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Abstract 
While molecular and cellular processes are often modeled as stochastic processes, 

such as Brownian motion, chemical reaction networks and gene regulatory networks, 

there are few attempts to program a molecular-scale process to physically implement 

stochastic processes. DNA has been used as a substrate for programming molecular 

interactions, but its applications are restricted to deterministic functions and unfavorable 

properties such as slow processing, thermal annealing, aqueous solvents and difficult 

readout limit them to proof-of-concept purposes. To date, whether there exists a 

molecular process that can be programmed to implement stochastic processes for 

practical applications remains unknown.  

In this dissertation, a fully specified Resonance Energy Transfer (RET) network 

between chromophores is accurately fabricated via DNA self-assembly, and the exciton 

dynamics in the RET network physically implement a stochastic process, specifically a 

continuous-time Markov chain (CTMC), which has a direct mapping to the physical 

geometry of the chromophore network. Excited by a light source, a RET network 

generates random samples in the temporal domain in the form of fluorescence photons 

which can be detected by a photon detector. The intrinsic sampling distribution of a RET 

network is derived as a phase-type distribution configured by its CTMC model. The 

conclusion is that the exciton dynamics in a RET network implement a general and 

important class of stochastic processes that can be directly and accurately programmed 
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and used for practical applications of photonics and optoelectronics. Different 

approaches to using RET networks exist with vast potential applications. As an entropy 

source that can directly generate samples from virtually arbitrary distributions, RET 

networks can benefit applications that rely on generating random samples such as 1) 

fluorescent taggants and 2) stochastic computing. 

By using RET networks between chromophores to implement fluorescent 

taggants with temporally coded signatures, the taggant design is not constrained by 

resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime 

coded fluorescent taggants. Meanwhile, the taggant detection process becomes highly 

efficient, and the Maximum Likelihood Estimation (MLE) based taggant identification 

guarantees high accuracy even with only a few hundred detected photons. 

Meanwhile, RET-based sampling units (RSU) can be constructed to accelerate 

probabilistic algorithms for wide applications in machine learning and data analytics. 

Because probabilistic algorithms often rely on iteratively sampling from parameterized 

distributions, they can be inefficient in practice on the deterministic hardware traditional 

computers use, especially for high-dimensional and complex problems. As an efficient 

universal sampling unit, the proposed RSU can be integrated into a processor / GPU as 

specialized functional units or organized as a discrete accelerator to bring substantial 

speedups and power savings.
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1. Introduction 
Stochastic process is often used as a mathematical language to describe 

molecular and cellular processes, based on which their dynamics and behaviors are 

studied through theoretical analysis and simulation. However, the inverse problem of 

programming a molecular-scale process to physically implement general stochastic 

processes and its potential applications remain mostly unexplored.  

This dissertation uses the exciton dynamics in a Resonance Energy Transfer (RET) 

network to physically implement continuous-time Markov chains (CTMCs), a general 

and important class of stochastic processes. The implemented stochastic process can be 

directly programmed through the physical geometry of a RET network which can be 

accurately fabricated via DNA self-assembly. Different methods of using the RET based 

stochastic process exist with vast potential applications. Excited by a light source, a RET 

network generates random samples in the temporal domain in the form of fluorescence 

photons which can be detected by a photon detector, and the intrinsic sampling 

distribution of a RET network is a phase-type distribution configured by its CTMC. 

Based on these observations, this dissertation focuses on using RET networks as an 

entropy source to directly generate random samples from virtually arbitrary 

distributions. As illustrated in two real world applications: 1) fluorescent taggants and 2) 

stochastic computing, the RET-based programmable entropy source can facilitate and 
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improve applications that rely on generating random samples to perform functions such 

as pattern recognition and probabilistic algorithms. 

1.1 Stochastic models of molecular and cellular processes 

Molecular and cellular processes are commonly described as stochastic processes 

to study and explain their dynamics and behaviors in physics, chemistry and biology. 

The first extensively investigated molecular-scale process is Brownian motion which 

was first observed by Robert Brown in 1827 when studying the constant jittery motion of 

pollen grains within water [1]. After Einstein explained from a physics perspective that 

the particles were constantly bombarded by water molecules [2], Norbert Wiener 

rigorously mathematically modeled Brownian motion as the Weiner process, an 

important continuous-time stochastic process [3]. 

Besides Brownian motion, stochastic processes are commonly used to model and 

study chemical reactions at the molecular scale. A chemical system involving multiple 

coupled chemical reactions can be described as a Chemical Reaction Network. The 

kinetics of a CRN are often analyzed on a macroscopic level with the law of mass action 

using deterministic chemical rate equations in the form of ordinary differential 

equations (ODEs) [4-6]. However, this approach is based on the assumption that the 

concentration of all reactants varies both continuously and differentiably, and fails when 

the number of reactant molecules is small. To correctly capture the intrinsic stochastic 

fluctuation of low-copy-number chemical reactions, their dynamics should be described 
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as counting processes by Chemical Master Equations (CMEs) and modeled as a 

stochastic process, specifically a continuous-time Markov chain (CTMC) where the state 

is a vector comprising of the molecular count of each chemical species and the transition 

corresponds to a possible reaction [7-10]. The stochastic process often needs to be 

analyzed to derive the time-dependent probability distributions of different species or 

infer unknown parameters (e.g., reaction rates) from experimental data. While the state 

space of the chemical reactions CTMC is usually large and renders the exact solution 

infeasible, a multitude of stochastic and numerical simulation approaches have been 

investigated to provide an approximate solution [11-13]. 

While the CTMC is often a mathematically valid model for CRNs when their 

reactions follow a Poisson process, it usually becomes incompatible when studying gene 

regulatory networks (GRNs) and cellular processes. A GRN includes a collection of 

molecular regulators (e.g., DNA, RNA) and describes their interactions with each other 

or other substances in the cell to control the gene expression levels of mRNA and 

proteins. Time delay is a critical aspect for biological reactions such as gene transcription 

and translation, and a stochastic process with such delays is non-Markovian and 

requires special treatment for simulation [14-16]. 

1.2 Molecular-scale implementation of stochastic processes 

Although stochastic processes can often theoretically model molecular-scale 

processes for analyzing their dynamics and inferring parameters, the inverse problem of 
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physically implementing stochastic processes using a molecular-scale process and its 

applications remain mostly unexplored. This dissertation explores the exciton dynamics 

in a Resonance Energy Transfer (RET) network between chromophores as a molecular-

scale process that is 1) capable of implementing a general class of stochastic processes, 2) 

easily programmable and 3) suitable for practical applications. 

A chromophore is a single-molecule optical device that can be excited by 

absorbing photons of a specific wavelength and de-excite through the radiative pathway 

(i.e., fluorescence at a longer wavelength) and nonradiative pathways, and the exciton 

relaxation follows temporal exponential distributions. When two chromophores are 

placed a few nanometers apart and their emission and excitation spectra overlap, energy 

transfer can occur between the two chromophores through RET. RET is a quantum 

mechanical energy-transfer mechanism between two chromophores, in which the donor 

chromophore, initially in its excited state, transfers its energy to the acceptor 

chromophore through nonradiative dipole-dipole coupling [17]. The time to RET 

transfer, after the donor is excited, follows an exponential distribution between a 

chromophore pair, and the transfer rate depends on the characteristics of the 

chromophores and their distance among other parameters as specified in the Förster 

equation.  

The exciton dynamics in a network of chromophores comprise of the sequence of 

RET transfers and the sojourn time of each RET transfer, which become a stochastic 
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process, specifically a continuous-time Markov chain [18]. An important and unique 

feature of the CTMC is the direct mapping between the physical geometry of a 

chromophore network and the transition matrix of its corresponding CTMC. The state 

space of the CTMC is composed of transient states and absorbing states. Each transient 

state corresponds to a specific chromophore being excited, and the transition rate 

between a pair of transient states is the RET transfer rate between the corresponding 

chromophore pair. Each absorbing state corresponds to the exciton leaving the RET 

network through a specific relaxation pathway, and the transition rate between a 

transient state and an absorbing state is the decay rate of the corresponding relaxation 

pathway of the corresponding chromophore. 

Based on the above observations, RET networks can physically implement 

general CTMCs in an explicit and intuitive way that is unprecedented for a molecular-

scale process. CTMCs are a general and important class of stochastic processes that has a 

vast literature of theory and modeling applications in broad fields such as computer 

networks and distributed systems, chemical reactions, economics and epidemiology, 

and produce phase-type distributions which can approximate virtually arbitrary 

distributions. Although chemical reactions at the molecular level could also correspond 

to a CTMC, the implementation based on exciton dynamics takes a direct approach that 

is not constrained by the CRN description of a reaction process, and the CTMC 

implemented by the molecular-scale process can be fully specified in terms of its state 
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space and transition matrix. With clear physical interpretation, the state space of a RET 

network implemented CTMC is proportional in size to the chromophore network, and 

the transition rate between each pair of states is known from the rates of RET transfer 

and exciton relaxation. 

DNA self-assembly and the direct mapping between a RET network and its 

CTMC facilitate the programmability of the molecular-scale stochastic process. Based on 

this mapping, the physical specifications of a RET network such as network size, 

chromophore types and the distance between each chromophore pair become available 

parameters for programming the CTMC. After fully specifying its physical geometry, an 

ensemble of the RET network can be accurately and conveniently fabricated via DNA 

self-assembly. This is the first realization of accurately programming a molecular-scale 

CTMC with subnanometer precision. 

Meanwhile, the RET network implemented CTMC is easily compatible with 

practical applications of photonics and optoelectronics as a molecular photonic device. 

Because exciton dynamics between chromophores are composed of RET transfer and 

fluorescence that often occur on the nanosecond timescale, the physical stochastic 

process is fast enough for most applications including those that emphasize 

performance. Because exciton dynamics are the physical stochastic process that takes 

place on the substrate of a fabricated chromophore network, a light source (e.g., QD-

LED, laser) can excite the chromophore network to initialize the stochastic process and a 
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photon detector (e.g., SPAD) can detect the fluorescence photons from the chromophore 

network to read from the stochastic process. The exciton dynamics in the excited 

chromophore networks in the fabricated ensemble physically implement different 

realizations of the stochastic process in parallel, and the unique advantage of the 

readout method lies in its capability of measuring the stochastic behavior of the 

stochastic process by observing its individual realizations because each detected 

fluorescence photon is a random sample generated from a single chromophore network. 

While different ways of using this molecular photonic device exist with vast potential 

applications, this dissertation focuses on using it as a programmable entropy source to 

directly generate random samples from virtually arbitrary distributions, and illustrates 

its function in two applications: 1) fluorescent taggants and 2) stochastic computing. 

1.3 Application I: fluorescent taggants  

Fluorescent taggants have been widely used for labeling and identification 

applications, and they are usually made of organic dyes, quantum dots, metal 

complexes, etc [19-25]. Because fluorescent taggants with different compositions absorb 

or emit light in distinct wavelength regions, their spectral characteristics are often used 

as their optical signatures. While a few taggants can often be selected for reliable spectral 

discrimination, this approach suffers from poor scalability when target applications 

require a larger taggant library. The spectra of fluorescent materials are not easy to alter, 
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which greatly constrains the number of resolvable taggants that can be made of finite 

available fluorescent materials.  

Within this context, we explore using the time-resolved fluorescence signal of a 

taggant as an alternative way to encode its optical signature. Based on the two 

observations that 1) a RET network is an entropy source that generates true random 

numbers from a phase-type distribution that is unique to the network and hence its 

signature and 2) RET networks can generate virtually arbitrary temporal distributions, 

we propose RET network based fluorescent taggants, which can potentially bring a 

significantly larger coding capacity and flexibility to taggant design.  

On the detection side, time-resolved photon detection with a single pair of 

interrogation and detection wavelengths facilitates the detection of all taggants when the 

signatures are encoded in the time domain. Meanwhile, the process of taggant 

identification becomes an estimation problem where observed random numbers are 

used to estimate the unknown generating distribution, and statistical methods such as 

Maximum Likelihood Estimation (MLE) enable a robust and convenient taggant 

identification even under low light conditions and are able to resolve a mixture of 

taggants in multiplex detection. With these unique advantages, the fluorescent taggants 

with temporal signatures have great potential for both in situ and Lidar applications. 
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1.4 Application II: stochastic computing  

Probabilistic algorithms and statistical methods are increasingly used in a wide 

variety of fields such as computer vision, robot/drone control, data mining, global 

health, computational biology, and economics. Based on generating samples from 

parameterized probability distributions, probabilistic algorithms are the only viable 

approach to the exact solution of many important classes of problems (e.g., high-

dimensional inference, rare event simulation), and offer the potential to create 

generalized frameworks for broad applications. 

Despite the theoretical advances in statistics and probabilistic machine learning, 

the fundamental mismatch persists between the deterministic hardware that traditional 

computers use and the stochastic nature of probabilistic algorithms. Modern computers 

largely take a deterministic approach to computation and are designed with 

deterministic algorithms and transistor functionality in mind; recent challenges in 

CMOS scaling reveal practical limits on performance. 

Therefore, the challenge we propose is to develop new hardware that directly 

supports a wide variety of probabilistic algorithms [26]. Based on the observation that 

novel probabilistic functional units can be created using RET networks to approximate 

arbitrary probabilistic behavior and generate random samples from general 

distributions [18], this dissertation takes the first steps toward meeting this challenge by 

exploiting the physical properties of the molecular-scale photonic device.  
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We introduce the concept of a RET-based Sampling Unit (RSU), a hybrid 

CMOS/RET functional unit that generates samples from parameterized distributions. An 

RSU specializes the calculation of distribution parameters in CMOS and uses RET to 

generate samples from a parameterized distribution in only a few nanoseconds. In this 

work, we focus on accelerating the MCMC solver for MRF inference problems, and 

introduce RSU-G, a Gibbs sampling unit based on the RET-based exponential sampling 

units. Our specific RSU-G unit supports first-order MRFs with a smoothness-based 

prior, which includes many image processing applications (e.g., image segmentation, 

motion estimation, stereo vision).  

The proposed molecular-scale optical Gibbs sampling unit (RSU-G) can be 

integrated into a processor / GPU as specialized functional units or organized as a 

discrete accelerator. Emulation-based evaluation of two computer vision applications for 

HD images reveal that an RSU augmented GPU provides speedups over a GPU of 3 and 

16. Analytic evaluation shows a discrete accelerator that is limited by 336 GB/s DRAM 

produces speedups of 21 and 54 versus the GPU implementations.  

The rest of the dissertation is organized as follows. Chapter 2 describes the 

exciton dynamics in a molecular-scale RET network, how they physically implements a 

CTMC, and the accurate fabrication via DNA self-assembly. Chapter 3 discusses using 

the molecular-scale CTMC as a programmable entropy source to directly generate 

random samples from virtually arbitrary distributions. Chapters 4 and 5 respectively 
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demonstrate the functions of RET networks as an entropy source in two applications: 1) 

fluorescent taggants and 2) stochastic computing, and Chapter 6 discusses other 

potential applications. Finally, Chapter 7 concludes the dissertation. 
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2. Resonance Energy Transfer Network Implemented 
Stochastic Process 

The Poisson process and Exponential distribution naturally exist in nanoscale 

processes (e.g., chemical reactions, intermolecular energy transfer, luminescence, and 

electrostatics) and, more importantly, can be flexibly convolved and mixed to form 

different instances of continuous-time Markov chains, thus they provide unique 

opportunities for the molecular-scale physical implementation of stochastic processes.  

Resonance Energy Transfer is a well-studied mechanism describing energy 

transfer between two chromophores, and commonly used to measure nanoscale 

distances and elucidate molecular structures and interactions in biology and chemistry. 

The RET transfer between two chromophores is exponentially distributed in the time 

domain, and therefore a molecular-scale RET network is a physical analog of a CTMC, 

where a direct mapping exists between the physical geometry of the chromophore 

network and the transition matrix of the CTMC. An ensemble of RET networks can be 

conveniently and economically fabricated in massive quantities (billions or more) using 

DNA self-assembly with sub-nanometer precision. Hence RET technology becomes a 

natural substrate for implementing and programming CTMCs. 

