results, and can

indicate the performance of the MCMC execution, such as how many iterations are

required to converge. Note that the statistical robustness is jointly affected by the al-

gorithm and hardware architecture. Therefore, we compare hardware results with an

FP64 software as the baseline to extract the impact of hardware optimizations. The

88

remainder of this section presents our proposed three pillars for evaluating statistical

robustness of an MCMC accelerator.

5.1.1 Pillar 1: Sampling Quality

A sampling algorithm with perfect sampling quality generates independent sam-

ples. However, an MCMC sample is drawn based on the current values of random

variables—the outcome of samples in the previous iteration. This dependency creates

correlations between samples which is non-trivial until several subsequent samples

are drawn, which can be represented as an autocorrelation time τ . This implies that

by generating n samples from MCMC, only n{τ samples can be considered indepen-

dent. A sufficient number of independent samples are required to derive meaningful

statistical measures (e.g., mean and variance). Note that the sample dependency is

an intrinsic property of MCMC algorithms and exists even with a perfect random

number generator and FP64 precision.

Effective Sample Size (ESS) is commonly used as a sampling quality metric that

represents how many independent samples are drawn among all the dependent sam-

ples. In general, higher ESS indicates the MCMC sampler is more efficient at gen-

erating independent samples. Unfortunately, there is no consensus on a single ESS

definition [40]. We use the definition discussed by Kass et al. [61] based on autocor-

relation. Since closed form expressions for ESS are difficult, we estimate ESS using

the known initial positive sequence (IPS) methods [79,132].

ESS “ n{p1` 2
K
ÿ

k“1

ρpkqq (5.1)

We estimate ESS on a univariate random variable using Equation 5.1, where n is

the number of dependent MCMC samples (iterations) and ρpkq is the autocorrelation

function of the sample sequence. We sum up the first K contiguous lags where

89

ρpkq ` ρpk ` 1q ě 0. Theoretically, ESS “ n provides the best sampling quality

where all samples are independent; however, Equation 5.1 is an estimate of ESS, and

thus it is numerically possible that ESS ą n.

The above ESS method cannot be directly applied to our evaluation for two rea-

sons. First, many MCMC problems are high-dimensional (many random variables).

For example, in stereo vision a 320ˆ320 input image has 102,400 dimensions. The

above ESS does not account for multidimensional problems. Furthermore, the above

ESS has no definition when all collected samples have the same value (zero empirical

variance), which is possible in practice as shown in Section 5.2. An ideal metric can

report a scalar ESS value to account for both issues. While methods exist to report

multivariate ESS [137], to our knowledge they are not practical in our case and they

do not allow zero variance for any variable.

To address multi-dimensionality, we consider each dimension (each pixel in our

applications) as a separate random variable (RV) to compute ESS per dimension

separately and report a scalar value of mean ESS among all dimensions. To further

address zero variance, we propose two metrics: 1) mean “overall” ESS that omits

the random variables with zero variance in software and hardware implementations,

respectively; and 2) mean “active” ESS, a paired metric that only includes the ran-

dom variables with non-zero variance in both software and hardware. Section 5.2

suggests overall ESS is biased toward software due to small but non-zero variance.

Active ESS omits small variance in software, which can potentially benefit hard-

ware implementations. Algorithm 5.1 and Algorithm 5.2 outlines the procedure of

computing the two metrics.

Pillar Insight. If ESS is low it may take more MCMC iterations to achieve

an acceptable ESS. If a hardware accelerator produces substantially lower ESS than

software, the additional iterations may reduce its effective speedup.

90

Algorithm 5.1: Overall ESS

Input: trace of multidimensional samples X from a MCMC run, either in
software or hardware implementations.

sum ESS = 0, num valid rvs = 0
for x (trace of each univariable RV) in X do

if variance(x) ‰ 0 then
sum ESS += ESS(x)
num valid rvs++

end

end
Output: overall ESS = sum ESS/num valid rvs

Algorithm 5.2: Active ESS

Input: trace of multidimensional samples Xsw from a MCMC run in
software, and Xhw in hardware implementations.

sum ESS sw = 0, sum ESS hw = 0
num valid rvs = 0
for xsw (trace of each univariable RV in software) in Xsw and xhw (trace of
corresponding RV in hardware) in Xhw do

if variance(xsw) ‰ 0 and variance(xhw) ‰ 0 then
sum ESS sw += ESS(xsw)
sum ESS hw += ESS(xhw)
num valid rvs++

end

end
active ESS sw = sum ESS sw/num valid rvs
active ESS hw = sum ESS hw/num valid rvs
Output: active ESS sw, active ESS hw

5.1.2 Pillar 2: Convergence Diagnostic

An important question for an MCMC method is when to stop iterating, determined

by when the MCMC is converged. Similar to ESS, the time to convergence is used

to analyze algorithms and input data when using software even with FP64 and good

random number generators. Multiple methods exist to measure the convergence.

A comprehensive review is provided by Cowles et al. [26]. We use Gelman-Rubin’s

R̂ [15], a popular quantitative method provided by many statistical packages, to mea-

sure whether a univariate random variable (e.g., a pixel in stereo vision) is converged

91

at a certain iteration.

Gelman-Rubin’s R̂ (potential scale reduction factor) estimates the convergence

by comparing the between-chain variance (B) and within-chain variance (W) across

multiple independent runs on the same MCMC instance1. Equations 5.2 to 5.5 show

the computation to obtain an R̂ given the sample trace x from m independent MCMC

runs, each with n samples. σ2
` is an overestimate on the variance of a random variable.

As a rule of thumb [15,34], a univariate random variable is considered converged when

R̂ ă 1.1. Typically larger R̂ indicates that more iterations are needed to converge.

Note that the R̂ method requires a random value initialized from an overdispersed

distribution. We meet this requirement by initializing random variables (i.e., initial

labels of pixels) uniform-randomly.

B{n “
1

m´ 1

m
ÿ

j“1

px̄j¨ ´ x̄¨¨q
2 (5.2)

W “
1

mpn´ 1q

m
ÿ

j“1

n
ÿ

t“1

pxjt ´ x̄j¨q
2 (5.3)

σ̂2
` “ pn´ 1q{nˆW `B{n (5.4)

R̂2
“
m` 1

m

σ̂2
`

W
´
n´ 1

mn
(5.5)

A scalar convergence diagnostic is preferred for multi-dimensional applications.

Similar to ESS, handling high dimensions and the random variables with zero em-

pirical variance (W “ 0) is challenging using existing methods [15,138]. The original

Gelman-Rubin’s R̂ metric has no definition at W “ 0. Considering each dimension

as a separate random variable (RV), we propose an extended procedure (shown in

Figure 5.1) to consider a random variable converged when B “ 0 and W “ 0, which

indicates all samples are the same value from different iterations and MCMC runs. A

1 Instance refers to the same input data, model and configuration parameters.

92

𝑊 = 0?
𝐵 = 0?

𝑅& < 1.1?

Converged

Not
Converged

Samples
Y

N
N

N Y

Y

Figure 5.1: Determine convergence of a random variable

random variable is not considered converged when B ą 0 and W “ 0, which indicates

samples are the same value within MCMC runs, but different across MCMC runs.

We propose convergence percentage, the percentage of converged univariate random

variables, as our new metric. Algorithm 5.3 outlines the procedure of computing

convergence percentage.

Algorithm 5.3: Convergence percentage

Input: trace of multidimensional samples X from m MCMC runs, either in
FP64 software or hardware implementations.

num converged rvs = 0, num rvs = 0
for x (trace of each univariable RV) in X do

if (R̂(x)ă1.1) or (B “ 0 and W “ 0) then
num converged rvs++

end
num rvs++

end
convergence percentage = num converged rvs/num rvs*100 (in %)
Output: convergence percentage

Pillar Insight. Low convergence percentage indicates that more iterations are

needed for the model to converge. If a hardware accelerator takes substantially more

iterations to converge than the software, the additional iterations may reduce its

effective speedup.

5.1.3 Pillar 3: Goodness of Fit

Finally, understanding the “goodness of fit”—the difference between end-point re-

sults produced by the software and by the hardware accelerator—is critical to eval-

uating the overall quality of the hardware accelerator. A straightforward approach

93

is to compare the end-point result quality using community-standard benchmarks

and metrics. However, ground-truth data are not always available. We provide two

“goodness of fit” approaches: 1) using application specific data to measure how good

the hardware results fit a reference software result, and 2) using a distribution diver-

gence measurement to evaluate all possible data inputs and provide the worst-case

divergence.

Application Data Analysis

We are interested in how close/different the results are between the software and

hardware. Popular quantitative metrics for “goodness of fit” include Root Mean

Squared Error (RMSE) and coefficient of determination (R2). We choose RMSE

given the value of R2 can be misleading by the small variance of the software results.

RMSE measures the root of average squared difference between the result from a

hardware MCMC run and a reference software run, ranging from 0 to infinity where

lower is better. Due to the stochastic nature of MCMC methods, each MCMC run

can have different end-point results for either software or hardware. To account for

this variation, we compute RMSE for both hardware and software with respect to a

reference software result from multiple MCMC runs. The reference software result is

obtained using the mode of multiple software runs to minimize the result variation

in a single software reference run.

Data-independent Analysis

Recall the step-1 of sampling is computing the probability distribution to sample

from. Hardware approximations in this step introduce divergence from the distri-

bution obtained from FP64 software. Quantifying the distribution divergence of

hardware from software provides 1) insights on why the results are good (or bad), 2)

how the hardware may perform on unobserved data, and 3) the worst-case divergence

94

in arbitrary data inputs.

One popular divergence measurement is Kullback-Leibler (KL) divergence. Given

the same input data, model, configuration parameters, and states of neighbors, the

distribution of a given random variable is computed as Psw from FP64 software and

Phw from a hardware implementation. KL divergence (DKL) from Phw to Psw is

defined in Equation 5.6. χ is a collection of all possible outcomes of the random

variable and i is a possible outcome.

DKLpPsw||Phwq “
ÿ

iPχ

pswpiq log
pswpiq

phwpiq
(5.6)

One major drawback of KL-divergence is it goes to infinity when any entry

of Phwpiq is zero while Pswpiq is non-zero, which is likely to happen under the

hardware technique of truncating small probabilities to zero, and thus cannot be

directly applied to our study. Therefore, we choose Jensen-Shannon Divergence

(JSD) as our divergence measurement [73], shown in Equation 5.7. JSD is de-

fined based on KL-devergence, where M “ p1{2qPsw ` p1{2qPhw. Note that KL-

divergence is asymmetric: DKLpPsw||Phwq ‰ DKLpPhw||Pswq, but JSD is symmetric:

DJSpPsw||Phwq “ DJSpPhw||Pswq. A lower JSD is preferable, showing distributions

of a random variable computed from FP64 software and hardware implementations

are close.

DJSpPsw||Phwq “
1

2
DKLpPsw||Mq `

1

2
DKLpPhw||Mq (5.7)

Evaluating JSD on arbitrary data inputs for a random variable with many pos-

sible labels, such as in stereo vision, is challenging in both analytical and empirical

approaches given the complicated mathematical representation and the large param-

eter space. In this work, we evaluate the JSD in binary label cases, such as in a

foreground-background image segmentation.

95

Pillar Insight. Substantially worse RMSE or JSD results for a hardware ac-

celerator means it is likely producing low quality application end-point results and

more iterations or model/hardware design changes may be required.

5.2 Analyzing Existing Hardware

We apply the three pillars of statistical robustness on an existing MCMC hardware,

the Stochastic Processing Unit (SPU) described in Chapter 4. Recall the SPU uses

approximation techniques including full-custom precision, truncating small scaled

probability to zero, 2n approximation, and a simple 19-bit LFSR as RNG. The SPU

achieves the same result quality as FP64 software in three applications. However, we

are left with the question: How do these approximations influence the SPU statistical

robustness? This section answers this question.

