
Enhancing Transactional Key-Value Storage
Systems in Datacenters using Precise Clocks and

Software-Defined Storage

by

Pulkit A. Misra

Department of Computer Science
Duke University

Date:
Approved:

Alvin R. Lebeck, Supervisor

Jeffrey S. Chase

Jun Yang

Ashwin Machanavajjhala

Ricardo Bianchini

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2019

Abstract

Enhancing Transactional Key-Value Storage Systems in

Datacenters using Precise Clocks and Software-Defined

Storage

by

Pulkit A. Misra

Department of Computer Science
Duke University

Date:
Approved:

Alvin R. Lebeck, Supervisor

Jeffrey S. Chase

Jun Yang

Ashwin Machanavajjhala

Ricardo Bianchini

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2019

Copyright c© 2019 by Pulkit A. Misra
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

Transactional key-value storage is an important service offered by cloud service

providers for building applications (e.g., Amazon DynamoDB, Microsoft CosmosDB,

Google Spanner). This type of service is popular because it provides high-level

guarantees like consistency, scalability and fault-tolerance to ease application devel-

opment and deployment on the cloud. Unfortunately, providing high performance

without high complexity entails several challenges for transactional key-value storage

systems in datacenters due to several sophisticated protocols that provide the high-

level guarantees (e.g., transaction and replication), and the the overheads incurred

by traversing multiple abstraction layers.

We leverage two emerging datacenter capabilities — precise synchronized clocks

and software-defined storage — to address the performance and complexity chal-

lenges with transactional key-value storage systems in datacenters. To this end, we

use a cross-layer approach that investigates all levels of the storage stack, from devel-

oper APIs to underlying hardware. We show that this methodology opens avenues

for synergistic interactions between software and the underlying hardware, and leads

to simpler system designs with better performance.

This dissertation presents 4 systems — Semel, Milana, Kairos and SkimpyFTL.

Semel is a multi-version key-value storage system that exploits remap-on-write prop-

erty of flash-based Solid State Drives for device-integrated multi-versioning and uses a

simplified, unordered (inconsistent) replication protocol for fault tolerance. Milana

iv

supports serializable ACID transactions over Semel using an enhanced Optimistic

Concurrency Control protocol that leverages intra-datacenter precisely synchronized

clocks to reduce transaction abort rate and enable local validation of read-only trans-

actions. Kairos builds over Milana and adds support for inter-transaction caching

and sharded transaction validation; cache consistency in Kairos is based on a sim-

ple, stateless, time-to-live protocol with leases, without having to track sharers or

send invalidations like with directory-based cache consistency protocols. Finally,

SkimpyFTL builds over Semel and adds support for memory-efficient data index-

ing in flash-based key-value storage systems.

v

To my father and lifelong mentor, Ambikanandan Misra.

vi

Contents

Abstract iv

List of Tables xi

List of Figures xii

Acknowledgements xiv

1 Introduction 1

1.1 Overview and Challenges . 3

1.2 Contributions . 7

1.3 Summary . 9

2 Background and Motivation 10

2.1 Precise Synchronized Clocks . 11

2.1.1 Basics of Clock Synchronization 12

2.1.2 Improving Clock Synchronization Accuracy 13

2.1.3 Using Precise Synchronized Clocks 14

2.2 Software-Defined Storage . 16

2.2.1 Internals of a Flash-Based Solid State Drive 17

2.2.2 Software-Defined Flash . 19

2.3 Summary . 20

3 Semel and Milana 21

3.1 Semel: A Replicated Multi-version Key-Value Store 23

vii

3.1.1 Multi-version Flash Translation Layer 25

3.1.2 Lightweight Inconsistent Replication 27

3.1.3 Linearizability with Global Clocks 28

3.2 Milana: A Transactional Key-Value Storage System 29

3.2.1 Transaction Protocol . 31

3.2.2 Two-Phase Commit: Write Validation 34

3.2.3 Local Validation of Read-only Transactions 35

3.2.4 Snapshot Reads . 36

3.2.5 Version Management . 37

3.2.6 Recovery . 38

3.2.7 Comparison with TAPIR . 43

3.3 Evaluation . 44

3.3.1 Semel Evaluation . 45

3.3.2 Milana Evaluation . 47

3.3.3 Comparison of Local Validation Techniques 50

3.4 Related Work . 52

3.5 Summary . 54

4 Kairos 55

4.1 Background . 57

4.2 Inter-Transaction Caching . 59

4.2.1 Self-Invalidation with Soft Leases 60

4.2.2 Comparison of Caching Techniques 60

4.2.3 Ideal Lease Duration for a Key 62

4.3 Kairos: A Transactional Key-Value Storage System 68

4.3.1 System Architecture . 68

viii

4.3.2 Transaction Protocol . 70

4.3.3 Transaction Validation . 72

4.3.4 Watermarks and Version Management 74

4.3.5 Recovery . 75

4.3.6 Comparison with Centiman 76

4.4 Evaluation . 76

4.4.1 Inter-Transaction Caching . 78

4.4.2 Comparison with a Baseline System 84

4.5 Related Work . 86

4.6 Summary . 88

5 SkimpyFTL 89

5.1 Background . 92

5.2 SkimpyFTL: A Multi-Version Flash Translation Layer 93

5.2.1 Mapping Table . 93

5.2.2 Mapping Translation Cache 95

5.2.3 Request Life Cycle . 95

5.2.4 Garbage Collection . 96

5.3 Evaluation . 97

5.3.1 Key-Value Workload . 100

5.3.2 Transactional Workload . 101

5.4 Related Work . 102

5.5 Summary . 103

6 Conclusion 104

6.1 Key Contributions . 105

6.2 Directions for Future Work . 108

ix

6.3 Summary . 110

Bibliography 111

Biography 126

x

List of Tables

3.1 Single SSD Multi-version FTL Performance 46

3.2 Distributed Multi-version KV Store Performance 47

3.3 Retwis Configuration . 47

xi

List of Figures

1.1 Transactional key-value storage system in a datacenter 4

2.1 Messages for clock synchronization 11

2.2 Impact of clock skew . 15

2.3 Flash Translation Layer . 18

3.1 Mapping Table and Data Layout in Semel 26

3.2 Snapshot reads with MVCC . 30

3.3 Two Phase Commit . 34

3.4 Milana Relaxed Backup Updates . 40

3.5 Transaction abort rate for varying number of clients 48

3.6 PTP vs. NTP: Milana Transaction Abort Rates 49

3.7 Retwis Transaction Latency vs. Throughput 50

3.8 Comparison of Local Validation Techniques 51

4.1 Impact of clock skew, ε ąą tnetwork with NTP 59

4.2 Impact on client cache consistency with various caching techniques . . 61

4.3 Arrival rates and inter-access times for a key 64

4.4 Fresh hit duration (dfresh) in a stale lease period 65

4.5 Ideal lease, Rcache
mean = 1 ms, W global

mean = 19 ms. 66

4.6 Kairos architecture . 68

4.7 Two Phase Commit (2PC) . 73

4.8 Client cache size vs hit rate . 79

xii

4.9 Fresh hit rate with varying lease durations for a key 79

4.10 Commit rate: ideal vs static strategy for lease calculation 79

4.11 Commit rate with different caching technique 81

4.12 Normalized average server latency . 81

4.13 Throughput: explicit invalidation vs lease-based caching 83

4.14 Normalized transaction latency: explicit invalidation vs lease-based
caching . 83

4.15 Messages saved: explicit invalidation vs lease-based caching 83

4.16 Throughput with varying read transaction % 84

4.17 Throughput with varying αr (90% read-only txn) 85

5.1 Transaction abort rate with single vs multi-version storage 90

5.2 Mapping table and data layout on flash in Semel 92

5.3 Mapping table, translation cache and data layout on flash in SkimpyFTL 94

5.4 Translation cache size vs hit rate for varying values of α 99

5.5 Impact of # keys / bucket . 100

5.6 Throughput with key-value micro-benchmark 100

5.7 Throughput vs Latency for a transactional workload 102

xiii

Acknowledgements

This dissertation would not have been possible without the guidance and support of

many people. First and foremost I would like to thank my advisor, Alvin Lebeck. I

am extremely grateful to him for giving me the freedom of thought, and for teaching

me the importance of looking at the big picture rather than just fretting about the

minute details. Also, I am constantly amazed by his knack of providing critical

insights on my half-baked ideas, far beyond my own understanding. I hope that

some day I can master this skill like him.

I would also like to express my gratitude to many amazing collaborators who

taught me how to perform high-quality research. I would like to thank Jeff Chase for

improving all aspects of my work. His presentation skills have had a lasting impact.

Johannes Gehrke taught me the importance of choosing the “right” problem. Ricardo

Bianchini and Íñigo Goiri taught me how to perform large-scale systems research

and showed how much fun and rewarding this can be during my two internships at

Microsoft Research.

My life at Duke would not be complete without the amazing staff and graduate

students. Marilyn Butler was just a door knock away for advise on all aspects of

life. Pam Spencer made it extremely easy to schedule events. Joe Shamblin helped

out with managing servers on multiple occasions; he even came in on a weekend to

power cycle my server while I was on the west coast. I also greatly benefited from the

interactions with my fellow graduate students, especially Ramin Bashizade, Xiangyu

xiv

Zhang, Bryan Prosser, Tamara Lehman, George Mappouras, Sean Murray, Atefeh

Mehrabi, Jack Snyder, Sahba Tashakkori, Sudarshan Balaji and Amir Gilad. I will

also cherish the high-intensity table tennis matches with Sam Haney.

My family has been a great source of encouragement and support throughout

the years. I would like to thank my dad, Ambikanandan Misra, for setting the best

example; I would have never reached this point without your advise and support.

My mom, Sarita Misra, is always there for guidance. I want to thank her for her

unwavering belief in me, which has been extremely beneficial through tough times.

Finally, I would like to thank my best friend and wife, Jharna Modi, for always

taking care of me. She has been my anchor to reality and has provided more en-

couragement and support than I deserve. I hope I can partly return the favor in the

years to come.

xv

1

Introduction

Large-scale datacenters provide the computational infrastructure that underlies the

increasing use of cloud services. A key aspect in many datacenters is the use of

commodity hardware to provide scale-out cloud infrastructure for services such as

Software as a Service(SaaS), Hardware as a Service (HaaS) and the more generalized

Anything as a Service (XaaS). Today’s datacenters exhibit properties of both loosely

coupled distributed systems and tightly coupled supercomputers. For example, net-

working infrastructure now mimics early supercomputers with low latency and high

bandwidth per link, high bisection bandwidth Fat-Tree topologies [8, 77], and remote

memory operations (e.g., RoCE). We believe that the rapid increase in cloud com-

puting is driving a trend to move further toward supercomputing-like capabilities.

Nonetheless, the scale and criticality of today’s systems demands a distributed ser-

vice architecture that is simple, scalable, provides good performance and is resilient

to failures, even within the datacenter.

In keeping with this model it is crucial to continually examine existing, new and

emerging features available to improve support for cloud services. Several software

and hardware trends have emerged to this end. For example, a trend in software is

1

to shift from designing large, complex, monolithic services to using a large number

of simple, single-purpose, loosely-coupled microservices for providing the same end-

to-end service functionality, because this approach improves software modularity,

deployment flexibility and performance debugging [119, 1, 28, 49]. Another trend is

to leverage specialized hardware to improve performance of large-scale cloud services.

For example, GPUs [7, 6] and reconfigurable FPGAs [106, 20] have been used to

accelerate web search. FPGAs and specialized hardware accelerators have also been

leveraged to enable machine learning in real time in datacenters [48, 63].

We focus on transactional key-value storage service inside datacenters. Key-

value storage is a fundamental building block for many modern-day, data-intensive

applications and is used in a variety of domains, such as web-indexing [23, 33], e-

commerce [37], data deduplication [34], photo stores [14], social networking [97, 19,

114], online gaming [35], messaging [56, 55] and more. Key-value storage systems

are designed for linear outward scalability to thousands of servers. Data in these

systems is stored as an independent collection of key-value pairs, that are distributed

over a cluster of servers. Earlier versions of key-value storage systems provided a

simple GET and PUT interface to access single key-value pairs, without any support

for transactions, i.e. guaranteeing atomicity, consistency, isolation, and durability

(ACID) of data accesses [37, 29, 70]. This limitation was because transactions were

thought to be incompatible with the scalability goals of these systems [121]. However,

several recent works show that ACID transactions can be a practical extension to

key-value storage systems, and this extension helps application developers manage

complexity and concurrency in distributed environments [31, 116, 67, 39, 130, 43].

Transactional key-value storage systems are popular because they provide high-

level guarantees like consistency, scalability and fault-tolerance to ease application

development. Unfortunately, providing high performance without high complexity

entails several challenges for transactional key-value storage systems in datacenters

2

due to several sophisticated protocols that provide the high-level guarantees (e.g.,

transaction and replication), and the the overheads incurred by traversing multiple

abstraction layers.

We leverage 2 emerging datacenter capabilities — precise synchronized clocks

and software-defined storage — to address the performance and complexity chal-

lenges with transactional key-value storage systems. To this end, we use a cross-

layer approach that spans from low-level software close to the hardware up through

developer APIs as we believe that re-examining existing abstractions exposes new

opportunities for enhancing this important cloud service.

The remainder of this chapter is organized as follows. Section 1.1 provides an

overview of transactional key-value storage systems inside datacenters, and describes

the challenges introduced by the different protocols used by these systems. We

describe our key contributions in addressing the challenges in Section 1.2.

1.1 Overview and Challenges

Transactional key-value storage systems inside datacenters are arranged in a client-

server architecture, as illustrated in Figure 1.1. Requests of external clients (users)

to a cloud-based application are sent to application servers in the nearest datacenter.

Within a datacenter, a load balancer distributes user requests across the application

server tier. The application servers are the clients of the storage system. User

requests are executed as transactions on a client; each client has a front-end library to

issue transaction operations to the storage servers, where the key-value data resides.

For fault tolerance, each key-value pair is replicated across multiple storage

servers. The application key space is partitioned (sharded) across servers; shard-

ing enables horizontal scaling of the storage system because capability (e.g., storage

capacity, peak throughput) can be increased by adding new servers and assigning

key shards to them. All the servers (client and storage) in the system are monitored

3

Storage servers

P
B

B

App server n

Load Balancer

Application Front end

App server 1

Application Front end

Storage clients

Transactional data access

(reads and writes)

Datacenter

External

clients

(users)

Requests

Distribute requests

among App servers

Transactional data access

(reads and writes)

Figure 1.1: Structure of a transactional key-value storage system in a datacenter

by a global master, which facilitates scaling and handling failures in the system.

Transactional key-value storage systems use several protocols to provide high-

level guarantees (e.g., consistency, fault tolerance) and good performance to the

application. They use a storage protocol for data management on each storage server.

A replication protocol is used for fault tolerance. These systems layer a transaction

protocol over replicated servers for providing ACID transactions. Finally, they use

an inter-transaction caching protocol for providing good performance. Below we

describe each protocol and also highlight the challenges with the protocol.

Storage Protocol. Transactional key-value storage systems typically use a multi-

version storage to increase concurrency in the system since read requests can be

satisfied using a prior (older) version, while writes create new versions [15, 31, 95,

44, 125]. However, there are several challenges in designing a multi-version storage.

First, the extra versions require additional capacity. Second, these systems need an

indexing mechanism to map versions of a key to their value. A näıve approach is to

store the entire index in main memory (DRAM); this approach provides the lowest

read latency but has a high space overhead. An efficient indexing technique needs

4

to tradeoff between lookup latency and memory requirement for indexing. Third,

multi-versioning necessitates a version management scheme for effective capacity

utilization. The scheme needs to strike a balance between keeping and discarding

prior versions for servicing read requests and capacity reclamation, respectively.

Replication Protocol. Key-value storage systems use a replication protocol for

fault tolerance and high availability. Typical replication protocols, such as Paxos [71]

and Viewstamped Replication [98], cluster a group of servers into an ensemble called

a replica group. One server in a replica group acts as the primary (or leader), and

the remaining act as backups. A leader drives operations in sequence order to the

backups for consensus (strong consistency). However, this approach to achieving

consensus incurs high latency because each operation commits only after a majority

of replicas accept it, and the ordering requirement prevents a replica from accepting

an operation until it has accepted all prior operations.

Transaction Protocol. Key-value storage systems layer a transaction protocol over

a group of replicated servers for supporting ACID transactions. A transaction proto-

col includes a concurrency control mechanism to enforce isolation among concurrent

transactions. This isolation can be provided in two ways: 1) Two Phase Locking

(2PL), and 2) Optimistic Concurrency Control (OCC) [68]. 2PL is a pessimistic

approach since it requires a client to acquire a read/write lock for each key accessed

by a transaction. However, acquiring locks limits concurrency and is also prone to

deadlocks. In contrast, OCC eschews acquiring locks and therefore enhances con-

currency relative to 2PL. A transaction in OCC is speculatively executed without

acquiring any locks and is validated before commit to identify any conflicts due to

concurrent modification by other transactions. Validation typically occurs on storage

servers [3, 75, 130, 92] and any transaction that fails validation is aborted.

A prior work, Thor [3], integrates loosely-synchronized clocks with OCC and

shows how timestamps can be used to detect conflicts during transaction validation;

5

many systems use a variant of the OCC techniques pioneered in Thor [41, 39, 130, 42,

75, 25, 92, 129]. Unfortunately, clock skew between servers can impact abort rates

with OCC as it increases the risk of timestamp ordering conflicts during validation [3].

With advancements in network technologies and newer storage mediums (e.g., Non-

volatile Memory), data access (read/write) latencies in key-value storage systems

can be in order of 10s of µs [53]. Whereas, typical clock synchronization protocols,

such as Network Time Protocol (NTP), provide a synchronization accuracy of 10s

of milliseconds, which is very coarse grained and can lead to spurious aborts. Such

aborts lead to increased application latencies and lower throughput.

Inter-Transaction Caching Protocol. The popularity of data items in real-world

workloads often exhibits a power law distribution [30, 11]. In such distributions, a

small subset of the data (key-value pairs) receives a disproportionately high number

of accesses and can cause the storage server(s) storing this frequently-accessed data

to bottleneck the entire system. Such bottlenecks cause longer transaction execution

times, which, in turn, increases the likelihood of contention among transactions,

leading to higher abort rate and performance degradation [129].

Caching frequently-accessed data on clients can alleviate such workload-induced

hotspots. However, systems (e.g., Thor [3]) that support inter-transaction caching

typically use explicit invalidation for client cache consistency. This approach requires

servers to track sharers (client caches with a copy) of each object and send invalida-

tions (callbacks) to sharers for removing the cached copy on each update. However,

explicit invalidation introduces substantial performance and scalability overhead in

transactional key-value storage systems. As a result, many recent systems do not

address inter-transaction caching at all [31, 116, 41, 75, 39, 130, 92].

6

1.2 Contributions

We leverage two emerging datacenter capabilities — precise synchronized clocks and

software-defined storage — to address the following challenges with transactional

key-value storage systems: 1) multi-version storage protocol, 2) ordering constraint

of replication protocol, 3) high abort rate due to clock skew with the transaction pro-

tocol (Optimistic Concurrency Control), and 4) explicit invalidation overhead with

the inter-transaction caching protocol. Below we summarize our key contributions.

Chapter 3 describes two systems: Semel and Milana. Semel is a multi-version

key-value storage system that provides non-transactional access to single keys. It ad-

dresses the capacity and version management challenge with storage by implementing

multi-versioning in the Flash Translation Layer (FTL) of a Solid State Drive (SSD).

Furthermore, it leverages precise synchronized clocks to design an inconsistent repli-

cation protocol that performs update ordering only on server failures.

Our Semel implementation utilizing Precision Time Protocol (PTP) [60] and the

LightNVM Open-Channel SSD emulation framework [18] reveals a 20-45% increase

in throughput and up to 7ˆ lower GET latency on a single machine compared to a

näıve multi-version key-value storage system implemented over a standard FTL for

read heavy workloads (50-100% GET ops).

Milana adds OCC to support ACID transactions over Semel. Milana ad-

dresses the challenge of high abort rate due to clock skew with OCC. We show that

clock skew with Network Time Protocol (NTP) [91] is too high in modern datacenters

and that PTP enables use of OCC with low abort rates. Furthermore, Milana uses

precise synchronized clocks to eliminate server-side validation of read-only transac-

tions, which reduces the number of messages and improves performance.

Evaluation of Milana prototype using Retwis [73] workload show up to 43%

reduction in abort rates using PTP vs. NTP due to tighter clock synchronization.

7

Moreoever, local client validation of read-only transactions in Milana reduces trans-

action latency by 35% and increases throughput by 55% for read-heavy workloads.

In Chapter 4, we describe Kairos, a system that builds on the approach of

Milana by using precise synchronized clocks for OCC and adds support for inter-

transaction caching, without the cost of tracking sharers and explicit invalidations.

Precise synchronized clocks enable a simple time-to-live (TTL) protocol with leases

for cache consistency. Furthermore, Kairos leverages sharded validation [39] to

decouple transaction validation from the servers, and adapts it to work with inter-

transaction caching.

Evaluation of a Kairos prototype using a YCSB workload [30] reveals that inter-

transaction caching alone improves throughput by 1.86x relative to a baseline sys-

tem with only intra-transaction caching; adding sharded validation further improves

throughput by a factor of 2.28 under a workload with a hotspot that saturates a

storage server. Furthermore, our evaluation shows that lease-based inter-transaction

caching can operate at a 62.5% higher scale while providing 1.55x the throughput of

a system with explicit invalidation-based caching in workloads with hot keys.

Chapter 5 describes SkimpyFTL, a system that builds on top of Semel and ad-

dresses the challenge with memory-efficient indexing in multi-version storage. SkimpyFTL

uses a hash-based approach for indexing and offloads portions of the index to flash

for enabling a tradeoff between memory capacity and lookup latency for indexing.

A SkimpyFTL prototype utilizing LightNVM Open-Channel SSD emulation

framework [18] reveals SkimpyFTL provides 72-91% throughput of Semel for read-

dominant key-value workloads (75-100% reads), while reducing the memory require-

ment for indexing by 95%. For a transactional YCSB [30] workload, SkimpyFTL

provides 85% peak throughput of Semel. Finally, SkimpyFTL outperforms a näıve

multi-version key-value store implemented over a standard FTL.

8

1.3 Summary

The trend of datacenters to exhibit properties of both tightly coupled supercomput-

ers and loosely coupled distributed systems presents unique opportunities to optimize

cloud service implementations. We examine transactional key-value storage, an im-

portant service in datacenters. Unfortunately, providing high performance without

high complexity entails several challenges for these systems due to use of sophisticated

protocols and various levels of abstraction. To address these challenges, we leverage

two emerging capabilities — precise synchronized clocks and software-defined stor-

age — and use a cross-layer approach of investigating all levels of the storage stack,

from developer APIs to underlying hardware. We show that this methodology opens

avenues for synergistic interactions between software and underlying hardware, and

leads to simpler system designs and better performance.

9

2

Background and Motivation

Cloud computing has emerged as a successful and ubiquitous paradigm for service

oriented computing and has revolutionized the way computing infrastructure is ab-

stracted and used. Several cloud abstractions have gained popularity over the years

e.g., Software as a Service (SaaS), Infrastructure as a Service (IaaS), and the gener-

alized Anything as a Service (XaaS). These services provide many enabling features

(e.g., elasticity, high availability, low time to market, and transfer of risks etc.) that

have made cloud computing a ubiquitous paradigm for deploying applications span-

ning all aspects of the human endeavor. Analysts forecast that global cloud services

revenue will reach $410 billion by 2020 [50, 127].

The scale and criticality of these services demands a distributed system architec-

ture that is simple, scalable, provides good performance and is resilient to failures.

Therefore, it is crucial to continually examine existing, new and emerging features

available to enhance these services. For example, GPUs [7, 6] and reconfigurable

FPGAs [106, 20] have been used to accelerate web search. FPGAs and specialized

accelerators have also been leveraged to enable machine learning in real time [48, 63].

Similarly, smart Network Interface Cards (NICs) [79] and switches [85, 61] have been

10

Sync

message

Sync response message (send T2, T3)

T1

T2

T4

Server 1
(master)

Server 2
(slave)

T3

Figure 2.1: Exchange of messages for clock synchronization

used to optimize storage services in datacenters.

In this same spirit, our work leverages two emerging datacenter capabilities —-

precise synchronized clocks and software-defined storage — to architect transactional

key-value storage, an important service inside datacenters. This chapter describes

these 2 emerging technologies. We start by describing precise synchronized clocks in

Section 2.1; software-defined storage is defined in Section 2.2.

2.1 Precise Synchronized Clocks

Several clock synchronization protocols with varying level of synchronization accu-

racy — from 10s of ms to 100s of ns — have been proposed in the literature [91, 60, 76,

53]. We start by describing how these protocols synchronize clocks in Section 2.1.1.