The RET network implemented stochastic process occurs on the nanosecond 

timescale, which is fast enough for practical applications including those that emphasize 

performance such as stochastic computing demonstrated in Chapter 6. Meanwhile, the 

operation of the molecular photonic device is based on using a light source (e.g., QD-
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LED) to excite the chromophore network to initialize the CTMC and a single photon 

detector (e.g., SPAD) to detect fluorescence photons from the chromophore network to 

sample from the CTMC. The exciton dynamics in the excited chromophore networks in 

the fabricated ensemble physically implement different realizations of the stochastic 

process in parallel, and the readout method is able to measure the stochastic behavior of 

the stochastic process by observing its individual realizations because each detected 

fluorescence photon is a random sample generated from a single chromophore network. 

2.1 Resonance energy transfer network between chromophores 

A RET network can be built by placing multiple chromophores in a physical 

geometry where each chromophore may interact with the others through resonance 

energy transfer (Figure 1). A chromophore is a molecule that can absorb photons at a 

specific wavelength and reemit at a longer wavelength via fluorescence. However, when 

two chromophores are placed a few nanometers apart and their emission and excitation 

spectra overlap, energy transfer can occur between the two chromophores through a 

process called Resonance Energy Transfer (RET). RET is an energy transfer mechanism 

between two chromophores where the donor chromophore, initially in its excited state, 

transfers its energy to the acceptor chromophore through non-radiative dipole-dipole 

coupling (Figure 2) [17]. The time to RET transfer, after the donor is excited, follows an 

exponential distribution between a chromophore pair. The fundamental parameters that 
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govern the transfer rates between the chromophores in a RET network are defined by 

the molecules we choose to create the network and the separation between them. 

 

Figure 1: A resonance energy transfer network with (a) two chromophores and 
(b) three chromophores. 

 

Figure 2: Resonance Energy Transfer. 

The transfer rate of the RET process between a chromophore pair, first derived 

by Förster, is: 

  
62
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where 0
Dτ  is the intrinsic fluorescence lifetime of the donor, 2k  is the mutual orientation 
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chromophores 2/3 is used), r  is the distance between the chromophore pair, and 0R  is 

the Förster radius for 2 2
3

k = , i.e., the distance at which the transfer efficiency is 50%. The 



 

15 

Förster radius of a chromophore pair mainly depends on the properties of the two 

chromophores: 

  ( ) ( )
1/6

0 4 4
0

0

20.2108
3 D D AR n I dλ λ λ λ

∞
−

 
 
 
 

= Φ ε∫ , (2) 

where 0
DΦ  is the fluorescence quantum yield of the donor in the absence of transfer, n  is 

the average refractive index of the medium within the wavelength range of significant 

spectral overlap, ( )DI λ  is the normalized fluorescence spectrum of the donor, ( )A λε  is 

the molar absorption coefficient of the acceptor and λ  is wavelength. 

The intrinsic fluorescence lifetime 0τ  of a chromophore is determined by the 

rates of all the intrinsic relaxation pathways including both radiative pathway (i.e., 

fluorescence) and nonradiative pathways. In the presence of RET to an acceptor 

chromophore, another relaxation pathway exists with the rate RETk  in Eq. (1). The 

exciton relaxation through each pathway is an exponentially distributed random 

variable in the time domain, and, as a result, the de-excitation of the chromophore is also 

exponentially distributed. Between a RET pair, the excited state lifetime of the donor 

chromophore is shown in Eq. (3), and the transfer efficiency is shown in Eq. (4). 
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2.2 Exciton dynamics of a RET network: continuous-time Markov 
chain 

After a chromophore is excited in a RET network, the exciton dynamics in the 

RET network comprise of the sequence of RET transfers and the sojourn time of each 

RET transfer until it leaves the network through exciton relaxation, which are an 

absorbing Continuous Time Markov Chain [18]. CTMC is a continuous-time stochastic 

process with a finite or countable state space S , in which the time spent in each state is 

exponentially distributed. The Markov property of a CTMC means that the conditional 

probability distribution of future states of the process (conditional on both past and 

present states) depends only on the present state and not on the sequence of events that 

preceded it. A CTMC is defined by its discrete state space S , a transition matrix Q  that 

indicates the transition rate between each pair of states, and an initial probability 

distribution ( )0π .  

An absorbing CTMC has at least one absorbing state ( )  1, ,AiS i n= … , which only 

has incoming transition rates, and the probability of the system having transitioned into 

an absorbing state approximates 1 as time increases to infinity: 

( ) { }( )lim , 1, , 1Ait
Prob X t S i n

→∞
∈ = … = . Additionally, the absorption probability of each 

absorbing state ( )  1, ,AiS i n= … , i.e., the probability of the system transitioning into each 

specific absorbing state, is ( )( )Ai AiP Prob X S= ∞ = , which depends on the initial 

probability distribution ( )0π  and the transition matrix Q  [27].  



 

17 

An important and unique feature of the CTMC that captures the exciton 

dynamics of a RET network is the direct mapping between the CTMC and the RET 

network. The state space of the CTMC is composed of transient states and absorbing 

states. Each transient state TS  corresponds to a specific chromophore being excited, and 

the transition rate between a pair of transient states is the RET transfer rate between the 

corresponding chromophore pair. Each absorbing state AS  corresponds to the exciton 

leaving the RET network through a specific relaxation pathway, and the transition rate 

between a transient state and an absorbing state is the decay rate of the corresponding 

relaxation pathway of the corresponding chromophore. (Note: It is assumed that an 

ultrashort pulse laser only excites the donor chromophore and at most one chromophore 

remains excited between the pair at any time, which is feasible from our experience with 

wavelength division multiplexing and fabricated RET networks.) 

Figure 3(a) shows the exciton dynamics between a chromophore pair and its 

corresponding CTMC model 6(b). In the CTMC, each chromophore has a transient state 

TS  to indicate whether it is in its excited state, and the exciton decay through each 

intrinsic relaxation pathway of each chromophore is represented as an absorbing state 

AS , i.e., 1AS : ‘Donor Fluoresces’, 2AS : ‘Acceptor Fluoresces’, 3AS : ‘Donor Nonradiative 

Decay’, 4AS : ‘Acceptor Nonradiative Decay’. (Although not shown in Figure 3(a), 

nonradiative decay exists as an exciton relaxation pathway and is included in Figure 
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3(b).) The initial state vector ( )0π  and the transition matrix Q  of the CTMC are shown 

in Eq. (5) and Eq. (6). 

 

Figure 3: (a) The exciton dynamics between a RET pair and (b) its 
corresponding CTMC. 
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For a larger RET network with more than two chromophores, its CTMC will 

simply enclose more states and the transition rates between them following the direct 

mapping (Figure 4). Therefore, a RET network is a direct and physical analog of a 

CTMC, which provides unique opportunities for physically implementing and 

programming molecular-scale CTMCs. The model specifications of a CTMC, such as 

state space and transition rates, can be explicitly implemented through the physical 

specifications of a RET network such as network size, RET transfer rates and exciton 
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decay rates. With the fabrication method based on DNA self-assembly, the physical 

specifications of a RET network can be precisely programmed by the physical geometry 

of a chromophore network; network size and exciton decay rates are directly controlled 

through the number and types of chosen chromophores, and RET transfer rates are 

controlled through the parameters in the Förster equation (Eq. (1)) such as distance.  

This direct and intuitive approach to physically implementing and programming 

CTMCs at the molecular scale is unprecedented. 

 

Figure 4: (a) The exciton dynamics in a 3-chromophore RET network and (b) its 
corresponding CTMC. 

2.3 RET network fabrication via DNA self-assembly 

Because of the inverse sixth-power distance dependence of RET, accurate 

fabrication of a chromophore network in terms of the distance between each 

chromophore pair becomes crucial for physically implementing specified exciton 
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dynamics and the CTMC. Extensively investigated as an economical approach to 

molecular-scale fabrication with subnanometer precision, DNA self-assembly is an ideal 

method for precisely fabricating chromophore networks. 

Self-assembly is a process in which unorganized components form an organized 

system due to the local interactions among the pre-existing components without external 

forces. The local interactions responsible for self-assembly are weak forces, including π-

π, Van der Waals and hydrogen bonds, which is in contrast to stronger forces in 

conventional chemical reactions: covalent, ionic and metallic bonds.  Another important 

property of self-assembly is its thermodynamic stability. With weak local interactions as 

the driving forces in self-assembly, pre-existing components lead to a more organized 

system with a lower Gibbs free energy. Thus, locating the thermodynamic minimums in 

the energy landscape of configuration space is important for analyzing a self-assembly 

process. In addition, due to the weak nature of the interactions in self-assembly, minor 

changes of the environmental variables (e.g., temperature) can lead to significant 

deviation from the previous energy landscape, and therefore change the result self-

assembled structure. This can be significantly useful in the sense that the control over 

external environment can be used to direct the self-assembly process. 

Compared with other molecular self-assembly methods [28, 29], DNA self-

assembly has unique advantages for fabricating RET networks such as the capability of 

making irregular and asymmetrical geometries with sub-nanometer precision, low cost 

http://en.wikipedia.org/wiki/Pi-pi_interaction
http://en.wikipedia.org/wiki/Pi-pi_interaction
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and high throughput. DNA self-assembly is an instance of molecular self-assembly 

where deoxyribonucleic acid (DNA) single strands are the pre-existing components for 

self-assembly. Single strands are mostly likely to bind to their complementary strands 

through hydrogen bonds following the rules of Watson-Crick base pairing (A with T 

and C with G). Based on this property, we can make specific sequence designs for 

different strands to let them go to specific positions when forming a desired structure, 

which minimizes the Gibbs free energy of the assembled structure. The current 

implementation of DNA self-assembly can be categorized into two types: folding-based 

self-assembly (i.e., DNA origami) [30] and hierarchical self-assembly [31]. Intensive 

research has been done in the field of synthesizing various planar and 3D DNA 

structures using DNA self-assembly for different applications, such as nanoelectronics, 

biomedicine, etc. The advantages of DNA self-assembly as a bottom-up fabrication 

approach are becoming increasingly appealing as traditional top-down fabrication 

methods are reaching their fundamental physics limits.  

In this dissertation, chromophore networks are fabricated using hierarchical 

DNA self-assembly, where small building blocks are built first from the single strands 

and then assemble into a larger grid structure [31-34]. In this method, 9 single strands 

form a DNA cross-shaped motif with unique sticky ends extending out in 4 directions. 4 

(or 16) such motifs with distinct sticky ends then assemble into a 2X2 (or 4X4) grid 

structure (Figure 5). The two assembly steps are completed during different annealing 
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processes which are detailed elsewhere [31-34]. Because of the hierarchical nature of the 

assembly process, it is possible to reuse single strands for different motifs, which 

reduces the fabrication cost and makes the assembly approach scalable. The 4-tile DNA 

grid is 40X40 nm2 in size, and the 9 single strands of each tile contain 392 nucleobases in 

total. Meanwhile, single strands can be conjugated with chromophores at arbitrary bases 

before they are assembled into motifs. The chromophore–DNA conjugation can be 

achieved by using a primary amino modifier group on Thymidine to attach an NHS 

ester-modified dye molecule. By using these conjugated single strands in the self-

assembly process (Figure 6), the DNA grids become fully addressable and 

programmable, and a chromophore network can be accurately patterned on the final 

grids (Figure 5).  

 

Figure 5: (a) Layout of a 2X2 DNA grid synthesized using hierarchical DNA 
self-assembly. (b)(c) AFM images of grid structures composed of 16 tiles. Scale bar: 60 
nm [33]. 
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Figure 6: The fabrication process of a chromophore network based on 
hierarchical DNA self-assembly. 

 

Figure 7: A chromophore network patterned on a 2X2 DNA grid. 

Because chromophores can be conjugated with DNA strands at arbitrary 

nucleobases and each nucleobase is 0.33nm long, the fabrication of a chromophore 

network reaches subnanometer precision, which is sufficient given common Förster 

radii around 5~10nm. Meanwhile, this makes it feasible and convenient to fabricate 

irregular and asymmetrical network geometries which is difficult for other self-assembly 

methods. Other unique advantages of the fabrication method include massive 

parallelism and low cost. With commercially available chromophores and custom-

designed DNA strands, the fabrication process can produce a manufacturing scale of 
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more than 1013 grids in 60µL within only a few hours, and the ensemble costs less than 

$1 USD. The product of chromophore–DNA conjugation can be analyzed and purified 

by using high-performance liquid chromatography (HPLC), and the yield of completely 

assembled grids and their structures can be characterized and observed by using an 

atomic force microscope (AFM). 

It should be noted that organic dyes are not the only option for making RET 

networks, and alternative options include other commonly used fluorescent molecules 

such as fluorescent proteins and quantum dots (QDs). However, organic dyes are 

relatively more suitable for building RET networks for the following reasons. 

First of all, RET networks with different structures and transfer rates are required 

to physically implement distinct stochastic processes, and organic dyes, among the 

common fluorescent molecules, are the most suitable and flexible choice for making RET 

pairs [35]. There is a large and diverse collection of commercial functionalized organic 

dyes, and their optical properties (e.g., absorption/emission spectra, extinction 

coefficient, quantum yield) and RET properties as donors and acceptors (i.e., Förster 

radius) are well characterized. These synthetic dyes are continually improved in terms 

of photostability, solubility and conjugation strategies. Fluorescent proteins are very 

similar to organic dyes in terms of their photophysics and optical properties and also 

used in RET applications, but they have larger sizes (~25kD) and lower photostability 

than organic dyes and their selection is much smaller [36]. 
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Organic dyes have relatively narrower absorption bands, and it is feasible to 

selectively excite individual dyes to induce a sequence of RET transfers among multiple 

different dyes. Additionally, the large selection of commercially available organic dyes 

cover a wide spectral range from UV to NIR, and they often have relatively shorter 

Stokes shift. Thus RET pairs can be flexibly cascaded and organized to make different 

RET networks. In contrast, QDs have broad absorption bands and their absorption 

increases toward shorter wavelengths [35]. This property has limited QDs to the donor 

position in their few RET applications, which makes it difficult to only use QDs to create 

different RET networks. Meanwhile, the relatively larger size of QDs and their surface 

coating often make them less efficient in RET transfers compared with organic dyes. 

QDs are generally not recommended for RET applications.  

More importantly, organic dyes typically exhibit mono-exponential decays, 

while QDs often exhibit multi-exponential decays [35]. As described in the previous 

section, the CTMC model of the exciton dynamics is based on the exponential 

distributions of RET transfers and fluorescence. Multi-exponential distributions would 

invalidate the direct mapping between a chromophore network and a CTMC and make 

it more challenging to physically implement the stochastic process. 
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2.4 Practical aspects of using the RET network implemented 
CTMC 

 The RET network implemented CTMC is compatible with practical applications 

of photonics and optoelectronics as a molecular photonic device in terms of input/output 

interface and speed.  

Because exciton dynamics are the physical stochastic process that takes place on 

the substrate of a fabricated chromophore network, the input/output interface of the 

RET network should be based on a light source and a photon detector, and the specific 

implementation depends on whether the molecular photonic device is used as a discrete 

component or integrated in a photonic/optoelectonic circuit. A light source (e.g., QD-

LED, laser) can excite the chromophore network to initialize the stochastic process and a 

photon detector (e.g., SPAD) can detect the fluorescence photons from the chromophore 

network to read from the stochastic process. Once the light source and the photon 

detector simultaneously turn on, the exciton dynamics in the excited chromophore 

networks in the fabricated ensemble physically implement different realizations of the 

stochastic process in parallel, and each detected fluorescence photon is a random sample 

generated from a single chromophore network and corresponds to a single realization. 

Therefore, this setup not only achieves massively parallel (1013 and more) simulation of a 

specified CTMC, but also conveniently measures the stochastic behavior of the 

molecular-scale stochastic process by observing its individual realizations. 



 

27 

Meanwhile, the exciton dynamics between chromophores are composed of RET 

transfers and fluorescence that occur on the nanosecond timescale, thus the physical 

stochastic process is fast enough for most applications including those that emphasize 

performance. The clock rate of modern CPUs is in GigaHertz (GHz), and the timescales 

of a CMOS transistor and a RET network are comparable. 

While this molecular photonic device can potentially perform different functions 

and bring vast applications, this dissertation focuses on using it as a programmable 

entropy source to directly generate random samples from virtually arbitrary 

distributions, and illustrates its function in two applications: 1) fluorescent taggants and 

2) stochastic computing. 

2.5 DNA as a substrate for programming molecular interactions  

So far, this chapter has described the molecular-scale implementation of CTMCs 

based on programming molecular interactions through the RET transfers between 

chromophores. DNA has been commonly used as a substrate for programming 

molecular interactions, and this section briefly discusses this approach and its theoretical 

and practical difficulties in terms of implementing stochastic processes.  