5.2.1 Methodology

In this work, we consider a single SPU as it is sufficient to explore the statistical

robustness questions. We primarily utilize MATLAB for both the FP64 software

and for a functionally equivalent SPU simulator. We choose stereo vision and motion

estimation as our test applications. Each disparity per pixel in stereo vision is treated

as a random variable. Each 2D motion vector per pixel in motion estimation is

considered as two random variables x and y. We pick the same three datasets from

Middlebury [7, 125] for each application as the previous chapters. We use FP64

runs to find the application parameters (e.g., α and β). Motion estimation has one

set of parameters for all datasets, and stereo vision has two sets for all datasets.

Some parameters can be optimized in a training process, which is beyond the scope

of this work. We also considered, but omit, image segmentation since it converges

too fast (30 iterations for simulated annealing) to produce meaningful statistical

measurements.

96

Figure 5.2: ESS per random variable in stereo vision teddy. Red regions correspond
to zero variance.

Recall the SPU supports two operating modes: pure sampling that produces the

full estimated distribution (sampling), and optimization using simulated-annealing

(optimization) that converges quickly to an exact result. For optimization, measur-

ing Effective Sample Size (ESS) and Gelman Rubin’s R̂ is not conceptually meaning-

ful, we evaluate sampling quality and convergence diagnostic for sampling only and

goodness of fit for both modes. Parameter settings for each dataset are the same in

sampling as in optimization, except for a different, fixed temperature. Our empirical

results show that all datasets converge after 1,000 iterations for optimization and

3,000 for sampling, except for poster in stereo vision which takes only 500 and 1,500

iterations, respectively.

5.2.2 Results Analysis

Sampling Quality

We analyze ESS on SPU compared with the FP64 software by collecting the last

1,000 iterations of MCMC runs in the two applications. We evaluate the ESS per

random variable and report the arithmetic mean. Figure 5.2 shows an example

97

0

100

200

300

400

500

600

700

800

overall active overall active overall active

art poster teddy

Ef
fe

ct
iv

e
Sa

m
pl

e
Si

ze

sw spu

(a) Stereo vision

0
100
200
300
400
500
600
700
800

overall active overall active overall active

dimetrodon rubberwhale venus

Ef
fe

ct
iv

e
Sa

m
pl

e
Si

ze sw spu

(b) Motion estimation

Figure 5.3: Mean overall and active ESS (higher is better)

ESS per random variable in stereo vision teddy dataset. Red regions indicate the

random variables with zero variance, and thus ESS cannot be calculated. Due to

truncating small probabilities to zero, more random variables in the SPU have zero

variance than in the software. We consider a random variable with zero variance

inactive. The percentage of inactive random variables with respect to the total

(a.k.a. inactive percentage) in three stereo vision datasets are 26.9% for art, 44.6%

for poster, and 26.2% for teddy in the SPU, compared with 0.3% for art, 4.1% for

poster, and 1.4% for teddy in the FP64 software. Motion estimation exhibits similar

inactive percentages. Zero variance means the probability of a possible label is large

enough that all random samples pick the same label empirically, which can indicate

convergence. The variance of corresponding inactive random variables in the FP64

software is consistently small, indicating the random variable is likely to consistently

pick the same label as well—a concentrated distribution. Therefore, a high inactive

percentage does not necessarily imply bad result quality.

Figure 5.3 shows the ESS arithmetic mean for a single MCMC run per dataset.

We verify that different runs have a small ESS difference (ă 6 in stereo vision).

The mean “overall” ESS eliminates the random variables with zero variance in the

software and hardware, respectively. Figure 5.2 reveals that the inactive regions in

98

60%
65%
70%
75%
80%
85%
90%
95%
100%

0.33x 0.50x 0.67x 1x 1x

sw spu

Co
nv

er
ge

nc
e

Pe
rc

en
ta

ge

Normalized Iterations

art poster teddy

(a) Stereo vision

60%

65%

70%

75%

80%

85%

90%

95%

100%

sw spu

Co
nv

er
ge

nc
e

Pe
rc

en
ta

ge

dimetrodon
rubberwhale
venus

(b) Motion estimation

Figure 5.4: Convergence percentage (higher is better) results

the SPU (red) correspond to the regions with high ESS in the FP64 software due

to small but non-zero variance (yellow), and thus overall ESS is biased toward the

software. Therefore, we also report the mean “active” ESS which only includes the

regions with non-zero variance in both the software and the SPU, where ESS is more

meaningful. As a consequence, the active ESS eliminates the regions with small

variance in the software, which can potentially benefit the SPU. The importance of

these small variance needs to be evaluated and we are actively looking for methods

to account for these regions. The FP64 software has 1.1-1.4ˆ higher active ESS than

the SPU in stereo vision and around 1.2ˆ in motion estimation. This implies the

SPU needs to run 1.1-1.4ˆ iterations to reach the same active ESS as the software.

Convergence Diagnostic

We evaluate the convergence diagnostic of SPU using the proposed convergence per-

centage metric. Each convergence percentage value is collected from 10 runs per

dataset. Each run forfeits the first half of iterations as the burn-in period and only

keeps the second half, as proposed by Gelman and Rubin [34]. Recall a random

variable is considered converged if R̂ ă 1.1 or both within-chain variance W and

99

between-chain variance B are zero. Figure 5.4 shows the results. The number of

iterations is normalized with respect to SPU runs in stereo vision and are the same

in motion estimation. Overall, convergence percentage is high in both the software

and the SPU: more than 80% of random variables in stereo vision and more than

90% in motion estimation. More than 99.5% of random variables with W “ 0 in the

SPU are converged. In stereo vision, the SPU reaches the same or better convergence

percentage than software with 2ˆ iterations. This indicates the SPU needs to be at

least 2ˆ faster in order to have a better overall performance in this application in

terms of convergence percentage. Previous work [142] as well as chapters 3 and 4

shows that RSU-G and the SPU provide the speedups of at least 2.8-5.5ˆ and up to

84ˆ. The SPU has higher convergence percentages than the FP64 software in mo-

tion estimation, indicating the SPU converges faster in this application. Note that

converging to a distribution faster does not necessarily lead to a better end-point

result. The goodness of fit should be evaluated.

Goodness of Fit

Figure 5.5 shows the RMSE box plots of 10 MCMC runs per dataset compared

with a reference result obtained by the mode of 10 software runs per dataset. Solid

boxes show the range from 25th to 75th percentile with the medians of data as

the horizontal lines inside. The whiskers include the range of data that are not

considered as outliers. We use 1.5ˆ interquartile range as the rule to decide outliers,

shown as pluses. Whiskers of the FP64 software and the SPU overlap in all stereo

vision benchmarks, suggesting close results. RMSE results in motion estimation are

visually different in Figure 5.5b. However, these differences are small considering

the small scale of y-axis. The FP64 software and the SPU produce closer results in

simulated annealing optimization mode.

Figure 5.6 shows the end-point result quality using ground-truth data and appli-

100

art poster teddy art poster teddy
0

1

2

3

4

5
R

M
S

E
software

spu

--

Pure Sampling Simulated Annealing

(a) Stereo vision

dime rubber venus dime rubber venus
0

0.2

0.4

0.6

0.8

1

R
M

S
E

software

spu

--

Pure Sampling Simulated Annealing

(b) Motion estimation

Figure 5.5: Root Mean Squared Error (lower is better). Scales are different in (a)
and (b) due to application differences.

art poster teddy art poster teddy
0%

5%

10%

15%

20%

25%

30%

35%

40%

B
ad

-p
ix

el
 P

er
ce

nt
ag

e

software

spu

--

Pure Sampling Simulated Annealing

(a) Stereo vision

dime rubbervenus dime rubbervenus
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

E
nd

-p
oi

nt
 E

rr
or

software

spu

--

Pure Sampling Simulated Annealing

(b) Motion estimation

Figure 5.6: Application end-point result quality (lower is better)

101

cation metrics. Most whiskers of the FP64 software and the SPU overlap except for

art in stereo vision and rubberwhale in motion estimation, both of which are in sam-

pling mode. In optimization mode, software and SPU whiskers overlap, indicating

the difference in end-point result quality is very small. This is consistent with the

single-run results in Section 4.3. Note that no obvious differences between software

and the SPU are visually observable in the stereo vision disparity maps and motion

estimation flow maps.

It seems intuitive to assume that FP64 software should produce no worse results

than hardware with limited precision, truncation, and a simplified RNG. We find this

assumption holds in most but not all cases. We observe that in sampling mode of

dimetrodon, the SPU has consistently lower end-point result error (Figure 5.6b) but

higher RMSE (Figure 5.5b) than the FP64 software. To better understand this result,

we examine per-pixel differences of end-point error between the software reference and

the SPU, as shown in Figure 5.7. Blue regions correspond to lower end-point error in

the SPU and yellow to lower end-point error in FP64 software. The figure suggests

the FP64 software and the SPU have strengths in different regions, which potentially

leads to a high RMSE compared to the software reference. This result indicates

two insights: 1) software with higher precision does not necessarily produce better

application end-point result quality, and 2) a higher RMSE compared to software

does not always indicate worse application end-point result quality. Although bad

pixel-percentage results are consistent with RMSE in stereo vision, the general link

between the goodness of fit measure and the application end-point result quality

needs to be further explored. This confirms collectively applying all three pillars

beyond end-point result is necessary to evaluate correctness.

We analyze the Jensen-Shannon Divergence of the SPU relative to the software

with FP64 probability representation. Our goal is to provide insights on why hard-

ware exhibits good or bad application end-point results and how it may perform

102

100 200 300 400 500

50

100

150

200

250

300

350

<-1

-0.5

0

0.5

>1

E
nd

-p
oi

nt
 E

rr
or

 D
iff

er
en

ce
 (

sp
u-

sw
)

Figure 5.7: Dimetrodon end-point error difference (spu´ sw) at pixel level. End-
point error: 0.581 (software) vs. 0.567 (SPU).

Figure 5.8: Jensen-Shannon Divergence comparison between designs: SPU vs. 1st-
gen RSU-G [142]

103

with arbitrary input data. We assume each random variable has a binary distribu-

tion in this analysis. By sweeping a wide range of possible energy inputs Epiq (refer

to Equation 4.1) from 0 to 255 in integer, corresponding to arbitrary data inputs,

Figure 5.8 plots JSD for two temperatures (1 and 10) and two different microarchi-

tectures: 1) the SPU and 2) an early design [142]—1st-gen RSU-G—that was shown

to lack sufficient precision and dynamic range as discussed in Chapter 3. These re-

sults clearly show the problems with the 1st-gen RSU-G. The more recent SPU has

negligible JSDs in most energy inputs (blue regions), whereas the 1st-gen RSU-G

has high JSD (ą0.2, yellow) for many inputs and becomes worse when the temper-

ature decreases, which explains the poor application result quality. A key difference

between these two designs is dynamic scaling for energy values in the SPU, which is

not present in the 1st-gen RSU-G.

5.3 Limitations and Future Work

Our proposed framework is an important starting point towards quantifying the sta-

tistical robustness of probabilistic accelerators. This work selects the most popular

metrics and estimation approaches from many within each pillar. The analysis of

other metrics and methods (e.g., MCMC standard error [32]) might help identify

limitations of selected metrics. The challenges of naively applying existing metrics

motivate us to propose modified processes and a new metric for reporting scalar mea-

sures for sampling quality and convergence diagnostic. Our proposals are conceptu-

ally straightforward, but could benefit from domain experts developing metrics with

stronger theoretical foundations. Additionally, the adequateness of rule-of-thumb

R̂ ă 1.1 to determine convergence is under debate [138].

104

5.4 Summary

In probabilistic algorithms, statistical robustness is an important aspect of correct-

ness defined by domain experts. Current methodologies often omit statistical robust-

ness and thus lack a comprehensive definition of correctness. This chapter represents

three pillars of statistical robustness: 1) sampling quality, 2) convergence diagnostic,

and 3) goodness of fit. The framework, to our knowledge, is the first attempt at a

comprehensive methodology for quantitatively evaluating correctness of probabilistic

accelerators in considerations of both end-point result quality and statistical robust-

ness. Previous work [41, 79, 87, 123] belongs to one of three proposed pillars and we

argue all three pillars are needed to fully characterize statistical robustness of an

MCMC accelerator. Related work is reviewed in Chapter 7.