Section 2.1.2 describes the techniques used by various protocols to improve clock

synchronization accuracy. We conclude this section by describing how we use precise

synchronized clocks in Section 2.1.3.

11

2.1.1 Basics of Clock Synchronization

Figure 2.1 illustrates the messages exchanged between two servers for clock synchro-

nization, where one server acts as the master (time source) and the other as a slave,

who synchronizes its clock with the master. Different clock synchronization protocols

use different terminologies and sets of messages but the underlying principle is the

same: exchange messages to calculate one way delay (OWD) between the servers and

clock offset with the master. The figure shows a slave sending a sync message at time

T1, which is received by the master at time T2. Later, the master sends back a sync

response message at time T3, which is received by the slave at time T4; the response

message contains the timestamps T3 and T4. At the end of the exchange, a slave

has 4 timestamps needed for synchronizing its clock with the master. Equation 2.1

shows how to calculate the OWD between the servers; the calculation assumes that

the latency to send a message between a master and slave is symmetric i.e., it takes

similar time, irrespective of the sender (master or slave). After calculating OWD, a

slave can use Equation 2.2 to determine its clock offset from the master. Typically,

clock synchronization protocols take several samples of these 4 timestamps and use

average values for synchronization; they may also filter outliers [53].

latencySM “ T2´ T1

latencyMS “ T4´ T3

OWD “
latencySM ` latencyMS

2

(2.1)

clockOffset “ latencySM ´OWD (2.2)

12

2.1.2 Improving Clock Synchronization Accuracy

Although synchronization protocols use a variant of the above described mechanism

to calculate clock offset, the synchronization accuracy can vary significantly. For

example, Network Time Protocol [91] achieves a synchronization accuracy of several

ms, whereas Precision Time Protocol [60] delivers a ă 1 µs accuracy. This is because

any queuing delays at any point in the communication path between the master and

a slave can cause a slave to estimate inaccurate values for OWD and clock offset,

and thereby impact synchronization accuracy.

In NTP, the clock synchronization messages are timestamped on the host pro-

cessor. Consequently, it is susceptible to any queuing delays in the operating system

stack of the host (e.g., a context switch after a message has been timestamped but

before it is sent over the wire) or the network stack (e.g., queuing delays in the

input or output port of a network switch in the communication path between the

master and a slave). In contrast, synchronization messages are timestamped on the

Network Interface Card (NIC) in PTP, just before the message is sent/received over

the network; this approach eliminates queuing delays in the operating system stack

on the host. To eliminate queuing delays in the network stack, PTP uses special-

ized “transparent” switches, which record the ingress and egress time of each clock

synchronization packet to account for queuing latencies in the network. As a result,

PTP yields a ă 1 µs synchronization accuracy.

Furthermore, recent research demonstrates ď 150 ns skew across a datacen-

ter [76, 53]. DTP [76] achieves precise clock synchronization on servers by exploiting

IEEE 802.3 Ethernet standard’s natural clock synchronization mechanism between

the transmitter and receiver PHYs at either end of a wire. DTP improves synchro-

nization skew beyond PTP to less than 160ns throughout a datacenter and less than

30ns for directly connected servers. However, like PTP, DTP requires specialized

13

hardware at every PHY in the datacenter. In contrast, Huygens [53] achieves ă

100 ns clock synchornization accuracy between servers across a datacenter without

using any specialized network switches. It leverages several techniques towards this

end. First, it filters out “noisy” synchronization messages that suffer from queuing

delays. Second, it uses a machine learning classifier to accurately estimate OWD

and clock offset. Finally, it exploits a natural network effect — the idea that a group

of pair-wise synchronized clocks must be transitively synchronized — to detect and

correct synchronization errors even further.

2.1.3 Using Precise Synchronized Clocks

Precise synchronized clocks enable distributed applications to operate on a common

time axis, which, in turn, enables key functions like consistency, event ordering,

causality and the scheduling of tasks and resources with precise timing [53].

An early paper by Liskov [83] describes many fundamental uses of precise syn-

chronized clocks in distributed systems. Thor [3] pioneered the technique to provide

transactions in distributed storage systems using Optimistic Concurrency Control

(OCC) and synchronized clocks. In recent times, Google’s Spanner [31] used syn-

chronized clocks to provide external consistency in geo-distributed storage systems.

Benefits of synchronized clocks have also been shown in the network. In software-

defined networks, synchronized clocks create an order of forwarding rule updates,

which helps avoid routing loops [87]. Precise synchronized clocks can also be used

to assign time slots for sending packets and thereby achieve high bandwidth and

near-zero queuing delays [104].

Our work uses precise synchronized clocks to simplify protocols and improve

performance of transactional key-value storage systems within a datacenter. With

advances in network technology, the one-way network latency is ă 10 µs [53]. Storage

access latencies (e.g., solid state drives) are on similar scales. In this scenario, clock

14

V = t + ε

C2: write
T = t + 0.1ε

V = 0.5t

C1: write
T = t + ε

V = t + ε

C2: write
T = t + 0.5ε

V = t + ε

C2: write
T = t + ε + 1

tw

ε

Time

t: current time ε: clock skew V: version tw: write latency T: write time

Figure 2.2: Impact of clock skew

skew becomes critical for performance. Figure 2.2 illustrates such a scenario; it

shows an example of a shared object updated by two clients C1 and C2, ε is the

clock skew and tw is the write latency. The system in the figure rejects any writes

that attempt to create a new version with timestamp less than the timestamp of the

current version, just like OCC. Since the client with a leading clock (C1) updates

the object first, the lagging client (C2) has to wait for a duration ą ε before it can

successfully update the shared object. If ε ąą tw then there are spurious aborts even

though the storage system is capable of satisfying a new write request.

Our Milana work shows that NTP time skew is too high for modern low-latency

datacenters and that PTP enables use of OCC with low abort rates, even in high-

contention scenarios. Furthermore, precise synchronized clocks enable Semel to sim-

plify and optimize the various protocols used by key-value storage systems. Semel

simplifies the replication protocol to just provide fault tolerance without any ordering

guarantees. Semel and Milana are described in Chapter 3. Finally, our Kairos

work leverages precise synchronized clocks to enable inter-transaction caching with

soft leases and dynamic self-invalidation, which helps improve performance and alle-

15

viate workload-induced hotspots in transactional key-value storage systems. Chapter

4 describes Kairos.

Next, we describe software-defined storage and how we leverage it to address the

storage protocol challenges in transactional key-value storage systems.

2.2 Software-Defined Storage

A key service in datacenters is reliable persistent storage—historically provided by

replicated hard disk drives (HDDs). The performance of HDDs has lagged far behind

processors, memory and networks; since 1970, the performance of a microprocessor

has increased by 200,000x, whereas, in the same time period, disk access latency

has improved by only 9x and while throughput has improved by 163x [21]. This

performance gap made the performance of software layers that manage storage —

file systems, device drivers, storage networks, databases—relatively unimportant to

overall system performance [115].

However, emerging persistent memory technologies, such as battery-backed DRAM,

byte-addressable non-volatile memories (e.g., PCM, STTRAM etc.), and even coarser

block-addressable Solid State Drives (SSDs), provide characteristic access latency

between 100 ns and 10s of µs. These mediums alter the landscape of storage en-

tirely and require software designers to rethink the importance and role of software

in storage systems. Various tradeoffs have emerged to this end. For example, the

NVMe standard enables per core user-space access to flash-based SSDs and thereby

avoids inter-core communication and also bypasses the inefficient operating system

I/O stack. Furthermore, the standard defines a protocol for direct access to flash

storage via the network, without involvement of the host processor. In contrast,

Software-defined Flash (SDF) is a more radical approach that enables tailoring SSDs

according to application requirements. It exposes the internal geometry of the SSD

to applications, and allows applications to participate in scheduling I/Os and flash

16

management.

Our work leverages SDF for exploiting an intrinsic characteristic —remap-on-

write— of flash-based SSDs. We start by briefly describing the internals of flash-

based SSDs and the intrinsic characteristic that we exploit in Section 2.2.1. Sec-

tion 2.2.2 describes how we use SDF.

2.2.1 Internals of a Flash-Based Solid State Drive

A SSD comprises several flash memory chips and a programmable controller that exe-

cutes the Flash Translation Layer (FTL). SSD capacity is increasing rapidly through

the use of vertical stacking. Simultaneously, increased throughput and decreased

latency is achieved by using new queue-based PCIe interfaces (e.g., NVMe), similar

to those used in high-performance network interfaces (e.g., Infiniband). SSDs can

achieve «1M IOPs with capacities near 1TB per drive, and latencies of « 50´100µs

at less than $1.00/GB. These advances in SSD design and implementation further

improve their ability to handle high-throughput big data processing. Flash continues

to see increased use within datacenters [51, 57, 120].

Flash memory is organized as an array of blocks where each block contains some

number of pages. Typically pages are 2-16KB in size and each block contains 128-

256 pages. The page size is the smallest unit for reads and writes. Without loss of

generality, we consider a single-level flash bit cell that can be written in only one

direction (0 to 1). A page write operation only sets values to 1, and thus if the data

changes from a 1 to 0, the page must first be erased and then the new data written

(erase-before-write). Unfortunately, erase operations on flash occur only at a block

granularity (block-grained erase). Moreover, flash has limited endurance: each block

can be erased only a certain number of times before the cells wear out.

To accommodate the above characteristics and limitations, the Flash Translation

Layer (FTL) of flash-based SSDs provides a dynamic mapping of logical addresses

17

LBA PBN Page

0 0 0

8 1 0

16 0 1

24 1 2

… … …

LBA mapping table

Page Data OOB

0 … LBA=0

1 … LBA=16

2 … LBA=40

3 … LBA=64

Physical Block 0

Page Data OOB

0 … LBA=8

1 … LBA=32

2 … LBA=24

3 … LBA=56

Physical Block1

LBA: Logical Block Address
PBN: Physical Block Number
OOB: Out-Of-Band Space

Figure 2.3: Flash Translation Layer (FTL) Mapping of Logical Blocks to Physical
Pages & Blocks

to physical locations. The FTL presents a block device interface to the Operating

System (OS) [5] and maps a Logical Block Address (LBA) to a page in flash memory,

as shown in Figure 2.3. This level of indirection allows the FTL to remap a logical

block to a new physical page on each write, leaving the old value in place pending

garbage collection. The FTL’s garbage collector may remap existing (current and

valid) pages as needed to free complete blocks to erase. The FTL also implements

wear-leveling: it distributes writes uniformly across physical locations, so the flash

cells wear at the same rate.

Historically, the FTL was implemented entirely within the SSD enclosure and

exposed a traditional block abstraction to software. This structure enables tight

control over garbage collection and wear-leveling, aspects that can influence warranty

guarantees for vendors, and allows close integration with flash read/write circuitry

for read/write operations; however, it can limit flexibility.

18

2.2.2 Software-Defined Flash

Software-Defined Flash (SDF) is a technique to separate the FTL functionality and

enable applications to participate in I/O scheduling and flash management [101, 62,

100, 22], with several vendors providing some form of this capability (e.g., CNEX

Labs, SanDisk/FusionIO, Radian Memory). This approach enables several optimiza-

tions across traditional system boundaries. First, it eliminates one level of indirection

since applications, such as key-value storage systems, do not need to consider SSDs

as a block device and can directly map its logical blocks (e.g., keys) to pages on flash.

Several works exploit this observation [88, 58, 131, 62, 111]. Next, customized map-

ping techniques that exploit application or system specific information can provide

new functionality and/or improve performance. Prior work exploits this observa-

tion for providing snapshot capability for flash-based storage [113]. Another work

leverages SDF to exploit the inherent parallelism of SSDs by mapping log-structured

merge (LSM) tree [99] operations on to different SSD channels [100].

We leverage SDF to design a lightweight multi-version storage. Semel exploits

the remap-on-write property of flash-based SSDs to maintain multiple versions of keys

and exposes these versions to the application. Our Milana work leverages the multi-

version storage of Semel to support transactions using multi-version concurrency

control [15]. Semel and Milana are described in Chapter 3. Our SkimpyFTL work

explores multi-version indexing techniques in flash-based key-value storage systems.

Specifically, we explore the tradeoff between DRAM capacity for mapping multiple

versions on the host and performance. We describe SkimpyFTL in Chapter 5.

Finally, although our work focuses on flash-based SSDs, the approach generalizes

to other storage technologies as well that naturally preserve multiple versions of each

key as it is updated (remap-on-write property). Our work can be applied to such

storage technologies to build high-performance, reliable, low-cost, scale-out storage.

19

2.3 Summary

The scale and criticality of large-scale cloud services demands a distributed service

architecture that is simple, scalable, provides good performance and is resilient to

failures. Therefore, it is crucial to continually examine existing, new and emerging

features available to enhance these services. Our work leverages two emerging ca-

pabilities — precise synchronized clocks and software-defined storage — to architect

transactional key-value storage systems in datacenters. Precise synchronized clocks

provide server clock skew in 100s of nanoseconds and enables distributed applica-

tions to operate on a common time axis, which, in turn, enables simplifying and op-

timizing protocols used in transactional key-value storage systems. Software-defined

storage allows applications to participate in I/O scheduling and data management,

and thereby enables creating application-tailored storage.

20

3

Semel and Milana

Distributed transactional storage is an important service in today’s datacenters.

Achieving good performance without high complexity is often a challenge for these

systems due to use of several sophisticated protocols to provide high level guarantees

(e.g., consistency, fault tolerance) and the presence of multiple layers of abstraction.

This chapter shows how to combine two emerging datacenter capabilities—precise

synchronized clocks and software-defined storage—to address several challenges with

transactional key-value storage in datacenters.

We presents 2 systems: Semel and Milana. Semel1 is multi-version key-

value storage system that addresses the capacity and version management challenge

with designing a multi-version storage; it also relaxes the ordering constraint in the

replication protocol used for providing fault tolerance. Milana2 is a lightweight

transactional layer over Semel that reduces clock-skew related spurious aborts with

the transaction protocol.

In Semel, each version of a key’s value is timestamped using precise synchronized

1 Semel means once in Latin.

2 Milana means consistency in Bengali.

21

clocks. These timestamps enable a lightweight primary-backup replication protocol

that moves update ordering off the critical path. Milana adds optimistic concur-

rency control (OCC [68]) to support serializable ACID transactions over Semel,

adapted to a client-server setting based on techniques pioneered in Thor [3]. How-

ever, OCC transactions may be forced to abort/rollback under contention due to

timestamp ordering conflicts with other transactions, and this risk increases with

clock skew [3]. Our results show that in this setting precision time (PTP) achieves

a lower rate of spurious aborts due to false conflicts (and therefore higher peak

throughput) when compared to clock synchronization using NTP—the current state

of the art.

Moreover, timestamp-based concurrency control enables use of multi-version ap-

proaches [15] to further improve concurrency by enabling snapshot-isolated read-only

transactions with low cost. Semel leverages the erase-before-write (remap-on-write)

behavior of flash SSDs to enable light-weight multi-version storage. Semel and Mi-

lana are based on an extended SSD Flash Translation Layer (FTL) that writes

updated values in a log-structured fashion on physical storage, maps keys directly to

values at physical locations, and integrates version management with FTL garbage

collection.

Semel and Milana reflect the state of the art in sharded, replicated, transac-

tional key-value storage systems, but embody a unique set of design tradeoffs for

low-latency intra-datacenter storage with SSDs and precision time. For example,

Milana is similar to a prior work — TAPIR [130] — that uses OCC in conjunction

with an unordered replication protocol, which has potential for lower latency than or-

dered consensus (as in Thor). Consensus forces all replicas to agree on operations in

a total order, which is not necessary to preserve transactional consistency. However,

in contrast to TAPIR, Semel uses primary-backup replication. This choice reduces

OCC validation costs in Milana: write validation occurs only on the primary replica

22

for each affected shard, and read-only transactions validate locally at the client. The

price of this efficiency is that read-write transactions require an extra round-trip

latency (though not extra messages) to sequence through the primary, which is a

small price for providing low latency reads, given the prevalence of read-dominated

workloads [97, 11].

Our Semel implementation utilizing PTP and the LightNVM Open-Channel

SSD emulation framework [18] reveals a 20-45% increase in IOPs and up to 7X

lower GET latency on a single machine using unified version and flash management

compared to a naive multi-version KV-store implemented using a standard FTL for

read heavy workloads (50-100% GET ops). Our experiments running Retwis [73]

with Milana show up to 43% reduction in abort rates using PTP vs. NTP due

to tighter clock synchronization. Furthermore, local client validation in Milana

reduces transaction latency by 35% and increases throughput by 55% for read-heavy

workloads.

The remainder of this chapter is organized as follows. The design of Semel and

Milana are described in Section 3.1 and Section 3.2. We evaluate our prototype

systems in Section 3.3. Section 3.4 discusses related work and we present a summary

of this chapter in Section 3.5.

3.1 Semel: A Replicated Multi-version Key-Value Store

This section presents Semel, a replicated multi-version key-value store that exploits

precision time and software-defined storage. Semel provides safety guarantees for

ordering of operations to individual keys. Section 3.2 shows how to support trans-

actional atomicity and consistency for operations on multiple keys, layered above

Semel.

The Semel design targets an intra-datacenter client-server storage model. The

persistent memory (SSDs) reside on storage servers. The key space is sharded among

23

the storage servers, and each shard is replicated for availability and fault tolerance.

The clients of Semel are application servers. Each client has a unique ID and runs

a Semel library that exposes the key-value storage API and issues read and write

operations to the storage servers. The client library coordinates with a global master

to map each key to a data shard and to the shard’s primary replica using standard

techniques (e.g., consistent hashing [65]). The master maintains the shard maps

based on its global view of participating servers. The master can be implemented

using standard techniques (e.g., Apache Zookeeper [59]).

Values for each key are stored as a sequence of versions timestamped by the client

that issued the write. Versions are ordered by the version number, which is a V “

xtimestamp, clientIDy tuple. The clientID induces a total order over simultaneous

writes from different clients, and also supports linearizability (Section 3.1.3). Semel

uses these timestamps to maintain a coherent view across all clients for each key.

We do not expect timestamp wraparound to be an issue if we use 64-bit timestamps.

Assuming « 100ns resolution for timestamps, a 64-bit timestamp does not overflow

for nearly 60 thousand years.

The application API to Semel client library is defined below. We use tcurrent to

denote a client’s view of the current time.

• put(key, value): Create a new version for the given key.

• get(key) Ñ value: Return a version with timestamp ď tcurrent.

• delete(key): Delete all versions of the key.

The client library assigns a timestamp tcurrent to all get and put requests. This

timestamp is used for creating a new version V “ xtcurrent, clientIDy of a key on a

put request. For a get request, Semel uses tcurrent to read the youngest version with

timestamp ď tcurrent. Milana (Section 3.2) extends the Semel client to issue reads

for a specific timestamp other than tcurrent as required for the transaction protocol.

24

3.1.1 Multi-version Flash Translation Layer

Recall, an SSD Flash Translation Layer (FTL) maps a Logical Block Address (LBA)

to a page in flash memory. A page is uniquely identified by a Physical Block Number

(PBN) and page number within the physical block. A map table in the FTL is

consulted to determine the flash page for each I/O operation on an SSD. For example,

a read operation performs a Key Ñ Page conversion and then reads the data from

the physical page. Flash SSDs do not overwrite pages on a write operation, due to the

need for block-grained erase-before-write. A standard FTL writes each modified page

to a freshly erased block and remaps the page. Therefore, flash SSDs may naturally

provide multiple versions of a given key with little additional overhead [113].

Semel leverages the Open-Channel SSD framework [18] to extend the FTL for

multi-version key-value storage. A key-value storage system implemented using tra-

ditional SSDs requires two mapping steps: Key Ñ LBAÑ xPBN,Pagey. Software-

Defined Flash (SDF) enables modifying the FTL to collapse this two-step translation

into a single translation [58, 131, 62, 88], so that it maps a key directly to a physical

address with a single map table access.

Mapping table:. The mapping table in Semel FTL maintains multiple versions of

a key as a linked list. Each version is assigned a 64-bit create timestamp; the linked

list is sorted in descending order of create timestamps of the versions. Semel writes

new values in a log-structured fashion on flash. Figure 3.1 shows the mapping table

and data layout in Semel. For small key-value pairs, Semel packs multiple pairs

into a single page. The mapping table maintains the page and the offset within the

page where the version is stored.

Semel FTL assumes that adequate server DRAM is available to store the entire

mapping table in main memory. Chapter 5 describes how we address this drawback

using memory-efficient indexing.

25

Key 1

Key 2

Key 3

V1

V1

V2 V1

Lookup table in Host DRAM
Key 1, Version 1

Key 2, Version 1

Key 3, Version 1

Key 1, Version 2

Key 3, Version 2

key 1 key len version 1 value len value

Log order

Tail

Flash

Page 0

Page 1

Page 2

Head

V2

Figure 3.1: Mapping Table and Data Layout in Semel

Garbage collection:. Keeping versions around longer than necessary on flash-based

systems may cause wasteful remapping (moving) during garbage collection. Ideally

we want to balance remapping cost with the desire to provide historical versions

within a certain threshold (window size), e.g., keep all versions that are less than 5

seconds old. The window size can be tunable to keep older versions as needed, e.g., for

read-only analytics workloads. Semel utilizes watermarking [39], which establishes

a lower bound on the client clocks. Each client periodically broadcasts the timestamp

of its last acknowledged operation to all storage servers and the minimum of all these

timestamps is the watermark in Semel. Since NTP/PTP clocks are monotonic, no

client issues a new operation with a timestamp below the watermark. Therefore, the

garbage collection algorithm needs to keep only the youngest write with a timestamp

less than the watermark; it is safe to discard all prior versions.

26

3.1.2 Lightweight Inconsistent Replication

Key-value storage systems use a replication protocol for fault tolerance and high avail-

ability. Typical replication protocols, such as Paxos [71] and Viewstamped Repli-

cation [98], cluster a group of servers into an ensemble called a replica group. One

storage server in a replica group acts as the primary (or leader), and the remaining

servers act as backups. Such replication protocols can tolerate f storage server fail-

ures, for 2f + 1 servers in a replica group. A primary handles all incoming read/write

requests and acts as the serialization point. To provide strong consistency (consen-

sus), a primary imposes a total order on all writes from the clients (using sequence

numbers) and multicasts each write to all the backups. The backups process write

requests in sequence order only and discard any write that comes out of order. A

backup sends an acknowledgement to the primary for each in-order write request; a

write request is considered complete by a primary only after at least f backups have

acknowledged the receipt of the write.

The update life-cycle for such protocols is:

1. The application sends an update to the primary.

2. The primary assigns a sequence number to the update (to enforce ordering),

which is higher than the sequence number of all previous updates. The primary

then propagates the update and the sequence number to the other replicas

(backups).

3. A backup replica acknowledges an update if it has seen all the prior sequence

numbers and consequently all prior updates. Otherwise, the backup replica

responds with an error.

4. If the primary receives a success from f replicas before a timeout, it acknowl-

edges the update to the application. Otherwise, it retries the update or sends

27

an error to the application.

Semel uses primary-backup replication with a designated primary for each shard,

and exploits tightly synchronized clocks to relax the ordering requirement and commit

each update as soon as a majority of replicas receive (and acknowledge) it. Since

the replicated Semel operations are timestamped writes to independent versions

of independent data items, there is no need to maintain ordering: the ordering is

explicit in the version timestamps, which are recovered along with the data.

TAPIR [130] is based on a similar inconsistent replication approach that decou-

ples replication from ordering (see Section 3.2.7 for a comparison against TAPIR).

Inconsistent replication reduces latency because each replica can execute and ac-

knowledge an unordered operation as soon as it receives it, even if it is missing

earlier operations. Such an approach does not violate consistency after failover since

all acknowledged updates can be recovered if a majority of replicas are available,

and a correct ordering can be constructed based on version numbers. We explain

recovery in Section 3.2.6.

3.1.3 Linearizability with Global Clocks

Semel leverages precise clocks to enable a simple and general timestamping approach

to linearizable RPCs on objects. RPC calls on an object execute serially at the

primary for the object’s shard. The timestamp of a write request persists with the

new object version, even across primary failover. The version stamps allow the server

to ensure idempotence for retransmitted requests; the client ID distinguishes requests

from different clients with the same timestamp. The server executes reads on the

named version and rejects writes with timestamps older than the current version,

guaranteeing at-most-once semantics. Thus writes execute in a serial timestamp

order that is consistent with the real-time ordering. Semel also permits snapshot

reads in the past, which are not linearizable, but they allow higher concurrency and

28

it is a client’s choice to use them.