Despite its intrinsic stochasticity, most applications of DNA-based chemical 

reactions abstract away the reaction kinetics of the process as deterministic behaviors 

with the law of mass action, and programming DNA strands to implement general 

stochastic processes is constrained by the chemical reaction network (CRN) description 
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of a reaction process. Meanwhile, the implementation aspects of this process include 

slow processing, thermal annealing, aqueous solvents and inconvenient readout, which 

are often incompatible with practical applications. 

Deoxyribonucleic acid (DNA) provides a viable approach to programming 

molecular interactions and has been extensively studied for a variety of applications 

over the past two decades after Leonard Adleman first demonstrated its ability to solve 

combinatorial problems such as the seven-point Hamiltonian path problem [37]. DNA 

strands are composed of nucleotides which are covalently linked to form polynucleotide 

chains. Each nucleotide is composed of a nitrogen-containing nucleobase—either 

cytosine (C), guanine (G), adenine (A), or thymine (T)—as well as a sugar called 

deoxyribose and a phosphate group. The nucleobases on two DNA strands are bound to 

each other by hydrogen bonds to form base pairs following the rules of Watson-Crick 

base pairing (A with T and C with G), and stack upon one another, which leads to the 

double helical structure of DNA molecules. By designing the sequences of DNA strands 

to control their degree of complementarity, the hybridization reaction between the 

strands can be programmed. 

However, programming DNA strands to control their reaction kinetics has 

implementation aspects that are often incompatible with practical applications. Besides 

the complex sequence design, the reaction process has unfavorable features such as slow 

processing, thermal annealing and aqueous solvents. A common DNA self-
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assembly/computing process takes from minutes to hours or even days, and requires 

thermal annealing procedures which are unjustifiable beyond proof-of-concept 

purposes. Meanwhile, reading or sampling from the DNA based stochastic process is 

difficult and requires analyzing individual molecules or extracting molecular counts. To 

analyze the deterministic behaviors of a DNA-based chemical system, the readout 

methods rely on unwieldy laboratory equipment such as an AFM to examine the 

structure of assembled products or a fluorometer to measure reactant concentrations, 

and require highly specialized expertise and operate on a similar time scale to the slow 

reaction process.  

While the reaction between DNA strands is a stochastic process at the molecular 

scale, most applications abstract away their reaction kinetics as deterministic behaviors 

with the law of mass action and forgo the inherent stochasticity. The applications of this 

field are mainly inspired by self-assembly and chemical reaction network (CRN) theory. 

As an approach to bottom-up nanofabrication or performing logic functions, arbitrary 

2D or 3D nanostructures can be accurately self-assembled by designing the sequences of 

interacting DNA strands [38-41]. Meanwhile, CRN has a vast literature of theory and 

becomes a natural and effective programming language for complex network behaviors 

in DNA strand displacement-based computing, and specified CRNs can be compiled 

into DNA sequences to physically implement deterministic functions such as Boolean 

logic gates and oscillators [42-45]. Although DNA strand displacement in the low copy 
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number regime has been theoretically studied as a stochastic CRN (SCRN) to 

demonstrate its computational capabilities by storing information in molecular counts 

[46, 47], the physical implementation would be challenging and sampling from the 

stochastic process would require extracting the molecular counts of reactants and 

become almost infeasible. More importantly, the stochasticity in the proposed SCRN is 

deemed as the source of error to be diminished rather than an entropy source to be 

utilized. 

Further, programming DNA strands to physically implement general stochastic 

processes is constrained by the CRN description of a reaction process. While the current 

applications that program the stochastic reaction between DNA strands at the molecular 

scale rely on the deterministic abstraction of a CRN at the macroscopic scale, this 

approach would fail in applications that require or benefit from the implementation of 

general stochastic processes. The stochastic process of a DNA based SCRN is the set of 

counting processes described by its Chemical Master Equations (CMEs), and becomes a 

CTMC where each state comprises of the molecular counts of each species and each 

transition corresponds to the occurrence of a reaction [10]. The complex coupled 

reactions involving large molecular counts in the SCRN translate to the numerous states 

and their complex transitions in the CTMC; such a CTMC easily becomes infeasible to 

numerically specify and requires simulation for modeling and analysis, and mapping it 

to another specified CTMC by programming the strands would be implausible. 
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Although DNA-based single-molecular chemical reactions could in principle implement 

a CTMC by mapping its states to molecular structures under the assumption that certain 

reacting species are sufficiently abundant in the solution, this approach would be 

difficult to realize and use because it relies on analyzing individual molecules. 
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3. A Programmable Entropy Source For Generating True 
Random Numbers 

As discussed in Chapter 2, the exciton dynamics in a RET network of 

chromophores can physically implement programmable molecular-scale CTMCs, and 

they are compatible with practical applications of photonics and optoelectronics as a 

molecular photonic device. While vast applications can be potentially enabled by using 

the molecular photonic device to perform different functions, this dissertation focuses on 

using this device as an entropy source to generate true random numbers from general 

distributions and its applications.  

Random numbers are critical in a wide range of fields such as probabilistic 

algorithms, cryptography, and numerical simulations. Dependent on the way they are 

generated, random numbers fall in two categories: 1) pseudorandom numbers and 2) 

true random numbers [48]. Pseudorandom numbers are generated by a pseudorandom 

number generator (PRNG), which is a deterministic algorithm that produces a sequence 

of periodic numbers whose properties approximate those of random numbers. 

Therefore, they are deterministic number sequences with strong long-range correlations 

and can be fully determined when the initial state, or seed, of the generating algorithm is 

known. In contrast, true random numbers are generated by a true random number 

generator (TRNG), which operates by measuring a physical process that behaves in a 

fundamentally nondeterministic way. The physical process is the entropy source that 

provides the randomness in a TRNG, and common physical RNGs can be divided into 
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four categories according to their entropy sources: noise based RNGs, free running 

oscillator (FRO) RNGs, chaos RNGs and quantum RNGs.  

The quality of randomness is crucial for applications such as cryptography and 

stochastic simulations and calculations, and the absence of true randomness can cause a 

security breach or an erroneous result. Although frequently used in practice, PRNGs are 

deterministic and unacceptable for such applications. While there exist a variety of 

implementations of physical RNGs using different physical processes, an important 

aspect of these RNGs is often neglected, which is the provability of randomness. Among 

the physical processes used in existing physical RNGs, only those based on quantum 

systems can be information theoretically proven to be truly random. However, FRO and 

noise RNGs are the most widely used especially in the semiconductor industry due to 

their easier implementation. 

Meanwhile, existing RNGs only produce uniform random numbers in the form 

of binary bits by using the nondeterministic behavior of a physical process to generate 

two equally likely outcomes. In applications that need random numbers with more 

general distributions, techniques such as inverse transform are required to map the 

uniform random numbers to a target distribution. While exponentially distributed 

random events exist in certain quantum RNGs [49], it remains difficult to find a physical 

process that can be precisely controlled to directly generate random numbers from 

general distributions.  
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Within this context, the exciton dynamics in a RET network of chromophores is 

explored as an entropy source that utilizes molecular quantum electrodynamics to 

produce randomness and can be precisely programmed to generate random events with 

general distributions. The random events occur in the form of fluorescence photons in 

the time domain. To produce random numbers from the RET based entropy source, a 

single photon detector (e.g., SPAD) and a Time-Correlated Single Photon Counting 

(TCSPC) module can be used to measure the detection times of fluorescence photons. To 

our knowledge, this is the first entropy source that can be programmed and used to 

directly generate true random numbers from virtually arbitrary distributions. 

3.1 RET network as a source of true randomness 

A RET network is a molecular quantum system composed of multiple 

chromophores, and the exciton dynamics in such a network can generate true 

randomness from molecular quantum electrodynamics, based on which the probabilistic 

behavior of the network can be precisely controlled and characterized from first 

principles. The RET transfer in this dissertation is between chromophores placed a few 

nanometers apart, in which region the Förster theory applies and the transfer rate has 

the inverse sixth-power dependence on the inter-chromophore distance. Förster 

Resonance Energy Transfer (FRET) is a short-range RET mechanism and also a 

radiationless mechanism which does not involve photon emission and absorption. In 

contrast, radiative RET is a long-range RET mechanism and involves photons being 
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emitted and absorbed between a chromophore pair, and its transfer rate has an inverse 

second power dependence on the inter-chromophore distance. These radiationless and 

radiative RET mechanisms are the short- and long-range limits of a unified RET theory 

that originates from molecular quantum electrodynamics [50, 51]. These RET systems 

are based on weakly coupled dipole-dipole interactions, and their transfer rates can be 

derived by using the Fermi golden rule as a correlation function in the interaction. 

Therefore, the exciton dynamics in a RET network exploits quantum optical processes to 

generate true randomness, and the stochastic process of the exciton dynamics and the 

generated probability distribution can be precisely derived and controlled. 

3.2 Time-resolved fluorescence of a RET network: phase-type 
distribution 

The time-resolved fluorescence of a RET network has a phase-type distribution 

that is defined by the absorbing CTMC of the exciton dynamics in the network. Because 

the time to RET transfer, after the donor is excited, follows an exponential distribution 

between each chromophore pair and the sequence of RET transfers between an exciton 

entering and leaving (i.e., decaying) a chromophore network is a random process, the 

time to exciton decay follows a phase-type distribution [18]. The RET transfer between a 

chromophore pair with a transfer rate of RETk  physically implements a phase transition 

with a transition rate of RETkλ =  in the phase-type distribution, and the geometry of the 

chromophore network controls how these phases are convolved and mixed to form the 

phase-type distribution. Specifically, the time to exciton decay in a RET network is the 
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time to absorption in the absorbing CTMC of its exciton dynamics, and the CTMC 

specifies the distribution of this phase-type random variable through its transition 

matrix Q  which contains the RET transfer rate between each chromophore pair and the 

decay rate of each relaxation pathway.  

Consider the RET pair in Figure 3 for simplicity. An Alexa Fluor 488 dye and an 

Alexa Fluor 594 dye are chosen as the donor and acceptor respectively, which are placed 

10nm apart. The state probabilities of the four absorbing states in the CTMC, 

( ) ( ) ( ) ( ) ( )1 2 3 4, , ,SA SA SA SA SAt t t t tπ π π π π  =  ( 1AS : ‘Donor Fluoresces’, 2AS : ‘Acceptor 

Fluoresces’, 3AS : ‘Donor Nonradiative Decay’, 4AS : ‘Acceptor Nonradiative Decay’ ), are 

shown in Figure 8(a) and their sum monotonically approximates 1 as the input exciton is 

increasingly likely to have decayed as time passes. Specifically, the blue and red solid 

curves in Figure 8(a) correspond to the fluorescence of the two chromophores. By taking 

the derivative of these two curves and normalizing each, the conditional probability 

density function (PDF) of the time to fluorescence (TTF) from each chromophore, 

( ) 1( | )T Af t X S∞ =  and ( ) 2( | )T Af t X S∞ = , can be derived (see Figure 8(b)), which are 

phase-type distributions. This method can be generalized to larger RET networks with 

more chromophores.  
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Figure 8: (a) The state probabilities of the four absorbing states in the CTMC 
in Figure 6(b) and their sum and (b) the conditional PDF of the time-resolved 
fluorescence from each chromophore. 

3.3 Generating true random numbers from general distributions 

Because the fluorescence photons emitted from a RET network follow a phase-

type distribution that is configured by its CTMC and phase-type distributions can 

approximate any positive-valued distribution to arbitrary precision, it becomes 

theoretically feasible to use RET networks as a programmable entropy source to 

generate true random numbers from general distributions. The physical geometry of a 

chromophore network is designed so that the phase-type distribution of its time-

resolved fluorescence approximates the target distribution. To generate random 
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numbers from a RET network, a light source (e.g., QD-LED, laser) excites the source 

chromophore in the network and a single photon detector (e.g., SPAD) and a high-

resolution photon timing module (e.g., TCSPC) respectively detects and times the 

fluorescence photons from the designated emitter chromophore in the network. 

3.3.1 Theoretical RET network: a universal entropy source 

A RET network is a programmable entropy source that is theoretically capable of 

generating random events in the form of fluorescence photons from general 

distributions. Based on the direct mapping between a RET network and the phase-type 

distribution configured by its absorbing CTMC, a RET network can be designed in terms 

of network size and rate constants to generate any phase-type distribution. Phase-type 

distributions and CTMCs are often used to approximate general distributions to analyze 

non-Markovian systems because they have a vast literature of theory and their 

Markovian properties offer easier and even analytically tractable solutions. In theory, 

phase-type distributions form a dense set in the field of all positive-valued distributions 

and any positive-valued discrete or continuous distribution can be approximated with a 

phase-type distribution to arbitrary precision [52, 53]. The methods of approximating a 

general distribution with a phase-type distribution have been well investigated, and the 

two common approaches are based on (1) Moment-matching [54] and (2) Minimization 

of a difference (e.g., Kullback-Leibler Divergence) [55]. Therefore, a RET network can be 
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specified in terms of network size and rate constants to implement a phase-type 

distribution that asymptotically generates random events from a general distribution.  

The design of the RET network should establish the direct mapping between 

itself and the absorbing CTMC that configures the phase-type distribution. The time to 

fluorescence (TTF), i.e., the time between an exciton enters the RET network from its 

source chromophore and leaves from its emitter chromophore(s) through fluorescence, 

is the time to absorption in the CTMC, which should have the phase-type distribution. 

The source chromophore should correspond to the initial state of the phase-type 

distribution, and the fluorescence of the emitter chromophore(s) should correspond to 

the absorbing state(s) of the phase-type distribution. The size (i.e., number of 

chromophores) of the RET network should equal the number of transient states in the 

absorbing CTMC, and the RET transfer rate between each chromophore pair should 

equal (or scale with) the transition rate between the two corresponding transient states. 

The radiative decay rate of the emitter chromophore(s) should equal (or scale with) the 

transition rate between its corresponding transient state and absorbing state for 

fluorescence, and the decay rates of all the other exciton relaxation pathways in the RET 

network should be significantly slower compared with the aforementioned transition 

rates so that their effect on the phase-type distribution becomes negligible. 
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3.3.2 Practical implementation of a RET network based TRNG 

To generate random numbers from a RET network, a light source (e.g., QD-LED, 

laser) is needed to send a periodic train of ultrashort pulses to excite the source 

chromophore in the RET network, and a single photon detector (e.g., SPAD) detects the 

fluorescence photons emitted from the emitter chromophore of the RET network and a 

high-resolution single photon timing module such as Time-Correlated Single Photon 

Counting (TCSPC) measures the detection times of these photons relative to the 

excitation pulses with a timing resolution as high as several picoseconds (Figure 9). The 

photon detection times are the random numbers that are generated from the phase-type 

distribution encoded in the RET network.  

Timing
Module

control

Light
Source SPAD

random
numbersRET

Network  

Figure 9: The diagram of a RET network based TRNG. 

With DNA self-assembly, many copies of a RET network are fabricated and exist 

as an ensemble. When measuring fluorescence photons from the ensemble, their 

detection times follow the intrinsic phase-type distribution of the RET network if the 

system operates in a low-light condition for TCSPC to correctly function [56]. It needs to 

be ensured that the fluorescence intensity received by the SPAD is so low that the 

probability of detecting a photon after each excitation pulse is considerably lower than 1. 
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When the RET network ensemble is periodically excited by its light source, the TCSPC 

system registers a single photon in some excitation cycles and fails to register any 

photon in almost all other cycles, and the probability of detecting more than one photon 

in a cycle is extremely rare. Under this condition, the probability of detecting a photon at 

a certain time in a cycle is proportional to the time-resolved fluorescence intensity, and 

the histogram of the detection times relative to their excitation pulses approximates the 

phase-type distribution. In practice, the probability of detecting a photon per cycle (i.e., 

count rate) is controlled to be between 1~5% to maintain the single photon statistics. 

Otherwise, a high fluorescence intensity would cause the ‘pile-up’ effect and distort the 

distribution of detection times due to the ‘dead’ time of the SPAD. After detecting a 

photon, a SPAD enters a state where it cannot detect other photons, and the state 

typically lasts a few nanoseconds, i.e., its dead time. When the fluorescence intensity is 

high and multiple photon detections are expected in an excitation cycle, only the first 

photon will be detected and the rest will be dropped due to the SPAD’s dead time. 

