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Abstract

Remote Direct Memory Access (RDMA) networks are becoming a popular intercon-

nect technology to enable high performance communication in distributed systems.

While RDMA hardware enables high bandwidth and low latency networking, net-

works require congestion control algorithms to ensure they operate efficiently. Ide-

ally, a congestion control algorithm allows computers in the network to inject enough

traffic to keep the network saturated, stops computers from causing congestion, and

allocates bandwidth fairly to all computers in the network. This enables the net-

work to operate at peak performance and be fair to all users. While many protocols

converge to this ideal network state over time, we develop mechanisms and protocols

that improve convergence.

In this thesis, we identify several ways in which slow convergence to the ideal

network state harms performance and leaves RDMA networks susceptible to per-

formance isolation attacks. We show that slow convergence to fair injection rates

on end-hosts in RDMA networks greatly increases the communication time for long

flows, which leads to sub-optimal application performance. We identify why unfair-

ness occurs and measure unfairness’ impact on application performance. We then

show that because RDMA networks are loss-less and start sending packet at line-rate,

users can unfairly gain more bandwidth and sometimes ignore congestion control all

together. This allows misbehaving users to harm the performance of other users

sharing the network.
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To improve long flow performance in RDMA networks, we propose two new mech-

anisms for Additive-Increase Multiplicative-Decrease protocols: 1) Variable Additive

Increase and 2) Sampling Frequency. These mechanisms reduce the time it takes for

the network to allocate bandwidth fairly between end-hosts, so long flows are not

starved of bandwidth. To create these mechanisms, we determine when unfairness

occurs and how end-hosts can infer unfairness without any additional information

from switches.

We then improve performance and isolation in RDMA networks with One Round

Trip Time Convergence (1RC) and a new method of setting flow weights. 1RC

enables a network to converge to fair rates during the first RTT by dropping packets

when a flow uses too much bandwidth. We do this while maintaining packet ordering

and fairness between flows that start sending packets at the same time. We then use

a new weighting scheme, which decreases the bandwidth allocation to users opening

too many connections. A lower weight for mis-behaving users mitigates the impact

of a user trying to gain more bandwidth than is fair.

Finally, we introduce the Collective Congestion Control Protocol (3CPO), which

improves convergence in multicast networks designed for collective communication.

Multicast operations send a single packet to several destinations at once and cause

severe congestion in the network quickly. 3CPO manages multicast congestion by

inferring global congestion state through multicast operations and then tunes each

end-host injection rate to be near optimal. 3CPO requires no extra information from

switches and works entirely on end-hosts, so it works well in a simple network.
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1

Introduction

A myriad of workloads rely on tightly-coupled distributed systems to meet applica-

tion computation and storage demands. Numerous scientific fields such as physics

(12; 14; 13), fluid dynamics (6; 93), computational chemistry (16), and biology

(38) utilise high-performance computing (HPC) systems to enable large simulations,

which model physical phenomenon. Additionally, datacenters are distributed sys-

tems that support distributed storage, big-data, deep learning, and website hosting

workloads. While the workloads that utilise distributed systems vary wildly, they

share two common characteristics; 1) vast amounts of storage and 2) computation.

Distributed systems provide the horizontal scaling required to store and compute

upon vast datasets. However, scaling software beyond a single machine opens addi-

tional opportunities for performance bottlenecks. All distributed workloads require

the various computational devices to communicate because the system stores data

in physically distributed places throughout the system. Distributed systems utilize

a network that allows the computational devices to exchange data.

In order to prevent the network from bottlenecking application performance,

tightly-coupled distributed systems generally use high-speed, low latency intercon-
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nection networks. This enables applications to move large amounts of data quickly.

Common open standard networks are Ethernet (79) and Infiniband (45), which pro-

vide bandwidth up to 400Gb/s per port (86; 85). Several high performance propri-

etary networks also exist, such as Nvidia’s NVSwitch (87), AMD’s Infinity Fabric

(71), Google’s TPU supercomputer network (56), and Cray’s Slingshot (24). A

variety of systems use these different networks to provide applications with high

performance communication.

While the underlying hardware supports high performance networking, conges-

tion can severely limit performance. Network congestion occurs when the bandwidth

requested by the ingress ports on a switch exceeds the bandwidth of the egress port.