Semel’s approach to linearizable RPC is similar in spirit to RIFL [75], which

also timestamps requests at the client and persists a completion record containing

each request’s timestamp with the object. The key difference is that Semel’s request

timestamps are global and synchronized across the clients. Precise clocks enable us

to simplify the ordering protocol. For example, it becomes safe to garbage-collect

old versions and their timestamps at any time. If a client replays a completed re-

quest after the server discards its version, a simple timestamp comparison blocks it

from overwriting an earlier request on the same object: the client receives a rejec-

tion for the retransmitted request (not idempotent), but at-most-once semantics are

preserved.

When precision timestamps are available, ordering with global clocks is simpler

than approaches based on leases and/or causal information [75, 89, 46]. The key

tradeoff is that clients with lagging clocks may see their requests rejected under

contention, forcing them to retry more often. The Semel approach is suitable when

the expected clock skew is less than the request cost, which is the case for operations

on flash-based SSDs with PTP-based precision timestamps. Note that ordering with

global clocks depends on low clock skew only for performance, and not for correctness.

3.2 Milana: A Transactional Key-Value Storage System

This section shows how to use Semel’s timestamped values to support transactions in

a software layer above Semel. Our transaction system—called Milana—supports

transactions that update keys in multiple shards atomically using a classical two-

phase commit (2PC) protocol. Milana leverages Semel’s precision timestamps for

Optimistic Concurrency Control (OCC) [68] adapted to a client-server setting [3].

OCC is an alternative to locking (two-phase locking or 2PL): OCC enhances con-

currency relative to 2PL, and is not prone to 2PL’s blocking and deadlocks. OCC

29

Key 1 t = 2

Key 2

Key 3

Key 4

t = 3

t = 1

t = 4 t = 3

t = 1

t = 2 t = 1

t = 2 t = 1

Version with

timestamp = 1
t = 1 Read transaction

with timestamp = 2

Figure 3.2: Snapshot reads in Milana

systems validate each transaction T before commit by comparing T ’s timestamped

data accesses—T ’s read set and write set—to those of other transactions to iden-

tify any access conflicts that violate a serializable ordering. Conflicting transactions

are aborted and then restarted at the client. Other client-server OCC transaction

systems include Thor [3], Centiman [39], and TAPIR [130].

Milana benefits directly from PTP because low clock skew reduces the inci-

dence of false aborts in client-server OCC [3]. For example, a false abort occurs

if a late-arriving transaction (e.g., a commit request from a client with a lagging

clock) conflicts with an already-committed transaction with a later timestamp. As

explained previously, PTP is particularly important for storage services based on low-

latency persistent memory, e.g., flash-based SSDs and emerging NVM technologies.

Milana exploits PTP to improve performance, but it is not required for correctness.

To implement OCC, Milana assigns precision (PTP) timestamps begin (tsbegin)

and commit (tscommit) to each transaction T at the client; all read operations for

T are issued at the Semel layer with T ’s begin timestamp and all write operations

create a new version with T ’s commit timestamp. Milana also leverages Semel’s

30

multi-version flash SSD store to support snapshot reads: Milana satisfies T ’s reads

for a key K by returning a version that is current as of T ’s tsbegin, even if a writer

has written a new version of K with a later timestamp. This approach reduces false

conflicts and further improves concurrency and throughput. Figure 3.2 illustrates

how consistent snapshots are read in Milana. A transaction with tsbegin “ 2 reads all

versions with tsversion ď 2, while new versions are created by other write transactions.

Milana is optimized for read-heavy workloads, which typically dominate within

a datacenter [97, 11]. In particular, Milana servers return sufficient version in-

formation to enable a client to perform local validation for read-only transactions

(Section 3.2.3). Local validation allows a read-only transaction T to commit if and

only if the values in T ’s read set are from a consistent snapshot: each value for a key

K in T ’s read set is the youngest committed version of K with timestamp ď tsbegin,

and no key K in the read set has a prepared version with timestamp ď tsbegin. Local

validation ensures a serializable transaction ordering for read-only transactions, but

it does not necessarily provide external consistency. Milana provides both serial-

izability and external consistency for read-write transactions, which validate on the

servers.

3.2.1 Transaction Protocol

Milana adds an extended transaction API to the Semel primary servers, and an

enhanced client library to use it. A Milana primary maintains a transaction table

recording the status of transactions that have prepared but for which commits have

not yet been acknowledged: updates to this table are logged in persistent memory

as they occur and are replicated to the backup servers using the Semel replication

protocol. If the primary fails, a new primary recovers the transaction table before

continuing (Section 3.2.6).

Milana uses the version stamps provided by Semel, V “ xtimestamp, clientIDy.

31

This approach provides monotonically increasing timestamps with a total order. We

assign each transaction T two timestamps tsbegin and tscommit at T ’s begin and com-

mit time respectively. T ’s tsbegin is assigned to all GET (read) requests and tscommit

is assigned to all PUT (write) requests.

In addition, a Milana primary server also maintains in DRAM a tslatestRead,

tsprepared and tslatestCommitted timestamp for each active key. tslatestRead is set on a get

request if tsget ą tslatestRead. tsprepared and tslatestCommitted timestamps are set after

a successful validation and commit, respectively. None of these values are persisted;

Section 3.2.6 explains how to recover them.

Here is the application API to the Milana client library. Timestamp tcurrent

represents the client’s local view of the current time as given by PTP.

• beginTransaction(): Start a new transaction T . Assign a begin timestamp

to T (tsbegin “ tcurrent), and initialize an empty read and write set for T .

• abortTransaction(): Discard the read and write set maintained for the cur-

rent transaction and remove all state.

• commitTransaction() Ñ Success / Fail: Assign commit timestamp

tscommit “ tcurrent for the current transaction and initiate the commit protocol,

which either succeeds or fails.

• put(key, value): Buffer the key-value pair; add key to the current transac-

tion’s write set.

• get(key) Ñ value: Return a consistent value for a key; add key to the current

transaction’s read set.

We now describe the transaction protocol for processing transactions. A Milana

client performs the following for each transaction.

32

1. The application starts a transaction by invoking the beginTransaction method

in the client library.

2. The application then transitions to the processing stage of the transaction.

Write operation (put):. The client adds the key-value pair to the write set

of the transaction, which is buffered in DRAM.

Read operation (get):. The client returns the value from write or read set,

if present. Otherwise it uses tsbegin to obtain a consistent version of the key

from the primary. The primary returns the youngest committed version with a

timestamp tscommit ď tsbegin and a boolean that indicates if there is a prepared

version for that key with a timestamp tsprepared ď tsbegin. Note that tscommit ă

tsprepared ď tsbegin.

3. The processing stage finishes when the application invokes commitTransaction

or abortTransaction. If the application invokes commitTransaction then the

transaction either commits or aborts based on the validation result. The ap-

plication cannot arbitrarily determine to abort the transaction after validation

on all participants (primaries) is successful.

4. Validation: the client performs the following steps to validate the requested

commit:

Read-only transaction:. The client performs local validation for a read-

only transaction. The local validation check ensures that the keys read in the

transaction are from a consistent snapshot (§3.2.3).

Read-Write transaction:. Like read-only transactions, the client can abort

a transaction if the read set was not from a consistent snapshot. Otherwise,

the client sets tscommit “ tcurrent, assigns version V “ xtscommit, clientIDy to

all the keys in the write set and starts the 2PC protocol, with the client as the

33

A1 B1 C1 A2 B2 C2 A3 B3 C3Client

Read A

Read B

Write A, B, C

Prepare A, B, C

Commit A, B, C

2PC

Primaries: A1, B2, C3

Begin
Transaction

Phase 1:
Prepare

Phase 2:
Commit

Rack Rack Rack
Figure 3.3: Two Phase Commit

coordinator, as described below. The client returns the status (SUCCESS /

ABORT) to the application after the first (prepare) phase of 2PC.

3.2.2 Two-Phase Commit: Write Validation

Figure 3.3 shows an example transaction with a standard two phase commit (2PC)

protocol. On a commit request for a read-write transaction T , the client library

initiates 2PC and acts as the coordinator. It first sends a Prepare() request to the

primary of each participant shard, passing each primary all keys in T ’s read and

write sets for shards that the primary controls. It also passes a list of other affected

shards for possible use in recovery (Section 3.2.6).

Each primary uses Algorithm 1 to validate T ’s keys. T fails validation if it has

conflicts that violate transactional serializability. It then propagates the validation

decision (SUCCESS/ABORT) along with the write set (on successful validation) and

shard list to the backup replicas, waits for f (out of 2f) backups to respond, and

34

Algorithm 1 Milana Primary Validation Algorithm

1: procedure validate(transaction)
2: for each (key, version) P transaction.readSet do
3: if key.prepared ‰ NONE then
4: return ABORT
5: else if key.latestCommitted ‰ version then
6: return ABORT
7: end if
8: end for
9: newVersion = transaction.commitTimestamp

10: for each (key, version) P transaction.writeSet do
11: if key.prepared ‰ NONE then
12: return ABORT
13: else if key.latestRead ě newVersion then
14: return ABORT
15: else if key.latestCommitted ě newVersion then
16: return ABORT
17: end if
18: end for
19: return SUCCESS
20: end procedure

then reports the decision as its vote to the client/coordinator. If a primary votes to

commit T then T is prepared at that primary.

The client accumulates the votes from all primaries and determines the outcome:

T commits if and only if all primaries vote to commit, else T aborts. The client

reports the outcome to the application and then asynchronously notifies all primaries

of the outcome.

3.2.3 Local Validation of Read-only Transactions

As mentioned earlier, a Milana client performs local validation for read-only trans-

actions. Local validation eliminates two round trips at validation time: client to

primary and primary to backups.

As a transaction T runs, the client issues a read (get) to the primary server

for each key K read by T , and satisfies subsequent reads to K from its cache.

The client issues gets with T ’s begin timestamp tsbegin. On a get, the primary re-

turns the youngest committed version of K with a timestamp K.tscommit ď T.tsbegin,

and a boolean that indicates if there is a prepared version of K with a timestamp

35

K.tsprepared ď T.tsbegin. Note that K.tscommit ă K.tsprepared ď T.tsbegin. The primary

also records the read timestamp tsbegin in DRAM if it is ą K.tslatestRead.

Local validation works because a Milana primary aborts any late-arriving trans-

action S that attempts to commit a new value for a key K with an earlier timestamp

S.tscommit ď K.tslatestRead (see Algorithm 1). Therefore, if K did not have a prepared

version when it was read, then it is guaranteed that there can be no prepared version

with a timestamp less than T ’s begin timestamp (tsbegin). Thus the client has all the

information needed to locally validate T : it can commit T if and only if none of the

keys in T ’s read set had a prepared version at T ’s read time (tsbegin).

Local validation is aided by both SDF and PTP. SDF provides a lightweight

mechanism to maintain multiple versions of a key, thus enabling snapshot reads.

PTP’s low clock skew makes local validation practical from a performance standpoint.

For a given clock skew ε, if a client with a leading clock reads a key K, then a client

with a lagging clock has to wait up to ε duration before it can commit a transaction

that updates K. For NTP, ε is on the order of milliseconds, while PTP reduces it to

microseconds.

3.2.4 Snapshot Reads

This section describes two scenarios in which an application reads a consistent snap-

shot even when there are conflicting writes on the same set of keys. For each scenario

consider two contending transactions T1 and T2 that operate on keys K1 and K2.

Semel holds a version of both keys before either T1 or T2 start.

In the first scenario T1 and T2 are read-only and read-write transactions, re-

spectively. The start time of T1 is tsbegin1 and end time of T2 is tsend2, where

tsbegin1 ă tsend2. T1 starts processing and reads one key (K1) and has not issued

a read for K2 as yet. T2 overlaps in execution with T1 and T2 is able to commit

and update the values of both K1 and K2 while T1 is still executing. Since Semel

36

maintains multiple versions, it is able to serve T1’s read of K2 and the data returned

is from a consistent snapshot at time ts1, even though there is a committed value

for K2 at the later time ts2. T1 behaves as though it executed completely before T2

even started, which is a consistent execution.

In this second example T1 is a read-write transaction and T2 is a read-only

transaction. The end time of T1 is tsend1 and start time of T2 is tsbegin2, where

tsend1 ă tsbegin2. T1 starts its 2PC process and sends the commit request for K1 to

shard A, but is delayed in sending the commit for K2 to shard B. T2 overlaps in ex-

ecution with T1, performing read operations on keys K1 and K2. For K1, T2 obtains

the value that T1 wrote, since the shard received the commit. However, shard B

contains both a prepared value and the latest committed value for K2, since it does

not know if T1 will commit. In this case, shard B returns the last committed value

and a boolean (= true) that indicates that there is a prepared version of the key.

The client can then determine that it did not read from a consistent snapshot and

would abort T2.

3.2.5 Version Management

Milana leverages Semel’s watermarking-based garbage collection to manage ver-

sions and satisfy long-running read-only transactions. Each Milana client peri-

odically broadcasts the timestamp td of its latest decided (committed or aborted)

transaction to all primaries. The minimum over the tds becomes the watermark

tw. Since PTP time increases monotonically, no client can have a transaction begin

time that is less than the watermark. Therefore, the Semel garbage collector only

needs to keep the youngest version with a timestamp ď tw and can discard all prior

versions.

Consider an active long-running read-only transaction T with a begin timestamp

tsbegin. Then the watermark tw ă tsbegin. Therefore, a Milana server retains at least

37

the youngest version of any key K with a timestamp ď tsbegin, so T can read a version

from a consistent snapshot at its tsbegin. The watermarking scheme dynamically

tunes the number of versions kept for all keys and is a function of the duration of

transactions: fewer versions are kept when transactions are short, and the threshold

increases as longer transactions are added to the mix.

3.2.6 Recovery

This section describes what happens if a client or storage server (e.g., a primary)

fails during the process of committing a transaction. Milana assumes fail-stop

(non-byzantine) failures.

Client Failure.. If the client fails during 2PC, then the participants (primaries)

time out waiting for a commit or abort decision for a prepared transaction T . T is

blocked until its commit/abort status is known. This situation does not affect any

transactions operating on key sets that are disjoint from T ’s read/write sets. How-

ever, the participating primaries are forced to abort any transaction that attempts to

read/write any of the keys in T ’s read or write set, until T ’s commit/abort status is

known. In such a case, one of the participating primaries is designated as a backup

coordinator for T . The backup coordinator can use the Cooperative Termination

Protocol (CTP) [16] to determine if T should commit. The backup coordinator

queries the other participating primaries for the status of T , and takes appropriate

action. The states are Received Commit, Received Abort, Prepared, Sent Commit,

Sent Abort and the actions can be any of the following:

1. If any primary received a commit or abort then T should be committed or

aborted since the client made a decision only after receiving a response from

all the primaries.

2. If any primary did not receive a prepare request for T , then all primaries can

38

agree to abort T because the client does not commit a transaction until it

receives a response from all primaries for its shards.

3. If any primary responded with ABORT to the prepare request, then all pri-

maries abort T .

4. If all primaries responded SUCCESS for the prepare request then the backup

coordinator commits T .

Replica Failure / Recovery.. If a backup replica of a participant shard fails during

2PC, it does not block any transaction as long as a majority of replicas for a shard

are available to store transactions. However if a primary of a participant shard fails

then it would block all transactions involving that shard. A new primary must be

elected (failover) in order to unblock any running transactions and resume service.

Distributed transactions require a protocol to ensure atomicity and consistency

of keys and shards across failures of servers and clients. Many storage systems that

provide transactional semantics and fault tolerance use both a transaction protocol

and a replication protocol, which enforce a serial ordering in two places: transac-

tions across shards and updates among replicas. This redundancy can add latency

and reduce throughput. Since the transaction protocol enforces ordering among the

transactions and consequently the updates, the replication protocol does not need

to also enforce ordering. This observation was previously exploited to reduce write

transaction latency in TAPIR [130] by allowing inconsistent replication.

Semel and Milana replicate using a primary-backup approach: all the updates

to a shard flow through the primary. As a result, the Milana primary has the

consistent view (an up-to-date transaction table) needed to validate transactions

without involving the backups, reducing validation costs and abort rates. Since the

backups play no role in validating or executing transactions, their only purpose is to

provide fault tolerance, as in Semel, and not consistency, which is handled by the

39

BACKUP 1

TXN 3: R,W(C)
Timestamp: t3

TXN 1: R,W(A,B)
Timestamp: t1

BACKUP 2

TXN 2: R,W(A,B)
Timestamp: t2

PRIMARY

TXN 3: R,W(C)
Timestamp: t3

TXN 1: R,W(A,B)
Timestamp: t1

TXN 2: R,W(A,B)
Timestamp: t2

TXN 2

TXN 1, TXN 3 TXN 2

TXN 1, TXN 3

Figure 3.4: Milana Relaxed Backup Updates

Milana code on the primary.

Once the primary validates a transaction, it can propagate updates and prepare

records to the replicas in any order, as long as a new primary can rebuild the trans-

action table during failover. Figure 3.4 shows how Milana relaxes backup update

ordering and how this can tolerate transient failures. In this example there are three

storage servers, a primary and two backups. The primary requires only one of the

two backups to acknowledge a prepare and commit of a transaction. In this case,

backup 1 acknowledges prepare and commit of transactions 1 and 3, while backup

2 acknowledges prepare and commit of transaction 2. In another scenario, backup

1 acknowledges prepare of transactions 1,2 and 3, and backup 2 acknowledges the

commit for these transactions. In both cases, traditional replication would be forced

to signal an error, and possibly abort transactions since the backups did not receive

updates in sequence order. Milana eliminates these scenarios by reconstructing the

40

Algorithm 2 Milana Recovery Merge Algorithm

1: procedure mergeLog(transactions, table = NULL)
2: for each T P transactions do
3: if T.status == COMMITTED then
4: table.insert(T)
5: else if T.status == PREPARED then
6: if T.participants == 1 then
7: table.insert(T)
8: else
9: decision = queryParticipant(T, participants)

10: if decision P COMMIT, PREPARED then
11: table.insert(T)
12: end if
13: end if
14: end if
15: end for
16: return table
17: end procedure

correct overall order during failure recovery.

Since Semel does not enforce strict global ordering for all updates during repli-

cation, therefore in Milana the new primary must be brought to a consistent state

before it can start servicing transaction requests. The new primary can always reach

a consistent state if there are f`1 replicas available (out of 2f`1), which are needed

for a majority quorum. For f ` 1 available replicas, there must always be at least

one replica that has seen any given transaction committed or prepared by the previ-

ous primary. Therefore the new primary has access to all the transactions and can

rebuild the data versions and transaction table by merging the updates from all the

replicas, as shown in Algorithm 2. If a transaction prepare or commit record is not

present on at least one replica at recovery, then the previous primary could not have

obtained a majority for the operation, and therefore could not have acknowledged

the request. In this case, 2PC recovery restores the state of these transactions, as

detailed above (CTP).

The new primary can then apply all the successfully committed transactions

without any validation. It can also apply a successfully prepared transaction that

included a single shard because that would have been committed. For a prepared

41

transaction involving multiple shards, the new primary must contact the primary of

the other shards to determine whether the transaction committed. The transaction

is committed or aborted if any shard responds with a COMMIT or ABORT, respec-

tively. If all participants respond with a prepared status then the transaction is still

outstanding and should be committed and a response sent to the client.

After creating the transaction table, the new primary propagates the table to

the backups to bring them to a consistent state. It then populates tsprepared and

tslatestCommitted values for each key. These values can be inferred from prepare requests

obtained from other replicas during recovery and from the version stamps included

with each write (see Figure 3.1), respectively.

The new primary cannot populate tslatestRead for keys because these values are not

persisted nor are the backups informed about the latest read timestamp of a key while

servicing a get request. Validating new transactions without these values can violate

serializability. Consider the following scenario: a read-only transaction Ta issues a

get request for key K with a timestamp t2, a primary returns a version of K with

a timestamp t0 and Ta commits. Now a failover occurs and a new primary allows a

read-write transaction Tb to commit that creates a new version of K with timestamp

t1 (t0 ă t1 ď t2). This violates serializability because Ta (already committed) should

have read Tb’s write.

Milana uses leases [54] to avoid this scenario. A primary in Milana obtains a

periodically renewed lease from at least f backups to process any get request with

a timestamp ă tlease. After recovery, the new primary waits for its local clock

to advance past tlease before servicing transaction requests for its shard. As an

optimization, we can combine this mechanism with leases used for avoiding spurious

failovers in primary/backup based replicated state machine protocols [84].

In all failure scenarios (client, primary, backup replica or some combination of

the three) a decision can be made on any outstanding transaction and service can

42

be resumed as long as a majority of replicas (f ` 1) of all shards are available.

3.2.7 Comparison with TAPIR

There are some similarities between Semel/ Milana and TAPIR [130]. Like Semel,

TAPIR is based on an inconsistent replication approach that decouples replication

from ordering for lowering write latencies. The Semel inconsistent replication pro-

tocol differs from TAPIR in that Semel uses primary/backup replication with a

designated primary for each shard, rather than having the client propagate the op-

eration to symmetric replicas, as in TAPIR. Both Milana and TAPIR build on

top of inconsistent replication to provide transactional semantics and use OCC for

ordering operations. To reduce read latencies, TAPIR clients read data from the

nearest replica during a transaction. This approach also helps balance the read load

across replicas. In contrast, all reads in Milana are serviced by the primary but this

requirement can be relaxed for read-write transactions, which can read data from the

nearest replica and validate at the primary before commit.

Validation in TAPIR succeeds only after a majority of replicas for each affected

shard agree to validate the transaction. TAPIRs approach of eliminating the primary

saves a round-trip latency for each prepare. This may be a substantial saving if the

primary resides in a different datacenter, but it requires all replicas to maintain

additional state and validate both read-only and read-write transactions. This is

less energy-efficient since additional compute and memory resources are needed, and

also consumes precious memory / storage bandwidth on all replicas. In contrast,

Milana clients validate read-only transactions locally, which eliminates two round

trips. For read-write transactions, once validation on a primary is complete, the

updates and prepare records can propagate to backups in any order. Since the

backups play no role in validating transactions, their only purpose is to provide fault

tolerance: validation imposes no memory or compute cost on the backups.

43

In summary, TAPIRs design is suitable for a geo-replicated system, where elimi-

nating the primary saves a cross-datacenter round trip. In contrast, Milana targets

intra-datacenter storage and its approach reduces total validation costs: every trans-

action validates on a single node and not on all replicas as in TAPIR. The tradeoff is

that all read-write transactions require an extra round trip (from primary to back-

ups), but no extra messages are sent.

3.3 Evaluation

We present preliminary results for our prototype implementations of Semel and Mi-

lana. We use the Open-Channel SSD framework [18] for our SDF implementation.

In software-only mode, the framework emulates the internals of a NVMe SSD and

supports timing simulation of I/O operations. We extend the timing-only simulation

with functional emulation by adding support for storing data values and IOCTLs

that provide a get, put and erase functionality for flash blocks. We also added the

capability to specify latencies for read page, write page and erase block operations.

These operations are simulated by adding a timer interrupt in the kernel and the

request is acknowledged after the timer expires.

The performance of SDF suffers due to emulation limitations: crossing the kernel

boundary for submitting each I/O request and lack of batched interrupts for request

completion. An open-channel compatible NVMe SSD does not suffer from these lim-

itations since the NVMe standard provides user-space queues for submitting requests

and also supports batching interrupts to reduce overhead.

Experimental Setup:. We use a set of Linux virtual machines from a single Exo-

GENI [13] site for both clients and servers. The client VMs have 2 cores, clocked at

2.6 GHz and 6 GB of DRAM. The system clocks on client servers are synchronized

using PTP software timestamping or NTP. The storage server VMs have 8 cores,

clocked at 2.6 GHz and 32 GB of DRAM. The cores of all storage VMs are pinned

44

to allocate from a specific NUMA zone on the host. Each storage VM is configured

with an emulated SSD, backed by 12 GB DRAM, with a hardware queue depth of

128. The SSD has a page size of 4KB and there are 32 pages in a block. A page

read, write time is 50 µs and 100 µs respectively and it takes 1 ms to erase a block.

We use Ubuntu 14.04 with kernel 4.6 on all VMs and our code is compiled using gcc

version 4.9 with -O3 flag enabled.

In all our experiments, we set the key size to 16B and a xkey, value, versiony

tuple is 512B. Although our implementation supports variable-sized keys and values,

we decided to use a fixed size for evaluation since it allows efficient packing of data.

As a flash page is 4KB in size, we employ a packing logic in the FTL that waits for up

to 1 ms (tunable) to pack data of multiple keys into a page (see Figure 3.1 for data

layout). We run each experiment for 15 minutes to ensure that garbage collection is

running in the background (for all runs with non-zero put request %).