The specific implementation of the RET network based TRNG varies between 

applications. When RET networks are used as fluorescent taggants (Chapter 4), a 

macroscale light source (e.g., laser) and detection components, including a SPAD and a 

TCSPC, can interrogate and identify a RET network from a distance (meters or even 

kilometers). When RET networks are used to generate random numbers for probabilistic 

computing (Chapter 5), nanoscale light sources (e.g., QD-LEDs), a SPAD and a RET 
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network are integrated as a nanoscale optoelectronic device that is used as a functional 

unit for sampling. 

While theoretical RET networks can be designed to generate random numbers 

from virtually arbitrary distributions, the practical limits of chromophore networks may 

constrain the RET networks and distributions that can be fabricated, and it can be 

difficult to find a chromophore network to physically implement a theoretical RET 

network when the size and complexity of the network increases. In practice, the 

maximum network size is limited by the number of chromophores that can be 

conjugated on a DNA grid. While the 4-tile DNA grid used for fabricating chromophore 

networks in Chapter 2 has 392 nucleobases in total, the virus M13mp18 chosen as the 

scaffold for DNA origami contains 7249 nucleobases [30] and represents the largest scale 

of current DNA self-assembly. Because inter-chromophore distances are used to control 

RET transfer rates, only a small fraction of nucleobases are often available for dye 

conjugation, and it can be difficult to locate these nucleobases for a complex RET 

network. While the RET transfer rate can be individually specified for each RET pair in 

theory, this is usually difficult to achieve for a chromophore network in practice. 

Because chromophores are placed on a 2D DNA grid, moving the position of a 

chromophore is likely to change its RET transfer rates with multiple surrounding 

chromophores. Meanwhile, although the transitions between transient states in a CTMC 

are allowed to form loops with high probabilities, the probability of successive RET 
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transfers forming a loop is minimal due to the energy loss (i.e., Stokes shift) at each 

chromophore. In addition to network geometry, the finite set of commercially available 

organic dyes also constrains the RET networks and distributions that can be actually 

fabricated. Despite the large selection of commercially available organic dyes that cover 

a wide spectral range from UV to NIR and have diverse RET properties as donors and 

acceptors, choosing the chromophore types to constitute a RET network may still be 

challenging in practice. While it is relatively easy to find two chromophores to 

implement a single transfer rate, it is much more difficult to assign multiple (>2) 

chromophores so that their structure simultaneously satisfies the specified transfer rate 

between each chromophore pair, and the challenge is convolved with the physical 

geometry of the chromophore network. In addition, the back transfer rate between a 

chromophore pair is often nonzero and sometime non-negligible due to the small 

overlap between the acceptor’s emission spectrum and the donor’s absorption spectrum. 

While the dominant RET transfer rate between the pair can be controlled by parameters 

such as their distance, the back transfer rate between the pair is also affected.  

3.3.2.1 Using chromophores wires to generate acyclic phase-type distributions 

Although the question if a chromophore network can be designed and fabricated 

using organic dyes to physically generate an arbitrary phase-type distribution is an NP 

problem and does not have an easy and general solution, the types of phase-type 

distributions commonly used to approximate general continuous distributions have 
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simpler structures and are suitable for a chromophore network to generate. To 

approximate a general continuous distribution with a phase-type distribution is 

essentially an optimization problem with an infinite search space. In practice, this 

problem is often made manageable by limiting the search in a class of phase-type 

distributions with a simpler fixed structure [54, 55, 57-61]. They are usually acyclic 

phase-type (APH) distributions such as Erlang-Exponential or hyper-Erlang 

distributions with a fixed number of phases and branches, and the rates in the 

distribution are optimized to minimize the divergence between the APH distribution 

and the general distribution. Because of its acyclic structure, it becomes more feasible 

and convenient to design a chromophore network to generate the phase-type 

distribution. The RET transfer between a chromophore pair should physically 

implement a phase transition in the phase-type distribution, and the chromophore pairs 

should be cascaded in a wire geometry to minimize the transfer rates between non-

adjacent chromophores. Unless otherwise required, chromophore pairs should be 

chosen so that their back transfer rates are negligible, and the intrinsic decay rates of 

chromophores should be significantly slower than the RET transfer rates in the 

chromophore wire. Therefore, the APH distributions that are commonly used to 

approximate continuous distributions are feasible and convenient for chromophore 

wires to generate.  



 

45 

However, the performance of these phase-type approximation methods varies 

between distributions in practice. While the approximation usually performs well for 

many regular continuous distributions such as Gaussian and Weibull with only a few 

phases, it may require an excess number (hundreds or thousands) of phases for ‘bad-

shaped’ distributions such as density functions with discontinuities (e.g., uniform 

distribution) and complex distributions from observed data. Meanwhile, discrete 

distributions are not directly addressed in these phase-type approximation methods. It 

easily becomes impractical to use a single chromophore network to generate these 

distributions and different strategies should be considered for them. 

3.3.2.2 Delayed CTMC (d-CTMC) and interval phase-type (IPH) approximation 

For distributions with discrete components such as fixed delays and irregular 

distributions with complex shapes, conventional phase-type approximation usually 

requires an extreme amount of states and produces unsatisfactory result. Alternative 

phase-type approximation methods have been investigated, among which an approach 

called interval phase-type (IPH) approximation has unique advantages by introducing 

discrete-time events into the approximation and is suitable for RET networks to 

implement in practice [62]. 

IPH approximation uses piecewise phase-type distributions to approximate a 

given distribution, where the support of the given distribution is divided into multiple 

intervals and each phase-type distribution begins after a fixed time delay and 
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approximates the given distribution in a single interval. This method can manage 

distributions with a bounded support such as a delayed distribution (lower-bounded) or 

a uniform distribution (upper-bounded) and complex shaped density functions. For 

these distributions, IPH approximation only requires a moderate number of states and 

achieves much better result than conventional PH approximation. 

Meanwhile, a TRNG based on this approach can be physically implemented by 

modifying the scheme of generating random numbers from RET networks. The 

implementation is directly based on the way piecewise phase-type distributions are 

delayed and composed to approximate a given distribution. Multiple chromophore 

networks are fabricated, and each one has an associated time delay and generates a 

phase-type distribution for an interval in the IPH approximation for the specified 

distribution. To generate random numbers from the specified distribution, the 

chromophore networks are excited sequentially in order of their corresponding 

intervals. When a chromophore network is excited, it is to be observed whether a 

detected fluorescence photon falls in its corresponding time interval. If it falls in its 

interval, a random number is generated which is the sum of the photon detection time 

within this interval and the delay associated with this interval. If the detected 

fluorescence photon is beyond its interval, a random number is not generated and the 

system proceeds to the chromophore network corresponding to the next time interval 

until a random number is eventually generated. 
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3.3.2.3 Discrete sampler based on competing exponential random variables 

In addition to continuous distributions, generating random numbers (or samples) 

from discrete distributions are often necessary and can be conveniently implemented by 

RET networks based on the property of competing exponential random variables. 

As mentioned earlier, the time to fluorescence (TTF) of a RET network is a phase-

type distribution and the SPAD can be used to sample from the phase-type distribution. 

The exponential distribution is simply a one-stage phase-type distribution, thus it can be 

conveniently extracted from a RET network. Consider a single RET pair excited by one 

QD-LED at time 0t = . When the back transfer from the acceptor to the donor is 

negligible, the TTF of the donor is exponentially distributed with a decay rate Dλ  (Eq. 

(7b)). When the SPAD is turned on to detect photons beginning at 0t = , the time to the 

first photon detection has an exponential distribution with a decay rate λ : 

  ;
* *
* *

r

e DF Dd

e d d

N P P P
N P P k

λ λ=
=

 (7)a 

  
0

;
r nr

D RETd

RETd d

k
k k k

λ λ= +
= + +

 (7)b 

  ,r

r nr

d
DF

RETd d

k
P

k k k
=

+ +
 (7)c 

where Dλ  is the decay rate of the excited state of the donor chromophore in the presence 

of RET to the acceptor, which is the sum of its intrinsic excited state decay rate 0dλ  and 

the RET transfer rate  RETk . DFP  is the probability that the donor fluoresces after excited, 
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which is the ratio between its radiative decay rate  
rdk  and 

r nrD RETd dk k kλ + += . eP  is 

the probability of the donor being excited by the QD-LED, and dP  is the photon 

detection efficiency of the SPAD. Many copies of the RET network exist in the fabricated 

ensemble, and N  is the number of RET networks in the ensemble that can be excited.  

Although λ  is independent of the RET transfer rate, the value of λ  can still be 

engineered by changing the concentration of RET networks ( N ), the emission intensity 

of the QD-LED ( eP ) and even the donor chromophore (
rdk ). In addition, as will be 

explained shortly, a set of such exponential distributions can be used to implement a 

specified discrete distribution, and only the relative ratio between their decay rates 

matter rather than their exact values. 

 It is noteworthy that the exponential distribution of the time to the first photon 

detection (Eq. (7)) relies on a higher fluorescence intensity received by the SPAD in 

contrast to the low fluorescence intensity TCSPC requires to correctly sample from the 

intrinsic phase-type distribution of the time to fluorescence of a RET network. To use the 

first photon detection to create the exponential random variable with a decay rate λ  (Eq. 

(7)) different from the decay rate Dλ  of the donor chromophore, the fluorescence 

intensity needs to be so high that at least one photon detection is expected in each 

excitation cycle and the SPAD only detects the first photon to generate samples. While 

the ‘pile-up’ effect is to be avoided for sampling from the intrinsic phase-type 

distribution of a RET network, this effect is utilized here to create an exponential 
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distribution that can be programmed through parameters such as the intensity of the 

light source and the concentration of the RET network. 

From the above, an exponential sampler can be implemented using a RET 

network along with its light source and SPAD to generate random samples from an 

exponential distribution with a specified decay rate. Multiple such exponential samplers 

can be composed to create a discrete sampler that generate samples from discrete 

distributions based on the property of competing exponential random variables. Given  

M  exponential random variables ( )  1, ,iX i M= …  with decay rates  ( )  1, ,i i Mλ = … , the 

probability the i th exponential random variable is the minimum among all the M  

random variables is [63]:  

  ( )( )1
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min , , .i
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Consider a discrete random variable  X  with M  possible outcomes  

{ }0,1, , 1M… −  with the probabilities  ( ) ( ) ( ){ }0 1 10 ,  1 , ,  1 MP X p P X p P X M p −= = = = … = − =  

0 1 1( )1Mp p p −+ +…+ = . The discrete random variable X  can be implemented using M  

RET-based exponential random variables 1 10, ,..., MX X X −  that correspond to the M  

outcomes 0,1, , 1M… − . The decay rates of the M exponential random variables 

1 10, ,..., MX X X −  are such that their relative ratio equals the relative ratio 

between 1 10, ,..., Mp p p − , i.e., 1 1 1 10 0: : ... : : : ... :M Mp p pλ λλ − −= . Samples of the M -outcome 

discrete random variable X  can be generated as follows. At time 0t = , the QD-LEDs in 
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the M  RET-based exponential samplers simultaneously send a delta pulse to excite their 

RET networks and all the SPADs are turned on simultaneously. The outcome 

corresponding to the RET network whose SPAD detects the first photon before all the 

other exponential samplers is considered a sample of X . The input to the discrete 

sampler is the signal to turn on the QD-LEDs and start the SPADS, while the output is 

the sample of X . 

Therefore, RET networks are an entropy source that can be programmed to 

directly generate true random numbers from virtually arbitrary continuous and discrete 

distributions, and TRNGs based on this molecular-scale entropy source have different 

implementations. While RET networks can potentially benefit wide applications that 

rely on random numbers to perform various functions, we focus on two applications: 1) 

fluorescent taggants and 2) stochastic computing, which respectively leverage the two 

unique aspects of RET networks as an entropy source: 1) flexible programmability of 

probability distributions during fabrication and 2) efficient generation of random 

numbers through single photon detection.  
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4. Application in Fluorescent Taggants 
Fluorescent taggants are widely used in labeling and identification applications, 

and they are often made of organic dyes, quantum dots and metal complexes [19-25]. 

Because different fluorescent materials absorb or emit light in distinct wavelength 

regions, their spectral characteristics are commonly used as their optical signatures for 

taggant identification and discrimination. However, it is difficult to use this approach to 

create a large taggant library because the spectra of fluorescent materials are difficult to 

control and the finite available fluorescent materials constrain the resolvable taggants 

that can be made. 

Within this context, we explore using the time-resolved fluorescence of a taggant 

as an alternative way to encode its optical signature [64]. While time-resolved 

fluorescence has been considered for labeling applications in previous studies, it is so far 

limited to the intrinsic exponential decays of fluorescence, and hence constrained by the 

resolvable lifetimes of available chromophores [65-67]. In this thesis, RET networks are 

proposed to make temporally coded fluorescent taggants and bring a significantly larger 

coding capacity and flexibility to taggant design. As discussed in Chapter 3, a RET 

network is an entropy source that generates random events from a temporal phase-type 

distribution that is unique to the network and hence its signature. Because RET 

networks can generate virtually arbitrary time-resolved fluorescence signals, the coding 

capacity of the fluorescent taggants is considerably larger than their spectrally coded 
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counterpart. Meanwhile, this approach is not constrained by resolvable chromophores 

because the physical geometry of chromophore networks is leveraged to program their 

temporal signatures. 

On the detection side, time-resolved photon detection with a single pair of 

interrogation and detection wavelengths facilitates the detection of all taggants when the 

signatures are encoded in the time domain. Meanwhile, the process of taggant 

identification becomes an estimation problem where observed random numbers are 

used to estimate the unknown generating distribution. The detected photons follow a 

temporal multinomial distribution in TCSPC, and statistical methods such as Maximum 

Likelihood Estimation (MLE) enable a robust and convenient taggant identification even 

under low light conditions. Further, a mixture of taggants, in multiplex detection, can 

also be formulated in MLE and resolved by the Expectation Maximization (EM) 

algorithm. With these unique advantages, the RET network based fluorescent taggants 

have great potential for both in situ and Lidar applications. 

4.1 Fluorescent taggants with temporally coded signatures 

Based on the two observations that 1) a RET network is an entropy source that 

generates random events in the form of fluorescence photons in the time domain from 

its intrinsic phase-type distribution and 2) RET networks can be programmed to create 

virtually arbitrary temporal phase-type distributions, RET network based fluorescent 

taggants are proposed and their optical signatures are encoded in their temporal phase-
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type distributions. These temporally coded fluorescent taggants have a significantly 

larger coding capacity and flexibility than their spectrally coded counterpart. The 

methods of approximating a general distribution with a phase-type distribution have 

been discussed in Chapter 3, which provide guidance on designing a RET network given 

a target signature. Further, because network geometry is leveraged to create signatures 

in this approach, it is not constrained by resolvable chromophores unlike spectrally or 

lifetime coded fluorescent taggants. To illustrate this point, six different RET networks 

were designed using the same set of three dye molecules, i.e., Alexa Fluor 430, Alexa 

Fluor 594 and Alexa Fluor 750, and their temporal signatures were simulated and 

compared. The excitation and emission spectra of the three dyes are plotted in Figure 9, 

which shows that AF430 can be excited at a wavelength about 450nm with negligible 

interference with the other dyes and the fluorescence of AF750 can be measured at a 

wavelength about 780nm with negligible crosstalk from the other dyes. Each of the six 

RET networks adopts a wire geometry that contains one AF430 chromophore, one 

AF750 chromophore and a certain number ( ,  1, ,6iN i i= = … ) of AF594 chromophores in 

between (see Figure 10). The distance between two adjacent chromophores equals their 

Förster radius 0R . The AF430 chromophore functions as an optical antenna and can be 

excited by a pulsed laser source, and the AF594 chromophores function as mediators 

that propagate excitons downwards, and the AF750 chromophore functions as an 

emitter and its time-resolved fluorescence is used as the temporal signature.  
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Figure 10: The excitation and emission spectra of AF430, AF594 and AF750. 

 

Figure 11: The wire geometry of the six RET networks. The i ’th RET network 
has iN i=  AF594 chromophores between its AF430 and AF750 chromophores, and the 
distance between each adjacent chromophore pair equals their Förster radius. 