During congestion, egress ports store packets in queues, which can lead to perfor-

mance issues. As queue depth increases, packet latencies increase because packets sit

in queues instead of traversing the network. If congestion becomes severe enough that

the queue is full, packet drops and tree saturation will occur and degrade throughput

(107; 90). To manage congestion in the network and therefore improve latency and

throughput, networks often deploy congestion control algorithms, which limit the in-

jection of packets into the network. Distributed applications often require networks

with congestion control to achieve high performance.

1.1 Congestion Control Overview and Issues

Despite being a research topic since 1988 (46), network congestion still negatively

impacts network performance. This is largely because the solution space for network

congestion varies widely depending on system characteristics. For example, TCP

works well in wide area networks like the internet but performs poorly in local area

networks (4). Even within local area networks the potential solutions are numerous.

For example, Googled developed Swift (66) because Google’s datacenters have simple

2



switches with no programmability, so Swift works with only end-to-end metrics.

Using a completely programmable network, Jose et al. developed s-PERC (55),

which requires switches to compute injection rates for each end-host and modify

packets as the packets flow through the switch.

Ideally, a congestion protocol enables end-hosts to inject enough traffic to satu-

rate the network without exceeding the bandwidth of the most in-demand network

link. This enables high throughput and no network congestion. Additionally, the

congestion control protocol should have a fairness policy that ensures end-hosts share

bandwidth fairly. Common examples of fairness policies are max-min fairness (32)

and proportional fairness (62). An optimal allocation of bandwidth between end-

hosts saturates the network, does not cause congestion, and is fair.

A congestion control algorithm cannot converge to the optimal allocation in-

stantly because the demands of each end-host are not globally known. Therefore,

congestion control protocols iteratively probe for the optimal injection rate. We de-

fine convergence as the time between end-hosts demanding bandwidth and converging

to the optimal bandwidth allocation. While protocols rarely perfectly converge to

the optimal rate, an allocation close to optimal is often sufficient.

This dissertation identifies several issues with convergence in congestion control

protocols for tightly-coupled distributed systems. We find that slow convergence

causes poor performance in end-hosts that have long flows. Slow convergence also

enables several performance isolation attacks in Infiniband (IB) (45) and RDMA

over Converged Ethernet (RoCE) (44), common open standard networks. We also

find that multicast networks, which support a single end-host sending to several

destinations, converges to near optimal injection rates much faster when exploiting

the symmetry of certain traffic patterns. We now summarize the contributions of

this dissertation.
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1.2 Congestion Control Performance and Isolation Issues

We identify how slow convergence in certain networks causes performance and iso-

lation issues. The problems identified occur in networks that are loss-less (packets

cannot be dropped) and end-hosts start sending packets at line-rate. These charac-

teristics are common in high-performance networks, most notably in Infiniband (45)

and RoCE (44). This work focuses solely on systems that calculate injection rates

on end-hosts instead of on network switches.

Initially sending packets at line-rate is a performance optimization that allows

short flows to complete quickly. A flow is a sequence of packets that must be delivered

in order, and the flow completion time (FCT) (how long it takes a flow to send all its

packets) is an important congestion control metric (28). The end-hosts assume the

network is not congested and do not reduce their injection rates until the end-hosts

detect congestion in the network. We summarize congestion detection methods in

Chapter 2.

Starting flows at line-rate can cause fairness issues because a new flow has more

bandwidth than existing flows. If the network is saturated, the new flow causes all

flows to reduce their injection rates because the new flow causes network congestion.

The congestion control algorithm then calculates new, reduced rates for each flow,

which hopefully alleviates congestion. However, since most congestion control algo-

rithms use Additive-Increase Multiplicative-Decrease (AIMD) because of its fairness

guarantees (19), the new flow with more bandwidth still has a higher allocation. Over

time the bandwidth allocation becomes fair, but, if the convergence to fair rates is

slow, the performance of flows allocated too little bandwidth suffers.

Favoring new network flows over existing flows causes a long tail for large flows.

Large flows are bandwidth bound, take several network round trips to complete, and

therefore exist for a long period of time. While long flows are active, new flows
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continuously join the network, which lowers the injection rate of long-lived flows. A

long flow is then unfairly allocated too little bandwidth. Not all long flows experience

this unfairness, but a small percentage do, and even a small percentage of flows taking

a long time to complete can negatively impact application performance (25). We find

that unfair bandwidth allocations causes long flows to take several times longer to

complete than is necessary.