The three pillars can inform end-users by characterizing existing hardware and

inform hardware designers by guiding design space exploration. In this chapter, we

apply our framework to a representative MCMC accelerator—the SPU—and surface

design issues that cannot be exposed using only application end-point result quality.

The SPU achieves the same application end-point result quality as the FP64 soft-

ware, confirming the previous chapter, but has compromised ESS and convergence

percentage that requires 2ˆ more iterations on the SPU to achieve the same statis-

tical robustness as FP64, reducing the SPU’s effective speedup. The next chapter

demonstrates the framework by using the pillars to guide design and overcome the

above limitations.

105

6

Design Space Exploration with Statistical
Robustness

Statistical robustness is an important characteristic of probabilistic computing and

therefore should be considered during the hardware design process. The previous

chapter shows that architectural optimizations might have a negative influence on

the statistical robustness, even though they produce comparable end-point results

as the FP64 software. A design space exploration is needed to find the design points

in compliance with statistical robustness. The question is can we achieve desirable

end-point result quality and statistical robustness without the commensurate overhead

of FP64?

This chapter answers the above question by applying the proposed three pillars

of 1) sampling quality, 2) convergence diagnostic, and 3) goodness of fit, to design

space exploration. We use the SPU as a case study to expose the trade-offs between

statistical robustness and area/power, with the following key results: 1) a simple

19-bit LFSR with a 12-bit RNG output does not reduce the statistical robustness

or result quality across all design points; 2) considerable improvement in statistical

robustness, comparable to the FP64 software, can be achieved by slightly increasing

106

the bit precision from 4 to 6 and removing 2n approximation technique, with only

1.20ˆ area and 1.10ˆ power overhead. The expected 21-84ˆ SPU speedups as a

discrete accelerator compared with GPU [142] can therefore be achieved without

additional iterations.

The remainder of this chapter is organized as the follows. Section 6.1 provides a

case study on design space exploration in guidance of statistical robustness. Section

6.2 discusses limitations and future work. Section 6.3 summarizes the chapter.

6.1 A Case Study: SPU

We use the SPU as a case study to demonstrate design space exploration with sta-

tistical robustness. Recall the current SPU design produces good end-point result

quality but compromised statistical robustness. The SPU pipeline (Figure 4.4) has

several design parameters related to bit precision that potentially influence statistical

robustness, including energy Epiq and Espiq, scaled and truncated probability ptrpiq,

and RNG output bits. We fix energy Epiq and Espiq at 8 bits based on the previous

work [87] and Chapter 3. The number of bits in ptrpiq considerably influences the

size of the energy-to-probability converter and the discrete sampler. We evaluate

three design points with 4-bit, 6-bit, and 8-bit ptrpiqs. The influence of RNG output

bits is small compared to ptrpiq and we confirm from our experiment that a 19-bit

LFSR with 12-bit RNG outputs does not reduce the statistical robustness or result

quality across all design points.

Recall the SPU truncates all ptrpiqs to the nearest 2n values, called 2n approxi-

mation, enabling efficient energy-to-probability conversion by comparing the bound-

aries of energy values. Without 2n approximation, a double-buffered 256-entry LUT

is required to store the ptrpiq values to achieve a stall-free design. We evaluate the

statistical robustness of each scaled probability design point with and without 2n ap-

proximations. The above design parameters generally do not directly influence the

107

SPU per-iteration performance assuming the same interface at the same clock fre-

quency. However, a design with lower precision may take more iterations to converge.

On the other hand, higher precision requires more area and power affecting the num-

ber of SPU units in systems with limited area/power budget. Detailed system-level

architecture investigations are beyond the scope of this dissertation.

6.1.1 Evaluating Design Parameters

Figures 6.1-6.8 show our design space results. The results are obtained from the

MATLAB SPU simulator discussed in Section 5.2. For brevity, we explain stereo

vision results in detail and highlight motion estimation results where needed. Start-

ing from the current SPU design (“spu”), we analyze the statistical robustness by

gradually increasing the precision: 1) replace the 19-bit LFSR sampler with an FP64

Mersenne Twister sampler while keeping the front-end pipeline unchanged (“p4a”);

2) increase the bit width of ptrpiq to 6, 8-bit (“p6a” and “p8a”), with 2n approxi-

mation; 3) remove 2n approximation (“p4”, “p6”, and “p8”); and 4) keep front-end

pipeline up to the scaled energy (Espiq) output unchanged, but has an FP64 back-end

for probability conversion and discrete sampling (“pd”).

Sampling Quality

Figure 6.1a shows overall ESS for stereo vision, which omits random variables with

zero variance for each design, respectively. Recall this metric can create biases that

benefit the software for variables with small but non-zero variance. Overall ESSs

increase when more bits are added, partly as a result of fewer random variables with

zero variance. Recall the SPU truncates small scaled probabilities ptrpiq ă 1 to

zero. Adding more bits keeps more possible labels with small probabilities available

to be sampled. Figure 6.1b indicates inactive percentage drops significantly when

increasing ptrpiq bit size from 4 to 6. Interestingly, 2n approximation helps reduce

108

0

100

200

300

400

500

600

spu p4a p4 p6a p6 p8a p8 pd sw

O
ve

ra
ll

ES
S

art poster teddy

(a) Overall ESS

0%

10%

20%

30%

40%

50%

60%

spu p4a p4 p6a p6 p8a p8 pd sw

In
ac

tiv
e

Pe
rc

en
ta

ge art
poster
teddy

(b) Percentage of inactive random variables (inactive percentage).

0

100

200

300

400

500

600

spu p4a p4 p6a p6 p8a p8 pd

Ac
tiv

e
ES

S

sw hw

(c) Active ESS in teddy

Figure 6.1: Stereo vision sampling quality in the design points

109

the inactive percentage under the same bit precision, but decreases ESS for 6-bit and

8-bit designs. Figure 6.1c shows the active ESS for the teddy dataset. Recall active

ESS masks out the random variables inactive in either the software or SPU. With 2n

approximation, increasing bit precision does not close the gap in active ESS with the

software. Without 2n approximation, 6 or 8-bit ptrpiq have comparable overall and

active ESS to software. As expected, increasing bit precision decreases the difference

between overall and active ESS due to fewer inactive variables. Similar results for

motion estimation are shown in Figure 6.2.

Convergence Diagnostic

Figure 6.3 shows the convergence percentage for stereo vision increases with the

increasing bit precision. In contrast to ESS, 2n approximation improves the conver-

gence percentage under the same bit precision. Hardware with 6-bit and 8-bit ptrpiq

with and without 2n approximation produces comparable convergence percentage to

software. All designs except “p4” produce the same or higher convergence percentage

for motion estimation, shown in Figure 6.4. All values of convergence percentage are

high (ą 90%) in motion estimation.

Goodness of Fit

Figure 6.5 shows stereo vision RMSE results compared with software reference re-

sults. Observable lower RMSEs can be found in stereo vision art when increasing

the bit precision from 4 to 6. Differences of RMSEs are hard to notice when further

increasing the precision given whiskers largely overlap in most datasets. Stereo vision

application end-point results in Figure 6.7 exhibit the same trends. All designs pro-

duce comparable result quality to the software in simulated annealing (optimization),

consistent with the results discussed in Section 4.3. We highlight the following results

for motion estimation (shown in figures 6.6 and 6.8): 1) the design parameters have

110

0

100

200

300

400

500

600

700

800

spu p4a p4 p6a p6 p8a p8 pd sw

O
ve

ra
ll

ES
S

dimetrodon

rubberwhale

venus

(a) Overall ESS

0%
10%
20%
30%

40%
50%
60%
70%

80%
90%

spu p4a p4 p6a p6 p8a p8 pd sw

In
ac

tiv
e

Pe
rc

en
ta

ge

dimetrodon

rubberwhale

venus

(b) Percentage of inactive random variables (inactive percentage)

0

100

200

300

400

500

600

700

spu p4a p4 p6a p6 p8a p8 pd

Ac
tiv

e
ES

S

sw hw

(c) Active ESS in dimetrodon

Figure 6.2: Motion estimation sampling quality in the design points

111

60%
65%
70%
75%
80%
85%
90%
95%
100%

spu p4a p4 p6a p6 p8a p8 pd sw

Co
nv

er
ge

nc
e

Pe
rc

en
ta

ge

art poster teddy

Figure 6.3: Stereo vision convergence percentage in the design points

86%

88%

90%

92%

94%

96%

98%

100%

spu p4a p4 p6a p6 p8a p8 sw

Co
nv

er
ge

nc
e

Pe
rc

en
ta

ge

dimetrodon rubberwhale venus

Figure 6.4: Motion estimation convergence percentage in the design points

negligible influence on application end-point result quality (end-point error) except

“p4” in a couple of cases, which performs observably worse; 2) all designs except

“p4” produce better end-point error than the FP64 software for dimetrodon with

sampling; 3) all designs produce slightly worse end-point error than the software for

rubberwhale with sampling; and 4) gaps exist between the software and all hardware

designs including “pd” for RMSE, but not in end-point error. These results confirm

the importance of using all three pillars. Overall, optimization is more robust than

sampling at producing good result quality across various designs. For both modes,

increasing the scaled probability to 6 bits produces comparable goodness of fit results

112

spup4a p4 p6a p6 p8a p8 pd sw
0

0.5

1

1.5

2

R
M

S
E

st_art

spup4a p4 p6a p6 p8a p8 pd sw
0

0.5

1

1.5

2
st_poster

spup4a p4 p6a p6 p8a p8 pd sw
0

0.5

1

1.5

2

2.5

3

3.5

4
st_teddy

(a) Pure sampling (sampling)

spup4a p4 p6a p6 p8a p8 pd sw
0

0.5

1

1.5

2

R
M

S
E

st_art

spup4a p4 p6a p6 p8a p8 pd sw
0

0.5

1

1.5

2
st_poster

spup4a p4 p6a p6 p8a p8 pd sw
0

0.5

1

1.5

2

2.5

3

3.5

4
st_teddy

(b) Simulated annealing (optimization)

Figure 6.5: Stereo vision RMSE in the design points

to the FP64 software.

6.1.2 Evaluating RNGs

We verify that using a 19-bit LFSR sampler with 12-bits of RNG output is sufficient

to provide the same statistical robustness as MATLAB default RNG mt19937ar in

any of the pillars. However, we are also interested in whether a bad RNG can be

identified by the three pillars. We replace the 19-bit LFSR in the original SPU with

an 8-bit LFSR (period of 255) and an 8-bit RNG output. We run the three stereo

vision datasets to obtain end-point result quality, ESS, autocorrelation function, and

convergence percentage. The bad-pixel percentage for pure-sampling is 36.9% for

113

spup4a p4 p6a p6 p8a p8 pd sw
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
M

S
E

me_dimetrodon

spup4a p4 p6a p6 p8a p8 pd sw
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
me_rubberwhale

spup4a p4 p6a p6 p8a p8 pd sw
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
me_venus

(a) Pure sampling (sampling)

spup4a p4 p6a p6 p8a p8 pd sw
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
M

S
E

me_dimetrodon

spup4a p4 p6a p6 p8a p8 pd sw
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
me_rubberwhale

spup4a p4 p6a p6 p8a p8 pd sw
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
me_venus

(b) Simulated annealing (optimization)

Figure 6.6: Motion estimation RMSE in the design points

art, 15.2% for poster, and 33.9% for teddy, all considerably worse than any of tested

designs. We verify the quality degradation is not caused by fewer RNG output bits:

a 19-bit LFSR with 8-bits of output has the results of 32.5% for art, 11.0% for poster,

and 27.8% for teddy. Figure 6.9 shows the autocorrelation function comparison on

a poster pixel location between the FP64 software with MATLAB default RNG, the

SPU design with 19-bit LFSR, and an SPU design with 8-bit LFSR. Recall Equation

5.1 that autocorrelation function is a sub-step of estimating an ESS. The input to

autocorrelation function is a trace of 1000 MCMC samples from each configuration.