In each RET network, RET transfer can occur between both adjacent and non-

adjacent chromophores. Because an exciton may decay from any chromophore in a RET 

network, the end-to-end transfer efficiency from AF430 to AF750 varies as a function of 

the length of the chromophore wire and its pairwise transfer efficiencies. By building the 

CTMC model for each RET network, its temporal signature can be simulated by deriving 

the conditional PDF of the TTF from its AF750 chromophore (see Figure 12). 
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Figure 12: The temporal signatures of the six RET networks, i.e., the 
conditional PDF of the time to fluorescence from the chromophore AF750 in each of 
the six RET networks. The index of each RET network equals the number of 
mediators (AF594’s) it contains. 

As shown in Figure 12, the mean time to fluorescence from the AF750 

chromophore increases with the number of mediators, which can be intuitively 

explained by a longer time an average exciton takes to reach the AF750 in a longer 

chromophore wire. Additionally, because each RET transfer incurs a convolution with 

an exponential distribution, the distribution of the time to reach the AF750 becomes less 

concentrated in a longer wire and resembles a hypoexponential distribution with more 

exponential stages. It should be noted that they are not exactly hypoexponential 

distributions due to the nonzero back transfer rates. The difference between two 

temporal signatures determines the difficulty of discriminating them, and can be 

quantified as the Kullback–Leibler (KL) divergence between two phase-type 

distributions. For the six temporal signatures in Figure 12, their pairwise KL divergences 

are shown in Table 1. Given a detection resolution and signal strength, the difference 
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between any two signatures should exceed a threshold to maintain a low 

misidentification probability, which will be further discussed in the next section. 

Table 1: The pairwise KL Divergences of the six temporal signatures in Figure 
12. 

 1 2 3 4 5 6 
1 0 0.2649 0.8117 1.4734 2.1374 2.7151 
2 0.2725 0 0.1439 0.4851 0.9303 1.4033 
3 0.8045 0.1361 0 0.0974 0.3417 0.6719 
4 1.4351 0.4385 0.0922 0 0.0728 0.2600 
5 2.1124 0.8240 0.3117 0.0698 0 0.0572 
6 2.8115 1.2529 0.6046 0.2428 0.0555 0 

 

Meanwhile, the conversion probability of a fluorescent taggant is another metric 

of interest in practical applications, which is the probability of the taggant emitting a 

fluorescence photon after excitation and proportionally affects its fluorescence intensity. 

For each of the six designed RET networks, the conversion probability is the probability 

of an exciton fluorescing from its emitter AF750 after entering the network from its 

antenna AF430, and, in CTMC, corresponds to the absorption probability of the 

absorbing state for the emitter fluorescence ( )( )_ _A ef A efP Prob X S= ∞ = . The conversion 

probabilities of the six chromophore wires from short to long are respectively 0.0301, 

0.0127, 0.0051, 0.0021, 0.0008, and 0.0003, the decrease of which indicates a higher 

probability of an exciton decaying in the middle of a longer chromophore wire. While 

chromophores can be placed closer in RET networks to increase their conversion 
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probabilities, the divergence between their temporal signatures may decrease and make 

taggant identification more challenging, which poses a tradeoff in the design process. 

Nevertheless, if uniform fluorescence intensity is required from all taggants, parameters 

such as the concentration of each fabricated RET network ensemble can be increased to 

compensate for their different conversion probabilities.  

4.2 Detection method 

To identify fluorescent taggants with spectrally coded signatures, their 

absorption or emission spectra need to be fully or partially characterized and analyzed 

using statistical methods such as principal component analysis (PCA) and cluster 

analysis [68-71]. Therefore, a spectrometer or spectral filters are required to select 

different wavelengths for each detection procedure. Moreover, a time-gated 

measurement is often necessary to minimize the effect of background emission and 

other noise sources [68, 72]. 

In contrast, a time-resolved photon detection system with a single pair of 

interrogation and detection wavelengths facilitates the detection of all taggants when 

their fluorescent signatures are encoded in the time domain. The process of single 

photon arrivals in TCSPC is captured in a multinomial distribution model and the 

taggant identification method is based on Maximum Likelihood Estimation which yields 

a misclassification probability that exponentially decreases with the number of detected 

photons. The number of required photons to guarantee a high identification accuracy 
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can be as low as a few hundred, which is orders of magnitude lower than in spectrally-

coded approaches. Further, the identification of a mixture of taggants, in multiplex 

detection, can also be formulated in MLE and reliably resolved by the Expectation 

Maximization (EM) algorithm [73]. 

4.2.1 Detection system 

A prototype detection system for the temporally coded fluorescent taggants is 

built (see Figure 13). Powered by a pulsed laser diode driver, a laser diode emits 

ultrashort pulses to interrogate the RET network based fluorescent taggant in a sample 

cuvette. A spectral filter can be inserted between the laser diode and the sample cuvette 

if the laser spectrum needs to be attenuated. The fluorescence of the taggants are focused 

onto the aperture of a single-photon avalanche diode (SPAD), and a spectral filter is 

placed before the SPAD to only pass the wavelength region where temporal signatures 

are encoded. With a timing resolution as high as ~40ps, the photon detection signal of 

the SPAD is fed into a Time-Correlated Single Photon Counting (TCSPC) module [74]. 

This time-resolved photon counting module records the detection times of individual 

photons relative to the SYNC signal with a timing resolution as high as several 

picoseconds and reconstructs the time-resolved histogram of photon counts. The TCSPC 

measurements of fluorescent taggants are usually performed in a laboratory where steps 

are taken to minimize the background noise. Portable TCSPC systems have recently 

been built and in situ detection has been demonstrated [75, 76]. When a lower timing 
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resolution is sufficient for distinguishing temporal signatures, a high-speed gated ICCD 

camera may be used instead of a TCSPC. 

 

Figure 13: A prototype detection system for the fluorescent taggants with 
temporally coded signatures in a lab demo. 

4.2.2 Taggant identification based on Maximum Likelihood Estimation 
(MLE) 

Because RET networks are entropy sources with different temporal probability 

distributions and the photon detection times are the random numbers generated from 

one of these distributions, the process of taggant identification is to estimate the 

unknown generating distribution behind these observed random numbers. The process 

of single photon counting is captured by a multinomial distribution in TCSPC; thus MLE 

can be applied to reliably and conveniently identify a taggant. In the special case of 

single exponential decays, the methods of estimating fluorescence lifetime have been 

extensively investigated, and MLE is the most statistically efficient estimator and 

asymptotically achieves the Cramér–Rao lower bound (CRLB), which is the theoretical 
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limit of the variance of any unbiased estimator [77, 78]. Only a few hundred photons are 

needed to yield an estimate of lifetime with 10% relative error when the background 

photon count is negligible, and the required number of photons only slightly increases 

in the presence of 20% background fluorescence [78]. Additionally, the Kullback-Leibler 

minimum discrimination information has been successfully used to classify a measured 

signal among a set of lifetimes in low light conditions [79, 80]. Equivalent to MLE in a 

finite regime, this method has the lowest misclassification probability.  

Beyond single exponential decays, the Kullback-Leibler minimum discrimination 

information can also be used to locate the temporal taggant signature that best matches a 

measured signal because this classification method only requires the multinomial 

distribution model of photon detections. Assuming a taggant library contains S  

taggants, the temporal signature of each taggant is represented by the probability 

density function (PDF) of a temporal probability distribution ( )( )  1, ,if t i S= … . The 

detection system has a finite measurement window T, which is equally divided into k  

channels of width T∆ . For taggant i , the probability of a photon being detected in 

channel j  is ( )jp i  in the absence of background photons (Eq. (9)).  
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If N  photons are detected from taggant i , their distribution over the k  channels 

follows a multinomial distribution (Eq. (10)), where 1, , kn n n  = …  is the number of 

photons in each channel and 
1

k
jj

n N
=

=∑ . Given sufficient measurement window T and 

number of channels k , each type of taggant has a unique pattern of distributing 

photons, which is a multinomial distribution parameterized by 
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Within this context, the task of taggant identification becomes to classify the 

measured signal, i.e., 1, , kn n n  = … , among the S  patterns. The Kullback-Leibler 

minimum discrimination information is calculated between the measurement and each 

pattern (Eq. (11)). With the calculated minimum discrimination information for all S  

patterns, the detected taggant is expected to be the one that yields the lowest value of 

*I . 
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When classifying a measured fluorescence signal using the Kullback-Leibler 

minimum discrimination information, the probability of misclassification has been 
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theoretically derived and experimentally verified for dyes with single exponential 

decays [80]. Because the results are based upon the multinomial distribution model, they 

are applicable to general temporal signatures. The probability of incorrectly classifying a 

detected taggant of type i  as type 'i  ( ( )|P i i′ ) can be expressed using the Gaussian error 

function by approximating ( ) ( )* *
'i iI I i I i∆ −′=  as a normal distribution (Eq. (12)). This 

misclassification probability decreases exponentially with the signal strength N . 

  ( ) '
'

1 1| erf
2 2 2 i i

i i

NP i i e
v

 
  
 

′ = −
 

(12)a 

 ( ) ( )
( )'

1 '

k
j

ji i
jj

p i
e p i ln

p i=

 
 
 
 

= ⋅∑  (12)b 

 ( ) ( )
( )

2
2

' '
1 '

k
j

ji i i i
jj

p i
v p i ln e

p i=

             

= ⋅ −∑  (12)c 

When more than two taggants exist in the taggant library ( 2S > ), the error 

probability of misclassifying taggant i  is 
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Consider the six temporal signatures in Figure 11 and a measurement window 

50T ns=  with 256k =  equally divided channels. The error probability of misclassifying 

each taggant predicted by Eq. (13) is plotted in Figure 14. Taggants 5 and 6 have higher 

misclassification probabilities than the others due to the shorter KL divergence between 

their temporal signatures. Nevertheless, the misclassification probability of each taggant 
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decreases exponentially with the number of detected photons, and only 500 photons are 

needed to reach the accuracy of at most 1 error in 10,000 classifications for all taggants.  

 

Figure 14: The error probability of incorrectly classifying each taggant among 
the six fluorescent taggants in Figure 11. 

If the taggant detection is carried out in a low-light environment and the 

background emission is filtered out by the spectral filter before the SPAD, it is 

reasonable to neglect background photons because of the extremely low dark count rate 

(~2Hz) of modern SPAD’s  [74]. However, when they are not negligible, the background 

photons can be modeled as a uniform distribution over the k  channels in the 

measurement window [78]. For taggant i , the probability of detecting a photon in 

channel j  in the presence of background photons is now 

  ( ) ( ) ( )( )' 1   1, , ,j j
bp i b p i j k
k

= + − = …
 

(14) 

where ( )jp i  is the probability of a fluorescence photon being detected in channel j  in a 

background-free environment (Eq. (9)) and b  is the portion of photons due to the 

background noise. When the modified patterns of detecting photons ( ( )' jp i ) of the six 
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taggants are used for taggant identification in a background noise of b , the number of 

photons required for the same identification accuracy of 1 error in 10,000 classifications 

increases with b (see Figure 15). The increase remains trivial when 30%b < , and fewer 

than 1,000 photons are needed in this region. Aside from this theoretical analysis of the 

effect of noise on the identification accuracy, a practical approach to incorporating noise 

and other non-ideal aspects (e.g., the instrument response function of the detection 

system) is to accurately measure the pattern ( ) jp i of each taggant in a similar or 

identical environment prior to taggant detections and use the measured patterns as the 

reference for classification. 

 

Figure 15: The required number of photons increases with the percentage of 
background noise ( b ) to keep the misclassification probability of the six fluorescent 
taggants below 0.0001.   

4.2.3 Multiplex detection 

Multiple taggants sometimes exist as a mixture, and it is often desired to 

recognize each constituent taggant. Least squares based methods are commonly used to 

resolve a mixture of fluorescent taggants with spectrally coded signatures in multiplex 
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detection [81-83]. However, they often require an even finer spectral characterization 

due to the assumed Gaussian noise model and produce ambiguous results as the 

number of taggants or their spectral overlap increases.  

In contrast, a mixture of temporally coded signatures can be more reliably and 

conveniently resolved using the statistical methods for mixture models such as the EM 

algorithm. Assume N  photons have been detected from a sample and their distribution 

over the k  channels is 1, , kn n n  = … . Given the prior knowledge that the sample is a 

mixture of two taggants from the six taggants in Figure 10, their identities ( 1Tag  and 

2Tag ) and fractions ( p  and 1 p− ) constitute a mixture model behind the measured time-

resolved signal. The photon distribution given this mixture model follows a multinomial 

distribution: 

  ( )( ) 1' '
11 2

1

!| 1
! !

;k
k

nn

k

NP n p Tag p Tag
n

p p
n

⋅ + − ⋅ = ∗…∗
…

 (15)a 

 ( ) ( ) ( )( )'
1 21   1, , ,j j jp p p Tag p p Tag j k= ⋅ + − ⋅ = …

 
(15)b 

where ( )( )  1, ,jp Tag j k= …  is the probability of detecting a photon in each time bin given 

a specific taggant (Eq. (9)). The parameters of this mixture model can be estimated 

through maximizing the likelihood of observing the measured signal, i.e., 

( ) ( ) ( )11 2log 1j jj j
k

n p p Tag p p Tag
=

 
 ⋅ + − ⋅⋅∑ . However, this likelihood is not convenient 

to directly optimize due to the sum inside the logarithm. Instead, the EM algorithm 

dynamically calculates the probabilities of a detected photon being from the two 
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taggants, i.e., ,1jT  and ( ),2 1, ,jT j k= … , and optimizes the target likelihood through 

iteratively evaluating and maximizing the expected log-likelihood 

( ) ( ) ( ){ },1 1 ,2 21
  log   log 1j j jj j

k

j
n T p p Tag T p p Tag

=
   
   ⋅ + − ⋅∑ . As a result, the parameters can 

be separately updated in each iteration until the target likelihood reaches its maximum, 

which is outlined as follows. 

1. 21 1; 6; 0.5.Tag Tag p= = =     // starting point of the three variables 
2.  

2.1 E-step: 
With the current estimates of 1 2, Tag Tag , and p , calculate ,1jT  and ( ),2   1, ,jT j k= … : 

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1 2
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j j
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2.2 M-step: 
With the latest values of ,1jT  and ( ),2   1, ,jT j k= … , update 1Tag , 2Tag  and p : 

,1
1

/ ;
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j j
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k
j jjjTag

Tag arg max n T p Tag
=

= ∑  
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,212 2  log .
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Tag arg max n T p Tag

=
= ∑  

2.3 if termination condition is met: 
break 

else: 
 go back to 2.1 

3. end 

After the three parameters are initialized with a starting point, the algorithm 

enters the iterations of Expectation and Maximization steps. Each iteration consists of an 

Expectation step and a Maximization step. The Expectation step calculates the 

probabilities of a detected photon being from the two taggants, i.e., ,1jT  and 
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( ),2   1, ,jT j k= … , based on the current estimates of the identities and fractions of the two 

taggants.  With the current values of ,1jT  and ,2jT  as the weights of each detected 

photon related to the two taggants, the Maximization step updates the fractions of the 

two taggants and their identities by respectively maximizing the weighted likelihood of 

observing the photon detection times for each taggant. The iterative process reaches an 

end when a termination condition is met. For example, the target likelihood can be 

evaluated at the end of each iteration, and when the change of this value between 

adjacent iterations falls below a threshold, it can be concluded that the target likelihood 

has been maximized. Because, dependent on its starting point, the EM algorithm may 

converge to a local maximum, it may be necessary to run the EM algorithm with 

different starting points to improve the chance of locating the maximum likelihood and 

the correct values of the three parameters. 

Because this approach to multiplex detection is still based on the multinomial 

distribution model and MLE, it is the most statistically efficient. Further, a model 

selection criterion such as Bayesian Information Criterion (BIC) can be used to estimate 

the number of existing taggants in a mixture if this information is absent prior to a 

detection. However, it is noteworthy that a higher number of photons is often necessary 

in multiplex detection because more parameters are to be estimated in the mixture 

model. 
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4.3 Lidar integration 

Lidar is a remote sensing technology that identifies objects of interest and 

measures distance by illuminating a target with a laser and analyzes the reflected light, 

which has wide applications in archaeology, forestry, atmospheric physics, anti-

poaching, etc. Because the fluorescence emitted by a target is often used to determine the 

presence of the target and its distance, natural or artificial fluorescent materials become 

common targets in Lidar applications [68-72, 84]. However, these fluorescence Lidar 

applications usually use the spectral characteristics of the fluorescent materials by 

measuring the intensity of the reflected light within one or multiple wavelength bands, 

which has limited the ability to tag different objects and resolve them in multiplex 

detection. 