Mis-behaving users can exploit slow convergence in IB and RoCE networks to gain

an unfair amount of bandwidth. IB and RoCE follow the same specification; RoCE

simply allows IB in an ethernet network. IB and RoCE enable RDMA, which removes

host networking software from the communication critical path. We identify several

vulnerabilities in the congestion control specification in IB and RoCE that allow a

mis-behaving user to gain extra bandwidth or completely ignore congestion control

completely. We demonstrate the attacks on current hardware when emulating the IB

specification and show how nefarious users benefit from the attack and well-behaved

users suffer. In order to remove the attacks, flows can no longer start sending packets

at line-rate, which negatively impacts the performance of short, latency bound flows.

We demonstrate this trade-off with Datacenter simulations.

1.3 Improving Long Flow Tail Latency

In the preceding section, we described how some congestion control protocols favor

new flows over existing flows, which harms the performance of large flows, particularly

at the tail. We create end-host based mechanisms that substantially improve long

flow tail latencies. Network switches have limited processing power and an in-network

congestion control solution is complex and expensive. Therefore, modifying the end-

host congestion control protocol is the most practical solution of slow convergence.

We improve long flow tail latency and do not require any additional information from
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network switches.

We improve convergence to fair rate allocations by identifying when unfairness

occurs and how to infer unfairness at the end-host. We introduce our two new

mechanisms: Variable Additive Increase and Sampling Frequency, which significantly

improve the tail FCT of long flows. We augment Swift (66) and HPCC (75) with our

new mechanisms in ns-3 (95) and show their performance in micro-benchmarks and

datacenter simulations. When we improve the convergence to fair rate allocations in

HPCC and Swift, the tail FCT of long flows dropped by half without affecting small

flow performance.

1.4 One RTT Convergence and Weighting Scheme

Two issues challenge existing RDMA congestion control methods: 1) as bandwidth

delay product (BDP) existing methods of congestion control become ineffective and

2) RDMA is becoming more common in shared environments. Starting flows at line-

rate is a performance optimization that allows short flows to complete quickly. How-

ever, it leaves the network susceptible to performance isolation attacks and causes

congestion quickly. To maintain starting at line-rates performance benefits but main-

tain performance isolation and minimal congestion, we introduce One RTT Conver-

gence (1RC). 1RC lets flows start at line-rate and drops packets when letting the

packet through would be unfair. It also does not require detecting packet drops,

maintaining per-flow state on the switch, or reordering packets.

We also show how we can weight certain networks flows to mitigate a mis-behaving

users ability to unfairly gain bandwidth. We lower a flow’s weight as the end-host

opens more connections. This discourages a user from opening more connections to

gain more bandwidth.

We demonstrate with datacenter workloads that 1RC enables congestion control

to effectively manage congestion as BDP grows when existing methods fail. We then
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demonstrate with datacenter workloads and microbenchmarks that 1RC and our new

weighting scheme effectively isolates performance between users, even when one is

mis-behaving.

1.5 Fast Convergence in Multicast Networks

Point-to-point communication is the most common communication paradigm; one

computer sends a sequence of packets to another computer. However, many dis-

tributed applications benefit from collective communication, where a group of servers

all communicate with one another. Collective communication is common in scien-

tific computing (64) and deep learning (8) workloads, so research efforts accelerated

collective communication with in-network computing (65; 67; 36; 97; 73). These

networks can increase the throughput of large collective operations by up to 2x and

improve latency sensitive small collectives even more drastically.

Our network performs in-network collectives with an architecture similar to Klenk

et al.’s (65) where users implement collective operations in a memory fabric with mul-

ticast writes and read reductions. This network architecture is effective at improving

collective operations, but a single packet expands in the network and can cause con-

gestion at several points in the network simultaneously. We develop the Collective

Congestion Control PrOtocol (3CPO) for Klenk et al.’s architecture that exploits

symmetry of collective operations to converge to near optimal rates faster. When

performing an all-reduce collective operation with 64 GPUs, our protocol dynami-

cally changes the injection rate of packets and achieves throughput within 98% and

has average packet latency 200 cycles less than that of a hand-tuned static conges-

tion window. We also design our protocol to work with unicast traffic in addition to

in-network collective traffic.
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1.6 Organization of Dissertation