3.3.1 Semel Evaluation

To elucidate the advantages of implementing multi-versioning within the FTL, we

implement a single-version generic FTL and a separate multi-version KV store on top

of a generic FTL. This multi-version KV layer implements its own lookup, request

handling and garbage collection logic that is separate from that of the FTL. The

multi-version layer operates at 4KB granularity and uses a log-based approach to

write data to the SSD. We refer to the single-version generic FTL as SFTL, the split

multi-version layer on top of a generic FTL as VFTL and the unified multi-version

FTL as MFTL. To ease garbage collection, SFTL, MFTL and the multi-version KV

layer in VFTL reserve 10% of available capacity for remapping data.

We first measure the throughput and latency for KV operations by emulating a

single SSD for both MFTL and VFTL. For these experiments, we populate the device

with 2 million keys and use a micro-benchmark to issue KV requests for varying get

45

Table 3.1: Single SSD Multi-version FTL Performance

Get %
Throughput Average Latency (µs)

Kilo Reqs/Sec Get Put
VFTL MFTL VFTL MFTL VFTL MFTL

100 351 456 68.1 59.9

75 295 430 363.1 62.9 568.5 872.8

50 217 277 516.6 70.3 673.8 859.0

25 215 189 435.6 77.7 659.8 895.8

request percentages. Table 3.1 shows our results. As expected, MFTL delivers up to

45% higher throughput, and up to 7x lower latency compared to VFTL. For 25% get

rate, VFTL performs better since it has a lower packing delay. A key-value pair is

512B in size, thus our packing logic waits for up to 1 ms to pack data of multiple keys

(puts or remapped keys) into a page. Since VFTL has less available space compared

to MFTL (10% capacity reserved at two levels), it performs more garbage collection,

has more data (keys) to remap and therefore, incurs less packing delay. For 25% get

rate, VFTL remaps 15% more data than MFTL.

We also obtain latency and throughput of a distributed KV store, for three Semel

implementations (DRAM, MFTL, VFTL). DRAM is an in-memory solution that

uses a simple hash table to maintain versions in main memory, and implements

the same garbage collection as the others. We use 5 clients to issue asynchronous

get/put requests (queue depth: 32) to a varying number of storage server shards.

Each shard consists of 3 storage servers: 1 primary and 2 backups. The primary

of a shard is responsible for servicing client requests and replicates all put requests

before acknowledgment. These experiments again vary the fraction of get requests,

and each run is 10 mins. We present results for 3 shards (3 primaries and 6 backups)

in Table 3.2. Results for 1 and 2 shards are qualitatively similar.

46

Table 3.2: Distributed Multi-version KV Store Performance

Get %
Throughput Average Latency (ms)

Kilo Reqs/Sec Get Put

DRAM

100 390 0.41

75 285 0.46 0.87

50 223 0.48 0.93

25 190 0.52 0.99

MFTL

100 297 0.55

75 202 0.51 1.64

50 118 0.76 1.88

25 91 0.84 1.99

VFTL

100 240 0.68

75 154 0.8 1.73

50 110 0.88 1.99

25 95 0.76 1.97

Table 3.3: Retwis Configuration

Transaction Type Num GETs Num PUTs Workload %

Add User 1 2 5

Follow User 2 2 10

Post Tweet 3 5 35

Get Timeline rand (1,10) 0 50

3.3.2 Milana Evaluation

We evaluate Milana by exploring the impact of multi-versioning and precise time

on transaction abort rates. Our first experiment evaluates the impact of multi-

versioning vs. using a single version FTL (MFTL vs. SFTL). We use a single VM

for this experiment to eliminate clock skew. The VM hosts a storage layer and runs

varying number of clients that issue transactions to the storage layer. We populate

the storage layer with 2 million keys. The clients run the Retwis benchmark [73] with

the transaction mix shown in Table 3.3. Each client has one outstanding transaction

and all transactions are executed sequentially. We run this experiment for varying

number of clients and to simulate key-sharing, we also vary the Retwis Contention

47

0

10

20

30

40

50

0 10 20 30 40 50

Tr
an

sa
ct

io
n

 A
b

o
rt

 R
at

e
 (

%
)

Number of Clients

SFTL (α = 0.8) MFTL (α = 0.8)

SFTL (α = 0.9) MFTL (α = 0.9)

Figure 3.5: Transaction abort rate for varying number of clients

parameter (α).

Figure 3.5 shows transaction abort rates versus number of clients for a single and

multi-version FTL. From the results we see that with increased key contention, a

multi-version FTL helps reduce abort rates since tardy read-only transactions are

able to read from a consistent snapshot and commit whereas these transactions are

aborted on a single-version FTL. Abort rates using VFTL are qualitatively similar

to MFTL and omitted for clarity.

To evaluate the impact of clock skew on transaction abort rates, we use 3 storage

(1 primary and 2 backups) and 5 client VMs and synchronize clocks on the client

VMs using either PTP software timestamping mode or NTP. The NTP daemon is

free to choose the best master based on NTP’s criterion (lowest jitter). We populate

the storage VMs with 2 million keys. Each client VM runs 4 independent instances of

the Retwis benchmark (20 instances in total). Each instance executes one transaction

at a time and retries an aborted transaction with the same set of keys and without

any wait.

Figure 3.6 shows transaction abort rates versus the amount of contention in the

48

0

20

40

60

80

100

0.6 0.7 0.8 0.9 1Tr
an

sa
ct

io
n

 A
b

o
rt

 R
at

e
 (

%
)

Retwis Contention Parameter (α)

DRAM-NTP MFTL-NTP VFTL-NTP

DRAM-PTP MFTL-PTP VFTL-PTP

Figure 3.6: PTP vs. NTP: Milana Transaction Abort Rates

Retwis benchmarks using Milana with a DRAM backend, VFTL and Semel’s

MFTL. From these results we see that PTP provides superior performance for all

storage backends due to the tighter clock synchronization. For NTP the DRAM

backend incurs the highest abort rates, as expected, since the faster write time re-

quires lower clock skew across clients. VFTL also incurs slightly higher abort rates

compared to MFTL due to lower write latency (see Table 3.1). NTP shows an av-

erage skew of 1.51ms among clients, while software timestamped PTP has average

skew of 53.2 µs.

To evaluate throughput and latency, we deploy Milana over 3 shards where each

shard has 3 replicas. We populate the system with 6 million keys and ran the Retwis

workload with 75% read-only transactions (5%, 10%, 10% and 75% breakdown -

Table 3.3) for an increasing number of clients. We perform this evaluation for all 3

storage backends (DRAM, VFTL and MFTL) and also measure the impact of local

validation (LV).

Figure 3.7 shows the average transaction latency vs. throughput for the 3 stor-

age backends. From the results we see that Milana with local validation is able

49

0

0.5

1

1.5

2

2.5

0 5000 10000 15000 20000 25000 30000

La
te

n
cy

 (
m

s)

Throughput (transactions / sec)

DRAM MFTL VFTL

DRAM w/ LV MFTL w/ LV VFTL w/ LV

Figure 3.7: Retwis Transaction Latency vs. Throughput

to achieve up to 55% higher throughput and 35% lower latency. Local validation

enables a Milana client to independently make a commit or abort decision for a

read only transaction, without affecting consistency. This saves two round-trip times

for validation (§ 3.2.3) and helps reduce transaction latency. These results also show

that MFTL achieves 15% higher throughput and 10% lower latency compared to

VFTL. VFTL w/ local validation achieves higher throughput than MFTL w/o local

validation, showing the importance of local validation.

3.3.3 Comparison of Local Validation Techniques

This experiment compares Centiman’s local validation approach [39] with that of

Milana. Centiman uses a watermark-based technique that allows a client to locally

validate a read-only transaction, if it read a consistent snapshot of keys with times-

tamp ă watermark. Otherwise, a Centiman client reverts to remote validation. Cen-

timan’s approach works well for low contention scenarios. But under high contention,

more key-sharing between transactions increases the probability of a read-only trans-

action reading a version younger than the watermark and failing the local validation

50

11000

12000

13000

14000

15000

16000

17000

0.4 0.5 0.6 0.7 0.8

Th
ro

u
gh

p
u

t
(t

xn
s

/
Se

c)

Retwis Contention Parameter (α)

Milana executed Centiman executed

Milana committed Centiman committed

Figure 3.8: Comparison of Local Validation Techniques

check. Centiman can counteract this by faster dissemination of watermarks, but this

increases coordination overhead.

For this experiment, we use 3 storage and 5 client VMs. The storage VMs are

used for creating 3 shards, each VM stores data on SSD (MFTL). We populate

the shards with 6 million keys. To eliminate impact on throughput, we use the

same number of validators (3) with Centiman (one per shard) and these validators

run on the storage VMs. We do not use replication in Milana since Centiman’s

validators do not replicate. On each client VM, we run 6 independent instances of the

Retwis benchmark (30 instances in total) with 75% read-only transaction workload

and vary α to simulate key contention. Clients disseminate watermark after every

1,000 transactions. The clocks on client VMs are synchronized using PTP software

timestamping.

Figure 3.8 shows the results. Under low contention (α “ 0.4), Centiman achieves

a similar throughput as Milana. However, the throughput drops under increasing

contention as Centiman’s local validation check fails thereby forcing a remote valida-

tion. Centiman locally validates 89% of read-only transactions for α “ 0.4 and this

51

value drops to 25% for α “ 0.8. One the other hand, Milana can perform local val-

idation for all read-only transactions and therefore achieves 20% higher throughput

under high contention settings. Both systems observe similar abort rates.

3.4 Related Work

There is a long history of work exploring distributed systems, datacenter services and

flash storage systems. This section places our work in context relative to a subset of

distributed transactional storage systems and flash-based storage systems.

There are numerous client-server distributed systems, such as key-value services;

however, many of these systems lack support for updating multiple objects atom-

ically [29, 37, 70] or restrict partitioning [12] due to the complexity of supporting

distributed transactions.

Thor [3] introduced loosely synchronized clocks for OCC and performed validation

on the storage servers. Our approach differs by maintaining multiple versions of a

key, which helps avoid conflicts between concurrent read and write transactions and

performs local validation at the client for all read-only transactions.

TAPIR [130] and Spanner [31] along with some of the differences from our work

were discussed previously. A main difference is our focus on intra-datacenter op-

eration vs. inter-datacenter. Centiman [39] uses OCC to support intra-datacenter

distributed transactions but validations are performed on a different set of servers

called validators. This helps in a multi-tenant datacenter where different applications

can have their own validators. However this approach involves increased coordina-

tion and suffers from limited availability since transactions are made durable on a

single client before they are committed. It optimizes for local validation of read only

transactions using watermarks but needs remote validation under high-contention

settings.

Other intra-datacenter systems focus on in-memory computation [93, 122, 64, 41,

52

42, 110, 75]. RamCloud [110, 75] is a key-value storage system that provides exactly

once semantics like Semel and transactional semantics like Milana. However,

it does not maintain multiple versions of a key. FaRM [41, 42] is optimized for

performance over RDMA, it maintains multiple versions of an object and supports

strictly serializable distributed transactions. Neither of these systems have Milana’s

inconsistent replication.

Calvin [116] buffers transaction requests and creates a transaction schedule from

the received requests. All replicas then execute transactions deterministically using

the defined schedule. However this approach restricts the type of transactions since

it needs the read and write set of a transaction to be pre-declared in the transaction

request. Milana does not have this requirement.

Hyder [17] uses a shared-storage made up of flash chips to store data. Clients

record transactions on the flash storage and also broadcast their intent to all the

other clients, which allows clients to then determine if a transaction can commit.

The broadcast can be a scalability issue and our approach differs since we allow

clients or storage servers to scale independently and we try to minimize coordination

wherever possible.

Flash based KV stores have been proposed in prior works [10, 34, 36, 82, 88].

Other systems eliminate the FTL indirection [88, 58, 131, 62, 111]. Each of these

systems has some aspects included in Semel; however Semel differs from these

works by maintaining multiple versions of a key and providing transactional se-

mantics for updating multiple keys. Previous systems that maintain multiple ver-

sions [113, 124, 123] require a snapshot activation to access prior versions. Several

studies [88, 101, 100, 62, 112, 22, 132, 27] propose a cooperative hardware and soft-

ware based approach to exploit the performance of non-volatile memories. Semel

and Milana leverage the functionalities accorded by these designs.

53

3.5 Summary

This chapter presents a distributed transactional key-value storage system (called

Milana) as a layer above a durable multi-version key-value store (called Semel)

for read-heavy workloads within a datacenter. Both systems exploit precise syn-

chronized clocks and software-defined flash to simplify protocols and remove layers

of abstraction. Semel exploits precise synchronized clocks to relax the ordering

constraint in primary-backup replication protocols, and uses software-defined flash

to exploit remap-on-write behavior of SSDs to maintain a time-ordered sequence of

versions for each key efficiently and durably. Milana adds a variant of optimistic

concurrency control above Semel’s API to service read requests from a consistent

snapshot and to enable clients to make fast local commit or abort decisions for read-

only transactions.

Evaluations of our prototype implementations reveal that Semel achieves 20%-

50% higher IOPs than a traditional separate version and flash management approach.

Furthermore, by using PTP, Milana reduces abort rates by up to 43% over NTP

for transactions with high-contention, due to the tighter clock synchronization across

servers. We also demonstrate that Milana’s use of local client validation reduces

latency by 35% and increases throughput by 55%.

54

4

Kairos

This chapter proposes a new approach to inter-transaction caching and concurrency

validation for scalable low-latency stores. Client caching of active data is standard

in client-server transactional stores since Thor [3]. While intra-transaction caching is

trivial with concurrency control for serializable transactions, Thor and later systems

that support inter-transaction caching typically use explicit invalidation to keep client

caches consistent across transaction boundaries. This approach is similar to network

file systems and other client-server storage systems using classical callback leases [54]

(see See 4.1). However, explicit invalidation introduces substantial cost for high-

performance stores with fine-grained concurrency control, such as transactional stores

in the datacenter (Section 4.4). It also complicates the implementation. As a result,

many recent transactional key-value stores do not address inter-transaction caching

at all [31, 116, 41, 75, 39, 130, 92].

Full support for caching is important for performance, particularly under read-

dominated workloads. Several recent works emphasize the importance of caching

for datacenter services. For example, auto-sharding systems (load balancers) like

Slicer [4] seek to bound the spread of requests to each data item across application

55

servers, and show substantial improvements to cache effectiveness. (This idea is a

form of locality-aware request distribution [102].) NetCache [61] embeds caching of

hot data into the network to reduce hotspots caused by skewed power-law popularity

distributions, which are common in standard workloads [30, 11]. However, NetCache

does not provide transactional semantics. It is an open question how best to obtain

the benefits of client caching with transactions (Section 4.5.)

This chapter presents Kairos1, a transactional key-value store that supports

inter-transaction caching without explicit invalidations and sharded transaction vali-

dation. Kairos builds on the approach of Milana [92] by using precise synchronized

clocks [60, 31, 53, 76] to enable physical time-based consistency integrated with

transactional concurrency control and adds support for inter-transaction caching

and sharded validation

Kairos is a client-server transaction system that implements transactional seri-

alizability using optimistic concurrency control (OCC [68]) based on physical clocks,

a technique pioneered by Thor [3]. Kairos leverages sharded validation from Centi-

man [39] to decouple transaction validation from the servers, so that validation scales

independently of the storage tier. Kairos adapts this sharded validation to support

inter-transaction caching (see §4.3.6), without the cost of explicit invalidation.2

Precise synchronized clocks also enable a simple, stateless, time-to-live (TTL) pro-

tocol for cache consistency in Kairos. Storage servers in Kairos hand out leases to

cache popular keys in the usual fashion. We refer to Kairos leases as “soft” because

the lease manager need not track leases or send invalidations (callbacks), although

it may do so as an optimization for write-heavy keys3 Instead, cache consistency in

1 Kairos means “appropriate time” in Greek

2 It is important to distinguish two similar terms that are independent: validation refers to a step
of optimistic concurrency control that occurs when a client transaction prepares to commit, while
invalidation refers to a server callback to flush a stale value from a client cache.

3 Called tear-off blocks in a hardware coherence protocol [74].

56

Kairos is based on low-cost self-invalidation [74] when the lease expires. With soft

leases, a client may read stale data from its cache with some probability; Kairos

uses OCC validation as a fallback to restart any transaction that reads stale data.

The central challenge for this approach is to set lease times to balance the hit ratio

with the cost of stale reads. Kairos servers use the observed inter-access (read and

write) times of popular keys to adapt lease durations dynamically (see §4.2.3) for

each key to optimize this tradeoff according to an analytical model. The classic pa-

per on lease-based consistency [54] suggested adapting lease times based on access

parameters and an analytical model, but we are not aware of any work that develops

this idea

Evaluation of a Kairos prototype under a YCSB workload [30] reveals that inter-

transaction caching alone improves throughput by 1.86x relative to a baseline sys-

tem with only intra-transaction caching; adding sharded validation further improves

throughput by a factor of 2.28 under a workload with a hotspot that saturates a stor-

age primary. Furthermore, our evaluation shows that lease-based inter-transaction

caching can operate at a 62.5% higher scale while providing 1.55x the throughput of

classical callback leases (explicit invalidation) in workloads with hot keys.

The rest of this chapter is organized as follows. Section 4.1 covers background.

Section 4.2 presents caching with leases in Kairos. We present the design of Kairos

in Section 4.3. Section 4.4 presents results from a prototype of Kairos. We discuss

the related work in Section 4.5. Finally, we summarize in Section 4.6.

4.1 Background

This section describes how Kairos leverages precise clocks for cache consistency.

Cache consistency. Many storage systems implement cache consistency using clas-

sical callback leases [54]. A server S grants a lease to a client C to cache an object

O and records the lease. If S receives a request to update O from another client, it

57

retrieves its record of C’s lease, sends C a callback on the lease, and waits for a reply

(synchronous) before processing the update. Each lease is valid for a duration (term)

chosen by the server: a lease specifies a timestamp after which the lease expires. C

considers its cached copy of O to be stale when its lease expires. In a network file

system (e.g., [86] or NFSv4) the lease terms may be tens of seconds.

The key observation underlying cache consistency with dynamic self-invalidation

in Kairos is that OCC frees the server from the need to send callbacks. If the lease

term is “short enough”, then the client marks its copy of O as stale (self-invalidates)

before another client updates O. If the lease term is “too long”, then any client

transaction that reads the stale data fails the OCC validation checks and is aborted.

The ideal term is one that allows the lease holder (client) to cache the data long

enough to reap some cache hits, and then self-invalidate before it reads stale data.

Kairos servers adapt the lease terms for popular keys in a dynamic way according to

an analytical model that considers the key reference frequency and read/write ratio

(see §4.2). Dynamic self-invalidation offers lightweight cache consistency without the

server overhead to maintain state records and without the network cost and latency

of callbacks. The key challenge is for a system to choose lease terms close to the

ideal, as measured by the rates of fresh hits and aborts due to stale reads.

Precise self-invalidation. Kairos meets this challenge by using precise clocks to

timestamp transaction operations and to set lease terms. With advances in network

technology, the one-way network latency (tnetwork) is ă 10 µs [53]. Storage latencies

for stores based on DRAM, NVMs, or SSDs are on similar scales. Therefore, the inter-

access times to objects in a transaction can also be in the µs range. Consequently,

ideal lease durations may reflect similar time scales.

In this scenario, clock skew becomes a critical issue for lease-based self-invalidation.

Figure 4.1 illustrates the impact of clock skew on a lease duration perceived by a

client. A client with a lagging clock may perceive the lease expiration time as fur-

58

tend

Time (µs) →

S: Grant lease to C
until tend

C: Lease acquire
Lease expiration
(self-invalidate)

tnetwork + ε
tgrant tacquire

C: Lease acquire

tnetwork - ε
tacquire

C: client S: server tnetwork: one-way delay between S and C ε: clock skew between S and C

Figure 4.1: Impact of clock skew, ε ąą tnetwork with NTP

ther in the future, so it holds the lease for longer, which increases the probability

of reading stale data; similarly, if the client has a leading clock, it expires the lease

early, compromising its hit rate.

In the standard Network Time Protocol (NTP), pairs of hosts synchronize their

clocks with messages, yielding clock skew ε ąą tnetwork because queuing delays (on

servers and within the network) impact the messaging time. The PTP standard

avoids this drawback by assigning timestamps to packets on a server NIC and us-

ing “transparent” switches which record the ingress and egress time of each clock

synchronization packet to account for queuing latencies accurately. As a result PTP

yields ε ď tnetwork.

4.2 Inter-Transaction Caching

This section describes lease-based caching (Section 4.2.1), compares it with other

techniques (Section 4.2.2) and presents an analytical model to calculate ideal lease

duration (Section 4.2.3).

59

4.2.1 Self-Invalidation with Soft Leases

In lease-based caching, storage servers hand out leases for caching keys on clients.

A lease for a key allows a client to cache and read the key from its local cache until

lease expiration, without requiring any remote communication with the server.

Kairos calculates lease duration (term) for a key K based on the observed inter-

access (read and write) times of K. We expect that updates to K are independent

rather than arriving at regular intervals (although this may occur in some scenarios).

Therefore, the inter-arrival times follow a probability distribution (e.g., exponential)

(Section 4.2.3). Any chosen lease duration for K leaves some probability that an

update to K arrives before the lease expires. In this case, the value is still active on

one or more client caches, leaving a window for a client to read a stale value for K.

Stale hits impact forward progress and lead to lower transaction commit rates.

Kairos approximates an ideal term for each lease (Section 4.2.3). The ideal lease

duration maximizes the expected number of fresh hits and minimizes stale hits.

4.2.2 Comparison of Caching Techniques

Here we use an example to describe the impact of leases on client cache consistency

and set our approach in context with other caching techniques: 1) näıve caching,

and 2) explicit invalidation (EI).

Assumptions. We assume look-through client-side caches [80] in the example. All

read requests in a transaction are first queried in the cache and hits are serviced

immediately. On a miss, the data is fetched from the server and stored in the cache.

The design choice to have look-through caches has minimal latency impact because

caches are local to the client and no remote communication is involved in querying

a cache.

Motivating example. Figure 4.2 shows the timeline of operations on a key K. K

is brought into cache C1 at time t1 by transaction T1, which successfully commits

60

Timeline of Key K →

[t7, tnaiveInv) - stale window w/ naive caching
[t7, texplicitInv) - stale window w/ EI caching
[t7, tselfInv) - stale window w/ lease-based caching

T1 reads K from C1
(miss: insert K)

t1

T3 abort: discard K

from C1

T2 writes K
(not visible to C1)

t7 tnaiveInv

Tx: Transaction x
Cx: Cache x
tx: time x

T3 … Tx: read K

 from C1 (stale)

EI: discard K
from C1

texplicitInv

SI: discard K
from C1

tselfInv

lease duration

EI duration

Txn duration

Figure 4.2: Impact on client cache consistency with various caching techniques

soon after (not shown). At time t7, another transaction T2 commits and updates K

from a different client (not visible to C1), creating a new version and rendering the

cached copy in C1 stale; any transaction that reads K from C1 after t7 reads a stale

value and aborts at validation time.

The stale window is the interval from t7 to the time C1 discards K. This window

determines the number of stale hits and the abort rates. Next we consider the stale

window with different caching techniques.

Näıve caching. Näıve caching serves as a baseline straw man. In this approach, a

client caches aggressively and discards a cached key only when it learns of a stale read

by a local transaction that fails validation. Inter-transaction caching in Sundial [129]

is similar to näıve caching (Section 4.5).

Figure 4.2 shows the consistency challenge with näıve caching: a value is deter-

mined to be stale only after the first transaction to read the stale value completes (T3

in the figure). In other words, the stale window with näıve caching is proportional to

the length of a transaction; longer transactions result in more stale hits and higher

transaction abort rates.

61

Explicit Invalidation (EI). In EI caching, servers track sharers (client caches) that

cache a copy of a key K and send an invalidation request (callback) to all sharers on

each update to K; a sharer cache discards K when it receives the callback (and the

value is re-fetched from the server on the next cache miss for K). Classical leases [54]

and Thor [3] use EI to maintain client cache consistency.

Figure 4.2 shows the stale window with EI caching. Key K is updated at time

t7 and C1 discards K when it receives the server’s callback at texplicitInv. Thus, the

stale window is [t7, texplicitInv). The length of this window is generally the one-

way network latency between a server and the client; however, it may be longer if

the callback encounters queuing delays. Therefore, any resource constraints (e.g.,

network bandwidth, CPU cycles) on servers or even the clients can impact the stale

window.

Lease-based caching. Figure 4.2 shows the stale window with self-invalidating

leases. Key K is updated at time t7 and C1 discards K when the lease expires at

tselfInv. Lease-based caching does not suffer from the drawbacks of näıve caching as

the stale window is bounded by the lease end time and is independent of the length

of transactions. Moreover, resource constraints do not affect the the stale window

nor does the technique require servers to track sharers or send callbacks. Therefore,

lease-based caching does not suffer from the drawbacks of EI caching. However, it

is sensitive to clock skew. A leading clock causes the lease to expire sooner and a

lagging clock extends the stale window and increases abort risk.