With the unique advantages of a RET network based fluorescent taggant with 

temporal signatures, a large number of different objects can be conveniently coded in the 

same wavelength region with a small set of chromophores. The single channel of 

interrogation and detection wavelengths will make the detection procedure highly 

efficient, and the superior reliability of target identification under low light conditions 

will potentially increase the detection range. 

While the fluorescence being detected in fluorescence Lidar applications is often 

in the wavelength range between 350nm and 710nm which overlaps the solar spectrum, 

its spectral and temporal characteristics can still be accurately measured by taking 

https://en.wikipedia.org/wiki/Atmospheric_physics
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measures to reduce the background signal such as using optical filters and time-gating 

techniques. Modern ICCD cameras are highly sensitive cameras that have single photon 

detection capability and high speed time-gating (min. gate width ~5ns) capability with a 

resolution of ~40ps. Many modern fluorescence Lidar systems use ICCD cameras and 

have high-resolution temporal measurement capability, and they can operate in full 

daylight [85-87]. These implementations are compatible with the temporally coded 

fluorescent taggants if their timing resolution is sufficient to resolve the temporal 

signatures. Combined with the high-speed time-gating technique, TCSPC can 

potentially further improve the timing resolution when it becomes necessary for taggant 

discrimination. 

There are additional aspects to take into account when designing a fluorescent 

taggant for Lidar applications, which are partially considered in the previous work [72] 

that fabricated fluorescent taggants using nanocrystals and demonstrated their far-field 

(~3km) detection capability. For example, the laser source in common fluorescence Lidar 

applications often has a UV wavelength around 350nm due to the higher eye-safe power 

density in this region, and commercially available dyes suitable for this excitation 

wavelength should be considered as the source chromophore such as ATTO 390 and 

Alexa Fluor 350. In addition, the mediator and the emitter should have low absorptivity 

so that their direct excitation is reduced and their excitation mostly comes from the 

source chromophore through RET transfer. 
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4.4 Summary 

As an entropy source that can be programmed to generate random samples from 

different distributions, RET networks are used to make fluorescent taggants with 

temporally coded signatures. Compared with spectrally or lifetime coded fluorescent 

taggants, these temporally coded fluorescent taggants have a significantly larger coding 

capacity and flexibility in taggant design. Meanwhile, the taggant detection and 

identification process becomes highly efficient and reliable even with only a few 

hundred photons under low light conditions, and can also resolve a mixture of taggants 

in multiplex detection. These unique properties make the temporally coded fluorescent 

taggants a superior candidate for both in situ and Lidar applications. 

While this application mainly leverages the flexible programmability of the 

probability distributions of RET networks to create a large taggant library, the next 

application will demonstrate how the efficient random number generation of RET 

networks can be used to accelerate probabilistic algorithms.
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5. Application in Stochastic Computing 
Statistical methods, machine learning in particular, are increasingly used to 

address important problems including, but not limited to: computer vision, robot/drone 

control, data mining, global health, computational biology, and economics. Many 

approaches in statistics and machine learning utilize probabilistic algorithms that 

generate samples from parameterized probability distributions. Probabilistic algorithms 

are the only viable approach to the exact solution of many classes of important problems 

(e.g., high-dimensional inference, rare event simulation). Meanwhile, they are more 

suitable than deterministic algorithms for general applications when the goal is to seek 

the most probable outcome rather than its accurate probability [88], and offer the 

potential to create generalized frameworks with close ties to reality [89]. 

Despite the theoretical advances in statistics and probabilistic machine learning, 

the fundamental mismatch persists between the deterministic hardware that traditional 

computers use and the stochastic nature of probabilistic algorithms. Modern computers 

largely take a deterministic approach to computation and are designed with 

deterministic algorithms and transistor functionality in mind. Recent challenges in 

CMOS scaling reveal practical limits on performance as lithographic features continue to 

shrink.  

Within this context, the challenge we propose is to develop new hardware that 

directly supports a wide variety of probabilistic algorithms [26]. Based on the 
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observation that novel probabilistic functional units can be created using RET networks 

to approximate arbitrary probabilistic behavior and generate random samples from 

general distributions [18], this dissertation takes the first steps toward meeting this 

challenge by exploiting the physical properties of the molecular-scale photonic device.  

To meet the above challenge, we introduce the concept of a RET-based Sampling 

Unit (RSU), a hybrid CMOS/RET functional unit that generates samples from 

parameterized distributions. An RSU specializes the calculation of distribution 

parameters in CMOS and uses RET to generate samples from a parameterized 

distribution in only a few nanoseconds. There are a variety of distributions that could be 

implemented by an RSU; however, in this work we focus on an RSU that implements a 

distribution for use in a particular class of Bayesian Inference problems. 

Bayesian Inference is an important, generalized framework that estimates a 

hypothesis (i.e., values for random variables) using a combination of new evidence 

(observations) and prior knowledge. Markov Chain Monte Carlo (MCMC) sampling is a 

theoretically important and powerful technique for solving the inference problem that 

iteratively and strategically samples the random variables and ultimately converges to 

an exact result. However, MCMC becomes inefficient for many inference problems in 

practice, especially those with high dimensionality (many random variables) and 

complex structure. MCMC can require many iterations to converge to a solution and the 

inner loop incurs the overhead of sample generation from prescribed distributions. 
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Although deterministic inference algorithms can be faster than MCMC, they sacrifice 

accuracy (e.g., by approximation) and require more complex mathematical derivation. 

Similarly, problem specific non-Bayesian algorithms forego the benefit of a generalized 

framework and require reformulation for each problem. 

Markov Random Field (MRF) Bayesian Inference can be used for a broad class of 

applications, including image processing (e.g., image segmentation, motion estimation, 

stereo vision, texture modeling), associative memory, etc. The overall goal is often to 

determine the most likely value for each random variable given the observed data (i.e., 

marginal MAP estimates). Given a specified MRF model, this is achieved in MCMC by 

iteratively sampling the random variables according to the conditional dependencies 

and then identifying the mode of the generated samples.  

To accelerate MRF inference using MCMC, we introduce RSU-G, a Gibbs 

Sampling unit based on the ‘first-to-fire’ exponential sampling units described in Section 

3.3.2.3. Our specific RSU-G unit supports first-order MRFs with a smoothness-based 

prior, which includes many image processing applications (e.g., image segmentation, 

motion estimation, stereo vision). A survey of possible applications is provided 

elsewhere [90].  

The proposed molecular-scale optical Gibbs sampling unit (RSU-G) can be 

integrated into a processor / GPU as specialized functional units or organized as a 

discrete accelerator. Emulation-based evaluation of two computer vision applications for 
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HD images reveal that an RSU augmented GPU provides speedups over a GPU of 3 and 

16. Analytic evaluation shows a discrete accelerator that is limited by 336 GB/s DRAM 

produces speedups of 21 and 54 versus the GPU implementations. The novel optical 

components of RSU-G units consume very little power (0.16 mW) and area (0.0016 mm2). 

Synthesizing the CMOS portions of RSU-G in 15nm reveals power of 3.75 mW and area 

of 0.0013 mm2 for a total RSU-G power of 3.91 mW and area of 0.0029 mm2. 

5.1 Sampling and probabilistic computing 

The increasing use of machine learning and probabilistic algorithms in data 

analytics presents new challenges and opportunities for the design of computing 

systems. This section provides a brief overview of probabilistic algorithms, their 

challenge in practice due to sampling overhead, a potential solution based on RET 

circuits, and presents related work. 

5.1.1 Probabilistic algorithms 

Recent theoretical advances in statistics and probabilistic machine learning 

demonstrate that many application domains can benefit from probabilistic algorithms in 

terms of simplicity and performance [91, 92]. Example problems include, but are not 

limited to, statistical inference, rare event simulation, stochastic neural networks (e.g., 

Boltzmann machines), probabilistic cellular automata and hyper-encryption.  

Most probabilistic computations rely on sampling from application-specific 

distributions. For example, Bayesian Inference solvers often iteratively sample from 



 

75 

common distributions such as gamma distribution and normal distribution, while rare 

event simulations may require many samples from a heavy-tailed distribution to obtain 

statistically significant results. The number of samples generated in these applications 

can be large; many thousands of samples per random variable with thousands of 

random variables. 

The importance of sampling from various distributions led to the C++11 standard 

library including implementations for 20 different distributions. Although this greatly 

simplifies program development, it does not address the inherent mismatch between 

conventional digital computers and probabilistic algorithms. In particular, sampling 

requires control over a parameterizable source of entropy used for random selection. 

Therefore, generating a sample includes two critical steps: 1) parameterizing a 

distribution and 2) sampling from the distribution. 

Consider Bayesian Inference, an important inference framework that combines 

new evidence and prior beliefs to update the probability estimate for a hypothesis. 

Consider D  as the observed data and X  as the latent random variable. ( )p X  is the prior 

distribution of X , and ( )p D|X  is the probability of observing D  given a certain value of 

X . In Bayesian Inference, the goal is to retrieve the posterior distribution ( )p X|D  of the 

random variable X  when D  is observed. As the dimension of n1X X , ,X  = …   

increases, it often becomes difficult or intractable to numerically derive the exact 

posterior distribution ( )p X|D . One approach to solve these inference problems uses 



 

76 

probabilistic Markov Chain Monte Carlo (MCMC) methods that converge to an exact 

solution by iteratively generating samples for random variables. Obtaining each sample 

incurs at least the overhead of computing the distribution parameters and sampling 

from the distribution. 

5.1.2 Sampling overhead 

Parameterizing a distribution is application dependent and requires computing 

specific values for a given distribution. For example, computing the decay rate for an 

exponential, the mean and variance for a normal, etc. For a class of Bayesian Inference 

problems that we study this may include computing a sum of distance values and can 

take at least 100 cycles to compute on an Intel E5-2640 processor (compiled with gcc –

O3), and could be much higher. Other probabilistic algorithms may have different 

computations with varying complexity.  Nonetheless, the time required to parameterize 

a distribution is an important source of overhead in probabilistic algorithms. 

The second component for sampling is to generate the sample from the 

parameterized distribution. Devroye [93] provides a comprehensive overview of 

techniques for computationally generating samples from various distributions. Samples 

from general continuous or discrete distributions can be generated using algorithms 

such as inverse transform sampling and rejection sampling. Unfortunately, it can take 

hundreds of cycles to generate a sample with these approaches, and more complex 

multivariate sampling can take over 10,000 cycles. Table 2 shows how many cycles it 
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takes to generate a sample for a few distributions using the C++11 library [94]. We obtain 

cycle counts on an Intel E5-2640 using the Intel Performance Counter Monitor and 

present the average of 10,000 samples (-O3 optimization). 

Table 2: Cycles to sample from different distributions. 

Distribution Type Cycles (average) 
Exponential  588 
Normal 633 
Gamma 800 

 

The overheads of calculating distribution parameters and sampling from the 

distribution are critically important to many probabilistic algorithms since they incur 

both overheads in their inner loop. Furthermore, multiple applications often use the 

same distribution and share the computation to parameterize the distribution. Therefore, 

accelerating sampling can have a significant impact on overall execution time. 

5.1.3 RET Circuit 

Nanoscale physical samplers can be built using RET networks to efficiently and 

directly generate samples from general distributions. As described in Chapter 3, RET 

networks can approximate virtually arbitrary probabilistic behavior since they can 

implement sampling from phase-type distributions, and the probabilistic behavior of a 

RET network is determined by its physical geometry. Typically, a given RET network 

corresponds to a specific distribution. Sampling from the distribution occurs by 
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illuminating the RET network and detecting output fluorescence photons as a function 

of time (within a few nanoseconds).  

Therefore, RET networks are integrated with an on-chip light source, e.g., 

quantum-dot LEDs (QD-LEDs), waveguide, and single photon avalanche detector 

(SPAD) to create a RET circuit (Figure 16). Each RET circuit can contain an ensemble of 

RET networks. A fully specified RET network can be conveniently and economically 

fabricated with sub-nanometer precision using hierarchical DNA self-assembly [31, 32]. 

RET circuits can be integrated with hybrid electro-optical CMOS using back end of line 

processing [95, 96]. Because samples are directly generated from the distribution of a 

RET network through single photon detection, the sample generation process only takes 

a few nanoseconds for any distribution. The RET-based sampler may also reduce power 

consumption since the samples are generated in the form of single fluorescent photons. 

 

Figure 16: A RET circuit. 

Chapter 3 outlined different implementations of continuous and discrete 

samplers. In this dissertation, we focus on discrete samplers for Markov Chain Monte 
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Carlo (MCMC) solvers for Markov Random Field (MRF) Bayesian Inference that utilize 

RET-based exponential samplers (Section 3.3.2.3).  

To accelerate probabilistic algorithms by reducing its sampling overhead, we 

create RET-based Sampling Units (RSU), which are probabilistic functional units that use 

CMOS specialization to accelerate distribution parameterization and RET circuits to 

accelerate obtaining a sample from the parameterized distribution. Section 5.2 provides 

an overview of a generic RSU, and Sections 5.3 and 5.4 describe the details of a specific 

RET-based Gibbs Sampling Unit (RSU-G) to accelerate MRF inference using MCMC, and 

Section 5.5 discusses the processor architectures for using these units and their 

evaluation. The remainder of this section briefly discusses alternative approaches. 

5.1.4 Alternative approaches and related work 

Reducing or avoiding the overhead of sampling can be achieved by using 

deterministic algorithms or by introducing hardware specialization. One approach to 

avoid the overhead of sampling is to use alternative discrete algorithms. For example, an 

alternative to MCMC is deterministic approximate inference methods such as 

Expectation Propagation (EP) and Variational Bayesian (VB). Although often more 

efficient in practice, these methods require more complex mathematical derivation and 

arbitrary assumptions that create divergence from the exact solution [92, 97, 98], 

whereas only sampling algorithms are guaranteed to ultimately converge to the exact 



 

80 

solution of inference problems [99]. Domain scientists generally prefer the less complex 

mathematically, but more accurate pure solution if possible. 

Another approach to accelerate sampling, and the one we advocate in this work, 

is through specialization that incorporates novel devices. A Stochastic Transition Circuit 

and an FPGA implementation was proposed to efficiently update random variables 

given the graphical model of an inference problem [63, 88]. Abstractly, our units are an 

instance of a Stochastic Transition Circuit; however, our approach differs in that we 

exploit the physical properties of RET and can implement complex distributions that 

would be difficult in CMOS. 

Similar to an RSU, other techniques propose using a physical process as a natural 

source of entropy to create samplers. The common physical processes used for this fall 

into four categories: noise, free running oscillator, chaos and quantum phenomena [48]. 

With a quantum-mechanical origin [50], RET provides true randomness and arbitrary 

sampling distributions. While previous works on RET between quantum dots support 

certain probabilistic computing applications [100, 101], RSUs are more general and can 

be used across a broad set of applications. Although often used in CMOS to generate 

random bits, thermal noise cannot provide provable randomness and requires complex 

post-processing to make the output appear more random. Further, its implementation is 

either difficult to parameterize or does not support arbitrary distributions, thus limits 

reuse across applications. 
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The Intel Digital Random Number Generator (DRNG) uses a thermal noise-

based entropy source and includes two stages of post-processing: an AES-based entropy 

conditioner and a Pseudo Random Number Generator (PRNG) [102]. Based on our 

synthesis of the 256-bit AES conditioner at 45nm technology [103], this stage alone is 

comparable to the RSU-G1 unit proposed later in terms of area, power consumption, and 

throughput. The full DRNG requires more area and power. 

Probabilistic CMOS (PCMOS) can implement discrete samplers by using thermal 

noise in electronic circuits to make probabilistic switches with a set of tunable 

parameters [104, 105]. Unfortunately, this requires amplifying the noise to a specific 

magnitude, and can be energy and area inefficient. The exact noise level of each 

probabilistic switch relies on the probabilities of all values and requires normalization. 

Furthermore, PCMOS switches essentially implement Bernoulli random variables, and 

cannot be flexibly organized to generate samples from general distributions. 

Other recent work explores augmenting processors with specialized Neural 

Processing Units (NPU) [106, 107] to achieve speedup and power savings using analog 

circuits, but focuses specifically on using neural networks to approximate deterministic 

functions. 