The rest of this dissertation is as follows. Chapter 2 provides background information

on congestion control and RDMA networks. Chapter 3 details and demonstrates how

slow convergence affects long flow completion time and leaves IB and RoCE networks

susceptible to performance isolation attacks. Chapter 4 explains how we solve the

issue of long flow completion times using an end-host only solution. Chapter 5 shows

how we can use in-network computing and synchronized system clocks to enable

faster convergence. Chapter 6 introduces 3CPO, a congestion control protocol that

improves network performance when using multicast operations. Finally, we conclude

in Chapter 7.
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2

Congestion Control Background

Congestion dramatically reduces a network’s effectiveness. This Chapter gives spe-

cific details and examples how congestion effects throughput and latency in different

types of networks. Section 2.2 explains how congestion control protocols reduce

congestion, and the different places we can implement congestion control. Section

2.3 details the additive-increase multiplicative-decrease paradigm, and its desirable

properties. Section 2.4 briefly explains RDMA and why we use it for many of our

experiments. Finally, we discuss how we implement our protocols and mechanisms

and the key metrics we evaluate congestion controls protocols with in Section 2.5.

2.1 Network Congestion

Network congestion occurs when end-hosts’ bandwidth demands exceed a switch’s

physical bandwidth capabilities. Congestion occurs at the bottleneck link, which is

the most in-demand link along a flow’s path. Network end-hosts generally demand

bandwidth with a network flow, which is a sequence of packets that must be delivered

in-order to the destination. When a network link cannot meet end-hosts’ bandwidth

demands, the switch must queue packets. A small amount of queueing is necessary
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and does not harm performance, but large queues can increase packet latencies and

reduce network throughput. We now explain exactly how network congestion harms

throughput and latency in lossy and lossless networks.

2.1.1 Congestion in Lossy Networks

When a packet arrives at a switch port with a full packet queue in a lossy network, the

congested port drops the packet because the switch has no available storage. While

necessary, dropping packets severely damages a network’s throughput. In transfer

protocols such as TCP, the network has to deliver all packets, so an end-host must

detect packet drops and resend dropped packets. Further, TCP requires packets

arrive in-order, so when the network drops a single packet, TCP must resend any

subsequent packets as well.

TCP detects packet drops with two mechanisms. First, TCP sets a timer each

time it sends a packet. If the network does not acknowledge the packet’s delivery

before the timer expires, the end-host assumes the packet is lost. TCP also detects

loss through the destination end-host notifying the sending end-host that a packet is

missing. When TCP detects loss, it resends the missing packet. Resending packets

reduces throughput because the end-host cannot use valuable bandwidth sending

new packets. Instead the end-host uses bandwidth resending lost packets and any

subsequent packet, so the end-hosts wastes cycles redoing tasks.

In interactive applications such as ssh connections, online gaming, and some web-

sites, low packet latency ensures a satisfactory user experience. In any network, con-

gestion directly increases packet latency because packets spend time sitting in switch

queues instead of traversing the network. Packet loss further degrades latency be-

cause detecting packet loss takes a significant amount of time. Loss detection timers

must be long enough to not retransmit packets that were not actually dropped (46),

so TCP usually sets the timeout to be several times longer than the network’s mini-
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(a) Example Dumbbell Topology

(b) Source Destination Pairs

Figure 2.1: Topology and network flows that cause Head-of-Line Blocking

mum round trip time (RTT). Therefore, the end-host must wait before retransmitting

the packet because the end-host cannot determine if the packet was lost. This long

wait significantly increases time-sensitive data transfers latency.

2.1.2 Lossless Networks

Packet loss detection and retransmission hinders lossy network performance. To

remove packet loss issues, some networks do not drop packets during congestion.

Lossless networks utilise link-level flow control mechanisms like Priority Flow Con-

trol (PFC) Pause Frames in Ethernet and Credit-based flow control, both of which

stop upstream ports and switches from sending packets when packet queues fill up.
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(a) Congestion Begins at Switch 2 to End-host 4

(b) Congestion propagates backwards through the network

Figure 2.2: Congestion Causing Head-of-Line Blocking

Congestion still increases packet latencies and reduces throughput in lossless net-

works despite not detecting loss and retransmitting packets.

Like a lossy network, packets in lossless networks suffer from queueing delay,

which increases latency. Congestion causes severe queueing delay in lossless networks

because congestion propagates through the network, often called tree-saturation (90).

Figures 2.1 and 2.2 demonstrate congestion propagating in a lossless network. Figure

2.1(a) shows the example dumbbell topology, with three end-hosts on the left side

of the topology and two on the right side. The link between Switches 1 and 2 can

support End-hosts 1-3 sending at line rate, so it should never bottleneck transfers.