The autocorrelation function detects the repeating patterns by correlating the orig-

inal input trace with its lagged copy. A peak in an autocorrelation function result

114

spup4a p4 p6a p6 p8a p8 pd sw
20%

25%

30%

35%

40%

B
ad

-p
ix

el
 P

er
ce

n
ta

g
e

st_art

spup4a p4 p6a p6 p8a p8 pd sw
0%

5%

10%

15%

20%
st_poster

spup4a p4 p6a p6 p8a p8 pd sw
20%

25%

30%

35%

40%
st_teddy

(a) Pure sampling (sampling)

spup4a p4 p6a p6 p8a p8 pd sw
20%

25%

30%

35%

40%

B
ad

-p
ix

el
 P

er
ce

n
ta

g
e

st_art

spup4a p4 p6a p6 p8a p8 pd sw
0%

5%

10%

15%

20%
st_poster

spup4a p4 p6a p6 p8a p8 pd sw
20%

25%

30%

35%

40%
st_teddy

(b) Simulated annealing (optimization)

Figure 6.7: Stereo vision application end-point result quality in the design points

indicates a possible repeating pattern is found under that lag. The software and the

SPU have similar results, whereas the design with 8-bit LFSR has strong autocorre-

lation, indicating the results have strong long-term dependency caused by the short

period. Interestingly, the ESS in the 8-bit LFSR is higher than the software. A

possible explanation is that ESS is designed for evaluating short-term dependencies

in consecutive MCMC samples. The dependency on the 8-bit LFSR is respectively

long-term compared with the consecutive samples. Meanwhile, the short period of

8-bit LFSR could potentially break the metric. The theory behind this phenomenon

needs to be further explored. As expected, the converge percentage in the 8-bit LFSR

design is significantly lower: 57.1% in art, 73.4% in poster, and 61.5% in teddy, in-

115

spu p4a p4 p6a p6 p8a p8 pd sw
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

E
n

d
-p

o
in

t
E

rr
o

r

me_dimetrodon

spu p4a p4 p6a p6 p8a p8 pd sw
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5
me_rubberwhale

spu p4a p4 p6a p6 p8a p8 pd sw
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6
me_venus

(a) Pure sampling (sampling)

spu p4a p4 p6a p6 p8a p8 pd sw
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

E
n

d
-p

o
in

t
E

rr
o

r

me_dimetrodon

spu p4a p4 p6a p6 p8a p8 pd sw
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5
me_rubberwhale

spu p4a p4 p6a p6 p8a p8 pd sw
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6
me_venus

(b) Simulated annealing (optimization)

Figure 6.8: Motion estimation application end-point result quality in the design
points

Figure 6.9: Autocorrelation function on poster pixel (x,y)=(250,200). The values
between blue lines can be considered as noises.

116

Table 6.1: Area and power (@1GHz) analysis in ASIC
Design Area (µm2) Power (mW) Design Area Power

spu 1957 2.17 p4 2112 2.21

p6a 2134 2.31 p6 2356 2.38

p8a 2309 2.46 p8 2599 2.54

dicating the poor quality of the design. This again confirms collectively applying all

three pillars beyond end-point result is necessary to evaluate correctness.

6.1.3 Area and Power

We estimate the ASIC area/power for various design points using the same method

as presented in Section 4.3. Circuitry elements are written in Chisel and synthesized

using Synopsys Design Compiler in 15nm library [92]. Memory elements (FIFOs and

LUTs) are estimated using Cacti 7 [8] in 22nm technology. The designs are verified

in stereo vision art. Table 6.1 summarizes the total area/power of design points.

The numbers are the sum of 15nm circuitry and 22nm memory elements. Power is

estimated at 1GHz. We estimate a double-buffered 2ˆ256-byte LUT (537 µm2 and

0.32 mW) and a 64-byte FIFO (215 µm2 and 0.18 mW) with 8-bit ports, and linearly

scale them to target widths of 4 and 6 bits. All designs can run up to 3.3GHz, limited

by the SPU energy computation stage. Increasing the SPU ptrpiq from 4-bit to 6-bit

precision while keeping the 2n approximation (“p6a”) incurs 1.09ˆ area and 1.07ˆ

power overheads, but has considerably better statistical robustness. Removing 2n

approximation (“p6a”) adds double-buffered LUTs for energy-to-probability conver-

sion, thus incurs 1.20ˆ area and 1.10ˆ power overheads. Despite a 10% difference in

area, we advocate the 6-bit designs without 2n approximation in an ASIC for better

sampling quality if area is not a major concern. The benefit from further increasing

the bit-precision is marginal based on the previous analysis.

117

6.2 Limitations and Future Work

This chapter demonstrates a case study on applying statistical robustness to design

space exploration of an MCMC accelerator. Applying the three pillars to other ac-

celerators, applications, and models is our future work. Our proposed methodology

applies to other MCMC accelerators and applications, especially for those when di-

rectly applying existing methods is difficult due to high dimensionality and potential

random variables with zero empirical variance. The effects of hardware approxi-

mations are unknown for applications that require information from variables with

very low variance, such as rare event simulation. However, the notion of bringing

statistical robustness to the architecture design process applies to all types of accel-

erators, which needs more work and likely inputs from domain experts to find the

right metrics and pillars. Ideally, formally proving bounds on the metrics for an ac-

celerator could provide guarantees on statistical robustness, but is extremely difficult

or impossible due to many hardware approximations techniques (e.g., truncation to

zero).

6.3 Summary

Domain-defined correctness should be comprehensively evaluated when designing a

specialized architecture. Statistical robustness is an essential element of probabilistic

computing defined by domain experts and therefore should be considered throughout

the hardware design process. This chapter explores the design space of a represen-

tative MCMC accelerator guided by the three pillars of statistical robustness: 1)

sampling quality, 2) convergence diagnostic, and 3) goodness of fit. We solve the

design issues in statistical robustness, surfaced in the previous chapter, by slightly

increasing the bit precision and removing an approximation technique. The new

design point incurs 1.20ˆ area and 1.10ˆ power overhead, but achieves compara-

118

ble statistical robustness to the FP64 software, maintaining the expected speedups

without additional iterations.

119

7

Related Work

The previous chapters present our approaches to accelerating probabilistic computing

and evaluating the correctness of a probabilistic architecture. This section reviews

the related work and places our contributions in the field of probabilistic computing.

7.1 Accelerating Probabilistic Computing

Efficient support for probabilistic computing requires addressing sampling overhead

in computing the parameters (step-1) and drawing samples from the parameterized

distribution (step-2). One approach is to accelerate the convergence of probabilistic

algorithms, such as MCMC, in an entirely algorithmic perspective. For example,

Hamiltonian Monte Carlo [107] exploits the geometry to converge more efficiently.

Stochastic Gradient Langevin Dynamics [145] uses sub-sampling to reduce compu-

tation for large datasets. Orthogonal MCMC [91] creates multiple Markov Chains

running in parallel. The combination of multiple schemes is also available [83]. Other

deterministic methods, such as Expectation Propagation and Variational Bayesian,

are alternatives to probabilistic methods. Although these methods are often more

efficient in the applied cases, domain experts use MCMC as a conceptually straight-

120

forward, mathematically simple, yet accurate framework. Other algorithmic works

attempt to address step-2 of sampling by optimizing the conversion from uniform ran-

dom numbers to different targeted distributions, such as discrete distribution [140],

normal distribution [89], and gamma distribution [88].

Another approach to accelerate probabilistic algorithms, the one we take in this

dissertation, is hardware specialization. The key trade-off is generalization vs. spe-

cialization. Some previous works address step-2 of sampling by accelerating drawing

samples. For example, by using thermal noise as entropy, Probabilistic CMOS (PC-

MOS) [17] can build a discrete sampler parameterized by the supply voltage and noise

across the chip. A Digital-to-Analog Converter (DAC) is needed to convert probabil-

ity values to analog voltages. Some previous works utilize FPGA to generate some

specific types of distributions, such as multivariate Gaussian distribution [131] and

exponential distribution [6]. Recently, Tye et al. [135] uses transfer characteristics of

Graphene Field-Effect Transistors (GFETs) to generate non-uniform univariate dis-

tributions. As discussed in Section 2.3, both steps of sampling need to be addressed

to maximize efficiency.

Another type of hardware specialization is to in whole or in part accelerate both

steps of sampling in specific algorithms and models. A compiler workflow is pro-

posed to map probabilistic models into auto-generated accelerators [9]. A series

of works propose FPGA accelerators for variations of Metropolis Hastings MCMC

methods with algorithmic modifications, including Communication-Aware MCMC

(CA-MCMC) [78], Custom-precision Firefly MCMC (CF-MCMC) [80], and the pro-

posed Particle MCMC (ppMCMC) [100]. Mansinghka and Jonas [87] presents a

Stochastic Transition Circuit and an FPGA implementation to efficiently update

random variables within a provided graphical model. The design converts input pa-

rameters to normalized probabilities and generates samples from those probabilities.

A similar accelerator in CPU-FPGA SoC is proposed by Ko et al. [66] using 32-bit

121

fixed-point precision. In an abstract concept, our proposed RSU-G and SPU are

instances of Stochastic Transition Circuits. However, both RSU-G and SPU are full-

custom, fully-functioned pipelines derived from a comprehensive architectural design

space exploration for FPGA (SPU only) and ASIC. The RSU-G takes a different

approach using emerging technology to efficient sampling from non-uniform distri-

butions and providing high-quality randomness for probabilistic algorithms [142].

The SPU uses a customized CMOS discrete sampler with a simple 19-bit LFSR. For

both RSU-G and SPU, a normalized probability is not needed and only the ratio

of probabilities matters. The result quality analysis in Section 3.3 brings new infor-

mation that using only a few unique values of scaled probability (or decay rate) is

enough for the targeted applications, providing opportunities for design optimization

to efficiently convert energy to scaled probability and efficiently support simulated

annealing.

Other examples of specialized architecture for probabilistic computing include an

FPGA Bayesian Neural Networks accelerator (VIBNN) [16], an FPGA acceleration

framework for Stochastic Gradient Descent (Tabla) [84], and an ASIC accelerator for

Bayesian Networks [62]. Other accelerators exist for deterministic Bayesian Infer-

ence, such as an FPGA Bayesian Computing Machine [74], and a Versatile Inference

Processor for Belief Propagation [52].

The slowing down of Moore’s Law also brings opportunities to explore new tech-

nologies for improving computational efficiency. Several recent works exploit the

physical properties of emerging technologies to accelerate probabilistic computing or

machine learning. The proposed RSU-G utilizes single-choromophore RET networks

for efficient sampling using first-to-fire [142]. Furthermore, both the aforementioned

GFET and multi-chromophore RET networks are claimed to have potential to sam-

ple from a general univariate distribution [135,141] for sampling step-2 acceleration.

Probabilistic CMOS can be used for Bayesian Inference [17, 112]. Quantum dots

122

can be used to solve decision making problems such as an intractable satisfiabil-

ity problem (SAT) [4] and the “tug-of-war model” (TOW) [105]. Strain-switched

magneto-tunneling junctions are proposed to support causal inference [63,64]. Mul-

tiple memristor architectures are proposed to accelerate Neural Networks [3, 76].

For more details, a survey of stochastic computing provided by Alaghi and Hayes

can be found elsewhere [2].