RSUs can implement a broad class of distributions, can be easily parameterized 

dynamically by changing RET circuit inputs (e.g., QD-LED intensity values), and 

eliminate normalization for some cases by using relative ratios of distribution 
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parameters (e.g., exponential decay rates). RSUs provide an efficient hardware platform 

for probabilistic programming languages [88, 108] by providing native probabilistic 

support. Exploring language support for RSUs is an interesting future direction, but first 

we must develop specific units and provide an architecture for probabilistic computing. 

5.2 RET-based Sampling Unit (RSU) 

To provide an efficient hardware platform for probabilistic algorithms, we 

introduce the concept of a RET-based Sampling Unit (RSU), a hybrid CMOS/RET 

functional unit that generates samples from parameterized distributions. An RSU 

specializes the calculation of distribution parameters in CMOS and uses RET circuits to 

generate samples from a parameterized distribution in only a few nanoseconds.  

  Map application values -> RET Inputs
  (Parameterize Distribution)

CMOS

  Generate samples from parameterized distribution
RETCircuit

  Map RET samples -> application values
CMOS

RSU

Inputs
unsigned int

Outputs
unsigned int  

Figure 17: Generic RSU block diagram. 

A generic RSU is a hybrid of CMOS and RET technology, and its inputs and 

outputs are unsigned integers that correspond to values of interest to the application. A 
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block diagram of an RSU is shown in Figure 17. An RSU performs a series of three 

operations: 1) map application values to RET inputs, 2) generate samples, 3) map RET 

output to application value.  Steps 1 and 3 are implemented using conventional CMOS 

specialization, whereas Step 2 is a RET circuit that exploits the probabilistic behavior of 

RET networks. Step 1 is where distribution parameterization occurs, and involves 

converting application values into RET circuit inputs (e.g., QD-LED intensity values). 

Step 2 samples from the parameterized distribution using one or more RET circuits, and 

Step 3 converts the RET circuit output value back to an application data type for the 

sample.  

RSUs can be designed for a variety of probabilistic algorithms, and exploring the 

large design space requires many man hours. In this work we explore a small region of 

the overall design space by focusing on an RSU designed specifically to accelerate a 

particular class of Bayesian Inference problems through MCMC, and the details of this 

RSU are discussed in Sections 5.3 and 5.4. 

5.3 RET-based Gibbs Sampling Unit (RSU-G) 

This section presents an RSU designed specifically for the MCMC solver for 

Markov Random Field inference problems. We first summarize Markov Random Fields 

and MCMC approaches to Bayesian Inference, and then present our RSU designed to 

accelerate this broad class of applications. 
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5.3.1 Markov Random Fields 

A Markov Random Field (MRF) is a type of graphical model used in Bayesian 

Inference. An MRF is a set of random variables that satisfies the Markov properties 

described by an undirected graph [109]. MRFs are suitable for many interesting and 

important applications such as low-level computer vision and associative memory [90, 

109, 110]. In this thesis, we focus on first-order MRFs with smoothness-based priors, 

homogeneity and isotropy (i.e., position and orientation independence), with discrete 

random variables. Extending our work to other types of MRFs is future work. 

 

Figure 18: A first-order MRF. 

Figure 18 shows an example first-order MRF where each random variable has 

four neighbors and is conditionally independent of all non-adjacent random variables 

when conditioned on the four neighbors. More specifically, the full conditional 

probability of each random variable i, jX   is the exponential of the sum of five clique 

potential energies (with normalization):  
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(16) 
 

i, jX  is a random variable that can take on M  possible values, or more commonly 

called labels in this context. ( )S i, jEc X ,  D  is the singleton clique potential energy that 

relates i, jX  to the observed data D , and ( )D i, j i', j'Ec X ,X  is the doubleton clique potential 

energy that relates i, jX  to a neighboring random variable. T  is a fixed constant. 

5.3.2 MCMC and Gibbs sampling 

For many problems, directly solving the equations above can be computationally 

expensive. Therefore, MCMC methods are often employed. Among the algorithms for 

generating MCMC samples, Gibbs sampling and Metropolis sampling are the most 

commonly used [92], and for our applications Gibbs sampling is applicable and used. 

Gibbs sampling generates a new sample of a random variable ( i, jX ) directly from 

its full conditional distribution when conditioned on the current labels of the other 

random variables. In a first-order MRF, this is achieved by calculating the probability for 

each of the M  possible labels a random variable can take on using Eq. (16) and 

randomly selecting a label according to the discrete distribution. 

Each MCMC iteration updates all random variables once to obtain one MCMC 

sample. The number of operations per iteration linearly depends on the number of 

possible labels for each random variable and the number of random variables. However, 
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different labels can be evaluated simultaneously and random variables that are 

conditionally independent can be updated concurrently, exposing significant parallelism 

for some problems. Specifically, the first-order MRF in Figure 18 allows all the gray 

random variables to be updated simultaneously. Similarly, all the white random 

variables can be updated simultaneously. 

5.3.3 RSU-G design 

As described in Section 3.3.2.3, a discrete sampler with M  outcomes can be 

constructed using M  exponential samplers parameterized by the probabilities of taking 

each outcome. Generating one new sample for i, jX  requires M  different samples, each 

from uniquely parameterized exponential distributions. We exploit this observation to 

construct a RET-based Gibbs Sampling Unit (RSU-G1) using a single RET circuit (G1). 

In this paper we consider only MRFs with smoothness-based priors where the 

energy (i.e., logarithm of probability) of taking on a label is the sum of four doubleton 

clique pontential energies and one singleton clique potential energy [90]. Each doubleton 

clique potential energy is a measure of distance between the label being evaluated and 

the current label of a neighbor. Typically, the distance measure is defined for the label 

space and is problem specific, here we consider grayscale valued images and use a 

simple squared difference norm as the metric (Eq. (17)). The singleton clique potential 

energy is application specific; RSU-G implements it as the squared difference between 

two data values to directly support applications such as image segmentation, motion 
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estimation and stereo vision and is extendable to other applications by precomputing 

their singleton energy externally and sending into one data input. 
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(17) 

RSU-G utilizes the ‘first-to-fire’ design based on the property of competing 

exponential random variables. In this design, a RET circuit is used as an exponential 

sampler that generates exponentially distributed samples. The M  exponential samplers 

are parameterized by the energies of taking on each label. The key aspect in this design 

is parameterizing the exponential samplers, based on the neighboring random variables’ 

current labels and the singleton energy, and recording the time to fluorescence (TTF) 

from each exponential sample. The label that produces the shortest TTF is chosen as the 

label for i, jX . 

5.3.4 Limited precision 

Previous work found that 8-bit precision for energy calculations is sufficient for 

generating samples from discrete distributions with up to 1,000 outcomes [63]. Given the 

specific distance measure we use here, only 3 bits are needed for scalar values and 6 bits 

for vector values in the doubleton calculation, as described later. Although extra bits can 

increase the number of possible labels, the energies of different labels start to overlap 

resulting in equal selection probability. These close or redundant labels do not 
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necessarily improve the solution quality; however the time required to update one 

random variable increases since there are more labels to be sampled. In these cases, we 

recommend collapsing the equally likely labels into a single label before execution. 

5.4 RSU-G1 implementation 

An RSU-G implementation can take many forms. On one end of the spectrum it 

could be constructed to iterate over the M  possible labels using a single RET circuit 

(RSU-G1). On the other extreme end of the spectrum it could use M  distinct RET circuits 

to simultaneously evaluate all M  possible labels in a single step (RSU-GM). In the middle 

are designs with K  RET circuits that take M/K  steps to obtain the result (RSU-Gk). 
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Figure 19: An RSU-G1 implementation diagram. 

5.4.1 Overview 

Our preliminary RSU-G1 implementation, shown in Figure 19, evaluates one 

possible label for a random variable ( K=1 ) per step, and iterates to evaluate all M  



 

89 

labels. Given the limited label precision, we use 6-bit unsigned integers to represent 

random variable labels ( M<=64 ).  RSU-G1 is a multicycle pipelined functional unit that 

takes 7+(M-1)  cycles to obtain a random variable sample in steady state. The design can 

be easily extended to evaluate up to 64 labels (RSU-G64) in 12 cycles at the expense of 

additional area. Exploring a configurabe RSU design is part of our future work. 

 There are five main components in any RSU-G implementation: 1) label 

decrement/input, 2) energy computation, 3) energy to intensity mapping, 4) RET circuits 

(for sampling), and 5) selection. Label decrement is used to iterate over all M  possible 

labels. The energy computation performs the distance calculation to obtain the 

exponential decay rate which maps through a lookup table to a QD-LED intensity. The 

RET circuit samples the exponential distribution and the resulting TTF for the sample is 

used in the selection block to choose the lowest from all M  possible labels. 

For many applications M  is fixed and an initial down counter value can be set at 

the start of the program. To obtain a sample for a random variable i, jX , RSU-G requires 

five 6-bit inputs, one for each neighbor and its data value. Some applications need an 

additional data value that changes for each possible label. The output is a single 6-bit 

value that represents the new label for the random variable. 

5.4.2 Pipeline stages 

Here we describe each of the stages in our initial RSU-G1 pipeline 

implementation. This does not necessarily represent the most optimized design. 
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Label. The first stage sets the inputs necessary for evaluating a given possible 

value for the random variable. This includes the given value to evaluate, the current 

values of the four neighboring random variables, and the input data values. The down 

counter is initialized with the maximum possible value for the random variable ( M-1 ), 

and the other inputs are stored in registers.  We assume this initialization is overlapped 

with evaluations of previous random variables. On subsequent evaluation cycles the 

down counter is decremented to iterate over the values, and the other values (except for 

the second data value) remain unchanged until the next random variable evaluation. 

Energy Calculation. The second stage computes the clique potential energies, a 

first step in distribution parameterization. Each cycle a new energy is computed since 

the down counter changes. The 6-bit value can represent either a 2D vector or a scalar. 

For the 2D vector  x1,x2   , the 6-bit value is split into 3 bits for x1  and 3 bits for x2 . The 

distance measure is calculated separately for the two entries between two neighboring 

random variables and then summed to obtain the doubleton energy. When the value of 

the random variable is a scalar, only the first entry (3 bits) is used and the second entry 

is set to zero. We found this limited precision to be sufficient for many applications. 

Similarly, the singleton energy is a distance measure between two data inputs, a 

calculation that is application dependent, e.g., in motion estimation it can be a weighted 

squared difference between two grayscale values. We assume that any scalar weights in 

the singleton calculation are pre-factored from the input data. The 8-bit energy for a 
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possible label is calculated by summing the five clique potential energies and passed 

onto the next stage. 

Intensity Mapping. The third stage implements the second component of 

distribution paramaterization by mapping the 8-bit energy value to a corresponding 

QD-LED intensity. We use a lookup table to find the corresponding 4-bit signal that 

provides the input to a RET circuit to control the binary on/off state of its four QD-LEDs. 

The QD-LEDs are sized to provide a suitably large dynamic range of intensities to match 

the precision in relative probabilities we demonstrate with the RSU-G2 hardware 

prototype described later. 

RET Sampling. This stage activates a RET circuit to obtain a sample from the 

RET network. We simultaneously enable the QD-LEDs and the SPAD of the given RET 

circuit. The time to the first photon detection (TTF) is recorded using an 8-bit shift 

register that is clocked 8x faster than the system clock. It may take multiple system clock 

cycles before a RET circuit generates an output and can be reused for another 

evaluation. We elaborate on this later and use replicated RET circuits to sustain single 

cycle operation of the RSU-G pipeline. 

Selection. In the final stage, the selection block records the shortest TTF for each 

possible label. Each cycle the previously shortest TTF is compared against the new TTF 

and the shorter is recorded as the current best TTF (with its label). After evaluating all 
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labels (i.e., the down counter reaches zero), the best label is returned as the new sample 

of the random variable i, jX . 

5.4.3 Replicated RET circuits 

The TTF of a RET circuit is probabilistic, and for RSU-G follows an exponential 

distribution. Samples from the tail of this distribution can become arbitrarily long and 

the delay depends on the fluorescent lifetime of the chromophores in the RET networks. 

The RSU-G1 design presented here requires four 1ns cycles for the RET circuits to reach a 

quiescent state, ensuring it is safe to proceed with a new sampling operation.  

  However, the four cycle delay creates a structural hazard in the pipeline. We 

use four replicated RET circuits in RSU-G1 to overcome the hazard. This allows us to 

share the parameterization, timing and selection logic among all four replicates. We use 

a simple two-bit counter for round-robin scheduling of sampling operations across the 

four RET circuits and sustain a throughput of one label sample per cycle (requiring M  

cycles for a single random variable). 

The above design represents the smallest RSU-G1 design that produces one 

possible label evaluation per cycle. Utilizing more RET circuits can further reduce 

latency by evaluating multiple possible labels per cycle. The extreme is RSU-G64 that 

evaluates up to the maximum of 64 possible labels simultaneously by using 256 RET 

circuits. This design can sustain a throughput of one random variable sample per cycle. 

Exploring the space of RSU design is ongoing work. 
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5.5 RSU architectures 

There are many possible ways to expose an RSU to software, ranging from 

adding functional units to an existing processor to a discrete accelerator. The goal in this 

section is to present two potential architectures that utilize RSUs: 1) augmenting a GPU 

with sampling units and 2) a discrete accelerator designed to maximize memory 

bandwidth utilization, and the preliminary evaluation of these systems in terms of 

performance, power and area. 

5.5.1 Potential architectures 

The operation of the RSU-G unit can be viewed in terms of operations performed 

once: 1) per application, 2) per MCMC iteration, 3) per random variable evaluated (a 

pixel in our applications), and 4) per potential random variable label. Each RSU-G unit 

requires initializing the intensity map table and down counter (max label value) at the 

start of each application. For each random variable (pixel in our applications), RSU-G 

requires the four neighbor labels (for doubleton calculations) and its associated data 

(e.g., grayscale value for singleton calculations). Finally, for each potential label, the 

singleton calculation may also need information from a target location (pixel grayscale). 
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Figure 20: GPU augmented with RSUs. 
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Figure 21: A discrete accelerator using RSUs. 

Figure 20 shows a GPU architecture (single streaming processor) modified to 

include RSUs and Figure 21 shows a custom discrete accelerator design using RSUs. 

Augmenting a conventional CPU would be similar to the GPU design. For processor 

integration, additional instructions are required to access the RSU, the details of which 
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are discussed in our paper [111]. From a program’s perspective, an RSU is a multi-cycle, 

pipelined functional unit that takes several random variable values as input and 

produces a single random variable value as output. The values are represented as 

unsigned integers. 

An alternative to augmenting an existing processor or GPU with RSU-G units is 

to design a custom discrete accelerator. This removes the constraints placed on general-

purpose cores to support a wide variety of applications and instead allows us to focus 

on achieving the maximum performance. This design assumes that all control and data 

movement is implemented using custom logic where datapaths and register sizes can be 

specialized to match RSU-G’s. We expect this to be the highest performing approach and 

analytically investigate this upper limit on performance. 

5.5.2 Evaluation 

We use several image-processing applications (image segmentation, stereo vision 

matching, and dense motion estimation) to evaluate the RSU based systems in terms of 

performance, power and area. Our image segmentation application assigns one of five 

possible values (labels) to each pixel by grouping similar pixels based on intensity [112, 

113]. The stereo vision application similarly assigns one of 5 labels to align two images 

[114]. The dense motion estimation application searches over a 7x7 block to find the 

most likely position of a pixel in a subsequent frame (49 possible values) [115]. Although 

application specific implementations for these problems exist, our goal is to demonstrate 
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the potential of RSU-G for the general MRF-MCMC Bayesian Inference framework. We 

use a single core of an Intel E5-2640 for image segmentation and stereo vision, but focus 

primarily on using an NVIDIA GTX Titan X GPU, for image segmentation and motion 

estimation. 

5.5.2.1 Performance 

We use a combination of emulation and analytic evaluation to obtain 

performance estimates of architectures that incorporate RSU-Gs [111]. Figure 22 

illustrates the speedups for our two applications with different image sizes on a GPU 

augmented with RSUs. For image segmentation, RSU-G1 systems provide speedup of 3.2 

over the baseline GPU for images of size 320x320, and 3.0 for HD images of size 

1080x1920. Speedups over the optimized GPU implementation are 2.5 and 2.4 for small 

and HD images, respectively. For dense motion estimation, RSU-G1 systems provide 

speedup of 6.4 and 12.8 for 320x320 images and achieve 7.5 and 16.06 for HD images. 