The smaller boxes within the switch boxes are packet queues. Figure 2.1(b) shows
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each End-host’s path with red lines. End-hosts 1 and 2 send packets to End-host 4,

and End-host 3 sends packets to End-host 5. The link between Switch 2 and End-

host 4 bottleneck End-hosts 1 and 2 packet transmission to End-host 4. Figure 2.2(a)

shows that because End-host 1 and 2 send at 2Gbps and the link between Switch 2

and End-host 4 is only 1Gbps, packets queue on End-host 4’s port on Switch 2. This

harms latency for End-host 1 and 2 but is inevitable given the bandwidth demands.

A larger problem occurs when Switch 1 becomes congested. Figure 2.2(b) shows

what happens when Switch 2’s queue for End-host 4 fills with packets. Because

Switch 2 cannot drop packets, Switch 2 stops Switch 1 from sending packets along

the link connecting them, denoted with the link turning red. This causes a queue to

form on Switch 1 despite Switch 1 having plenty of bandwidth! Now, packets from

End-host 3 queue on Switch 1 and latency increases even though End-host 3 does

not share a bottleneck with End-host’s 1 and 2. This would not occur in a lossy

network because Switch 2 would simply drop packets from End-host 1 and End-host

2, and packets from End-host 3 would move freely through the network.

The same example demonstrates a loss of throughput in lossless networks. The

example should have 2Gbps of throughput, but now the entire network is limited by

the link between End-host 4 and Switch 2. Throughput would drop to around 1Gbps

because Switch 1 can now only send packets as quickly as Switch 2. We call this

phenomenon Head-of-Line (HoL) blocking, and it annihilates network performance

(60).

To prevent increased packet latencies and reduced throughput, networks employ

congestion control protocols, which limit congestion in the network.

2.2 Congestion Control Protocols

Congestion occurs when end-hosts send too many packets. Networks limit the injec-

tion of packets with congestion control protocols. There are three network locations
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where a congestion control protocol can allocate bandwidth: 1) sender 2) receiver

and 3) switch. In sender-based congestion control protocols, the end-host sending

data adjusts packet injection based on feedback received from the network. Sender-

based protocols are common because they require little involvement from network

switches and destinations.

In receiver-based congestion control, a packet flow’s receiver explicitly schedules

when the sender should send data. Receiver-based congestion control is effective but

requires that congestion only occurs at the last-hop switch. In many networks, like

the internet, that is a bad assumption. For congestion to only happen at the last-hop

switch, the network cannot be over-subscribed, which makes the network expensive.

In switch-based congestion control, switches calculate each flows injection rate

and deliver rate information to senders. Switch-based protocols work well but require

complex switches that are often expensive and difficult to program.

Subsequent sections provide more details on each type of congestion control proto-

col. In this dissertation, we prefer sender-side solutions because they are the simplest

but also use switch-based solutions when necessary.

2.2.1 Sender Side Congestion Control

TCP (17) was the first sender-side congestion control protocol. In TCP, a congestion

window limits a flow’s in-flight bytes, which limits the amount of congestion. If the

network drops or delivers a packet out-of-order, TCP re-sends the affected packets

and all subsequent packets. TCP detects a drop if a packet is not acknowledged

within a certain amount of time or the receiving end-host notifies the sending end-

host that a packet is missing.

While effective for over a decade, in 1986, researchers at Lawrence Berkeley

Lab (LBL) observed that throughput between LBL and the University of California

Berkeley, despite being 400 yards apart, dropped from 40Kb/s to 40b/s (46). In-
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terestingly, Jacobson found that end-hosts assumed switches dropped packets, but

that was not the case. Instead, the switch queued packets for so long that the sender

assumed the switch dropped the packets. Because the switch did not drop the pack-

ets, packets that TCP assumed were lost filled the switch queues and TCP resent

packets that the switch had not dropped!

Jacobson fixed the observed issues with several changes to the congestion window

in TCP (46). Instead of a fixed window, TCP now dynamically changes the number

of inflight bytes based on network conditions. If network reliably delivered packets,

TCP increased the congestion window additively. If the network drops a packet,

TCP reduces the window multiplicatively. We refer to this as an Additive-Increase

Multiplicative-Decrease (AIMD) protocol, which Chiu et al. later proved has desir-

able properties (19). Section 2.3 has more details on AIMD principles. Jacobson

proposed increasing the congestion window by 1 packet if the network delivered the

previous window properly and cutting the window in half if the network lost a packet.