7.2 Evaluation Methodologies for Probabilistic Computing

Domain experts define metrics for statistical robustness of MCMC methods. A com-

prehensive introduction to MCMC diagnostics is provided by Robert and Casella

[120] (Chapter 12). A comparison of autocorrelation time methods, one approach to

defining Effective Sample Size (ESS), is provided by Thompson [132]. An alternative

ESS definition is “in the custom of survey sampling” [40,65]. A comparative review

of MCMC convergence diagnostics is presented by Cowles and Carlin [26]. Multiple

goodness of fit statistical tests exist, such as Kolmogorov–Smirnov test (KS-test),

Analysis of Variance (ANOVA), a kernel two-sample test [41], a goodness-of-fit test

based on Stochastic Rank Statistic (SRS) [123], etc. Previous work addresses some

of these statistical metrics for MCMC accelerators. Mansinghka and Jonas [87] eval-

uates data input precision using KL-divergence and QQ plots. Liu et al. [79] argues

using ESS/second as a performance metric for MCMC samplers. Mingas et al. [100]

uses both ESS/second and KL-divergence. These metrics all belong to one of three

pillars proposed in Chapter 5 and we argue all three pillars are needed to fully char-

acterize the statistical robustness of an MCMC accelerator. The key is to find the

appropriate metrics in pillars for different accelerators and applications.

Previous work provides analytical evaluation of approximation techniques. An

analytical tool (Gappa++) for quantization error is proposed to help hardware de-

sign decision under limited precision [75], but does not address statistical robustness.

123

Theoretical studies provide error bounds for MCMC with algorithmic approximation

techniques given mathematical assumptions [33, 56]. As mentioned in Section 5.1,

some hardware approximations (e.g., truncation to zero) in the SPU design sig-

nificantly complicate the formal proof, making it extremely difficult or impossible.

Analytical and empirical studies have been done on evaluating limited precision in

Neural Networks [25,43,49,124].

Adopting a proper quality metric in approximate computing in general is cru-

cial to both ensuring correctness and controlling the trade-off between quality of

the results and the gains in the desired metric, e.g., performance, energy, or storage.

These quality metrics include relative difference (e.g., in MapReduce and n-body sim-

ulation), peak signal-to-noise ratio and structural similarity (e.g., in x264 and image

smoothing), pixel difference (e.g., in raytracer and bodytrack), energy conservation

across scenes in physics-based simulations (e.g., in collision detection and constraint

solving), among others [101]. These quality metrics could be used to analyze prob-

abilistic accelerators for different applications. Furthermore, like MLPerf [95], a

comprehensive benchmark for probabilistic computing is desirable. A benchmark for

Bayesian Inference models is proposed for performance evaluation [143].

Finally, understanding how the quality of RNGs influences the behavior of an

application is important to make a quality statement. CMOS accelerators usually

use simplified RNGs: a 19-bit LFSR for the SPU, a 128-bit LFSR for VIBNN [16],

a 128-bit XORshift for the Stochastic Transition Circuit [87], and a combination of

43-bit LFSR and 37-bit CASR for a CPU-FPGA SoC [66]. A sharing LFSR scheme

is proposed in Muller C-elements for Stochastic Bayesian Inference [48]. Evaluations

of RNGs in these works are empirical and adhoc. Empirical researches have reported

“bad” RNGs can lead to biased results in Monte Carlo simulations. For example,

some Lagged Fibonacci Generators (LFG) perform poorly in 2D Ising model simula-

tions [24]. The triplet correlations in a Generalized Feedback Shift Register (GFSR)

124

introduce systematic errors in Blume-Capel model Metropolis updating [126]. A

Linear Congruential Generator (LCG) produces significant different simulation re-

sults in organic and biological systems [23]. The link between these observations and

MCMC is unknown to our knowledge. A theoretical work [134] justifies to use the

full output sequence of a small RNG for MCMC sampling, referred to as Markov

Chain quasi-Monte Carlo (MCQMC). Overall, inputs from domain experts signifi-

cantly help hardware designers for efficient and robust probabilistic architectures.

125

8

Conclusion

The impending halt in CMOS scaling and the tidal wave of Artificial Intelligence

(AI) and machine learning bring both tremendous challenges and opportunities for

computer architects to design efficient and robust computing systems. Statistical ma-

chine learning uses probabilistic computing as a conceptually simple, interpretable,

and generalized framework to solve a wide range of problems by iteratively sampling

from parameterized distributions. The sampling process is often considered too slow

on conventional processors due to the overhead in computing distribution parame-

ters and drawing samples. In this dissertation, we claim a specialized architecture is

necessary and feasible to efficiently support various probabilistic computing problems

in statistical machine learning, while providing high-quality and robust results. We

ask two questions to approach the above statement:

• What is the appropriate architecture of a stochastic processing unit to effi-

ciently support probabilistic computing?

• What methodology should we use to evaluate correctness of a probabilistic

accelerator?

126

We provide our answer in four successive works:

• A macro-scale prototype of the previously proposed RSU-G and a new RSU-G

microarchitecture to account for issues in the previous design.

• An efficient CMOS Stochastic Processing Unit (SPU) derived from RSU-G

using a simple 19-bit LFSR as the RNG.

• An evaluation framework with three pillars of statistical robustness to evaluate

correctness of an MCMC accelerator.

• A demonstration on using the three-pillar framework to guide design and over-

come hardware limitations.

Below summarizes the contributions of this dissertation.

8.1 Summary of Contributions

In light of a promising technique to natively generate non-uniform distributions,

Wang et al. [142] proposed a Resonance Energy based Sampling Unit (RSU-G) to

accelerate both steps of sampling for 1st-Order Markov Random Field Gibbs Sam-

pling. Our work starts with building a macro-scale prototype to experimentally

demonstrate the RSU-G’s ability to parameterize pairwise relative probabilities and

conduct a simple foreground-background image segmentation. Setting up the proto-

type system as a true RNG without post-processing passes 165/188 items in NIST

statistical randomness test. We further explore the relationship between application

result quality and RSU-G design, finding the previous RSU-G design (1st-gen RSU-

G) lacks both sufficient precision and dynamic range in key design parameters to

provide acceptable result quality in three computer vision applications (image seg-

mentation, motion estimation, and stereo vision). Naively scaling the problematic

parameters to increase precision and dynamic range consumes too much area and

127

power. By performing a design space exploration on four identified design parame-

ters, we arrive at a new RSU-G design that achieves the comparable result quality

as the 64-bit floating-point (FP64) software. The new design contains four major

circuit/microarchitecture changes incurring 1.27ˆ power overhead and equivalent

area: 1) improved dynamic range, 2) a new RET circuit and peripheral circuits, 3)

supporting multiple energy functions for more applications, and 4) efficient probabil-

ity conversion. The new RSU-G retains the same architectural interface except for

an additional support for simulated annealing and therefore maintains the sizable

speedups of 1st-gen RSU-G: 21-84ˆ as a discrete accelerator over a Titan X GPU.

The promising RSU-G could lead to a higher manufacturing cost due to an ad-

ditional back-end-of-line process during fabrication. We explore the feasibility of re-

placing the RSU-G high-quality RET-based RNG with a conventional CMOS pseudo

RNG. By evaluating six different CMOS RNGs, we unexpectedly discover that a sim-

ple 19-bit LFSR provides good end-point result quality in FP64 motion estimation

and stereo vision. Using more complicated RNGs does not further improve the re-

sults while using lower quality RNGs can notably degrade result quality. Therefore,

we propose a CMOS Stochastic Processing Unit (SPU) by replacing the molecular-

optical device with a CMOS discrete sampler with multiple optimization techniques.

The SPU design produces the same result quality as the FP64 software in the three

computer vision applications. The design is flexible to be deployed on an FPGA or

fabricated in an ASIC. The SPU optimized for FPGA achieves at least 3ˆ faster in

performance and 33.7ˆ less in memory compared with an HLS baseline with FP32

probability, indicating a human-designed architecture is needed to improve efficiency.

The SPU for ASIC using a 19-bit LFSR avoids area/power overhead of a complex

RNG and saves 33% of area and 57% of power, compared with RSU-G.

The fact that the SPU achieves good result quality even with aggressive hardware

approximations motivates us to evaluate its other important statistical properties

128

defined by domain experts. Current methodologies for evaluating probabilistic ac-

celerators are often incomplete or adhoc in evaluating correctness, focusing only on

end-point results (“accuracy”) or limited statistical properties. Failure to adequately

account for domain-defined correctness can have adverse or catastrophic outcomes.

Therefore, we claim a probabilistic architecture should provide some measure (or

guarantee) of statistical robustness. We propose three pillars of statistical robust-

ness: 1) sampling quality, 2) convergence diagnostic, and 3) goodness of fit. Each

pillar has at least one quantitative empirical metric: Effective Sample Size (ESS) for

sampling quality; Gelman-Rubin’s R̂ and convergence percentage for convergence di-

agnostic; Root Mean Squared Error (RMSE) and Jensen-Shannon Divergence (JSD)

for goodness of fit. These pillars do not require ground-truth data and collectively

compare specialized hardware with FP64 software. Naively applying existing popular

metrics for our purposes is challenging due to high dimensionality of the target appli-

cations and random variables with zero empirical variance. Therefore, we modify the

existing methodologies for sampling quality and convergence diagnostic, and propose

a new metric (convergence percentage) for convergence diagnostic. The three pillars

take a first step toward defining metrics and a methodology for quantitatively eval-

uating correctness of probabilistic accelerators. As a case study, we demonstrate the

framework in a representative probabilistic MCMC accelerator—the SPU—and dis-

cover design issues that cannot be exposed using only application result quality. The

SPU provides good end-point result quality but compromised statistical robustness,

reducing its effective speedup by a factor of 2ˆ.

Finally, we demonstrate the benefits of using the proposed three pillars to guide

design space exploration and conquer the above limitations. By investigating the

design trade-offs between statistical robustness and area/power, we reveal: 1) a

simple 19-bit LFSR with 12-bits of RNG output does not degrade the statistical

robustness or result quality across all design points; 2) considerable improvement in

129

statistical robustness, comparable to the FP64 software, can be achieved by slightly

increasing the bit precision from 4 to 6 and removing an approximation technique,

incurring only 1.20ˆ in area and 1.10ˆ in power without the commensurate FP64

overhead. The SPU expected speedup of 21-84ˆ is therefore accessible.

8.2 What’s Next?

This dissertation provides four subsequent works to explore specialized architecture

and methodology in accelerating probabilistic computing. The extensions and future

directions of each individual work are provided in the previous chapters. As discussed

before, the key trade-off for a specialized architecture is generalization for flexibility

vs. specialization for efficiency. Our work has explored architecture designs to accel-

erate 1st-Order MRF Bayesian Inference using Gibbs Sampling, leaning to the side

of specialization. Starting from the current SPU, we provide potential directions for

a generalized stochastic processing unit.

Supporting more graphical models Although 1st-Order MRF supported in the current

SPU is widely used, providing more flexibility on models supports an even wider

range of applications. For example, a two-layer MRF model is used for range sens-

ing [28]. Variations of Markov Networks are used to model adverse drug events in

electronic health records [10]. A Field-of-Experts (FoE) model is used for multiple

image applications [122]. A flat-fading frequency-domain system model is applied to

an MCMC Multiple-Input Multiple-Output (MIMO) detector [46]. The challenges

are to find the appropriate granularity of functional units and maintain efficiency

while providing flexibility.

Supporting more algorithms/solvers The current SPU focuses on Gibbs Sampling with

the support of simulated annealing for inference. A future direction can address

130

model training, which is learning the parameters of models (e.g., α and β in Equation

4.1) to be later used for inference. A 1st-Order MRF model can be trained via

Stochastic Gradient Descent (SGD) [147]. A Binary Pairwise Markov Network can

be learned by Stochastic Proximal Gradient [37] or Contrastive Divergence [77]. An

FoE model can be learned via Contrastive Divergence [122]. The inner loops of

these learning algorithms usually use MCMC to estimate expectations. Deciding the

granularity of acceleration, inner loop sampling vs. outer loop optimization, is an

important trade-off.

With generalization, new supported models, algorithms, and applications require

additional quality analysis and new metrics. The metrics in the pillars of statistical

robustness may need to be revisited.

131

Bibliography

[1] Verilog implementation of aes as specified in nist fips 197. https://

github.com/secworks/aes/.