Dense motion estimation benefits from a wider RSU-G4 design since it has more labels to 

evaluate (M=49) and achieves speedups of 23 for small images and 34 for HD images 

over the baseline GPU implementation. 
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Figure 22: RSU Speedup over GPU. 

Discrete Accelerator. Assuming DRAM bandwidth is 336GB/s, the GTX Titan X 

bandwidth, and the accelerator consumes data at DRAM bandwidth. For image 

segmentation, the accelerator achieves an additional 12.1x and 7x speedup over the RSU-

G1 augmented GPU for 320x320 and 1080x1920 (HD) images, respectively. Dense motion 

estimation achieves additional speedup of 6.5x and 3.4x for 320x320 and 1080x1920 

images, respectively. The lower speedup for HD images is because HD images saturate 

the GPU while 320x320 images don’t. Thus, for a discrete accelerator, the upper bound 

of speedups over standard MCMC on the GPU is 39 (image segmentation) and 84 (dense 

motion estimation) for 320x320 images and 21 and 54 for HD images. 
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5.5.2.2 Power & Area 

We obtain area and power estimates for our proposed RSU from a combination 

of synthesis of the Verilog circuits using the Synopsys tools, Cacti, and first principles 

for the RET components [111]. 

Power. The power for a single RSU-G1 in 15nm is 3.91mW and is dominated by 

the electrical power 3.75mW; the RET circuits consume only 0.16mW. A GPU 

augmented with RSU-G units (3072 in total) consumes 12W of additional power when 

they are all active. The accelerator with 336 units bounded by 336GB/s DRAM consumes 

only 1.3W for the RSU-G units. Additional power would be consumed for the memory 

controller and the control logic. Table 3 lists the power consumption breakdown by 

RSU-G1 component. 

Table 3: Power consumption for a single RSU-G1. 

Power(mW) 45nm (590MHz) 15nm (1GHz) 
Logic 7.20 2.33 
RET Circuit 0.16 0.16 
LUT 3.92 1.42* 
Total 11.28 3.91 
*theoretically scaling LUT from 32nm to 15nm [116]. 

 
 

Area. We estimate area of a RSU-G unit by first observing that the SPAD (~1µm2 

[117-119]) and QD-LEDs (~16*25µm2 [120, 121]) dominate the RET circuit area 

requirements. The volume of RET network ensemble (~N*20*20*2nm3) is very small and 

can reside in a layer above the SPAD. Therefore, we estimate a single RET circuit 
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requires 400µm2 and all the RET circuits in an RSU-G1 unit require 0.0016mm2. Table 4 

lists the area breakdown by RSU-G1 component. 

Table 4: Area for a single RSU-G1. 

Area(μm2) 45nm (590MHz) 15nm (1GHz) 
Logic 2275 642 
RET Circuit 1600 1600 
LUT 1798 656* 
Total 5673 2898 
*theoretically scaling LUT from 32nm to 15nm [116, 122]. 

 5.6 Summary 

Despite the theoretical advances of probabilistic algorithms, they can be 

inefficient on the deterministic hardware that traditional computers use. To develop 

new hardware that directly supports probabilistic algorithms, we introduce the concept 

of a RET-based Sampling Unit (RSU), a hybrid CMOS/RET functional unit that 

efficiently generates samples from parameterized distributions. Specifically, we present 

the details of a RSU-G unit designed for the MCMC solver for a class of Bayesian 

Inference problems and the substantial speedups and power savings it brings in 

different architectures. 

Unlike fluorescent taggants, this application of RET networks mainly takes 

advantage of their efficient random number generation. Nonetheless, these two 

applications only represent two instances in the vast space of possible applications RET 

networks can benefit, which will be further discussed in the next chapter. 
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6. Other Potential Applications 
The two applications discussed in this dissertation are based on using RET 

networks as an entropy source to generate random samples from probability 

distributions, and demonstrate its great potential in distinct application domains. 

Specifically, they represent applications that benefit from this molecular-scale entropy 

source by respectively leveraging its two unique aspects: 1) flexible programmability of 

probability distributions during fabrication and 2) efficient generation of random 

numbers through single photon detection. In the application of stochastic computing, 

this dissertation only focuses on a specific class of inference problems, and the extension 

to more general MCMC inference engines and other types of probabilistic algorithms 

(e.g., stochastic neural networks) are future work. Beyond fluorescent taggants and 

stochastic computing, the application space of RET networks as a programmable 

entropy source also remains to be explored and may include cryptography. 

Meanwhile, there exist alternative ways of using RET networks other than 

treating them as an entropy source. For example, RET networks may be used to simplify 

and accelerate probabilistic model checking and rare event simulation by directly 

exploiting the molecular-scale stochastic process. Probabilistic model checking is an 

important theoretical framework for evaluating the performance and reliability of a 

practical system with stochastic behavior, and CTMC is a commonly used stochastic 

model for mathematically describing such a system by defining its states and associating 
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its state transitions with probabilities [123, 124]. Based on the CTMC model of a 

stochastic system, the goal of probabilistic model checking often becomes to analyze the 

path-based and state-based metrics of interest which can be strictly specified by the 

temporal logic CSL (Continuous Stochastic Logic) [125]. The two common approaches to 

the computation of these metrics are 1) numerical probabilistic model checking based on 

uniformization and 2) stochastic probabilistic model checking based on Monte Carlo 

simulation and sampling. While the numerical approach generally provides higher 

accuracy, the stochastic approach can verify models with a larger state space because it 

requires considerably less memory and scales better.  

With RET networks, we may have a third approach that can potentially simplify 

and accelerate the probabilistic model checking for CTMCs. This approach is based on 

fabricating a RET network so that the CTMC of its exciton dynamics is directly mapped 

to the CTMC model of a practical system. With the fabricated RET network, the 

computation of performance and reliability metrics of the practical system can be carried 

out by counting the time-resolved fluorescence photons. Specifically, the probability of 

the system reaching a state by a specific time can be evaluated as the percentage of 

fluorescence photons detected within a time threshold. Because this approach is based 

on the physical fabrication and evaluation of a CTMC system, the evaluation process is 

independent of the size and complexity of the CTMC, and this unique advantage is 

especially valuable when the events of interest are rare in a stochastic system. To 
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estimate the probability of rare events, importance sampling is often required as a 

variance reduction technique and works by replacing the underlying distribution of the 

system with a biased distribution for generating samples [126, 127]. However, the 

implementation of this method is highly problem specific and relies on analyzing the 

mechanism of the system reaching the rare events, which becomes challenging as the 

size and complexity of the system increase. When a RET network is fabricated and 

excited by a light source, the excited individual structures in the ensemble 

simultaneously simulate the same CTMC as different realizations, and the parallelism 

can potentially reach the scale of Avogadro's number (1023). When the rare event 

probability is within this range, its value can be conveniently extracted by computing 

the ratio between the detected photon count and the estimated number of excited 

structures. This approach to probabilistic model checking is to some extent similar to the 

concept of ‘at-fabrication computation’ proposed in previous work [128]. As discussed 

in Chapter 3, the key challenge of using RET networks for this application is the design 

of chromophore networks to achieve arbitrary RET networks, which may require 

innovative and flexible ways of engineering synthetic chromophores. 
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7. Conclusion 
This dissertation introduces the exciton dynamics in a RET network of 

chromophores as the first molecular-scale process that can be conveniently and 

accurately programmed to physically implement CTMCs, an important class of 

stochastic processes. Based on the direct mapping between a RET network and the 

transition matrix of its CTMC, the stochastic process can be precisely programmed at the 

molecular scale through the physical geometry of the chromophore network such as 

chromophore types and the distance between each chromophore pair. 

As a molecular-scale photonic device, RET networks has a vast application space 

in photonics and optoelectronics. This dissertation focuses on using it as a 

programmable entropy source to generate random samples. Because the fluorescence 

photons emitted from a RET network follow a phase-type distribution that is configured 

by its CTMC and phase-type distributions can approximate general distributions, RET 

networks can be programmed to directly generate true random numbers from different 

distributions. Used as temporally-coded fluorescent taggants, RET networks can 

significantly increase the coding capacity of taggant design and improve the reliability 

of taggant identification even under low light conditions. In the application of stochastic 

computing, RET-based Sampling Units (RSUs) can be built to efficiently generate 

samples from parameterized distributions and accelerate probabilistic algorithms. 
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Appendix A 

Below are the matlab scripts for creating the CTMC model of a RET network and 
performing its steady-state analysis and transient analysis to simulate the time-resolved 
fluorescence intensity. 

 
%%ctmc.m%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Continuous-Time Markov Chain Model for RET Networks%% 
clear;clc; 
close all; 
  
global Q 
  
dye_name=[ 
    'AF405' 
    'AF430' 
    'AF488' 
    'AF546' 
    'AF555' 
    'AF594' 
    'AF610' 
    'AF647' 
    'AF660' 
    'AF680' 
    'AF700' 
    'AF750' 
    'AF790' 
    ]; 
  
%Förster radius 
R0_array=[ 
    4.892 6.413 6.195 4.465 4.767 3.821 3.966 2.722 4.374 2.718 4.103 3.824 
4.411                   %AF405 
    1.079 4.157 6.272 8.396 8.332 8.803 8.383 7.858 8.970 8.167 8.000 7.038 
6.337                   %AF430 
    0.000 5.830 9.378 11.420 11.569 10.902 9.918 8.390 10.402 8.793 8.202 6.886 
6.623               %AF488 
    0.000 4.470 5.650 10.807 9.917 13.169 12.570 11.736 13.215 11.911 11.618 10.229 
9.108           %AF546 
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    0.000 3.457 4.304 8.761 8.274 9.853 9.583 8.908 10.072 9.165 8.953 8.006 
7.134                  %AF555 
    0.000 2.904 3.797 4.947 4.286 11.231 12.538 13.124 14.236 13.594 13.549 12.258 
10.889           %AF594 
    0.000 2.039 2.659 3.194 2.827 9.558 11.430 12.648 13.372 12.617 12.571 11.177 
9.891             %AF610 
    0.000 1.343 1.756 2.532 2.140 5.263 6.819 12.733 14.714 14.961 14.886 14.333 
13.137             %AF647 
    0.000 0.000 0.000 0.000 0.000 3.437 4.753 9.661 12.569 13.512 13.940 13.202 
12.132              %AF660 
    0.000 0.000 0.000 0.000 0.000 0.000 2.820 8.262 12.010 13.474 14.512 14.601 
13.760              %AF680 
    0.000 0.000 0.000 0.000 0.000 1.503 3.045 6.746 10.194 11.764 13.204 14.253 
13.494              %AF700 
    0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.631 5.288 7.393 13.428 
14.546                 %AF750 
    0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.700 1.827 5.042 10.774 
13.125                 %AF790 
    ]; 
  
%Intrinsic Fluorescence Lifetime 
tau_array=1e-9*[ 
    1.2 %AF405 
    1.2 %AF430 
    4.1 %AF488 
    4.1 %AF546 
    0.3 %AF555 
    3.9 %AF594 
    1.2 %AF610 
    1.0 %AF647 
    1.2 %AF660 
    1.2 %AF680 
    1.0 %AF700 
    0.7 %AF750 
    0.7 %AF790 
    ]; 
  
%Quantum Yield 
QY_array=[ 
    0.4  %AF405 
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    0.4  %AF430 
    0.92 %AF488 
    0.79 %AF546 
    0.1  %AF555 
    0.66 %AF594 
    0.4  %AF610 
    0.33 %AF647 
    0.37 %AF660 
    0.36 %AF680 
    0.25 %AF700 
    0.12 %AF750 
    0.1  %AF790 
    ]; 
     
kf_array=QY_array./tau_array; %fluorescence rate array 
kq_array=1./tau_array-kf_array; %quenching rate array 
  
%peaktime_array=zeros(13,13); 
%FWHM_array=zeros(13,13); 
  
% Types of 
Chromophores %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
types=[ 
    2 
    6 
    6 
    6 
    6 
    6 
    6 
    12 
    ]; 
  
% Coordinates of Chromophores %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Separation between adjacent chromophores 
sep=[ 
    0 0 
    8.803 0 
    11.231 0 
    11.231 0 
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    11.231 0 
    11.231 0 
    11.231 0 
    12.258 0 
    ]; 
  
% Coordinates of each chromophore 
locs=cumsum(sep); 
  
% Directly assign chromophore coordinates 
% locs=1*[ 
%     0 0 
%     10 0 
%     20 0 
%     30 0 
%     40 0 
%     50 0 
%     60 0 
%     70 0 
%     ]; 
  
% Number of chromophores 
num=length(types); 
  
pi_T0 = [1 zeros(1,num-1)]; 
  
% Tau's (Intrinsic Fluorescence Lifetimes) %%%%%%%%%%%%%%%%%%%%%%%% 
taus = tau_array(types); 
  
% Ro's (Förster Radii) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[id,ia]=meshgrid(types,types); 
id=id';ia=ia'; 
R0=zeros(num,num); 
for i=1:num 
    for j=1:num 
        R0(i,j)=R0_array(id(i,j),ia(i,j)); 
    end; 
end 
  
for i=1:num %no transfer from chromophore to itself 
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    R0(i,i)=0; 
end 
  
% R matrix (distance between each pair) %%%%%%%%%%%%%%%%%%%%%%%%% 
R = zeros(num); 
  
for i=1:num 
    for j=1:num 
            R(i,j)=sqrt((locs(i,1)-locs(j,1))^2+(locs(i,2)-locs(j,2))^2); 
    end 
end 
  
%Q Matrix%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Qtt = zeros(num,num);                  %initiate transfer rate between transient states 
Qta = zeros(num,2*num);                 %initiate transfer rate from a transient state to an 
absorbing state 
  
for i=1:num 
    for j=1:num 
        if i~=j 
            Qtt(i,j)=1/taus(i)*(R0(i,j)/R(i,j))^6; %RET transfer rate for transfer rate between 
transient states 
        end 
    end 
end 
  
for i=1:num 
    Qta(i,i)=kf_array(types(i));     %Fluorescence 
    Qta(i,num+i)=kq_array(types(i));     %Quenching 
end 
  
Q=[Qtt Qta 
   zeros(2*num,num) zeros(2*num,2*num) 
   ]; 
  
for i=1:size(Q,1) 
    Q(i,i)=-1*sum(Q(i,:));               %Assign values for Qii's 
end 
  
%Steady State Analysis 
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Qtt=Q(1:num,1:num); %New Qtt Matrix after Qii's assigned 
 tau_T=-pi_T0/Qtt; 
pi_A=tau_T*Qta;            %Absorption Probability of each absorbing state 
theta_T=-tau_T/Qtt; 
  
%Transient Analysis 
syms s t; 
pi_0 = [pi_T0 zeros(1,2*num)]; 
  
options=odeset('RelTol',1e-10,'AbsTol',ones(1,3*num)*1e-10,'InitialStep',1e-12); %ODE 
solver 
[T,PI] = ode15s(@transfer,linspace(0,50e-9,2^12+1),pi_0,options); %use ODE solver to 
solve for the time-resolved state probability of each state [0 25e-9] 
  
cdf=PI(:,2*num); 
 
%plot figures 
figure; 
hold on; 
plot(T,PI(:,2*num),'g-','LineWidth',3); 
xlabel('Time (s)','FontSize', 30); 
ylabel('Probability','FontSize', 30); 
title('Absorption State Probabilities','FontSize', 30); 
set(gca,'FontSize',30); 
set(gcf,'paperpositionmode','auto'); 
box on; 
hold off; 
  
%Fluorescence Intensity 
fdensity=zeros(size(PI)); %differentiate state probabilities to get fluorescence density 
(influx of probability into those absorbing states) 
for i=2:size(T)-1 
    fdensity(i,:)=(PI(i,:)-PI(i-1,:))/(T(i)-T(i-1)); 
end 
  
%plot figures 
figure; 
hold on; 
plot(T,fdensity(:,2*num)/trapz(T,fdensity(:,2*num)),'g-','LineWidth',3); 
xlabel('Time (s)','FontSize', 30); 
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ylabel('(Normalized) PDF','FontSize', 30); 
title('PDF of The Time-Resolved Fluorescence From Each Chromophore','FontSize', 30); 
set(gca,'FontSize',30); 
set(gcf,'paperpositionmode','auto'); 
box on; 
hold off; 
 
%%transfer.m%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Continuout-Time Markov Chain Model for RET Networks%% 
 
function dpi=transfer(t,pi) 
global Q 
global num_M 
global num_S 
global num_D 
  
dpi=Q'*pi; 
  
end 
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