While the exact algorithm described by Jacobson is scarcely used today, TCP

still uses AIMD algorithms and dynamically changes a congestion window based on

congestion. Microsoft, Google, and Alibaba applied these principles to congestion

control algorithms for their datacenters (4; 66; 75). Timely (81), DCQCN (110), and

congestion control in Infiniband (45) decided against a congestion window and in-

stead limit packet injection by adding time between the injection of each packet. This

allowed end-hosts to send many packets quickly but significantly increased congestion

(75; 82) and packet latency. More recent protocols reintroduce congestion windows

to improve packet latency (75; 66) because Li et al. and Mittal et al. found that a

congestion window equal to bandwidth delay product (BDP) only limits throughput

if the network is congested.

Jacobson’s protocol detects congestion when a packet is dropped, which leads to

lower throughput because it requires an extremely congested network before end-
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hosts reduce their injection rates. To reduce the level of congestion required to drop

packet, Floyd and Jacobson (30) proposed Random Early Detection (RED), which

drops packets probabilistically based on queue size. As the queue becomes larger,

the switch is more likely to drop each admitted packet. This is an improvement on

waiting for the queue to become full to drop a packet because end-hosts reduce their

rates earlier.

While an effective mechanism to detect congestion, packet loss severely harms

throughput because end-points need to detect and retransmit lost packets. To detect

congestion before the network has to drop packets, Brakmo et al. proposed using

packet round trip time (RTT) as a congestion signal (15) in TCP. The length of

time between a packet entering the network and its acknowledgement arriving at the

sending end-host is the RTT. RTT increases as congestion increases because a larger

RTT indicates the packet spent significant time in a switch packet queue. Many

TCP variants use RTT (54).

Unlike packet drops, RTT measurements can effectively measure congestion in

lossless networks (66; 81). Some networks prevent packet loss due to packet buffer

overflow with link-level flow control mechanisms, which stop upstream end-points

from sending packets before buffers fill up. Lossless networks provide higher per-

formance than lossy networks and are often used in local area networks. Wide-area

networks need to be lossy because the network is not tightly controlled, and even

one lossy switch makes a lossless network into a lossy network. However, in tightly

controlled setting like a datacenter or supercomputer, lossless networks are feasible.

As network switches became more sophisticated, congestion information from

switches became feasible, and many congestion control algorithms rely on switches for

congestion information. Along with introducing RED, Floyd and Jacobson proposed

marking a bit in a packet header to indicate congestion instead of dropping the

packet (30). This idea later became Explicit Congestion Notification (ECN), an
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extension to the Internet Protocol (IP) header (92). DCQCN (110), a widely used

datacenter congestion control algorithms, still use ECN and RED to detect network

congestion. While ECN is useful, it provides no information about the extent of

congestion or network under-utilization. Recently, Alibaba developed HPCC (75),

which utilizes In-Band Network Telemetry (INT). INT is an extension to P4 (11) and

adds switch telemetry to packets as they move through the switch. HPCC utilizes

3 pieces of telemetry, 1) queue depth 2) transmitted (tx) bytes and 3) timestamps.

Queue depth tells HPCC the extent of congestion, and HPCC calculates throughput

using tx bytes and timestamps. INT and HPCC manage queues well and maintain

high throughput.

Protocols like HPCC, DCQCN, and DCTCP require specific parameter settings

and functionality from switches and end-host hardware. Protocols with these re-

quirements are not suitable for a wide-area network like the internet, and are only

deployed in tightly controlled settings like datacenters and HPC systems. This thesis

focuses solely on protocols for tightly controlled settings.

Chapter 3 explains performance issues in some sender-side congestion control pro-

tocols. The identified issues show that many congestion control protocols optimize

for certain metrics, which harms performance in other key metrics. Chapter 4 pro-

poses new mechanisms for sender-side reaction protocols that improves performance

across negatively impacted metrics without harming performance in any other area.

We implement our new mechanisms in HPCC (75) and Swift (66).

2.2.2 Receiver-based Congestion Control

In highly controlled settings like a datacenter or HPC system, receiver-based pro-

tocols are feasible because both end-hosts belong to the same user. Receiver-based

protocols assume that congestion only happens at a flow’s last hop. Therefore, the

receiver knows all connections and demands along the bottleneck link (the last hop),
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and can perfectly schedule traffic. pHost (33), NDP (42), LHRP (51), and Homa

(83) are receiver-based congestion control protocols.