4.2.3 Ideal Lease Duration for a Key

The lease duration of a key impacts the stale and overall (fresh + stale) hit rate.

Shorter leases incur fewer stale hits but may also reduce the overall cache hit rate.

On the other hand, longer leases yield higher overall hit rates but increase the abort

rate due to stale hits.

62

To select the ideal lease duration, we choose a term that maximizes the expected

number of fresh hits. A more sophisticated solution might consider the weighted cost

of transaction aborts due to stale hits in order to choose a suitable level of risk to

balance the reward. We leave that evaluation to future work.

Arrival rate model for a key. To approximate the ideal lease duration, we need

a model of the arrival rate of accesses (read and write) for key K. We use a Poisson

process to model independent requests for K. Poisson is a standard stochastic pro-

cess for independent arrivals, and is used in popular key-value storage benchmarks

(e.g., YCSB [30], Retwis [73], TPC-C [78]) [26, 126, 105, 107]. In these benchmarks,

each client processes transaction arrivals at a configured transaction arrival rate (λ).

Transactions access keys sequentially according to configured logical relationships

among keys, e.g., checking the status of an order in TPC-C. However, the decision

to access a given key (or set) is independent for each transaction and has no correla-

tion with the access. The inter-arrival times in a Poisson process are exponentially

distributed and the mean inter-arrival time is λ´1 [118].

Thus λ for a given key K depends on its relative popularity, which is typically

modeled as a power law distribution [30, 11]. The rate of reads and writes for K

depends on its read/write ratio, which may vary across keys.

Calculating fresh hit rate. In practice, a server needs two parameters to evaluate

a candidate lease duration for K. Figure 4.3 illustrates these parameters. First, the

global write arrival rate (λglobalwrite) of K is needed because a write from any client causes

all cached copies to become stale. Second, the per cache mean read inter-arrival time

(Rcache
mean) of K allows the server to compute the expected per cache fresh hit rate for

K. The global read and write arrival rate for K is the sum of the read and write

rates for K across all caches. Clients may observe these values directly and report

them to the server.

A server approximates the ideal lease term for K by generating candidate terms

63

Key K

Cache 1

λ read

cache 1

λ write

cache 1

Cache n

λ read

cache n

λ write

cache n

λ write

global

λ write

cache i

= ∑
i=1

n

R
mean

cache 1

1/λ read

cache 1

=

Figure 4.3: Arrival rates and inter-access times for a key

and evaluating their expected effectiveness. Each lease duration d has an expected

number of hits within d (given by Equation 4.1), and a probability of inter-update

time being less/greater than d. If W is an exponentially distributed random variable

that models the inter-write times of K, then the probability that no update arrives

within d is given by Equation 4.2.

ErHitspdqs “
d

Rcache
mean

(4.1)

PrpW ą dq “ e´λ
global
writeˆd (4.2)

PrpW ď dq “ 1´ PrpW ą dq

“ 1´ e´λ
global
writeˆd

(4.3)

Equation 4.3 gives the probability of an update arriving within d, i.e., an update

arriving while a lease is still active. We call a lease period in which an update arrives

a stale lease period. However, even within a stale lease period, any cache hits that

occur before the update are still fresh. Figure 4.4 shows the example of a stale lease

period and the fresh hit duration (dfresh) within the stale lease period. Equation 4.4

64

Timeline of key K on a cache→

Read K
(miss)

Read K
Hit

Read K
Hit

Read K
(miss)

Read K
Hit

Read K
Hit (stale)

Write K
(not visible to cache)

lease
duration = d

Pr(W > d)
stale lease

period
Pr(W ≤ d)

dfresh

Figure 4.4: Fresh hit duration (dfresh) in a stale lease period

gives the expected value of dfresh in a stale lease period, where λ = λglobalwrite . We use

relative times to simplify the equation, i.e., we assume without loss of generality that

the stale lease period starts at 0 and ends at d.

The fresh hit rate for a lease duration d is the weighted sum of the expected hit

rate in a lease period with no update (all hits are fresh) and the expected fresh hit

rate in a stale lease period. A server calculates the fresh hit rate using Equation 4.5.

Each component is multiplied by the probability that any given lease period is a

stale lease period (i.e., an update occurs during the lease term). The denominator

is the expected number of cache hits in lease duration d plus the first read miss that

fetches the data into the cache. Finally, equation 4.6 gives the stale hit rate for a

lease duration d. Stale hits occur only in stale lease periods; within such periods,

the expected number of stale hits is the number of reads in duration (d - dfresh).

65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

10

20

30

40

50

60

70

80

90

100

Lease duration d (ms)

H
it

 R
at

e
 (

%
)

Simulated fresh hit rate Overall hit rate Predicted fresh hit rate

Ideal

Figure 4.5: Ideal lease, Rcache
mean = 1 ms, W global

mean = 19 ms.

Erdfresh|0 ď dfresh ă ds “

şd

0
λxe´λxdx

şd

0
λe´λxdx

“
1´ pλd` 1qe´λd

λp1´ e´λdq

(4.4)

FreshHitRatepdq “ pPrpW ą dq ˆHitRatepdqq

` pPrpW ď dq ˆHitRatepdfreshqq

HitRatepdxq “
ErHitspdxqs

ErHitspdqs ` 1
, dx = d or dfresh

(4.5)

StaleRatepdq “ PrpW ď dq
ErHitspd´ dfreshqs

ErHitspdqs ` 1
(4.6)

Finding ideal lease duration. To illustrate, Figure 4.5 shows the fresh hit rate

for varying lease durations for a key with Rcache
mean = 1 ms and W global

mean = 19 ms. It

also shows prediction accuracy by comparing predictions using Equation 4.5 with

results from a Monte Carlo simulation. The simulator takes Rcache
mean, W global

mean and a

66

Algorithm 3 Find ideal lease duration

1: procedure find ideal lease duration(Rcache
mean, λglobalwrite)

2: bestLeaseDuration = 0
3: bestFreshHitRate = 0
4: expectedHitsPerLease = 1
5: while true do
6: leaseDuration = expectedHitsPerLease ˆ Rcache

mean

7: freshHitRate = get fresh hit rate(leaseDuration, Rcache
mean, λglobalwrite)

8: if freshHitRate ă bestFreshHitRate then
9: break Ź Stop searching

10: end if
11: bestFreshHitRate = freshHitRate
12: bestLeaseDuration = leaseDuration
13: expectedHitsPerLease += 1 Ź Increase lease duration
14: end while
15: return {bestLeaseDuration, bestFreshHitRate}
16: end procedure

candidate lease duration as the input, and generates read and write arrivals from an

exponential distribution with the specified inter-arrival times. Data is cached for the

lease duration after each miss; the read arrival times are used to determine if a read is

a cache hit, and write arrival times are used to determine whether a hit is fresh. We

simulate 10M accesses for each lease duration. As seen from the figure, the predicted

values are always optimistic, and the average difference with the simulation results

is 1.4%.

The trend from figure 4.5 shows that the overall hit rate (fresh + stale hits)

increases with the lease duration (d); the fresh hit rate increases initially, hits a

peak, which is the ideal value for d, and any subsequent increase in d only increases

the number of stale hits and therefore the fresh hit rate starts to drop. We use this

trend to design a simple gradient algorithm to find the ideal lease duration for a key

K (Algorithm 3). The algorithm takes the per-cache mean inter-read time and the

global write rate of K and returns the ideal lease duration and highest fresh hit rate.

Other possible considerations (e.g., minimum fresh hit rate, maximum stale rate) are

left to future work.

67

Application

Key 1

value version leaseEndTimefreshness

Key 1

Validator 1

Front end cache

Storage shards

P
B

B
Load Balancer

Storage clients

Application

Key n

Key 1

Validator v

Front end cache

version 1latestRead … version xpreparedWrite latestCommitted

Figure 4.6: Kairos architecture

4.3 Kairos: A Transactional Key-Value Storage System

This section presents Kairos, a transactional key-value storage system that lever-

ages inter-transaction caching and sharded validation to improve performance and

alleviate workload-induced hotspots.

4.3.1 System Architecture

Figure 4.6 shows the architecture of Kairos. The Kairos design targets an intra-

data center client/server storage model. Data is stored on DRAM, NVM or SSDs

on the storage servers. The key space is sharded across the storage servers, and

each shard is replicated for availability and fault tolerance. Applications run on

one or more multi-tenant client servers. A frontend load balancer (e.g., Slicer [4])

distributes user transactions across application instances on different client servers,

while balancing load or exploiting any locality of accesses.

68

Kairos allows lease-based inter-transaction caching on the client. Storage servers

hand out leases for caching frequently-read keys and a cached key is self-invalidated

by client caches on lease expiration. Lease durations provide probabilistic guarantees

of staleness, a key may be updated while a lease is still active and cause stale hits

on caches, but system safety is not compromised because the transaction protocol

aborts all transactions that read stale data. Kairos servers predict the ideal lease

durations based on the inter-access (read and write) times of keys (§ 4.2.3).

Kairos uses optimistic concurrency control (OCC [68]) adapted to a client/server

setting [3] to support serializable ACID transactions. OCC enhances concurrency by

allowing transactions to access data without acquiring any locks and validation checks

are performed before a transaction commits to detect any conflicts. A transaction

validation request consists of a commit timestamp, and a read and write set of keys

accessed by the transaction. The read set consists of version timestamps of all the

keys read in the transaction, and the write set contains the keys the transaction

intends to write to. Validation of transactions in OCC is typically performed on

the storage servers [3, 130, 92]. However, Kairos offloads the validation workload

to client-side validators, and the storage servers are involved in a backup validation

path when the validators do not have the requisite state to validate a transaction.

Figure 4.6 shows the state maintained on a client cache and validator. Each

client cache in Kairos operates independently and popular data may be repli-

cated across caches. Each key in a client cache is associated with a value, ver-

sion timestamp (tsversion), lease end time (tsleaseEndT ime) and freshness timestamp

(tsfreshness). tsversion is the commit timestamp of the transaction that wrote the ver-

sion, tsleaseEndT ime indicates the time at which the entry will be self-invalidated from

the cache and tsfreshness indicates the latest timestamp for which the client knows

that the cached version is fresh i.e., there are no superseding writes with timestamp

t in the interval ptsversion, tsfreshnesss (Section 4.3.2).

69

Algorithm 4 Processing phase of a transaction T . For brevity, we use tsversion = vts,
tsleaseEndT ime = lts, tsfreshness = fts

1: procedure read(T, key)
2: if key P T.writeSet then
3: return T.writeSet[key].value
4: else if key P T.readSet then
5: return T.readSet[key].value
6: else
7: if key R Cache or Cache[key].lts ă tcurrent then
8: Cache[key].{value, vts, lts} = get from server(key)

9: Cache[key].fts = max(Cache[key].vts, tsglobalwatermark)
10: end if
11: T.readSet[key].{value, vts, fts} = Cache[key].{value, vts, fts}
12: return T.readSet[key].value
13: end if
14: end procedure

15: procedure write(T, key, value)
16: T.writeSet[key].value = value
17: end procedure

Key ownerships are distributed across client-side validators. A validator main-

tains a latest read timestamp (tslatestRead), a preparedWrite flag, a latest committed

timestamp (tslatestCommitted) and a list of version timestamps for each key that it owns

and is responsible for validating. tslatestRead indicates the highest commit timestamp

of a transaction that read the key, preparedWrite indicates if there is a successfully

validated but uncommitted transaction and tslatestCommitted is the commit timestamp

of the last transaction that wrote the key.

In addition, each validator maintains a garbage collection threshold timestamp

tsGC and discards all key versions older than tsGC . tsGC indicates that the validator

has sufficient state to validate all transactions with freshness timestamps ě tsGC

(Section 4.3.4).

4.3.2 Transaction Protocol

Kairos executes transactions in a similar manner to other client-server storage sys-

tems with OCC [3, 130, 39]. Algorithm 4 shows how a transaction T ’s reads and

70

write requests are handled during the processing phase of T . For a read request, a

value is returned if the key exists in T ’s write or read set. Otherwise, the transaction

checks the local cache for the key. On a cache miss, the read request is sent to the

remote server and the returned data is placed in the local cache; the server returns

the value, tsversion and tsleaseEndT ime. The tsfreshness value of a cached key is set

to the max of the timestamp of the returned version and the client’s view of the

global watermark, i.e., tsfreshness “ maxptsversion, ts
global
watermarkq; Kairos guarantees

that no writes older than tsglobalwatermark will occur in the system (§4.3.4 describes wa-

termarks in greater detail). For each key read in the transaction, the read set tracks

its value, tsversion and tsfreshness. All transaction writes during the processing phase

are buffered and made visible only after a transaction commits, as is typical in OCC.

The processing phase finishes when the application invokes commit transaction.

Before initiating the commit process, the client assigns a freshness and commit times-

tamp to the transaction T . The freshness timestamp of a transaction (Tfreshness) is

the minimum freshness timestamp from all keys in the read set, i.e., Tfreshness “

min
keyPreadSet

key.fts. The commit timestamp (Tcommit) depends on the type of transac-

tion (read-only or read-write); for a read-only transaction, the commit timestamp is

max freshness timestamp from all keys in the read set i.e., Tcommit “ max
keyPreadSet

key.fts

and for a read-write transaction, Tcommit “ tcurrent, where tcurrent is the current time

on the client. After assigning the timestamps, the client initiates and acts as the co-

ordinator in the the two-phase commit (2PC) protocol; the 2PC participants include

the storage servers and validators for all keys in either set. The validation decisions

of transactions are logged on the client.

71

Algorithm 5 Validation Algorithm

1: procedure validate(txn)
2: if txn.freshness ă tsGC then
3: return ABORT Ź Not enough state to validate
4: end if
5: for each (key, version) P txn.readSet do
6: if key.preparedWrite then
7: return ABORT
8: else if key.latestCommitted ‰ version then
9: return ABORT

10: end if
11: end for
12: newVersion = txn.commitTimestamp
13: for each (key, version) P txn.writeSet do
14: if key.preparedWrite then
15: return ABORT
16: else if key.latestRead ě newVersion then
17: return ABORT
18: else if key.latestCommitted ě newVersion then
19: return ABORT
20: end if
21: end for
22: return COMMIT
23: end procedure

4.3.3 Transaction Validation

Algorithm 5 shows the validation algorithm used by the sharded client-side validators

in Kairos. A validator simply aborts a transaction T if Tfreshness ă tsGC because

it does not have state to validate T as it discards versions behind tsGC . Tfreshness

provides a time bound on the oldest key read by T from its client cache; T can be

validated only if Tfreshness ě tsGC because if T read any stale data from its cache, i.e.,

it missed a superseding write w, then w’s timestamp must be later than Tfreshness,

and if Tfreshness ě tsGC then the validator must remember w, and the validator

aborts T.

Validation of read-only transactions is same as in other OCC-based systems [3,

130, 39, 75], below we describe our protocol for validating read-write transactions.

Read-write transaction. Figure 4.7 shows an example of the distributed two

phase commit (2PC) protocol used to commit read-write transactions, with the client

acting as the coordinator. The key difference is that in phase 1 of 2PC, a client

72

Begin Transaction

Prepare A

Phase 1 - Validate

Phase 2 - Commit

Prepare B

Commit A

Commit B

Read A

Read B

Write A, B

2PC

Client
(w/ cache)

Val
A

A1 A2 A3
Primary

B1 B2 B3
Primary

Phase 1 - Replicate

Storage shard A Storage shard BVal: Validator

Val
B

Figure 4.7: Two Phase Commit (2PC)

(coordinator) sends, in parallel, a validate request to the participant validators and

a replicate request to primaries of participant storage shards. Replicate requests are

quorum replicated before a primary of a storage shard returns a response. A client

accumulates all validate and replicate responses before starting phase 2 of 2PC. A

transaction decision is COMMIT only if all validators respond with a COMMIT

during phase 1, otherwise the decision is to ABORT. In phase 2, a client informs the

transaction decision to the application and all participant validators and primaries

of storage shards.

Although not shown in the algorithm, after successful validation of a read-only or

read-write transaction, a validator sets key.latestRead = txn.commitT imestamp for

all validated keys in the read set and key.preparedWrite = true for all keys in the

write set of the transaction. A validator resets key.preparedWrite on receiving the

73

transaction decision during 2nd phase of 2PC and also updates key.latestCommitted

for a COMMIT decision.

4.3.4 Watermarks and Version Management

Kairos uses watermarks [39] for version management on storage servers and valida-

tors. Each client c in Kairos maintains a watermark timestamp tscwatermark. The

meaning of tscwatermark is that every transaction associated with c with commit times-

tamp t ď tscwatermark has already completed. A client also caches the watermarks of

other clients in the system; the cached information must be refreshed periodically,

for example using gossip protocol [38]. Each client computes a global watermark

using the individual watermarks of clients in the system. Let C be the set of all

clients in the system, then the global watermark is tsglobalwatermark = min
cPC

tscwatermark. By

construction, any transaction with commit timestamp t ď tsglobalwatermark has already

completed.

Clients use tsglobalwatermark to assign a freshness timestamp to newly cached keys (see

Algorithm 4). Let cfreshness be the minimum freshness timestamp from all cached

keys in a client. The meaning of cfreshness is that the oldest cached value in a client

is known to be fresh as of cfreshness. In other words, the client may have missed

writes to cached keys with timestamp ą cfreshness, but knows about all writes with

timestamps ă cfreshness.

Each client periodically broadcasts cfreshness to all storage servers and validators

in the system. In turn, the validators and storage servers use the individual cfreshness

value to calculate a garbage collection timestamp tsGC , where tsGC = min
cPC

cfreshness.

Versions with timestamps ď tsGC can be safely discarded by the storage servers and

validators since there can be no transactions with freshness timestamps ă tsGC .

74

4.3.5 Recovery

Prior work [3, 92] describes recovering from client or storage shard failures. Here, we

describe how to recover from validator failures.

Validator Failure. If a participant validator fails during 2PC then the correspond-

ing storage shards take the responsibility of validating transactions for keys owned by

the validator. The primaries of storage shards can validate all outstanding read-only

transactions but might not have enough state to validate read-write transactions.

Specifically, the primary may not have the correct tspreparedRead for a key since

there might be a read-only transaction that updated this field on the failed validator

but the storage shard did not receive any request for this transaction. Validating

any read-write transaction without these values can violate serializability. Consider

the following scenario: a read-only transaction Ta read key K and was successfully

committed with a timestamp t2. Now the validator for key K fails, and the pri-

mary allows a read-write transaction Tb to commit that creates a new version of K

with timestamp t1 (t0 ă t1 ď t2). This violates serializability because Ta (already

committed) should have read Tb’s write.

Kairos uses leases to avoid this scenario. A validator in Kairos obtains a pe-

riodically renewed lease from storage shards (from at least f+1 replicas within each

shard) to validate transactions with an commit timestamp ă tlease. The primary

waits for its local clock to advance past tlease before servicing read-write transaction

requests for its shard. All outstanding read-write transactions with commit times-

tamps ă tlease can be either aborted or proposed to commit at a timestamp ą tlease.

In all failure scenarios (client, primary, backup replica or some combination of the

three) a decision can be made on any outstanding transaction and service can be

resumed as long as a majority of replicas (f ` 1) of all shards are available.

75

4.3.6 Comparison with Centiman

There are some similarities between Kairos and Centiman [39]. Kairos follows

Centiman in decoupling validation from storage servers, so that validation scales

independently of the storage tier. Like Centiman, Kairos also maintains multiple

versions of (key, version) pairs on the sharded validators for providing transactional

serializability. Finally, both Kairos and Centiman use watermarks for version man-

agement; watermarks are used for calculating a garbage collection timestamp (tsGC)

and versions with timestamp ă tsGC are discarded.

However, Centiman keeps tsGC « ts
global
watermark (global watermark) to minimize state

on validators as transactions always read fresh values from storage servers during

execution as there is no inter-transaction caching. In contrast, Kairos aims at

keeping tsGC ăă tsglobalwatermark to maximize state on validators, which in turn enables

inter-transaction caching on the clients. In Kairos, a validator cannot validate

a transaction T if T.freshness ă tsGC (see §4.3.3) because it does not know of

all writes that are pertinent to T , that T might have missed due to stale cache

reads, since the validator discards versions behind tsGC . Therefore, keeping tsGC ăă

tsglobalwatermark enables Kairos to validate transactions that read “old” data out of the

cache. Crucially, it also enables Kairos to use validation as a “fallback” for cache

consistency: it is safe for T to read stale data without violating consistency because

a validator will abort T .

4.4 Evaluation

This section presents results from our prototype implementation of Kairos running

in an Azure cluster.

Implementation. We implemented caching on top of Milana, with local validation

disabled (Section 6.2 describes a technique for combining inter-transaction caching

76

with local validation of read-only transactions; is left for future directions to explore).

To elucidate the advantages of lease-based caching, we also implemented the two

other caching techniques discussed previously: näıve and explicit invalidation-based

caching. Based on the cache configuration, servers in our system either hand out

leases or track sharers and send invalidations after a read-write transaction commits;

in näıve caching, servers hand out lease durations longer than the running time of

our experiments, so cache management only occurs based on transaction decisions.

To compare the impact of different caching techniques in isolation, we fix the set

of keys that can be cached in all cache configurations. This enables us to evaluate

performance across all configurations while caching the same set of keys, with same

access patterns; the keys are pre-computed using a top-k algorithm [24, 90]. For

lease-based caching, servers track the mean inter-write time and client caches track

the per-cache mean inter-read time of the top-k keys. A client cache periodically

piggybacks the mean inter-read time for a key with a get request and the servers use

this value along with its view of the global mean inter-write time to calculate ideal

lease duration (see Algorithm 3). Our prototype assumes uniform access distribution

across all client caches.

Finally, we implement a validator for sharded validation and make the necessary

changes on servers for the modified 2PC protocol with sharded validation.

Experimental setup. We run all experiments on Microsoft Azure D4s.v3 nodes

with 4 vCPUs, 16 GB of RAM and a high performance network. All experiments

use 5 storage shards and up to 15 clients. Each shard has 1 primary and 2 backups;

data is stored on DRAM. We co-locate the application and validators on a subset

of the clients. The system clocks on all VMs are synchronized using PTP software

timestamping mode. The average clock skew between VMs and one-way network

latency is 400 µs and 500 µs, respectively.

Workload. We use a variant of YCSB [30] to model a social network application

77

where the data of popular users is read more often and users have different rate of

posting updates. The workload models this behavior by using different zipfian distri-

bution coefficients for controlling popularity of keys in read-only (αr) and read-write

(αrw) transactions. By default, αr = 0.99, αrw = 0.75 and 90% of transactions are

read-only. We evaluate the impact of varying αr and the rate of read-only transac-

tions. Each transaction accesses 4 keys. We populate the system with 20M keys;

each key is 16B in size and a value is 1KB.

4.4.1 Inter-Transaction Caching

This section evaluates impact of inter-transaction caching alone. We use the YCSB

workload with default configuration for all experiments in this section. By default, we

use 6 clients in each experiment; each client executes 4M transactions at a default

rate of 5k transactions/sec. Transaction validation occurs on the storage servers

for all experiments presented in this subsection. We present results with sharded

validation in Section 4.4.2.

First, we evaluate the sensitivity to cache configurations.

Impact of cache size. Figure 4.8 shows the hit rate for varying cache size (% of

total dataset size). Clients use a näıve caching approach in which cache consistency

decisions are made based on transaction validation decisions; we observe similar

trends with other caching techniques. As seen from the figure, initially the hit rate

increases rapidly with the cache size, and plateaus after cache size = 0.1% of the total

dataset size. Subsequently, the hit rate only increases by 1.4% even after doubling

the cache size from 0.1% to 0.2%. Based on these results, we use a cache size of 0.1%

of the total dataset size in all subsequent experiments.

Impact of using ideal lease duration. This experiment compares our ideal

lease calculation technique with a static approach where leases are based on a fixed

probability of an update arriving while a lease is still active. Figure 4.9 shows

78

0
6

12
18
24
30
36
42
48
54
60
66

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

H
it

ra
te

 (
%

)

Cache size (% of dataset size)

Overall Hit Rate

Figure 4.8: Client cache size vs hit rate

0
2
4
6
8

10
12
14
16
18
20

P(0.1)P(0.2) ideal

P(0.26)

P(0.3)P(0.4)Mean

write

0
10
20
30
40
50
60
70
80
90
100

mean read = 0.97 ms

Le
as

e
du

ra
tio

n
(m

s)

F
re

sh
 h

it
ra

te
 (

%
)

Lease calculation strategy

Lease Fresh hit

Figure 4.9: Fresh hit rate with varying lease durations for a key

0
10
20
30
40
50
60
70
80
90

100

ideal P(0.1) P(0.2) P(0.3) P(0.4) Mean

write

T
ra

ns
ac

tio
n

co
m

m
it

ra
te

 (
%

)

Lease calculation strategy

Commit rate (%)

Figure 4.10: Commit rate: ideal vs static strategy for lease calculation

79

how lease duration and the fresh hit rate for a duration varies for different lease

calculation strategies. In the graph, x in P pxq corresponds to the probability of an

update arriving within a lease duration d, i.e., Pr(W ď d) = x. The value of d is

proportional to x, higher values of x lead to higher values of d. Note that x in P(x)

is not the stale rate. In this experiment, for each key, we find the highest possible

value of d that still satisfies the constraint set by the choice of x. The figure shows

that ideal gives the highest fresh hit rate, with P(0.26).