[2] Armin Alaghi and John P. Hayes. Survey of stochastic computing. ACM Trans.
Embed. Comput. Syst., 12(2s):92:1–92:19, May 2013.

[3] Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu,
Martin Foltin, R Stanley Williams, Paolo Faraboschi, Wen-mei W Hwu,
John Paul Strachan, Kaushik Roy, et al. Puma: A programmable ultra-efficient
memristor-based accelerator for machine learning inference. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 715–731, 2019.

[4] Masashi Aono, Makoto Naruse, Song-Ju Kim, Masamitsu Wakabayashi, Hi-
rokazu Hori, Motoichi Ohtsu, and Masahiko Hara. Amoeba-inspired nanoar-
chitectonic computing: solving intractable computational problems using
nanoscale photoexcitation transfer dynamics. Langmuir, 29(24):7557–7564,
2013.

[5] Solomon Assefa, Fengnian Xia, and Yurii A Vlasov. Reinventing germanium
avalanche photodetector for nanophotonic on-chip optical interconnects. Na-
ture, 464(7285):80–84, 2010.

[6] Tarek Ould Bachir, Mohamad Sawan, and Jean-Jules Brault. A new hard-
ware architecture for sampling the exponential distribution. In Electrical and
Computer Engineering, 2008. CCECE 2008. Canadian Conference on, pages
001393–001396. IEEE, 2008.

[7] Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth, Michael J. Black,
and Richard Szeliski. A database and evaluation methodology for optical flow.
International Journal of Computer Vision, 92(1):1–31, Mar 2011.

[8] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali
Shafiee, and Vaishnav Srinivas. Cacti 7: New tools for interconnect explo-

132

https://github.com/secworks/aes/
https://github.com/secworks/aes/

ration in innovative off-chip memories. ACM Transactions on Architecture and
Code Optimization (TACO), 14(2):14, 2017.

[9] Subho S. Banerjee, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. Acmc 2
: Accelerating markov chain monte carlo algorithms for probabilistic models.
In Proceedings of the Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS
’19, pages 515–528, New York, NY, USA, 2019. ACM.

[10] Aubrey Barnard. Causal Discovery of Adverse Drug Events in Observational
Data. PhD thesis, University of Wisconsin–Madison, 2019.

[11] Stephen T. Barnard. Stochastic stereo matching over scale. International
Journal of Computer Vision, 3(1):17–32, May 1989.

[12] Lawrence E Bassham III, Andrew L Rukhin, Juan Soto, James R Nechvatal,
Miles E Smid, Elaine B Barker, Stefan D Leigh, Mark Levenson, Mark Vangel,
David L Banks, et al. Sp 800-22 rev. 1a. a statistical test suite for random
and pseudorandom number generators for cryptographic applications. National
Institute of Standards & Technology, 2010.

[13] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[14] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE Transactions on pattern analysis and machine
intelligence, 23(11):1222–1239, 2001.

[15] Stephen P. Brooks and Andrew Gelman. General methods for monitoring
convergence of iterative simulations. Journal of Computational and Graphical
Statistics, 7(4):434–455, 1998.

[16] Ruizhe Cai, Ao Ren, Ning Liu, Caiwen Ding, Luhao Wang, Xuehai Qian,
Massoud Pedram, and Yanzhi Wang. Vibnn: Hardware acceleration of bayesian
neural networks. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 476–488. ACM, 2018.

[17] Lakshmi N Chakrapani, Bilge ES Akgul, Suresh Cheemalavagu, Pinar Ko-
rkmaz, Krishna V Palem, and Balasubramanian Seshasayee. Ultra-efficient
(embedded) soc architectures based on probabilistic cmos (pcmos) technology.
In Proceedings of the conference on Design, automation and test in Europe:

133

Proceedings, pages 1110–1115. European Design and Automation Association,
2006.

[18] David A. Chang-Yen and Bruce K. Gale. An integrated optical oxygen sensor
fabricated using rapid-prototyping techniques. Lab Chip, 3:297–301, 2003.

[19] Ren-Li Chen and Soon-Jyh Chang. A 6-bit current-steering dac with com-
pound current cells for both communication and rail-to-rail voltage-source ap-
plications. IEEE Transactions on Circuits and Systems II: Express Briefs,
59(11):746–750, 2012.

[20] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning. In Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’14, page 269–284, New York, NY, USA, 2014. Association
for Computing Machinery.

[21] Li Cheng and Terry Caelli. Bayesian stereo matching. Computer Vision and
Image Understanding, 106(1):85–96, 2007.

[22] Wenjun Cheng, Luyao Ma, Tiejun Yang, Jiali Liang, and Yan Zhang. Joint
lung ct image segmentation: a hierarchical bayesian approach. PloS one, 11(9),
2016.

[23] Timothy H Click, Aibing Liu, and George A Kaminski. Quality of random
number generators significantly affects results of monte carlo simulations for
organic and biological systems. Journal of computational chemistry, 32(3):513–
524, 2011.

[24] Paul D Coddington. Analysis of random number generators using monte carlo
simulation. International Journal of Modern Physics C, 5(03):547–560, 1994.

[25] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binarycon-
nect: Training deep neural networks with binary weights during propagations.
In Advances in Neural Information Processing Systems 28, pages 3123–3131.
Curran Associates, Inc., 2015.

[26] Mary Kathryn Cowles and Bradley P Carlin. Markov chain monte carlo conver-
gence diagnostics: a comparative review. Journal of the American Statistical
Association, 91(434):883–904, 1996.

134

[27] Luc Devroye. Chapter 4 nonuniform random variate generation. In Shane G.
Henderson and Barry L. Nelson, editors, Simulation, volume 13 of Handbooks
in Operations Research and Management Science, pages 83 – 121. Elsevier,
2006.

[28] James Diebel and Sebastian Thrun. An application of markov random fields
to range sensing. In Advances in neural information processing systems, pages
291–298, 2006.

[29] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural ac-
celeration for general-purpose approximate programs. In 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 449–460.
IEEE, 2012.

[30] Ryan M Field, Simeon Realov, and Kenneth L Shepard. A 100 fps, time-
correlated single-photon-counting-based fluorescence-lifetime imager in 130 nm
cmos. IEEE Journal of Solid-State Circuits, 49(4):867–880, 2014.

[31] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating
non-local information into information extraction systems by gibbs sampling.
In Proceedings of the 43rd annual meeting on association for computational
linguistics, pages 363–370. Association for Computational Linguistics, 2005.

[32] James M Flegal, Murali Haran, and Galin L Jones. Markov chain monte carlo:
Can we trust the third significant figure? Statistical Science, pages 250–260,
2008.

[33] Rong Ge, Holden Lee, and Andrej Risteski. Simulated tempering langevin
monte carlo ii: An improved proof using soft markov chain decomposition.
arXiv preprint arXiv:1812.00793, 2018.

[34] Andrew Gelman and Donald B Rubin. Inference from iterative simulation
using multiple sequences. Statistical science, 7(4):457–472, 1992.

[35] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images. IEEE Transactions on pattern analysis
and machine intelligence, PAMI-6(6):721–741, 1984.

[36] Stuart Geman and Christine Graffigne. Markov random field image models
and their applications to computer vision. In Proceedings of the International
Congress of Mathematicians, volume 1, page 2, 1986.

135

[37] Sinong Geng, Zhaobin Kuang, Jie Liu, Stephen Wright, and David Page.
Stochastic learning for sparse discrete Markov random fields with controlled
gradient approximation error. 34th Conference on Uncertainty in Artificial
Intelligence 2018, UAI 2018, 1:156–166, 2018.

[38] Sinong Geng, Zhaobin Kuang, and David Page. An efficient pseudo-likelihood
method for sparse binary pairwise markov network estimation. arXiv preprint
arXiv:1702.08320, 2017.

[39] Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence.
Nature, 521(7553):452–459, 2015.

[40] Lei Gong and James M Flegal. A practical sequential stopping rule for high-
dimensional markov chain monte carlo. Journal of Computational and Graph-
ical Statistics, 25(3):684–700, 2016.

[41] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf,
and Alexander Smola. A kernel two-sample test. Journal of Machine Learning
Research, 13(Mar):723–773, 2012.

[42] Christos Grivas and Markus Pollnau. Organic solid-state integrated amplifiers
and lasers. Laser & photonics reviews, 6(4):419–462, 2012.

[43] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. CoRR,
abs/1502.02551, 2015.

[44] Ghassan Hamra, Richard MacLehose, and David Richardson. Markov chain
monte carlo: an introduction for epidemiologists. International journal of epi-
demiology, 42(2):627–634, 2013.

[45] Marcel Häselich, Simon Eggert, and Dietrich Paulus. Parallelized energy mini-
mization for real-time markov random field terrain classification in natural envi-
ronments. In 2012 IEEE International Conference on Robotics and Biomimet-
ics (ROBIO), pages 1823–1828. IEEE, 2012.

[46] Jonathan C Hedstrom, Chung Him Yuen, Rong-Rong Chen, and Behrouz
Farhang-Boroujeny. Achieving near map performance with an excited markov
chain monte carlo mimo detector. IEEE Transactions on Wireless Communi-
cations, 16(12):7718–7732, 2017.

[47] Martin T Hill and Malte C Gather. Advances in small lasers. Nature Photonics,
8(12):908–918, 2014.

136

[48] David HK Hoe and Chet Pajardo II. Implementing stochastic bayesian in-
ference: Design of the stochastic number generators. In 2019 IEEE 62nd In-
ternational Midwest Symposium on Circuits and Systems (MWSCAS), pages
1105–1109. IEEE, 2019.

[49] Jordan L Holi and Jenq-Neng Hwang. Finite precision error analysis of neu-
ral network hardware implementations. IEEE Transactions on Computers,
42(3):281–290, 1993.

[50] Joel Hruska. How makimoto’s wave explains the tsunami of new ai processors.
https://www.extremetech.com/computing/287137-how-makimotos-wave-
explains-the-tsunami-of-specialized-ai-processors-headed-for-

market, Apr 2020.

[51] Chien-Yuan Huang, Wen Chao Shen, Yuan-Heng Tseng, Ya-Chin King, and
Chrong-Jung Lin. A contact-resistive random-access-memory-based true ran-
dom number generator. IEEE Electron Device Letters, 33(8):1108–1110, 2012.

[52] Skand Hurkat and José F Mart́ınez. Vip: A versatile inference processor. In
2019 IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), pages 345–358. IEEE, 2019.

[53] Cryptography Research Inc. Evaluation of via c3 ”nehemiah” random
number generator. https://www.rambus.com/wp-content/uploads/2015/08/
VIA rng.pdf, 2003.

[54] Intel R©. Floating-point ip cores user guide. https://www.intel.com/content/
www/us/en/programmable/documentation/eis1410764818924.html, 2019.

[55] Yehea I Ismail and Eby G Friedman. Effects of inductance on the propagation
delay and repeater insertion in vlsi circuits. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 8(2):195–206, 2000.

[56] James E Johndrow, Jonathan C Mattingly, Sayan Mukherjee, and David Dun-
son. Optimal approximating markov chains for bayesian inference. arXiv
preprint arXiv:1508.03387, 2015.

[57] Ajay Joshi, Christopher Batten, Yong-Jin Kwon, Scott Beamer, Imran
Shamim, Krste Asanovic, and Vladimir Stojanovic. Silicon-photonic clos
networks for global on-chip communication. In Proceedings of the 2009 3rd
ACM/IEEE International Symposium on Networks-on-Chip, NOCS ’09, pages
124–133, Washington, DC, USA, 2009. IEEE Computer Society.