There are two issues with a receiver-based congestion control algorithm: 1) it

requires a non-oversubscribed network and 2) scheduling overhead can harm packet

latency. If a network is oversubscribed, places beyond the last-hop are susceptible

to congestion and the receiver no longer has a global view of congestion. An over-

subscribed network requires that each level of the topology has as much bandwidth

going into the network as it does coming out of the network. For example, a top-of-

rack switch, which connects end-hosts to the network, must have as much bandwidth

going to end-hosts as it does into the network. Over-subscribed networks are cheaper

because they require fewer switches to construct and have less bandwidth.

Receiver-based protocols require a flow to schedule itself at the receiver by sending

connection establishment packets. The connection establishment overhead increases

latency because flows require a minimum of two RTTs to complete (scheduling RTT

and data RTT) instead of one (data RTT). Speculative packets (51; 42; 43) remove

the scheduling overhead when the network is not congested. Speculative packets are

lower priority than scheduled packets, and the network drops speculative packets

if the network is congested, so in the worst case, scheduling overhead still harms

performance.

2.2.3 Switch-based Congestion Control

Switches have the most knowledge about congestion state in the network, so some

protocols rely on the switches to calculate each end-hosts injection rate. XCP (61),

s-PERC (55), RoCC (103), ExpressPass (20), and RCP (28) all receive explicit or im-

plicit rate information from switches, which end-hosts use for injection rates. Switch

based protocols are effective and work in any type of network. However, all switches

in the network must be programmable. For example, s-PERC (55), a distributed

18



max-min fair congestion control algorithm that converges in bounded time, requires

an FPGA on the network switch. This makes the network more expensive and com-

plicated. In Chapter 5, we modify s-PERC to mitigate performance isolation attacks

in certain networks.

The previously described congestion control protocols require end-hosts comply

with their assigned rates. To enforce perfectly fair and efficient congestion control

without end-host compliance, a switch can dedicate a switch queue to each user and

service each users queue fairly. While ensuring perfect congestion control, dedicating

a queue to each user is unimplementable as the system scales. A network could have

thousands of tenants, which would make switch architecture impossible. Stochastic

Fair Queueing (78) solves this problem by hashing flows to different queues. However,

performance degrades when the number of users far exceeds the number of queues.

Core-Stateless Fair Queueing (CSFQ) (102) drops packets of flows that use too much

bandwidth and approximates fair queueing without per-flow state or multiple queues.

Approximate Fair Queueing (AFQ) (98) also drops packets of bandwidth hungry

flows using commodity switches with P4 programmability. CSFQ and AFQ both

achieve fair bandwidth sharing but end-hosts must still handle packet reordering

and detect drops, which can harm throughput.

Switch-based protocols are effective in any network. However, since they require

specific switch programmability, they are often reserved for local area networks.

As stated before, sender-side protocols are the most practical. Sender-side protocols

probe for bandwidth and mitigate congestion using AIMD algorithms. We now

provide more details on how AIMD algorithms work.
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Figure 2.3: Saw-tooth Behavior of TCP and DCTCP

2.3 Additive-Increase Multiplicative-Decrease

Many sender-side congestion control protocol use the AIMD paradigm (110; 109; 75;

66) because it converges to max-min fair, uses available bandwidth, and clears con-

gestion (19). If there is congestion in an AIMD protocol, all the flows multiply their

injection rate by a number ă 1, which reduces the flows injection rate or congestion

window, which alleviates congestion. In the absence of congestion, each flow increases

their injection rate by a constant amount, which grabs available bandwidth. AIMD

protocols converge to fair rates by creating congestion through additive increase, and

then multiplicative decrease forces flows with more bandwidth to decrease their rate

by more than flows with less bandwidth. This creates a saw-tooth behavior, which

Figure 2.3 demonstrates

TCP is an AIMD protocol and limits the injection of packets with a congestion

window. A larger congestion window indicates more bandwidth. To show how AIMD

protocols work, we run a simulation in an ns-3 simulator provided as an artifact by

Li et al. (1), which we modify slightly to support traditional TCP. The simulated
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network is loss-less, and TCP reduces its window by half if any packet in a congestion

window has its ECN bits marked, so end-hosts know the packet experienced conges-

tion. Switches mark packets ECN if the packet queue exceeds 40KB, which is 40

packets. The network has 100Gbps links between 17 hosts on a single switch and the

delay along each link is 100us. 16 hosts all send 200MB of data simultaneously to the

17th host, which produces an incast traffic pattern. Historically, congestion control

protocols handle incast poorly (107). To simplify the graph, we plot the congestion

window over time for only one flow since the behavior of each flow is roughly the

same. The maximum window size is BDP, which is about 5MB.