Figure 4.10 shows the transaction commit rates with the various lease calculation

strategies. Lease durations across all cached keys vary between 4 ms and 5 secs. As

seen from the figure, the overall transaction commit rates drop with increasing values

of x in P(x); ideal is able to achieve a commit rate within 1.4% of the commit rate

of P p0.1q, while delivering a 6% higher fresh hit rate compared to P(0.1) (not shown

in figure). These results show the trade-off between fresh hit rate and commit rate

and necessitate finding a duration that maximizes fresh hit rate without sacrificing

much on commit rate. Our ideal technique is able to achieve this goal through an

analytical model (see §4.2.3), without a need for experimentally finding the best lease

that give highest fresh hit rate.

Next, we compare our lease-based technique with näıve and explicit invalidation-

based (EI) caching. Inter-transaction caching in Sundial [129] is similar to näıve

caching and Thor [3] uses EI for cache consistency. Transaction validation occurs on

the storage servers with all caching techniques.

Impact of offered load on performance. This experiment evaluates the im-

pact of increasing offered load on performance with the different caching techniques.

Figure 4.11 shows the commit rates with each technique for increasing offered load.

There are two take aways from the figure. First, näıve caching performs worst as

cache management is done only based on transaction decisions with this technique.

Second, EI caching performs better than our lease-based technique at lower loads

80

0
10
20
30
40
50
60
70
80
90

100

0 6 12 18 24 30 36 42 48 54 60

T
ra

ns
ac

tio
n

co
m

m
it

ra
te

 (
%

)

Offered load (Kilo txns/sec)

EI Leases Naive

Figure 4.11: Commit rate with different caching technique

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 6 12 18 24 30 36 42 48 54 60

N
or

m
al

iz
ed

 S
er

ve
r

La
te

nc
y

Offered load (Kilo txns/sec)

EI

Leases

Figure 4.12: Normalized average server latency

but the commit rates with EI caching drop steadily as load is increased and there

is a cross-over point at offered load of 42k transactions/sec after which lease-based

caching technique offers better commit rates. The system (CPU on most loaded

server) saturates at offered load of 54k requests/sec, irrespective of the caching tech-

nique.

Increasing load has a greater impact on EI caching because its stale window is

81

impacted by queuing delays (Section 4.2.2). Figure 4.12 show the request processing

latencies on the most loaded server with EI and lease-based caching. The values in

the figure are normalized to the the latency for 6k transactions/sec with EI caching.

Impact on scalability. Here we evaluate the scalability impact of EI and lease-

based caching, while keeping the offered load fixed at 48k transactions/sec (below

the saturation point as seen from Figure 4.11).

Figure 4.13 shows the throughput with each technique for increasing number of

clients (and caches). The system with EI caching is only able to support 8 clients

before performance (throughput and latency) starts to degrade dramatically. Fig-

ure 4.14 (notice log scale on y-axis) shows the normalized transaction latency with

each technique; the latencies are normalized to the transaction latency with EI

caching and 6 clients. EI caching does not scale well because a server’s work for

maintaining cache consistency increases linearly with the number of client caches

and this minimizes the gains from caching. Figure 4.15 shows the percentage of

messages saved with each technique. The messages saved metric is calculated by

subtracting the number of hits with number of invalidation requests needed to keep

caches consistent (0 with lease-based and ą 0 with EI caching) and dividing the re-

sult by the total number of get (read) requests. This metric captures the percentage

of requests that were serviced locally, without any involvement or resource utilization

(e.g., CPU, network etc) on the servers. The metric is of interest as the CPU on

the server saturates in our setup during these experiments. As seen from the figure,

messages saved (%) with EI caching drops almost linearly with increasing number

of sharers, indicating that the gains from caching are minimized by the invalidations

sent by the servers.

In contrast, lease-based caching scales better and is able to support 13 clients

before saturation, while offering 55% higher throughput compared to EI caching. The

messages saved (%) with lease-based caching also decrease with increasing number

82

0
5

10
15
20
25
30
35
40
45
50

6 7 8 9 10 11 12 13 14 15

T
hr

ou
gh

pu
t (

K
ilo

 tx
ns

/s
ec

)

Number of clients and caches (sharers)

Leases EI

Figure 4.13: Throughput: explicit invalidation vs lease-based caching

1

10

100

6 7 8 9 10 11 12 13 14 15

N
or

m
al

iz
ed

 a
vg

 tx
n

la
te

nc
y

Number of clients and caches (sharers)

EI Leases

Figure 4.14: Normalized transaction latency: explicit invalidation vs lease-based
caching

0
5

10
15
20
25
30
35
40
45
50

6 7 8 9 10 11 12 13 14 15

M
es

sa
ge

s
sa

ve
d

(%
)

Number of clients and caches (sharers)

Leases EI

Figure 4.15: Messages saved: explicit invalidation vs lease-based caching
83

0
6

12
18
24
30
36
42
48
54
60
66

75 90 95 99

T
hr

ou
gh

pu
t (

K
ilo

 tx
ns

/s
ec

)

Read-only transaction (%)

Baseline Cache C+5V

Figure 4.16: Throughput with varying read transaction %

of sharers because the mean inter-read time per cache increases and this reduces

cache effectiveness. This trend is independent of the caching technique and shows the

importance of locality-aware request distribution for effective cache utilization [102,

4].

We explored techniques to offload EI caching from the storage servers to the

client (e.g., sharded validator) so as to compare EI and lease-based caching in a

setup where servers are not involved in maintaining cache consistency. However, any

design almost doubles (worst case) the number of messages in a transaction since

all reads (cache misses) during execution would also have to be sent to the client-

side cache manager for tracking sharers and writes need to be sent for triggering

invalidations (if cache manager is separate from validator).

4.4.2 Comparison with a Baseline System

Here we evaluate Kairos against a baseline system with intra-transaction caching

only and no de-centralized validation. We use 6 clients and 5 storage shards in all

experiments and vary the offered load per client. Each client caches 0.1% of the most

84

0
6

12
18
24
30
36
42
48
54
60

0.8 0.9 0.99T
hr

ou
gh

pu
t (

K
ilo

 tx
ns

/s
ec

)

Read-only zipfian coefficient (ar)

Baseline Cache C+5V

Figure 4.17: Throughput with varying αr (90% read-only txn)

popular keys in the workload. All transactions are validated on client-side validators.

We use 5 validators (same as number of storage shards) in a system with sharded

validation.

Figure 4.16 shows the throughput with varying read-only transaction percentage

for a baseline system, a system with inter-transaction caching only and a system

with inter-transaction caching and sharded validation. As seen from the figure, the

throughput of all systems increases for increasing read-only transaction percentage.

A system with inter-transaction caching alone offers up to 1.86x throughput of the

baseline system. Adding sharded validation (with caching) provides an additional

22.5% improvement in throughput and offers 2.28x throughput of the baseline system.

Sharded validation improves performance by moving validation away from servers.

Figure 4.17 shows the throughput for varying zipfian coefficient (αr) for selecting

keys in read-only transactions. We fix the read-only transaction percentage to 90%

for this experiment. Popularity distribution of keys is directly related to αr. As

αr increases, the performance of the baseline system drops due to workload-induced

hotspots as reads become more skewed. In contrast, the performance impact of

85

inter-transaction caching improves because the hit rate on individual client caches

increases when distribution is more skewed. Impact of sharded validation shows a

similar trend to inter-transaction caching.

4.5 Related Work

Caching in distributed storage systems. Client caching is standard in dis-

tributed file systems [86, 103, 2] using variants of callback leases [54]. Prior works

have also explored caching to improve performance and/or balance load in key-value

stores [45, 97, 80, 85, 61, 52]. However, none of these works support transactions.

Fan et al [45] prove that O(nlogn) is a lower bound on the cache size to provide good

load balance, where n is the total number of backend nodes. They use this result

to design a small look-through cache that resides in a frontend load balancer and

serves the most popular items to dynamically balance the load across the backend

nodes. SwitchKV [80] improves performance of flash-based key-value stores by us-

ing an OpenFlow-capable switch to steer requests for popular data to an in-memory

caching layer. However, SwitchKV maintains a single copy of each cached object and

therefore is prone to hotspots in the caching layer.

IncBricks [85] and NetCache [61] use middleboxes and switches, respectively, to

cache popular keys inside the network. Nishtala et al [97] propose techniques for

scaling memcached. ccKVS [52] leverages skew for aggressively caching and replicat-

ing popular data to improve performance of key-value stores. All these systems allow

keeping multiple copies of frequently-accessed data but require explicit invalidations

for cache consistency.

Client-server transactions with OCC. Numerous works use optimistic concur-

rency control (OCC [68]) for ACID transactions [3, 41, 39, 130, 42? , 25, 92]. Kairos

follows Thor [3] in using physical clocks for the OCC version stamps, as do many

others (e.g., [130, 39, 92]). Among these, Milana [92] and Centiman [39] are most

86

closely related. Milana uses precise clocks for optimizing replication and transaction

protocols and also shows that they reduce abort rates in OCC-based systems. How-

ever, Milana does not support inter-transaction caching. Comparison with Centiman

is presented in Section 4.3.6. Kairos adopts Centiman’s scalable sharded valida-

tion, and integrates support for inter-transaction caching: our results show that the

combination yields more benefit than either technique alone for workloads with hot

keys. Spanner [31] also uses physical clocks for transactions, but only for snapshot

reads: Spanner does not use OCC.

Cache consistency. Thor [3] and some of its successors support inter-transaction

caching using explicit invalidations (callbacks) to keep caches consistent. Thor shows

that asynchronous callbacks are sufficient for transaction systems with OCC. Al-

though asynchrony causes a transaction T to read stale data, consistency is not

violated since T fails OCC validation and aborts. In essence, Thor uses OCC as

a fallback for loose cache consistency. Kairos takes this idea one step further by

eliminating the callback entirely (or making it optional). Thor also shows that OCC

with physical clocks leads a rate of spurious aborts that increases with clock skew.

Kairos leverages precise clocks to minimize these aborts (like Milana [92]) and also

to support time-based consistency with a lightweight protocol that directs clients to

self-invalidate cached keys at precise times (“soft” leases).

Sundial [129] uses leases based on logical time and also integrates inter-transaction

caching with OCC for serializable transactions. Sundial is similar to näıve caching

(see §4.2.2), but it reorders transactions to avoid some stale hits, and disables caching

for a key if its rate of stale hits exceeds an arbitrary configured threshold. Kairos

uses precise clocks to adjust lease terms dynamically for effective caching on a per-key

basis. Furthermore, Kairos can also support external consistency since transactions

commit in physical timestamp order. Finally, Kairos scales validation independent

of storage.

87

Self invalidation in coherent caches/shared memory systems. Prior works

have used self-invalidation to improve performance of coherence protocols in shared

memory multiprocessors [74, 94, 69, 108]. Ninan et al [96] use cooperative leases to

maintain consistency in content distribution networks. Lease management is done

hierarchically to avoid overloading lease brokers and the duration of a lease is based

on the the degree of freshness desired for cached objects. Mirage [47] uses static

leases to reduce coherence overhead in software distributed shared memory systems.

4.6 Summary

Distributed, transactional storage systems scale by sharding data across servers.

However, workload-induced hotspots result in contention, leading to higher abort

rates and performance degradation.

This chapter presents Kairos, a transactional key-value storage system that

leverages client-side inter-transaction caching and sharded transaction validation to

balance the dynamic load and alleviate workload-induced hotspots in the system.

Kairos utilizes precise synchronized clocks to implement self-invalidating leases for

cache consistency and avoids the overhead and potential hotspots due to maintaining

sharing lists or sending invalidations.

Experiments show that inter-transaction caching alone provides 1.86x the through-

put of a baseline system with only intra-transaction caching; adding sharded valida-

tion further improves the throughput by a factor of 2.28 over baseline. We also show

that lease-based caching can operate at a 62.5% higher scale while providing 1.55x

the throughput of the state-of-the-art explicit invalidation-based caching.

88

5

SkimpyFTL

Transactional key-value storage systems use a multi-version storage to increase con-

currency [32] and reduce abort rates [92, 40] since reads can be satisfied from a

consistent snapshot in the past (old versions), while writes create new versions. Fig-

ure 5.1 illustrates the impact of single vs multi-versioning on transaction abort rate

for a social network application; workload and methodology are described in §5.3. As

seen from the figure, multi-versioning provides 2ˆ reduction in abort rates compared

to single-version storage, and its benefit increases with offered load.

However, there are several challenges in designing a multi-version storage, in-

cluding: 1) additional capacity, 2) index for mapping versions to values, and 3)

version management. First, the extra versions require additional capacity, which can

be prohibitively expensive with in-memory (DRAM) storage systems. Second, these

systems need an index to map versions of a key to their value so reads can be serviced

from a consistent snapshot. A näıve approach is to store the entire index in DRAM;

this approach provides the lowest lookup latencies but has a high space overhead.

An efficient indexing technique needs to find a tradeoff between lookup latencies

and DRAM requirement for indexing. Third, multi-versioning necessitates a version

89

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70

T
ra

ns
ac

tio
n

ab
o

rt
 r

at
e

(%
)

Offered load (Kilo transactions/sec)

Single-version storage

Multi-version storage

Figure 5.1: Transaction abort rate with single vs multi-version storage

management (garbage collection) scheme for effective capacity utilization. The ver-

sion management scheme needs to strike a balance between capacity reclamation by

discarding old versions and servicing reads from a consistent snapshot.

Semel (Chapter 3) addresses the capacity and version management challenges

with designing a multi-version storage system. It uses Solid State Drives (SSDs)

for storing multiple versions of data and a watermark-based version management for

effective capacity utilization as watermarks provide a bound on the oldest version

that can be read by the application. This chapter addresses the indexing challenge.

SSDs are a more attractive proposition for multi-versioning than DRAM or newer

non-volatile memory (NVM) technologies (e.g., Intel Optane) because they provide

TB capacity per drive for less than $1.00/GB. In addition, newer standards like Soft-

ware Defined Flash (SDF) allow designing flash storage systems based on application

requirements [62, 131, 111, 88, 57, 92]. These advances in flash storage enable stor-

ing more data per server, while delivering better performance compared to spinning

disks and at a lower cost compared to DRAM and NVMs.

Furthermore, Semel exploits an intrinsic property of flash-based SSDs — remap-

90

on-write — to implement multi-versioning in an SSDs Flash Translation Layer (FTL)

using SDF. Semel’s approach removes abstractions and provides better performance

compared to a näıve approach of stacking a multi-version software layer over a stan-

dard FTL. However, Semel incurs a high space overhead since it maintains the entire

index for mapping a version of a key to its location on flash in host DRAM.

This chapter presents SkimpyFTL, a system that addresses all the 3 challenges

with designing a multi-version key-value storage system. It builds on top of Semel by

leveraging SSDs for FTL-integrated multi-versioning along with a watermark-based

version management scheme and addresses the indexing challenge by providing a

tradeoff between DRAM capacity and lookup latency. SkimpyFTL uses a hash table

for mapping key versions to their values. It follows SkimpyStash [35] in offloading

the hash collision list on flash to reduce DRAM requirement for indexing and adds

support for multi-versioning using version pointers, which are also stored on flash

along with the collision list.

A SkimpyFTL prototype utilizing LightNVM Open-Channel SSD emulation

framework [18] reveals SkimpyFTL provides 72-91% throughput of Semel for read-

dominant key-value workloads (75-100% reads), while reducing the memory require-

ment for indexing by a factor of 0.95ˆ. For a transactional YCSB [30] workload,

SkimpyFTL provides 85% peak throughput of Semel. Finally, SkimpyFTL out-

performs a näıve multi-version key-value store implemented over a standard FTL on

both workloads.

The rest of this chapter is organized as follows. Section 5.1 provides an overview

on Semel FTL. We present the design of Kairos in Section 5.2. Section 5.3 presents

results from a prototype of Kairos. We discuss the related work in Section 5.4.

Finally, we summarize in Section 5.5.

91

Key 1

Key 2

Key 3

V1

V1

V2 V1

Mapping table in Host DRAM
Key 1, Version 1

Key 2, Version 1

Key 3, Version 1

Key 1, Version 2

Key 3, Version 2

key 1 key len version 1 value len value

Log order

Tail

Flash

Page 0

Page 1

Page 2
Head

V2

Figure 5.2: Mapping table and data layout on flash in Semel

5.1 Background

This section briefly describes how Semel uses SDF for designing a multi-version

storage system. More details can be found in Section 3.1.

Semel is a lightweight multi-version key-value store based on SDF. It writes new

values in a log-structured fashion [109], densely packed in pages on flash. Figure 5.2

shows the mapping table and data layout in Semel. As seen from the figure, Semel

maintains a linked list in DRAM with an entry for each version of a key. Each version

is assigned a 64-bit create timestamp and maps directly to a page on flash and the

version’s offset within the page, removing a level of indirection.

Semel’s DRAM-based mapping table is prohibitively expensive. Each version

entry is 20B in size (4B page address, 8B version timestamp and 8B pointer to

prior version): for a 1 TB SSD and 512B key-value pairs, Semel consumes 40 GB

92

of DRAM to map the entire SSD. The goal of SkimpyFTL is to provide DRAM-

efficient version mapping with performance as close as possible to Semel.

5.2 SkimpyFTL: A Multi-Version Flash Translation Layer

This section describes how SkimpyFTL addresses the need for memory-efficient

dynamic indexing of a multi-version store like Semel. Our approach combines a

flash-based mapping table (§5.2.1) with a DRAM-based mapping translation cache

for hot keys (§5.2.2). The two structures operate together to handle reads and

writes efficiently in the common case (§5.2.3). The scheme also extends the garbage

collection protocol (§5.2.4).

SkimpyFTL API is similar to other multi-version key-value stores, it takes a

timestamp as an argument with get and put requests to return a consistent snapshot

and set timestamp of a new version, respectively. Below we describe the SkimpyFTL

API.

• put(key, value, tput): Create a new version for the given key with version

timestamp “ tput.

• get(key, tget) Ñ value: Return a version with timestamp ď tget.

• delete(key): Delete all versions of the key.

5.2.1 Mapping Table

SkimpyFTL indexes the key-value pairs on flash with a hash-based mapping table

whose buckets are rooted in host DRAM. Multiple key-value pairs may hash to

the same bucket; SkimpyFTL handles such collisions using linear chaining, where

key-value pairs in the same bucket are chained using a linked list. Rather than

maintaining this collision list in DRAM, SkimpyFTL offloads it to flash; a hash

table bucket in DRAM points to the head of the linear list on flash, and each entry

93

{key1, value, version1}

Flash

Key 1, Version 2

Key 3, Version 1

Page 1

Key 1, Version 1

Key 2, Version 1

Page 0

Key 2, Version 2

Key 4, Version 1

Page 2

prior version hash next

Mapping table in
host DRAM
Bucket 1

…

Bucket b

Translation cache
in host DRAM

…

Key 3

Hash list
Version list

Figure 5.3: Mapping table, translation cache and data layout on flash in
SkimpyFTL

in the list on flash points to the next entry. This approach is inspired by a prior

work [35]. SkimpyFTL allows configuring the number of hash buckets to achieve a

desired balance of DRAM cost and lookup time.

Figure 5.3 shows the mapping table and the data layout on flash. SkimpyFTL

writes data versions to flash in a log-structured fashion, as in Semel. In addition to

the usual fields for each key-value pair (version), SkimpyFTL stores two pointers:

a hash next pointer to the next entry in the bucket’s collision list (hash chain) and a

prior version pointer to a prior (older) version of the key. The prior version pointer is

an optimization: SkimpyFTL can traverse a hash chain to find a requested version,

but it is often faster to traverse the prior version pointer from a later version of the

desired key, as described next.

94

5.2.2 Mapping Translation Cache

Prior characterization studies suggest that datacenter workloads tend to be read-

dominated [11, 97]. Furthermore, the popularity of data items in real-world work-

loads often follows a power law distribution, where a small subset of the keys receive

a large portion of the accesses [30, 11]. Such workloads would cause significant read

amplification to traverse the collision lists. In particular, a key that is updated in-

frequently tends to migrate to the end of the list, since new versions are written to

the front of the list.

To mitigate this cost, SkimpyFTL caches key translations in a mapping trans-

lation cache in DRAM. A translation cache entry for a key stores the location of its

latest version on flash.

5.2.3 Request Life Cycle

Figure 5.3 illustrates how the DRAM-based translation cache operates in conjunction

with the mapping table to handle GET (read) and PUT (write) requests efficiently.

A GET request first does a lookup to locate the latest version of the requested

key. Then, if the request is a snapshot read for a previous version, it traverses the

prior version pointer(s) to locate the requested version. A lookup for a hot or recent

key hits in the translation cache, which returns the pointer to the latest version. On

a cache miss, SkimpyFTL hashes the key to a bucket and then follows the hash

chain until it finds an entry for the key, which is the latest version. It then caches

the mapping in the translation cache.

For example, for a GET of {key 1, version 1} in Figure 5.3, SkimpyFTL first

hashes key 1 to bucket 1 and traverses the hash chain: {key 2, version 2} Ñ {key

3, version 1} Ñ {key 1, version 2}, until it encounters key 1. It then updates the

translation cache to point to the latest version of key 1.

A PUT request hashes the key to a bucket and links the new value to the front of

95

the hash chain: it sets its hash next field to the current index pointed to by the bucket

and updates the current index. To populate the prior version field, SkimpyFTL

probes the translation cache for the most recent version of the key. This lookup

typically results in a hit in the common case of a read-modify-write operation on

the key. On a miss, SkimpyFTL sets the prior version field to a special value that

indicates to a GET request that prior versions may exist and must be retrieved by

searching further in the chain. It fills in the missing prior version pointers during

remapping (§5.2.4).

For example, for a PUT request for key 2 in Figure 5.3, SkimpyFTL writes the

new version to the end of the log on flash, hashes it to bucket 1, sets the hash next

of key 2 to point to key 3 (on page 1) and updates bucket 1 to point to the new

version. It sets the prior version field of key 2 to point to a prior version.

5.2.4 Garbage Collection

The garbage collection process starts from the tail of the log and remaps valid versions

(key-value pairs) to the head of the log. For each key, SkimpyFTL retains the

youngest version with a timestamp less than the current watermark, and discards

older versions. The watermark is a timestamp that advances continuously. In the

Semel transactional key-value store, the watermark is the minimum timestamp that

could appear in any future request from a client, following Centiman [39]. Each client

periodically passes its timestamp for its last acknowledged operation. The minimum

of these timestamps is the watermark.

SkimpyFTL extends Semel’s garbage collection to use the bucket collision lists

and version lists, and to maintain their integrity. To determine whether to remap or

discard a version, SkimpyFTL probes the translation cache and version list for a

more recent version that is younger than the watermark. On a miss, it must traverse

a bucket hash chain. For each remapped version, it must also update the hash next

96

pointer of its predecessor in the chain to point at the new location. For this reason,

SkimpyFTL garbage collects an entire hash bucket at a time by sweeping its hash

chain and remapping retained versions in reverse temporal order, updating their

pointers in the usual way as it goes.

To maintain fidelity of the hash chains and version lists, SkimpyFTL blocks any

new writes to a bucket during the process of traversing its hash chain and remapping

valid data. The remapping process packs the retained versions of a bucket’s keys

densely into flash pages, reducing lookup time for later GET requests.

5.3 Evaluation

We use a modified Open-Channel SSD framework [18] from our prior work [92] for all

FTL implementations. In software-only mode, the emulator supports storing data

values in DRAM, and provides IOCTLs for get, put and erase functionality for flash

blocks. It also allows specifying latencies for read page, write page and block erase

operations.

All our FTL implementations use 32 bits (4 bytes) for storing the location of a

key on flash. To allow an FTL to pack multiple key-value pair within a page; we

divide each page into fixed number of chunks and use 3 out of the 32 bits for storing

the start chunk for a key in a page. The remaining 29 bits are used for addressing a

page.