137

https://www.extremetech.com/computing/287137-how-makimotos-wave-explains-the-tsunami-of-specialized-ai-processors-headed-for-market
https://www.extremetech.com/computing/287137-how-makimotos-wave-explains-the-tsunami-of-specialized-ai-processors-headed-for-market
https://www.extremetech.com/computing/287137-how-makimotos-wave-explains-the-tsunami-of-specialized-ai-processors-headed-for-market
https://www.rambus.com/wp-content/uploads/2015/08/VIA_rng.pdf
https://www.rambus.com/wp-content/uploads/2015/08/VIA_rng.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/eis1410764818924.html
https://www.intel.com/content/www/us/en/programmable/documentation/eis1410764818924.html

[58] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy
Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-
maghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron
Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Kille-
brew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagara-
jan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-
nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson,
Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter
Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis
of a tensor processing unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA ’17, page 1–12, New York, NY,
USA, 2017. Association for Computing Machinery.

[59] Gediminas Juzeliunas and David L Andrews. Quantum electrodynamics of
resonance energy transfer. Advances in Chemical Physics, 112:357–410, 2000.

[60] Takeo Kanade, Atsushi Yoshida, Kazuo Oda, Hiroshi Kano, and Masaya
Tanaka. A stereo machine for video-rate dense depth mapping and its new
applications. In Proceedings CVPR IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 196–202. IEEE, 1996.

[61] Robert E Kass, Bradley P Carlin, Andrew Gelman, and Radford M Neal.
Markov chain monte carlo in practice: a roundtable discussion. The American
Statistician, 52(2):93–100, 1998.

[62] Osama U Khan and David D Wentzloff. Hardware accelerator for probabilistic
inference in 65-nm cmos. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 24(3):837–845, 2016.

[63] Santosh Khasanvis, Mingyu Li, Mostafizur Rahman, Ayan K Biswas, Mo-
hammad Salehi-Fashami, Jayasimha Atulasimha, Supriyo Bandyopadhyay, and
Csaba Andras Moritz. Architecting for causal intelligence at nanoscale. Com-
puter, 48(12):54–64, 2015.

[64] Santosh Khasanvis, Mingyu Li, Mostafizur Rahman, Mohammad Salehi-
Fashami, Ayan K Biswas, Jayasimha Atulasimha, Supriyo Bandyopadhyay,

138

and Csaba Andras Moritz. Self-similar magneto-electric nanocircuit technol-
ogy for probabilistic inference engines. IEEE Transactions on Nanotechnology,
14(6):980–991, 2015.

[65] Leslie Kish. Survey sampling. New York: John Wiley & Sons, 1965.

[66] Glenn G Ko, Yuji Chai, Rob A Rutenbar, David Brooks, and Gu-Yeon Wei.
Accelerating bayesian inference on structured graphs using parallel gibbs sam-
pling. In 2019 29th International Conference on Field Programmable Logic and
Applications (FPL), pages 159–165. IEEE, 2019.

[67] Glenn G Ko and Rob A Rutenbar. A case study of machine learning hardware:
Real-time source separation using markov random fields via sampling-based
inference. In 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 2477–2481. IEEE, 2017.

[68] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[69] Janusz Konrad and Eric Dubois. Bayesian estimation of motion vector fields.
IEEE Transactions on Pattern Analysis & Machine Intelligence, 14(9):910–
927, 1992.

[70] Craig LaBoda, Heather Duschl, and Chris L Dwyer. Dna-enabled integrated
molecular systems for computation and sensing. Accounts of chemical research,
47(6):1816–1824, 2014.

[71] Stan Z Li. Markov random field models in computer vision. In European
conference on computer vision, pages 361–370. Springer, 1994.

[72] Stan Z Li. Markov random field modeling in image analysis. Springer Science
& Business Media, 2009.

[73] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Trans-
actions on Information theory, 37(1):145–151, 1991.

[74] Mingjie Lin, Ilia Lebedev, and John Wawrzynek. High-throughput bayesian
computing machine with reconfigurable hardware. In Proceedings of the 18th
Annual ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’10, pages 73–82, New York, NY, USA, 2010. ACM.

[75] Michael D. Linderman, Matthew Ho, David L. Dill, Teresa H. Meng, and
Garry P. Nolan. Towards program optimization through automated analysis

139

of numerical precision. In Proceedings of the 8th Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, CGO ’10, pages
230–237, New York, NY, USA, 2010. ACM.

[76] Chenchen Liu, Bonan Yan, Chaofei Yang, Linghao Song, Zheng Li, Beiye Liu,
Yiran Chen, Hai Li, Qing Wu, and Hao Jiang. A spiking neuromorphic design
with resistive crossbar. In Proceedings of the 52nd Annual Design Automation
Conference, DAC ’15, pages 14:1–14:6, New York, NY, USA, 2015. ACM.

[77] Jie Liu and David Page. Structure learning of undirected graphical models
with contrastive divergence. In ICML 2013 Workshop on Structured Learning:
Inferring Graphs from Structured and Unstructured Inputs, 2013.

[78] Shuanglong Liu and Christos-Savvas Bouganis. Communication-aware mcmc
method for big data applications on fpgas. In Field-Programmable Custom
Computing Machines (FCCM), 2017 IEEE 25th Annual International Sympo-
sium on, pages 9–16. IEEE, 2017.

[79] Shuanglong Liu, Grigorios Mingas, and Christos-Savvas Bouganis. An exact
mcmc accelerator under custom precision regimes. In 2015 International Con-
ference on Field Programmable Technology (FPT), pages 120–127. IEEE, 2015.

[80] Shuanglong Liu, Grigorios Mingas, and Christos-Savvas Bouganis. An unbiased
mcmc fpga-based accelerator in the land of custom precision arithmetic. IEEE
Transactions on Computers, 66(5):745–758, 2017.

[81] Lin Luan, Randall D Evans, Nan M Jokerst, and Richard B Fair. Integrated op-
tical sensor in a digital microfluidic platform. IEEE Sensors Journal, 8(5):628–
635, 2008.

[82] Lin Luan, Matthew W Royal, Randall Evans, Richard B Fair, and Nan M
Jokerst. Chip scale optical microresonator sensors integrated with embedded
thin film photodetectors on electrowetting digital microfluidics platforms. IEEE
Sensors Journal, 12(6):1794–1800, 2012.

[83] Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic
gradient mcmc. In Advances in Neural Information Processing Systems, pages
2917–2925, 2015.

[84] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir Yaz-
danbakhsh, Joon Kyung Kim, and Hadi Esmaeilzadeh. Tabla: A unified
template-based framework for accelerating statistical machine learning. In High

140

Performance Computer Architecture (HPCA), 2016 IEEE International Sym-
posium on, pages 14–26. IEEE, 2016.

[85] Tsugio Makimoto. Implications of makimoto’s wave. Computer, 46(12):32–37,
2013.

[86] Shingo Mandai, Matthew W Fishburn, Yuki Maruyama, and Edoardo Char-
bon. A wide spectral range single-photon avalanche diode fabricated in an
advanced 180 nm cmos technology. Optics express, 20(6):5849–5857, 2012.

[87] Vikash Mansinghka and Eric Jonas. Building fast bayesian computing machines
out of intentionally stochastic, digital parts. arXiv preprint arXiv:1402.4914,
2014.

[88] George Marsaglia and Wai Wan Tsang. A simple method for generating gamma
variables. ACM Transactions on Mathematical Software (TOMS), 26(3):363–
372, 2000.

[89] George Marsaglia and Wai Wan Tsang. The ziggurat method for generating
random variables. Journal of statistical software, 5(8):1–7, 2000.

[90] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database
of human segmented natural images and its application to evaluating segmen-
tation algorithms and measuring ecological statistics. In Proceedings Eighth
IEEE International Conference on Computer Vision. ICCV 2001, volume 2,
pages 416–423. IEEE, 2001.

[91] Luca Martino, Vı́ctor Elvira, David Luengo, Jukka Corander, and Francisco
Louzada. Orthogonal parallel mcmc methods for sampling and optimization.
Digital Signal Processing, 58:64–84, 2016.

[92] Mayler Martins, Jody Maick Matos, Renato P. Ribas, André Reis, Guilherme
Schlinker, Lucio Rech, and Jens Michelsen. Open cell library in 15nm freepdk
technology. In Proceedings of the 2015 Symposium on International Symposium
on Physical Design, ISPD ’15, pages 171–178, New York, NY, USA, 2015.
ACM.

[93] Makoto Matsumoto. mt19937ar: Mersenne twister with improved
initialization. www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/
emt19937ar.html, 2002.

[94] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.

141

www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

ACM Transactions on Modeling and Computer Simulation (TOMACS), 8(1):3–
30, 1998.

[95] Peter Mattson, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg
Diamos, David Kanter, Paulius Micikevicius, David Patterson, Guenther
Schmuelling, Hanlin Tang, Gu-Yeon Wei, and Carole-Jean Wu. Mlperf: An
industry standard benchmark suite for machine learning performance. IEEE
Micro, 40(2):8–16, 2020.

[96] Michael Mayberry. Probabilistic computing takes artificial intelligence to
the next step. https://newsroom.intel.com/editorials/probabilistic-
computing-takes-artificial-intelligence-next-step/, May 2018.

[97] Patrick McClure, Nao Rho, John A. Lee, Jakub R. Kaczmarzyk, Charles Y.
Zheng, Satrajit S. Ghosh, Dylan M. Nielson, Adam G. Thomas, Peter Ban-
dettini, and Francisco Pereira. Knowing what you know in brain segmentation
using bayesian deep neural networks. Frontiers in Neuroinformatics, 13:67,
2019.

[98] John P Mechalas. Intel R© digital random number generator (drng) software im-
plementation guide. https://software.intel.com/en-us/articles/intel-
digital-random-number-generator-drng-software-implementation-

guide, 2014.

[99] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Au-
gusta H Teller, and Edward Teller. Equation of state calculations by fast
computing machines. The journal of chemical physics, 21(6):1087–1092, 1953.

[100] Grigorios Mingas, Leonardo Bottolo, and Christos-Savvas Bouganis. Particle
mcmc algorithms and architectures for accelerating inference in state-space
models. International Journal of Approximate Reasoning, 83:413–433, 2017.

[101] Sparsh Mittal. A survey of techniques for approximate computing. ACM
Comput. Surv., 48(4):62:1–62:33, March 2016.

[102] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized
algorithms and probabilistic analysis. Cambridge University Press, 2005.

[103] Sayan Mukherjee. Probabilistic machine learning. http://

www2.stat.duke.edu/~sayan/561/2015/stat ml.pdf, 2015.

[104] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

142

https://newsroom.intel.com/editorials/probabilistic-computing-takes-artificial-intelligence-next-step/
https://newsroom.intel.com/editorials/probabilistic-computing-takes-artificial-intelligence-next-step/
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
http://www2.stat.duke.edu/~sayan/561/2015/stat_ml.pdf
http://www2.stat.duke.edu/~sayan/561/2015/stat_ml.pdf

[105] Makoto Naruse, Masashi Aono, and Song-Ju Kim. Nanoscale photonic network
for solution searching and decision making problems. IEICE transactions on
communications, 96(11):2724–2732, 2013.

[106] Radford M Neal. Probabilistic inference using Markov chain Monte Carlo meth-
ods. Department of Computer Science, University of Toronto Toronto, Ontario,
Canada, 1993.

[107] Radford M Neal. Mcmc using hamiltonian dynamics. Handbook of Markov
Chain Monte Carlo, 2(11):2, 2011.

[108] Cristiano Niclass, Claudio Favi, Theo Kluter, Marek Gersbach, and Edoardo
Charbon. A 128ˆ 128 single-photon imager with on-chip column-level 10b
time-to-digital converter array capable of 97ps resolution. In 2008 IEEE In-
ternational Solid-State Circuits Conference-Digest of Technical Papers, pages
44–594. IEEE, 2008.

[109] Cristiano Niclass, Alexis Rochas, P-A Besse, and Edoardo Charbon. De-
sign and characterization of a cmos 3-d image sensor based on single photon
avalanche diodes. IEEE Journal of Solid-State Circuits, 40(9):1847–1854, 2005.

[110] Nvidia. Nvdla primer. http://nvdla.org/primer.html, 2018.