Workload. We use 2 types of workloads for evaluation: 1) key-value operations

workload, and 2) transactional YCSB [30] workload. We implement a micro-benchmark

for the key-value operations workload; the micro-benchmark issues non-transactional

get and put requests to single keys, for a varying get request percentage. Popularity

of keys in the benchmark is controlled using a zipfian distribution; we set the zipfian

coefficient α to 0.99 in our micro-benchmark, a frequently used value in key-value

workloads [30, 11]. Our transactional YCSB [30] workload models a social network

97

application, where the data of popular users is read more often and users have dif-

ferent rate of posting updates. The workload models this behavior by using different

values of α for controlling popularity of keys in read-only (αr) and read-write (αrw)

transactions. Each read-only transaction accesses from 1 to 10 keys, and a read-write

transaction operates on 1 to 5 keys.

Experimental Setup. All experiments are run on a server with a 16 core Intel

Xeon E5-2640 processor clocked and 128 GB DRAM. The SSD emulator is backed

by 32 GB DRAM, with a hardware queue depth of 128. The SSD has a page size

of 4KB and there are 32 pages in a block. A flash page read, write time is 50 µs

and 100 µs respectively and it takes 1 ms to erase a flash block. To ease garbage

collection, all FTL implementations reserve 10% of available capacity for remapping

data.

For all experiments, we populate the system with 20M keys; the key size is 16B

and packed data on flash is 512B, which includes key, value, version, and pointers

to prior version and next entry in hash collision chain. Since a flash page is 4KB in

size, we employ a packing logic in the FTL that waits for up to 1 ms (tunable) to

pack data of multiple keys into a page. There are up to 8 keys packed into a page,

which increases the garbage collection overhead per page. Each run is of 15 mins

and we pre-condition the SSD so garbage collection runs in the background in all

experiments that perform writes.

Our Semel prototype stores the entire mapping table in DRAM. It needs „ 67M

mappings (=32GB/512B) to address the entire SSD, and each mapping is 20B (4B

page address, 8B version timestamp, and 8B prior version pointer) in size.

We perform sensitivity analysis to determine the size of translation cache and

number of buckets in SkimpyFTL. Figure 5.4 shows translation cache size vs hit

rate under our key-value micro-benchmark with 10% writes and for a varying zipfian

key selection coefficient α, with number of buckets = number of keys. As seen from

98

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20

H
it

ra
te

Cache size (% of keys)

a= 0.5

a= 0.6

a= 0.7

a= 0.8

a= 0.9

a= 0.99

Figure 5.4: Translation cache size vs hit rate for varying values of α

the figure, the hit rate increases for a given cache size with increasing values of

α. This is expected because the popularity skew in the workload increases with

increasing values of α, which causes a small subset of keys in the workload to get

disproportionate number of accesses. For α = 0.99, a translation cache size of 10%

of the number of keys in the workload gives a „ 90% hit rate. Consequently, we

set the translation cache size to 10% for all experiments. After fixing the size of the

translation cache, we evaluate the impact of number of buckets in the hashmap for

the same workload, with 10% writes and α = 0.99. Figure 5.5 shows the impact of

average number of keys / bucket on throughput. Based on the results, we size the

mapping table to have 5 keys / bucket i.e., 4M buckets. Each entry in the mapping

table is 4B (page address), and 16B (8B page address, 16B LRU pointers) in the

translation cache. SkimpyFTL uses „ 5% of the memory used by Semel. We

assume the memory requirement for storing keys is the same in both systems.

99

0

100

200

300

400

500

600

1 2 3 4 5 6T
hr

ou
gh

pu
t (

K
ilo

 r
eq

ue
st

s/
se

c)

Average # keys / bucket

10% puts

Figure 5.5: Impact of # keys / bucket

5.3.1 Key-Value Workload

We first evaluate the performance of all systems with a non-transactional key-value

workload, for a varying put request percentage.

Figure 5.6 shows the throughput for varying put request % with our key-value

micro-benchmark. The throughput of all 3 systems — Semel, VFTL and SkimpyFTL—

0

100

200

300

400

500

600

0 5 10 15 20 25T
hr

ou
gh

pu
t (

K
ilo

 r
eq

ue
st

s/
se

c)

Put request (%)

Semel

SkimpyFTL

VFTL

Figure 5.6: Throughput with key-value micro-benchmark

100

drops as put request percentage is increased because writes increase the garbage

collection overhead. As expected, Semel provides the highest throughput since it

implements multi-versioning in flash and maps all versions of all keys in DRAM.

SkimpyFTL provides from 72% - 91% of the throughput of Semel, while only us-

ing 5% of the memory. The throughput degradation is worse in SkimpyFTL as put

request percentage increases because garbage collection overhead — traversing entire

hash collision chains for determining data to discard and remap — is more frequent.

We plan to explore other approaches to garbage collection, with lower overheads,

in the future. Interestingly, the throughput of VFTL, which is implemented by

stacking a multi-version layer over a generic FTL, is even lower than SkimpyFTL.

VFTL provides the lowest throughput because it suffers from log stacking [128] —

the log in multi-version layer and generic FTL operate independently, which leads

to uncoordinated garbage collection and randomization of writes.

5.3.2 Transactional Workload

To evaluate performance for a transactional workload, we stack a layer over the 3

systems that supports transactions using MVCC [15]. The memory overhead of the

layer is the same for all systems. Our YCSB [30] workload issues 90% read-only

transactions, with zipfian coefficient for read-only and read-write transactions set to

αr “ 0.99 and αrw “ 0.75, respectively.

Figure 5.7 shows the throughput and latency with the 3 storage systems for an

increasing offered load. The trend in performance of the systems is similar to the

key-value workload. Semel provides the best performance; SkimpyFTL provides

85% of the peak throughput of Semel. VFTL provides the lowest peak throughput

and highest latency. Thus, showing the disadvantage of the näıve approach of imple-

menting multi-versioning, agnostic of the underlying storage medium. All approaches

have similar transaction commit rates („ 93%).

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Throughput (kilo transactions/sec)

Semel

SkimpyFTL

VFTL

Figure 5.7: Throughput vs Latency for a transactional workload

5.4 Related Work

Prior works have proposed indexes for flash-based key-value storage systems [10, 9,

34, 81, 82, 35, 117, 88, 72]. However, none of these works support multi-versioning.

Several works use a hashmap for indexing. FAWN [10] stores key-value pairs in

an append-only log on the SSD, and uses an in-memory hash-based index for fast

lookups. BufferHash [9] uses multiple in-memory hash-based indexes, with bloom fil-

ters to choose which hash index to use for a lookup. SILT [82] stores data in multiple

tiers; as key-value pairs age, they are compacted with other pairs and transitioned

to other skimpy memory-optimized tiers. FlashStore [34] and SkimpyStash [35] also

use a hash-based index, but optimize its size; FlashStore uses cuckoo hashing and

compact key signatures to reduce the size of the index, while SkimpyStash uses a con-

figurable number of hash buckets to reduce DRAM requirement and moves the hash

collision list to flash. SkimpyFTL builds on top of SkimpyStash’s approach and

adds support for multi-versioning and a translation cache. NVMKV [88] is a FTL-

aware key-value store which uses native FTL capabilities, such as sparse addressing,

and transactional supports to directly map keys to values on flash.

102

Tree-based data structures have also been proposed for indexing in flash-based

SSDs. WiscKey [72] and FD-tree [81] use a tree-based data structure for indexing

data on SSDs. WiscKey decouples keys and values from an LSM [99] tree for re-

ducing read and write amplification in SSDs. FD-tree proposes a new tree-based

data structure for indexing key-value pairs on SSD that uses logarithmic method for

storing data (like LSM) and adds fractional cascading to speed up read operations.

FD+tree [117] adds new features to FD-tree, such as level skipping for fast reads and

tightening for tree compaction, to make them practical.

5.5 Summary

Maintaining multiple versions of data is popular in key-value stores as it increases

concurrency and improves performance. However, designing a multi-version key-

value store entails several challenges, such as additional capacity for storing extra

versions and an indexing mechanism for mapping versions of a key to their values.

This chapter presents SkimpyFTL, a system that addresses all the 3 challenges

with designing a multi-version key-value storage system. It builds on top of Semel

by leveraging SSDs for FTL-integrated multi-versioning along with a watermark-

based version management scheme and addresses the challenge with indexing by

providing a tradeoff between DRAM capacity and lookup latency.

Our evaluation reveals SkimpyFTL provides 72-91% throughput of Semel for a

key-value workload (75-100% reads), while reducing memory requirement by a factor

of 0.95x. For a transactional workload, SkimpyFTL provides 85% peak throughput

of Semel. We also show the benefit of implementing multi-versioning in the FTL —

SkimpyFTL outperforms a näıve multi-version key-value store implemented over a

standard FTL on both workloads.

103

6

Conclusion

Large-scale datacenters provide the computational infrastructure that underlies the

increasing use of cloud services. A key aspect in many datacenters is the use of

commodity hardware to provide scale-out cloud infrastructure for services such as

Software as a Service(SaaS), Hardware as a Service (HaaS) and the more generalized

Anything as a Service (XaaS). These services provide many enabling features (e.g.,

elasticity, high availability, low time to market, and transfer of risks etc.) that make

cloud computing a ubiquitous paradigm for deploying applications spanning all as-

pects of the human endeavor. Analysts forecast that global cloud services revenue

will reach $410 billion by 2020 [50].

Given the scale and criticality of cloud services, it is crucial to continually ex-

amine existing, new and emerging features available to enhance these services. Our

work focuses on transactional key-value storage, an important service inside data-

centers [31, 116, 41, 39, 130, 75, 42]. Transactional key-value storage systems are

popular because they provide high-level guarantees like consistency, scalability and

fault-tolerance to ease application development. Unfortunately, providing good per-

formance (high throughput and low latency) without high complexity is often a

104

challenge for these storage systems due to several sophisticated protocols for pro-

viding the high-level guarantees (e.g., transaction and replication protocol), and the

overheads incurred by traversing various abstraction levels.

We leverage two emerging datacenter capabilities — precise synchronized clocks

and software-defined storage — to address the performance and complexity chal-

lenges with transactional key-value storage systems. To this end, we use a cross-layer

approach that investigates all levels of the storage stack, from developer APIs to un-

derlying hardware. We show that this methodology opens avenues for synergistic

interactions between software and underlying hardware, and leads to simpler system

designs and better performance.

6.1 Key Contributions

We address the following following challenges with transactional key-value storage

systems: 1) multi-version storage protocol, 2) ordering constraint in replication pro-

tocol, 3) high abort rate due to clock skew with transaction protocol (Optimistic

Concurrency Control), and 4) explicit invalidation overhead with inter-transaction

caching protocol.

This dissertation presents 4 systems — Semel, Milana, Kairos and SkimpyFTL—

each designed to address a particular aspect of the complexity and performance

challenge with transactional key-value storage systems. Below we summarize the

key contributions made by each system.

Semel is a multi-version key-value storage system that provides access to single

key-value objects, without any support for transactions. It leverages precise synchro-

nized clocks to simplify the replication protocol used by key-value storage systems.

All writes in Semel are timestamped with precision time; these timestamps enable

a lightweight primary-backup inconsistent replication protocol that moves update

ordering off the critical path — all writes are immediately acknowledged by backup

105

storage servers, irrespective of the order they come in. The correct order is re-

created using timestamps at the time of a storage primary failure. Furthermore,

Semel addresses the storage capacity and version management challenge with a

multi-version storage by exploiting remap-on-write property of flash-based SSDs for

multi-versioning and a watermark-based version management scheme for effective

capacity utilization, respectively.

Evaluation of a Semel prototype using the Precision Time Protocol [60] and the

LightNVM Open-Channel SSD emulation framework [18] reveals a 20-45% increase

in throughput and up to 7ˆ lower GET latency on a single machine using unified

version and flash management compared to a näıve multi-version key-value storage

system implemented over a standard Flash Translation Layer (FTL) for read heavy

workloads (50-100% GET ops).

Milana adds OCC to support serializable ACID transactions over Semel. Mi-

lana uses timestamps from precise synchronized clocks to address the problem of

high abort rates with OCC. We show that clock skew with Network Time Proto-

col (NTP) [91] is too high for modern low-latency datacenters and that the Preci-

sion Time Protocol (PTP) [60] enables use of OCC with low abort rates, even in

high-contention scenarios. Furthermore, Milana uses precise synchronized clocks

to eliminate server-side validation of all read-only transactions — all such transac-

tions are validated locally on the client, which reduces load on servers and improves

performance and eliminates two round-trip of messages (for validation).

Evaluation of our Milana prototype using Retwis [73] shows up to 43% reduc-

tion in abort rates using PTP vs. NTP due to tighter clock synchronization. The

local client validation optimization for all read-only transactions in Milana reduces

transaction latency by 35% and increases throughput by 55% for read-heavy work-

loads.

Kairos builds on the approach of Milana by using precise synchronized clocks

106

to enable physical time-based consistency integrated with transactional concurrency

control, and adds support for inter-transaction caching and sharded validation. Pre-

cise synchronized clocks enable a lease-based inter-transaction caching protocol, with-

out tracking sharers or sending any invalidations; clients dynamically self-invalidate

data on lease expiration. The central challenge for a lease-based approach is to set

lease times to balance the hit ratio with the cost of stale reads. Kairos addresses this

challenge using the observed inter-access (read and write) times of popular keys to

adapt lease durations dynamically for each key to optimize this tradeoff according

to an analytical model. In addition, Kairos also leverages sharded validation from

Centiman [39] to decouple transaction validation from the servers, so that validation

scales independently of the storage tier; Kairos adapts this sharded validation to

support inter-transaction caching.

Evaluation of a Kairos prototype using a YCSB workload [30] reveals that inter-

transaction caching alone improves throughput by 1.86x relative to a baseline sys-

tem with only intra-transaction caching; adding sharded validation further improves

throughput by a factor of 2.28 under a workload with a hotspot that saturates a stor-

age primary. Furthermore, our evaluation shows that lease-based inter-transaction

caching can support 62.5% more clients while providing 1.55x the throughput of

classical callback leases (explicit invalidation) in workloads with hot keys.

SkimpyFTL builds on top of Semel and addresses the requirement for memory-

efficient indexing in multi-version storage. SkimpyFTL uses a hashmap-based ap-

proach for enabling a tradeoff between memory capacity and lookup latency for

indexing. It reduces memory requirement for indexing by tuning the size of the

hash index (number of buckets); a smaller index reduces memory requirement, but

causes more keys to be hashed to the same bucket, with the collision list of a bucket

stored on flash. This memory size reduction impacts the lookup latency for indexing

because more flash reads need to be performed to lookup a key.

107

Evaluation of a SkimpyFTL prototype under a key-value micro-benchmark shows

that SkimpyFTL provides 72-91 % of the throughput of Semel for read-dominant

workloads (75-100% reads), while reducing the memory requirement for indexing

by a factor of 0.95ˆ. For a transactional YCSB [30] workload, SkimpyFTL pro-

vides 85% of peak throughput of Semel. Finally, SkimpyFTL outperforms a näıve

multi-version key-value storage system implemented over a standard FTL on both

workloads.

6.2 Directions for Future Work

Precise synchronized clocks and Non-volatile Memory. Research advances

continue to tighten the bounds on clock skew: recent work demonstrates « 100-

150 ns skew across a datacenter [76, 53]. These tolerances are within the access

latencies of newer non-volatile memory technologies (e.g., STTRAM, PCM etc.)

and are fast approaching those of DRAM. One research direction is using precise

synchronized clocks to design distributed shared memories that leverage the low

clock skew for deterministic operation execution. For example, precise clocks can be

used for operation ordering and enforcing a memory system consistency model.

Distributed Flash Management. Software-defined storage enables tailoring stor-

age devices (e.g., SSDs) according to application requirements. Semel and SkimpyFTL

leverage software-defined storage to design a lightweight multi-version storage using

SSDs. However, both systems run the modified Flash Translation Layer on stor-

age server processors. With presence of multiple general-purpose cores on storage

controllers [66] and newer standards like NVME over Fabric (NVMEoF) for commu-

nicating with a storage controller over the network, an interesting research avenue

is to explore how to distribute the flash management from the storage server to the

clients of the storage system. One approach is to distribute flash blocks on an SSD(s)

to the clients of the system; each client reads, writes and performs garbage collection

108

of the blocks that it owns through remote commands sent to the storage controller

using NVMEoF. However, this approach needs a communication framework across

the clients to synchronize accesses (reads and writes) to any shared data.

Integrating caching with local validation of read-only transactions. Mi-

lana supports local validation of read-only transactions, which reduces validation

load on the server and eliminates one round-trip of messages and latency for the

client. On the other hand, Kairos supports inter-transaction caching, which re-

duces the server load for data accesses along with latency reduction for clients as

frequently-read data can be serviced from a client’s cache. However, Kairos re-

quires server-side validation of all transactions (including read-only) as client caches

can contain stale data, and needs to be validated by a centralized authority (server

or validator) to determine whether a transaction read any stale data. An interesting

avenue of research is integrating inter-transaction caching with local validation to

enable servicing read-only transactions entirely on the client, without requiring any

communication with storage servers. One approach is to define epochs for keys; a

key can be in a read or write epoch, the duration of which can be based on inter-

access times. Clients can aggressively cache keys in read epochs, and perform local

validation of transactions that only access keys in read epochs.

Multi-version indexing in flash-based SSDs. Other data structures can be

used for indexing in Semel and SkimpyFTL, such as log-structured merge (LSM)

trees [99]. Like the hash-based index in SkimpyFTL, LSM trees reduce DRAM

footprint as large portions of the tree can be stored on flash. In addition, they can also

potentially reduce the garbage collection overhead of the SkimpyFTL’s hashmap-

based approach as keys can be remapped independently. Finally, LSM trees provide

better performance for range queries. However, maintaining multiple versions of data

in an LSM tree is a challenge. A näıve approach of searching successive levels for a

consistent snapshot of a key will provide poor performance. In contrast, a version

109

pointer-based approach (like currently used in SkimpyFTL) wherein each version

points to a prior version can be leveraged to improve performance but maintaining

fidelity of these chains is a challenge since compaction of levels will break the version

pointers. An interesting research direction is to explore techniques for incorporating

multi-versioning with LSM-based indexing.

6.3 Summary

Distributed transactional storage is an important service in datacenters. Unfortu-

nately, providing good performance without high complexity entails several chal-

lenges for these storage systems due to use of several sophisticated protocols and

various levels of abstraction.

We leverage two emerging capabilities — precise synchronized clocks and software-

defined storage — to architect transactional key-value storage systems in data-

centers. This dissertation presents 4 systems — Semel, Milana, Kairos and

SkimpyFTL— each designed to address a particular aspect of the complexity and

performance challenge with transactional key-value storage. To this end, we use a

cross-layer approach that investigates all levels of the storage stack, from developer

APIs to underlying hardware. We show that this methodology opens avenues for syn-

ergistic interactions between software and underlying hardware, and leads to simpler

system designs and better performance.

110

Bibliography

[1] The evolution of microservices. https://www.slideshare.net/

adriancockcroft/evolution-of-microservices-craft-conference.

[2] Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie
Chaiken, John R Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer, and
Roger P Wattenhofer. FARSITE: Federated, Available, and Reliable Storage
for an Incompletely Trusted Environment. In OSDI, 2002.

[3] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari. Efficient
optimistic concurrency control using loosely synchronized clocks. In Proceed-
ings of the 1995 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’95, pages 23–34. ACM, 1995.

[4] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh
Khemani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter,
Roberto Peon, Larry Kai, Alexander Shraer, Arif Merchant, and Kfir Lev-Ari.
Slicer: Auto-sharding for datacenter applications. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), pages 739–753,
Savannah, GA, 2016. USENIX Association.

[5] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Man-
asse, and Rina Panigrahy. Design tradeoffs for ssd performance. In USENIX
2008 Annual Technical Conference, ATC’08, pages 57–70. USENIX Associa-
tion, 2008.

[6] Sandeep R. Agrawal, Christopher M. Dee, and Alvin R. Lebeck. Exploiting
accelerators for efficient high dimensional similarity search. In Proceedings of
the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’16, pages 3:1–3:12, New York, NY, USA, 2016. ACM.

[7] Sandeep R. Agrawal, Valentin Pistol, Jun Pang, John Tran, David Tarjan,
and Alvin R. Lebeck. Rhythm: Harnessing data parallel hardware for server
workloads. In Proceedings of the 19th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS
’14, pages 19–34, New York, NY, USA, 2014. ACM.

111

https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference

[8] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable,
commodity data center network architecture. In Proceedings of the ACM SIG-
COMM 2008 Conference on Data Communication, SIGCOMM ’08, pages 63–
74, New York, NY, USA, 2008. ACM.

[9] Ashok Anand, Chitra Muthukrishnan, Steven Kappes, Aditya Akella, and
Suman Nath. Cheap and large cams for high performance data-intensive net-
worked systems. In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, NSDI’10, pages 29–29, Berkeley, CA,
USA, 2010. USENIX Association.

[10] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. Fawn: A fast array of wimpy nodes.
In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP ’09, pages 1–14. ACM, 2009.

[11] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
Workload analysis of a large-scale key-value store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS ’12, pages
53–64, New York, NY, USA, 2012. ACM.

[12] Jason Baker, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin,
James Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yush-
prakh. Megastore: Providing scalable, highly available storage for interactive
services. In CIDR, volume 11, pages 223–234, 2011.

[13] Ilya Baldin, Jeff Chase, Yufeng Xin, Anirban Mandal, Paul Ruth, Claris
Castillo, Victor Orlikowski, Chris Heermann, and Jonathan Mills. ExoGENI:
A Multi-Domain Infrastructure-as-a-Service Testbed, pages 279–315. Springer
International Publishing, Cham, 2016.

[14] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel.
Finding a needle in haystack: Facebook’s photo storage. In Proceedings of the
9th USENIX Conference on Operating Systems Design and Implementation,
OSDI’10, pages 47–60, Berkeley, CA, USA, 2010. USENIX Association.

[15] Philip A. Bernstein and Nathan Goodman. Multiversion concurrency control -
theory and algorithms. ACM Transactions on Database Systems, 8(4):465–483,
December 1983.

[16] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1987.

112

[17] Philip A. Bernstein, Colin W. Reid, and Sudipto Das. Hyder - A transactional
record manager for shared flash. In CIDR 2011, Fifth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011,
Online Proceedings, pages 9–20, 2011.

[18] Matias Bjørling, Javier González, and Philippe Bonnet. Lightnvm: The linux
open-channel ssd subsystem. In 15th USENIX Conference on File and Storage
Technologies (FAST). USENIX, 2017.

[19] Dhruba Borthakur. Under the hood: Building and open-sourcing rocksdb.
Facebook Engineering Notes, 2013.

[20] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,
S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Massengill, K. Ovtcharov,
M. Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger. A cloud-
scale acceleration architecture. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–13, Oct 2016.

[21] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and S. Swanson.
Moneta: A high-performance storage array architecture for next-generation,
non-volatile memories. In 2010 43rd Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 385–395, Dec 2010.

[22] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner, Arup De, Joel
Coburn, and Steven Swanson. Providing safe, user space access to fast, solid
state disks. In Proceedings of the Seventeenth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASP-
LOS XVII, pages 387–400, New York, NY, USA, 2012. ACM.

[23] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gru-
ber. Bigtable: A distributed storage system for structured data. In Proceedings
of the 7th USENIX Symposium on Operating Systems Design and Implemen-
tation - Volume 7, OSDI ’06, pages 15–15, Berkeley, CA, USA, 2006. USENIX
Association.

[24] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent
items in data streams. In Proceedings of the 29th International Colloquium on
Automata, Languages and Programming, ICALP ’02, pages 693–703, London,
UK, UK, 2002. Springer-Verlag.

[25] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen. Fast
and general distributed transactions using rdma and htm. In Proceedings of
the Eleventh European Conference on Computer Systems, EuroSys ’16, pages
26:1–26:17, New York, NY, USA, 2016. ACM.

113

[26] Houssem-Eddine Chihoub, Shadi Ibrahim, Gabriel Antoniu, and Maria S Perez.
Harmony: Towards automated self-adaptive consistency in cloud storage. In
Cluster Computing (CLUSTER), 2012 IEEE International Conference on,
pages 293–301. IEEE, 2012.

[27] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta, and Steven Swan-
son. From aries to mars: Transaction support for next-generation, solid-state
drives. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 197–212, New York, NY, USA, 2013.
ACM.

[28] Adrian Cockroft. Microservices workshop: Why, what, and how
to get there. https://www.slideshare.net/adriancockcroft/

microservices-workshop-craft-conference.

[29] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana
Yerneni. Pnuts: Yahoo!’s hosted data serving platform. Proc. VLDB Endow.,
1(2):1277–1288, August 2008.

[30] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with ycsb. In Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154,
New York, NY, USA, 2010. ACM.