[111] Hooisweng Ow, Daniel R Larson, Mamta Srivastava, Barbara A Baird, Watt W
Webb, and Ulrich Wiesner. Bright and stable core- shell fluorescent silica
nanoparticles. Nano letters, 5(1):113–117, 2005.

[112] Krishna V Palem. Energy aware computing through probabilistic switching:
A study of limits. IEEE Transactions on Computers, 54(9):1123–1137, 2005.

[113] Darek Palubiak, Munir M El-Desouki, Ognian Marinov, M Jamal Deen,
and Qiyin Fang. High-speed, single-photon avalanche-photodiode imager for
biomedical applications. IEEE Sensors Journal, 11(10):2401–2412, 2011.

[114] Yan Pan, John Kim, and Gokhan Memik. Flexishare: Channel sharing for
an energy-efficient nanophotonic crossbar. In HPCA-16 2010 The Sixteenth
International Symposium on High-Performance Computer Architecture, pages
1–12. IEEE, 2010.

[115] Jun Pang, Chris Dwyer, and Alvin R. Lebeck. More is less, less is more:
Molecular-scale photonic noc power topologies. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages

143

http://nvdla.org/primer.html

and Operating Systems, ASPLOS ’15, pages 283–296, New York, NY, USA,
2015. ACM.

[116] Jun Pang, Christopher Dwyer, and Alvin R. Lebeck. mnoc: Large nanopho-
tonic network-on-chip crossbars with molecular scale devices. J. Emerg. Tech-
nol. Comput. Syst., 12(1):1:1–1:25, August 2015.

[117] Seongwook Park, Kyeongryeol Bong, Dongjoo Shin, Jinmook Lee, Sungpill
Choi, and Hoi-Jun Yoo. 4.6 a1. 93tops/w scalable deep learning/inference
processor with tetra-parallel mimd architecture for big-data applications. In
2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of
Technical Papers, pages 1–3. IEEE, 2015.

[118] Constantin Pistol, Wutichai Chongchitmate, Christopher Dwyer, and Alvin R
Lebeck. Architectural implications of nanoscale integrated sensing and com-
puting. In Proceedings of the 14th international conference on Architectural
support for programming languages and operating systems, pages 13–24, 2009.

[119] Constantin Pistol and Chris Dwyer. Scalable, low-cost, hierarchical assembly
of programmable dna nanostructures. Nanotechnology, 18(12):125305, 2007.

[120] Christian Robert and George Casella. Monte Carlo statistical methods.
Springer Science & Business Media, 2013.

[121] Christian P. Robert, Vı́ctor Elvira, Nick Tawn, and Changye Wu. Accelerating
mcmc algorithms. Wiley Interdisciplinary Reviews: Computational Statistics,
10(5):e1435, 2018.

[122] Stefan Roth and Michael J Black. Fields of experts: A framework for learning
image priors. In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), volume 2, pages 860–867. IEEE, 2005.

[123] Feras A Saad, Cameron E Freer, Nathanael L Ackerman, and Vikash K Mans-
inghka. A family of exact goodness-of-fit tests for high-dimensional discrete
distributions. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 1640–1649, 2019.

[124] Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. Analytical guarantees on
numerical precision of deep neural networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 3007–3016, International Convention Centre, Sydney,
Australia, 06–11 Aug 2017. PMLR.

144

[125] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. International journal of computer
vision, 47(1-3):7–42, 2002.

[126] Friederike Schmid and Nigel B Wilding. Errors in monte carlo simulations using
shift register random number generators. International Journal of Modern
Physics C, 6(06):781–787, 1996.

[127] Gary Shambat, Bryan Ellis, Jan Petykiewicz, Marie A Mayer, Arka Majumdar,
Tomas Sarmiento, James S Harris, Eugene E Haller, and Jelena Vuckovic. Elec-
trically driven photonic crystal nanocavity devices. IEEE Journal of Selected
Topics in Quantum Electronics, 18(6):1700–1710, 2012.

[128] Taejoong Song, Woojin Rim, Sunghyun Park, Yongho Kim, Giyong Yang,
Hoonki Kim, Sanghoon Baek, Jonghoon Jung, Bongjae Kwon, Sungwee Cho,
Hyuntaek Jung, Yongjae Choo, and Jaeseung Choi. A 10 nm finfet 128 mb sram
with assist adjustment system for power, performance, and area optimization.
IEEE Journal of Solid-State Circuits, 52(1):240–249, 2016.

[129] Mario Stipčević and Çetin Kaya Koç. True random number generators. In
Open Problems in Mathematics and Computational Science, pages 275–315.
Springer, 2014.

[130] Tamás Szirányi, Josiane Zerubia, Lászlo Czúni, David Geldreich, and Zoltán
Kato. Image segmentation using markov random field model in fully parallel
cellular network architectures. Real-Time Imaging, 6(3):195–211, 2000.

[131] David B Thomas and Wayne Luk. Using fpga resources for direct generation
of multivariate gaussian random numbers. In Field-Programmable Technology,
2009. FPT 2009. International Conference on, pages 344–347. IEEE, 2009.

[132] Madeleine B Thompson. A comparison of methods for computing autocorre-
lation time. arXiv preprint arXiv:1011.0175, 2010.

[133] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Norman P
Jouppi. Cacti 5.3. HP Laboratories, Palo Alto, CA, 2008.

[134] Seth D Tribble. Markov chain Monte Carlo algorithms using completely uni-
formly distributed driving sequences. PhD thesis, Stanford University, 2007.

[135] Nathaniel Joseph Tye, James Timothy Meech, Bilgesu Arif Bilgin, and Phillip
Stanley-Marbell. A system for generating non-uniform random variates using
graphene field-effect transistors. arXiv preprint arXiv:2004.14111, 2020.

145

[136] Bernard Valeur and Mário Nuno Berberan-Santos. Molecular fluorescence:
principles and applications. John Wiley & Sons, 2012.

[137] Dootika Vats, James M. Flegal, and Galin L. Jones. Multivariate output anal-
ysis for markov chain monte carlo, 2015.

[138] Dootika Vats and Christina Knudson. Revisiting the gelman-rubin diagnostic.
arXiv preprint arXiv:1812.09384, 2018.

[139] Michael Wahl, Matthias Leifgen, Michael Berlin, Tino Röhlicke, Hans-Jürgen
Rahn, and Oliver Benson. An ultrafast quantum random number generator
with provably bounded output bias based on photon arrival time measure-
ments. Applied Physics Letters, 98(17):171105, 2011.

[140] Alastair J Walker. An efficient method for generating discrete random vari-
ables with general distributions. ACM Transactions on Mathematical Software
(TOMS), 3(3):253–256, 1977.

[141] Siyang Wang, Alvin R Lebeck, and Chris Dwyer. Nanoscale resonance energy
transfer-based devices for probabilistic computing. IEEE Micro, 35(5):72–84,
2015.

[142] Siyang Wang, Xiangyu Zhang, Yuxuan Li, Ramin Bashizade, Song Yang, Chris
Dwyer, and Alvin R. Lebeck. Accelerating markov random field inference using
molecular optical gibbs sampling units. In Proceedings of the 43rd International
Symposium on Computer Architecture, ISCA ’16, pages 558–569, Piscataway,
NJ, USA, 2016. IEEE Press.

[143] Yu Emma Wang, Yuhao Zhu, Glenn G Ko, Brandon Reagen, Gu-Yeon Wei,
and David Brooks. Demystifying bayesian inference workloads. In 2019 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 177–189. IEEE, 2019.

[144] Shingo Watanabe and Koki Abe. A vlsi design of mersenne twister. IPSJ SIG
Notes, 2005(41):13–18, may 2005.

[145] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin
dynamics. In Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pages 681–688, 2011.

[146] Allen Y. Yang, John Wright, Yi Ma, and S. Shankar Sastry. Unsupervised
segmentation of natural images via lossy data compression. Computer Vision
and Image Understanding, 110(2):212 – 225, 2008.

146

[147] Laurent Younes. Stochastic gradient estimation strategies for markov random
fields. In Bayesian inference for inverse problems, volume 3459, pages 315–325.
International Society for Optics and Photonics, 1998.

[148] Xiangyu Zhang and Ramin Bashizade. Rolling dice at the nanoscale. XRDS,
26(1):18–22, September 2019.

[149] Xiangyu Zhang, Ramin Bashizade, Craig LaBoda, Chris Dwyer, and Alvin R
Lebeck. Architecting a stochastic computing unit with molecular optical de-
vices. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pages 301–314. IEEE, 2018.

[150] Xiangyu Zhang, Ramin Bashizade, Yicheng Wang, Cheng Lyu, Sayan Mukher-
jee, and Alvin R Lebeck. Beyond application end-point results: Quantifying
statistical robustness of mcmc accelerators. arXiv preprint arXiv:2003.04223,
2020.

147

Biography

Xiangyu Zhang received his Ph.D. in Electrical and Computer Engineering at Duke

University in 2020, advised by Alvin R. Lebeck. Zhang’s research focuses on com-

puter architecture and systems in support of AI/machine learning, probabilistic com-

puting, and statistics. He is a recipient of ECE Graduate Teaching Award for Out-

standing Course Administration in the academic year of 2017-2018. Prior to Duke, he

received his B.S. in 2014 at South China Agricultural University, advised by Yongyao

Li.

148

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction
	1.1 An MRF Gibbs Sampling Unit Using Emerging Technology
	1.2 A CMOS Stochastic Processing Unit
	1.3 Statistical Robustness
	1.4 Design Space Exploration with Statistical Robustness
	1.5 Organization of Dissertation

	2 Background and Motivation
	2.1 Probabilistic Statistical Machine Learning
	2.1.1 Probabilistic Algorithms
	2.1.2 Probabilistic Graphical Models

	2.2 Representative Applications
	2.2.1 Image Segmentation
	2.2.2 Motion Estimation
	2.2.3 Stereo Vision

	2.3 Sampling Overhead
	2.4 Summary

	3 An MRF Gibbs Sampling Unit using Emerging Technology
	3.1 Background
	3.1.1 Enabling Technology
	3.1.2 RET-Based Sampling Units

	3.2 A Macro-scale RSU-G Prototype
	3.2.1 Prototype Setup
	3.2.2 Experimental Results

	3.3 RSU-G Precision vs. Quality
	3.3.1 Methodology
	3.3.2 RSU-G vs. Software-only Quality
	3.3.3 RSU-G Design Parameters and Quality
	3.3.4 Result Quality for new RSU-G

	3.4 A High Quality RSU-G
	3.4.1 Qualitative Design Trade-offs
	3.4.2 A New RSU-G Design
	3.4.3 Evaluation

	3.5 Limitations and Future Work
	3.6 Summary

	4 A CMOS Stochastic Processing Unit
	4.1 RNGs vs. Application Result Quality
	4.2 Exploring a CMOS Stochastic Processing Unit
	4.2.1 SPU Pipeline
	4.2.2 Optimization for FPGA

	4.3 Evaluation
	4.3.1 Result Quality
	4.3.2 FPGA
	4.3.3 ASIC

	4.4 Limitations and Future Work
	4.5 Summary

	5 Statistical Robustness
	5.1 Three Pillars of Statistical Robustness
	5.1.1 Pillar 1: Sampling Quality
	5.1.2 Pillar 2: Convergence Diagnostic
	5.1.3 Pillar 3: Goodness of Fit

	5.2 Analyzing Existing Hardware
	5.2.1 Methodology
	5.2.2 Results Analysis

	5.3 Limitations and Future Work
	5.4 Summary

	6 Design Space Exploration with Statistical Robustness
	6.1 A Case Study: SPU
	6.1.1 Evaluating Design Parameters
	6.1.2 Evaluating RNGs
	6.1.3 Area and Power

	6.2 Limitations and Future Work
	6.3 Summary

	7 Related Work
	7.1 Accelerating Probabilistic Computing
	7.2 Evaluation Methodologies for Probabilistic Computing

	8 Conclusion
	8.1 Summary of Contributions
	8.2 What's Next?

	Bibliography
	Biography