[31] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Tay-
lor, Ruth Wang, and Dale Woodford. Spanner: Google’s globally-distributed
database. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 251–264. USENIX Association,
2012.

[32] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-
pher Heiser, Peter Hochschild, et al. Spanner: Google’s Globally Distributed
Database. In OSDI, 2012.

[33] Jeffrey Dean and Sanjay Ghemawat. leveldb–a fast and lightweight key/value
database library by google, 2011.

[34] Biplob Debnath, Sudipta Sengupta, and Jin Li. Flashstore: High throughput
persistent key-value store. Proc. VLDB Endow., 3(1-2):1414–1425, September
2010.

114

https://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
https://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference

[35] Biplob Debnath, Sudipta Sengupta, and Jin Li. Skimpystash: Ram space
skimpy key-value store on flash-based storage. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’11,
pages 25–36, New York, NY, USA, 2011. ACM.

[36] Biplob Debnath, Sudipta Sengupta, and Jin Li. Skimpystash: Ram space
skimpy key-value store on flash-based storage. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’11,
pages 25–36. ACM, 2011.

[37] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. In Proceedings of Twenty-first ACM SIGOPS Symposium on Operat-
ing Systems Principles, SOSP ’07, pages 205–220, New York, NY, USA, 2007.
ACM.

[38] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for
replicated database maintenance. In Proceedings of the Sixth Annual ACM
Symposium on Principles of Distributed Computing, PODC ’87, pages 1–12,
New York, NY, USA, 1987. ACM.

[39] Bailu Ding, Lucja Kot, Alan Demers, and Johannes Gehrke. Centiman: Elas-
tic, high performance optimistic concurrency control by watermarking. In Pro-
ceedings of the Sixth ACM Symposium on Cloud Computing, SoCC ’15, pages
262–275. ACM, 2015.

[40] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony
Savor, and Michael Strum. Optimizing space amplification in rocksdb. In
CIDR, 2017.

[41] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Cas-
tro. Farm: Fast remote memory. In Proceedings of the 11th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI’14, pages
401–414, Berkeley, CA, USA, 2014. USENIX Association.

[42] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale,
Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. No
compromises: Distributed transactions with consistency, availability, and per-
formance. In Proceedings of the 25th Symposium on Operating Systems Prin-
ciples, SOSP ’15, pages 54–70, New York, NY, USA, 2015. ACM.

[43] Robert Escriva, Bernard Wong, and Emin Gün Sirer. Warp: Lightweight
multi-key transactions for key-value stores. CoRR, abs/1509.07815, 2015.

115

[44] Jose M. Faleiro and Daniel J. Abadi. Rethinking serializable multiversion
concurrency control. Proc. VLDB Endow., 8(11):1190–1201, July 2015.

[45] Bin Fan, Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. Small
cache, big effect: Provable load balancing for randomly partitioned cluster
services. In Proceedings of the 2Nd ACM Symposium on Cloud Computing,
SOCC ’11, pages 23:1–23:12, New York, NY, USA, 2011. ACM.

[46] C. J. Fidge. Timestamps in message-passing systems that preserve the partial
ordering. Proceedings of the 11th Australian Computer Science Conference,
10(1):5666, 1988.

[47] B. Fleisch and G. Popek. Mirage: A coherent distributed shared memory
design. In Proceedings of the Twelfth ACM Symposium on Operating Systems
Principles, SOSP ’89, pages 211–223, New York, NY, USA, 1989. ACM.

[48] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek,
G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield, E. S. Chung,
and D. Burger. A configurable cloud-scale dnn processor for real-time ai. In
2018 ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), pages 1–14, June 2018.

[49] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayantara
Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin
Hu, Meghna Pancholi, Brett Clancy, Chris Colen, Fukang Wen, Catherine Le-
ung, Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Yuan He, and Christina
Delimitrou. An Open-Source Benchmark Suite for Microservices and Their
Hardware-Software Implications for Cloud and Edge Systems. In Proceedings
of the Twenty Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), April 2019.

[50] Gartner. Gartner forecasts worldwide public cloud services revenue to
reach $410 billion in 2020, 2017. https://www.gartner.com/newsroom/id/

3815165.

[51] Alex Gartrell, Mohan Srinivasan, Bryan Alger, and Kumar
Sundararajan. Mcdipper: A key-value cache for flash stor-
age. https://www.facebook.com/notes/facebook-engineering/

mcdipper-a-key-value-cache-for-flash-storage/10151347090423920.

[52] Vasileios Gavrielatos, Antonios Katsarakis, Arpit Joshi, Nicolai Oswald, Boris
Grot, and Vijayanand Nagarajan. Scale-Out ccNUMA: Exploiting Skew with
Strongly Consistent Caching. 1 2018.

116

https://www.gartner.com/newsroom/id/3815165
https://www.gartner.com/newsroom/id/3815165
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920

[53] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosen-
blum, and Amin Vahdat. Exploiting a natural network effect for scalable,
fine-grained clock synchronization. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages 81–94, Renton, WA,
2018. USENIX Association.

[54] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism for
distributed file cache consistency. In Proceedings of the Twelfth ACM Sympo-
sium on Operating Systems Principles, SOSP ’89, pages 202–210, New York,
NY, USA, 1989. ACM.

[55] Tyler Harter, Dhruba Borthakur, Siying Dong, Amitanand Aiyer, Liyin Tang,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Analysis of HDFS
under hbase: A facebook messages case study. In Proceedings of the 12th
USENIX Conference on File and Storage Technologies (FAST 14), pages 199–
212, Santa Clara, CA, 2014. USENIX.

[56] Apache HBase. A distributed database for large datasets. The Apache Software
Foundation, Los Angeles, CA. URL http://hbase. apache. org, 4(4.2).

[57] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta Sen-
gupta, Bikash Sharma, and Moinuddin K. Qureshi. Flashblox: Achieving both
performance isolation and uniform lifetime for virtualized ssds. In FAST’17.
USENIX, February 2017.

[58] Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and Karsten Schwan.
Unified address translation for memory-mapped ssds with flashmap. In Pro-
ceedings of the 42Nd Annual International Symposium on Computer Architec-
ture, ISCA ’15, pages 580–591. ACM, 2015.

[59] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
Zookeeper: Wait-free coordination for internet-scale systems. In Proceedings
of the 2010 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’10, pages 11–11. USENIX Association, 2010.

[60] IEEE. Ieee standard for a precision clock synchronization protocol for net-
worked measurement and control systems. IEEE Std 1588-2008 (Revision of
IEEE Std 1588-2002), pages 1–269, 2008.

[61] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. Netcache: Balancing key-value stores with
fast in-network caching. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, pages 121–136, New York, NY, USA, 2017.
ACM.

117

[62] William K. Josephson, Lars A. Bongo, Kai Li, and David Flynn. Dfs: A file sys-
tem for virtualized flash storage. Trans. Storage, 6(3):14:1–14:25+, September
2010.

[63] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy
Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-
maghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron
Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Kille-
brew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagara-
jan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-
nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson,
Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter
Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis
of a tensor processing unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA ’17, pages 1–12, New York, NY,
USA, 2017. ACM.

[64] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using rdma efficiently
for key-value services. In Proceedings of the 2014 ACM Conference on SIG-
COMM, SIGCOMM ’14, pages 295–306, New York, NY, USA, 2014. ACM.

[65] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC ’97,
pages 654–663, New York, NY, USA, 1997. ACM.

[66] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Krishna Giri Narra, Jing Li,
Hung-Wei Tseng, Steven Swanson, and Murali Annavaram. Summarizer: Trad-
ing communication with computing near storage. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-
50 ’17, pages 219–231, New York, NY, USA, 2017. ACM.

[67] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan
Fekete. Mdcc: Multi-data center consistency. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys ’13, pages 113–126, New
York, NY, USA, 2013. ACM.

118

[68] H. T. Kung and John T. Robinson. On optimistic methods for concurrency
control. ACM Transactions on Database Systems, 6(2):213–226, June 1981.

[69] An-Chow Lai and Babak Falsafi. Selective, accurate, and timely self-
invalidation using last-touch prediction. In Proceedings of the 27th Annual
International Symposium on Computer Architecture, ISCA ’00, pages 139–148,
New York, NY, USA, 2000. ACM.

[70] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized struc-
tured storage system. SIGOPS Operating Systems Review, 44(2):35–40, April
2010.

[71] Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[72] Lanyue Lu and Thanumalayan Sankaranarayana Pillai and Andrea C. Arpaci-
Dusseau and Remzi H. Arpaci-Dusseau. WiscKey: Separating Keys from Val-
ues in SSD-conscious Storage. In 14th USENIX Conference on File and Stor-
age Technologies (FAST 16), pages 133–148, Santa Clara, CA, February 2016.
USENIX Association.

[73] Costin Leau. Spring data redis retwis-j, 2013. http://docs.spring.io/

spring-data/data-keyvalue/examples/retwisj/current/.

[74] Alvin R. Lebeck and David A. Wood. Dynamic self-invalidation: Reducing
coherence overhead in shared-memory multiprocessors. In Proceedings of the
22Nd Annual International Symposium on Computer Architecture, ISCA ’95,
pages 48–59, New York, NY, USA, 1995. ACM.

[75] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita, and John
Ousterhout. Implementing linearizability at large scale and low latency. In
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP
’15, pages 71–86, New York, NY, USA, 2015. ACM.

[76] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weatherspoon. Globally
synchronized time via datacenter networks. In To appear in Proceedings of
ACM SIGCOMM, August 2016.

[77] Charles E. Leiserson. Fat-trees: Universal networks for hardware-efficient su-
percomputing. IEEE Trans. Comput., 34(10):892–901, October 1985.

[78] Scott T Leutenegger and Daniel Dias. A modeling study of the TPC-C bench-
mark, volume 22. ACM, 1993.

[79] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, An-
drew Putnam, Enhong Chen, and Lintao Zhang. Kv-direct: High-performance
in-memory key-value store with programmable nic. In Proceedings of the 26th

119

http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/

Symposium on Operating Systems Principles, SOSP ’17, pages 137–152, New
York, NY, USA, 2017. ACM.

[80] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G. Andersen, and
Michael J. Freedman. Be fast, cheap and in control with switchkv. In
13th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16), pages 31–44, Santa Clara, CA, 2016. USENIX Association.

[81] Yinan Li, Bingsheng He, Robin Jun Yang, Qiong Luo, and Ke Yi. Tree indexing
on solid state drives. Proc. VLDB Endow., 3(1-2):1195–1206, September 2010.

[82] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. Silt:
A memory-efficient, high-performance key-value store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11,
pages 1–13. ACM, 2011.

[83] Barbara Liskov. Practical uses of synchronized clocks in distributed systems. In
Proceedings of the Tenth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’91, pages 1–9, New York, NY, USA, 1991. ACM.

[84] Barbara Liskov and James Cowling. Viewstamped replication revisited. Tech-
nical Report MIT-CSAIL-TR-2012-021, MIT, July 2012.

[85] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and
Kishore Atreya. Incbricks: Toward in-network computation with an in-network
cache. In Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS
’17, pages 795–809, New York, NY, USA, 2017. ACM.

[86] Rick Macklem. Not quite nfs, soft cache consistency for nfs. In USENIX
Winter, pages 261–278, 1994.

[87] Ratul Mahajan and Roger Wattenhofer. On consistent updates in software
defined networks. In Proceedings of the Twelfth ACM Workshop on Hot Topics
in Networks, HotNets-XII, pages 20:1–20:7, New York, NY, USA, 2013. ACM.

[88] Leonardo Marmol, Swaminathan Sundararaman, Nisha Talagala, Raju Ran-
gaswami, Sushma Devendrappa, Bharath Ramsundar, and Sriram Ganesan.
Nvmkv: A scalable and lightweight flash aware key-value store. In 6th
USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage
14), Philadelphia, PA, June 2014. USENIX Association.

[89] Friedemann Mattern. Virtual time and global states of distributed systems. In
Parallel and Distributed Algorithms, pages 215–226. North-Holland, 1989.

120

[90] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient compu-
tation of frequent and top-k elements in data streams. In Proceedings of the
10th International Conference on Database Theory, ICDT’05, pages 398–412,
Berlin, Heidelberg, 2005. Springer-Verlag.

[91] D. L. Mills. Internet time synchronization: the network time protocol. IEEE
Transactions on Communications, 39(10):1482–1493, Oct 1991.

[92] Pulkit A. Misra, Jeffrey S. Chase, Johannes Gehrke, and Alvin R. Lebeck.
Enabling lightweight transactions with precision time. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’17, pages 779–794,
New York, NY, USA, 2017. ACM.

[93] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using one-sided rdma
reads to build a fast, cpu-efficient key-value store. In Proceedings of the 2013
USENIX Conference on Annual Technical Conference, USENIX ATC’13, pages
103–114, Berkeley, CA, USA, 2013. USENIX Association.

[94] Shubhendu S. Mukherjee and Mark D. Hill. Using prediction to accelerate co-
herence protocols. In Proceedings of the 25th Annual International Symposium
on Computer Architecture, ISCA ’98, pages 179–190, Washington, DC, USA,
1998. IEEE Computer Society.

[95] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. Fast serializable
multi-version concurrency control for main-memory database systems. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’15, pages 677–689, New York, NY, USA, 2015. ACM.

[96] Anoop Ninan, Purushottam Kulkarni, Prashant Shenoy, Krithi Ramamritham,
and Renu Tewari. Cooperative leases: Scalable consistency maintenance in
content distribution networks. In Proceedings of the 11th International Con-
ference on World Wide Web, WWW ’02, pages 1–12, New York, NY, USA,
2002. ACM.

[97] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, and Venkateshwaran Venkataramani. Scaling memcache
at facebook. In Presented as part of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 13), pages 385–398, Lom-
bard, IL, 2013. USENIX.

[98] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary
copy method to support highly-available distributed systems. In Proceedings of
the Seventh Annual ACM Symposium on Principles of Distributed Computing,
PODC ’88, pages 8–17. ACM, 1988.

121

[99] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The
log-structured merge-tree (lsm-tree). Acta Inf., 33(4):351–385, June 1996.

[100] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and
Yuanzheng Wang. SDF: Software-defined Flash for Web-scale Internet Storage
Systems. In Proceedings of the 19th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS
’14, pages 471–484, New York, NY, USA, 2014. ACM.

[101] Xiangyong Ouyang, David Nellans, Robert Wipfel, David Flynn, and Dha-
baleswar K. Panda. Beyond block i/o: Rethinking traditional storage primi-
tives. In Proceedings of the 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, HPCA ’11, pages 301–311, Washington,
DC, USA, 2011. IEEE Computer Society.

[102] Vivek S. Pai, Mohit Aron, Gaurov Banga, Michael Svendsen, Peter Druschel,
Willy Zwaenepoel, and Erich Nahum. Locality-aware request distribution in
cluster-based network servers. In Proceedings of the Eighth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS VIII, pages 205–216, New York, NY, USA, 1998. ACM.

[103] Brian Pawlowski, David Noveck, David Robinson, and Robert Thurlow. The
nfs version 4 protocol. In In Proceedings of the 2nd International System Ad-
ministration and Networking Conference (SANE 2000, 2000.

[104] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and
Hans Fugal. Fastpass: A centralized ”zero-queue” datacenter network. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages
307–318, New York, NY, USA, 2014. ACM.

[105] R. Pitchumani, S. Frank, and E. L. Miller. Realistic request arrival generation
in storage benchmarks. In 2015 31st Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–10, May 2015.

[106] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers,
Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen
Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric Pe-
terson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug
Burger. A reconfigurable fabric for accelerating large-scale datacenter services.
In Proceeding of the 41st Annual International Symposium on Computer Ar-
chitecuture, ISCA ’14, pages 13–24, Piscataway, NJ, USA, 2014. IEEE Press.

[107] Zujie Ren, Biao Xu, Weisong Shi, Yongjian Ren, Feng Cao, Jiangbin Lin, and
Zheng Ye. igen: A realistic request generator for cloud file systems benchmark-

122

ing. In Cloud Computing (CLOUD), 2016 IEEE 9th International Conference
on, pages 343–350. IEEE, 2016.

[108] Alberto Ros and Stefanos Kaxiras. Complexity-effective multicore coherence.
In Proceedings of the 21st International Conference on Parallel Architectures
and Compilation Techniques, PACT ’12, pages 241–252, New York, NY, USA,
2012. ACM.

[109] Mendel Rosenblum and John K. Ousterhout. The design and implementation of
a log-structured file system. In Proceedings of the Thirteenth ACM Symposium
on Operating Systems Principles, SOSP ’91, pages 1–15. ACM, 1991.

[110] Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. Log-structured
memory for dram-based storage. In Proceedings of the 12th USENIX Confer-
ence on File and Storage Technologies, FAST’14, pages 1–16, Berkeley, CA,
USA, 2014. USENIX Association.

[111] Mohit Saxena, Michael M. Swift, and Yiying Zhang. Flashtier: A lightweight,
consistent and durable storage cache. In Proceedings of the 7th ACM European
Conference on Computer Systems, EuroSys ’12, pages 267–280. ACM, 2012.

[112] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker,
Arup De, Yanqin Jin, Yang Liu, and Steven Swanson. Willow: A user-
programmable ssd. In Proceedings of the 11th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’14, pages 67–80, Berkeley,
CA, USA, 2014. USENIX Association.

[113] Sriram Subramanian, Swaminathan Sundararaman, Nisha Talagala, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Snapshots in a flash with
iosnap. In Proceedings of the Ninth European Conference on Computer Systems,
EuroSys ’14, pages 23:1–23:14. ACM, 2014.

[114] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and
Sam Shah. Serving large-scale batch computed data with project voldemort. In
Proceedings of the 10th USENIX Conference on File and Storage Technologies,
FAST’12, pages 18–18, Berkeley, CA, USA, 2012. USENIX Association.

[115] Steven Swanson and Adrian Caulfield. Refactor, reduce, recycle: Restructuring
the i/o stack for the future of storage. Computer, 46(8):52–59, August 2013.

[116] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J. Abadi. Calvin: Fast distributed transactions for parti-
tioned database systems. In Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’12, pages 1–12. ACM,
2012.

123

[117] Risi Thonangi, Shivnath Babu, and Jun Yang. A practical concurrent index for
solid-state drives. In Proceedings of the 21st ACM International Conference on
Information and Knowledge Management, CIKM ’12, pages 1332–1341, New
York, NY, USA, 2012. ACM.

[118] Kishor S Trivedi. Probability & statistics with reliability, queuing and computer
science applications. John Wiley & Sons, 2008.

[119] Twitter. Decomposing twitter: Adventures in service- ori-
ented architecture. https://www.slideshare.net/InfoQ/

decomposing-twitter-adventures-in-serviceoriented-architecture.

[120] Twitter. Fatcache. https://github.com/twitter/fatcache.

[121] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, January
2009.

[122] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. Fast
in-memory transaction processing using rdma and htm. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15, pages 87–104,
New York, NY, USA, 2015. ACM.

[123] Zev Weiss, Sriram Subramanian, Swaminathan Sundararaman, Vinay Sridhar,
Nisha Talagala, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
MjÖlnir: Collecting trash in a demanding new world. In Proceedings of the
3rd Workshop on Interactions of NVM/FLASH with Operating Systems and
Workloads, INFLOW ’15, pages 4:1–4:10. ACM, 2015.

[124] Zev Weiss, Sriram Subramanian, Swaminathan Sundararaman, Nisha Talagala,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Anvil: Advanced
virtualization for modern non-volatile memory devices. In Proceedings of the
13th USENIX Conference on File and Storage Technologies, FAST’15, pages
111–118. USENIX Association, 2015.

[125] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An empir-
ical evaluation of in-memory multi-version concurrency control. Proc. VLDB
Endow., 10(7):781–792, March 2017.

[126] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and H. Hacgm. Smartsla: Cost-
sensitive management of virtualized resources for cpu-bound database services.
IEEE Transactions on Parallel and Distributed Systems, 26(5):1441–1451, May
2015.

[127] Karim Yaghmour and Jean-Hugues Deshchenes. Linux trace toolkit reference
manual, 2004.

124

https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://github.com/twitter/fatcache

[128] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and Swaminathan
Sundararaman. Don’t stack your log on my log. In 2nd Workshop on Inter-
actions of NVM/Flash with Operating Systems and Workloads (INFLOW 14),
Broomfield, CO, 2014. USENIX Association.

[129] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sanchez, Larry Rudolph, and
Srinivas Devadas. Sundial: Harmonizing concurrency control and caching
in a distributed oltp database management system. Proc. VLDB Endow.,
11(10):1289–1302, June 2018.

[130] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,
and Dan R. K. Ports. Building consistent transactions with inconsistent repli-
cation. In Proceedings of the 25th Symposium on Operating Systems Principles,
SOSP ’15, pages 263–278. ACM, 2015.

[131] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. De-indirection for flash-based ssds with nameless writes. In
Proceedings of the 10th USENIX Conference on File and Storage Technologies,
FAST’12, pages 1–1. USENIX Association, 2012.

[132] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swanson. Mo-
jim: A reliable and highly-available non-volatile memory system. In Proceed-
ings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’15, pages 3–18,
New York, NY, USA, 2015. ACM.

125

Biography

Pulkit A. Misra earned his B.E. in Electronics from The Maharaja Sayajirao Univer-

sity of Baroda, Vadodara, India in 2010. His first foray in to graduate school resulted

in a M.S. in Computer Science degree from Northeastern University, Boston MA in

2013. He also worked at VeloBit, a computer storage startup company, while pursu-

ing his masters. At VeloBit, he worked on similarity detection and delta compression

of data for reducing writes and increasing lifetime of NAND flash-based Solid State

Drives (SSDs). His work was instrumental in the company’s acquisition by HGST

Inc. in 2013. He filed several patents while working for HGST and VeloBit, 4 of

which have been granted by USPTO.

He came back to graduate school in 2015 for getting a PhD in Computer Science

from Duke University. His PhD research was on leveraging emerging datacenter

capabilities for enhancing transactional storage service in datacenters, for which he

received the Outstanding Research Initiation Project (RIP) Award by the Computer

Science Department in 2017. He also interned at Microsoft Research during his

PhD, where he worked on creating and managing tail latency in datacenter-scale

filesystems. After his PhD, he will be joining the Cloud Efficiency group at Microsoft

Research in April 2019.

126

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction
	1.1 Overview and Challenges
	1.2 Contributions
	1.3 Summary

	2 Background and Motivation
	2.1 Precise Synchronized Clocks
	2.1.1 Basics of Clock Synchronization
	2.1.2 Improving Clock Synchronization Accuracy
	2.1.3 Using Precise Synchronized Clocks

	2.2 Software-Defined Storage
	2.2.1 Internals of a Flash-Based Solid State Drive
	2.2.2 Software-Defined Flash

	2.3 Summary

	3 Semel and Milana
	3.1 Semel: A Replicated Multi-version Key-Value Store
	3.1.1 Multi-version Flash Translation Layer
	3.1.2 Lightweight Inconsistent Replication
	3.1.3 Linearizability with Global Clocks

	3.2 Milana: A Transactional Key-Value Storage System
	3.2.1 Transaction Protocol
	3.2.2 Two-Phase Commit: Write Validation
	3.2.3 Local Validation of Read-only Transactions
	3.2.4 Snapshot Reads
	3.2.5 Version Management
	3.2.6 Recovery
	3.2.7 Comparison with TAPIR

	3.3 Evaluation
	3.3.1 Semel Evaluation
	3.3.2 Milana Evaluation
	3.3.3 Comparison of Local Validation Techniques

	3.4 Related Work
	3.5 Summary

	4 Kairos
	4.1 Background
	4.2 Inter-Transaction Caching
	4.2.1 Self-Invalidation with Soft Leases
	4.2.2 Comparison of Caching Techniques
	4.2.3 Ideal Lease Duration for a Key

	4.3 Kairos: A Transactional Key-Value Storage System
	4.3.1 System Architecture
	4.3.2 Transaction Protocol
	4.3.3 Transaction Validation
	4.3.4 Watermarks and Version Management
	4.3.5 Recovery
	4.3.6 Comparison with Centiman

	4.4 Evaluation
	4.4.1 Inter-Transaction Caching
	4.4.2 Comparison with a Baseline System

	4.5 Related Work
	4.6 Summary

	5 SkimpyFTL
	5.1 Background
	5.2 SkimpyFTL: A Multi-Version Flash Translation Layer
	5.2.1 Mapping Table
	5.2.2 Mapping Translation Cache
	5.2.3 Request Life Cycle
	5.2.4 Garbage Collection

	5.3 Evaluation
	5.3.1 Key-Value Workload
	5.3.2 Transactional Workload

	5.4 Related Work
	5.5 Summary

	6 Conclusion
	6.1 Key Contributions
	6.2 Directions for Future Work
	6.3 Summary

	Bibliography
	Biography