TCP slowly increases its window because the flows start conservatively1. Even-

tually, the network saturates and congestion occurs, so TCP cuts its window in

half. TCP continues this process. Several times throughout the experiment, TCP

increases its window to grab available bandwidth and then alleviates congestion by

reducing its window. However, because TCP reduces the rate of flows so aggressively,

the network becomes under-utilized after multiplicative decreases and performance

suffers.

To demonstrate this inefficiency, we compare TCP with DCTCP, which adjusts

the multiplicative decrease based on the extent of congestion (4). Instead of cutting

the congestion window in half if there is any congestion, DCTCP measures congestion

by dividing the number of ECN marked packets by the total number of packets sent

in a congestion window, which improves stability because the window decreases less

aggressively if congestion is minimal. The smaller saw-teeth for DCTCP in Figure 2.3

show the reduced multiplicative decrease. Because TCP underutilizes the network

after multiplicative decrease, flows in our experiment using TCP complete sending

their data 17% slower than when using DCTCP.

A higher ECN marking threshold increases throughput of TCP because there is

1 We do not use slow start because we only want to see the saw-tooth behavior
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a longer queue built up when flows back off, and the queue can keep the network

saturated while flow rates recover. However, this harms network latency because

the network maintains long queues. DCTCP’s improved stability allows DCTCP to

lower the average queue depth, without losing throughput. RED also improves TCPs

throughput, but Alizadeh et al. show that RED creates large queue oscillations,

which harms application tail performance (3).

The improvements DCTCP makes over TCP demonstrates how new congestion

control protocols can expand a network’s pareto frontier for performance. DCTCP

improves throughput without increasing latency. Newer protocols, like HPCC (75)

and Swift (66), expand on DCTCP’s performance benefits for datacenter networks.

In Chapter 3, we go into further detail about HPCC (75) and Swift (66) and then

improve sender-side protocol performance in Chapter 4.

2.4 Remote Direct Memory Access

Remote Direct Memory Access (RDMA) removes system software from the criti-

cal path of network operations. Traditionally, computers communicate through OS

level libraries like Sockets. RDMA allows applications to communicate without in-

voking the system software on the data path by offloading the network protocol

stack processing, congestion control, and packet retransmission to the network in-

terface card (NIC). Today, many technology companies such as Alibaba (75) and

Microsoft (41) deploy RDMA networks in their datacenters, and exploring how to

use RDMA in application design has become a major topic in the networking com-

munity (58; 59; 57; 40; 53).

The most common RDMA open standard is Infiniband (IB) and its extension

RoCE 2. IB is a lossless network, and credit-based flow control ensures IB switches do

not drop packets. RoCE enables IB in an ethernet network. However, ethernet does

2 Pronounced Rocky, like the mountains
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not have credit-based flow control, so RoCE uses Priority flow control, which stops

upstream ports from sending packets to a congested port. Because IB and RoCE are

lossless, they can suffer from tree saturation and head-of-line blocking, which can

severely limit network throughput and harm packet latency. IB and RoCE avoid

tree saturation and HoL blocking with congestion control.

IB uses sender-side congestion control. The IB specification lays out specific

details about congestion detection and reaction. While Zhu et al. (110) designed

DCQCN to fit into the specific RoCE constraints, more recent IB and RoCE con-

gestion control protocols eschewed the requirements for better performance (75; 81).

One requirement for IB/RoCE congestion control that remains popular is starting

flows at line rate. TCP starts sending packets conservatively and slowly increases its

window over time. However, IB assumes the network is not congested when starting

a flow and sends packets as quickly as possible. This is a performance optimization

because it allows short flows to send all packets quickly. IB and RoCE also do not

specify the use of a window, and instead pace packets using inter-packet delay, so the

NIC delays sending a packet for a certain amount of cycles. The inter-packet delay

changes based on network congestion. HPCC adds a congestion window in addition

to pacing packets (75).

This dissertation simulates a RoCE network unless otherwise specified. We use

this as our sample network because it is widely used and therefore topical. While

we only evaluate our mechanisms in a RoCE network, many of the lessons apply to

lossless networks that start sending packets at line-rate.

2.5 Congestion Control Evaluation

We evaluate our congestion control mechanisms in a simulator and optimize for key

application level metrics. This section explains how and what we simulate, as well

as the metrics that we evaluate the protocols and mechanisms on.
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2.5.1 Simulations

Simulators allow fast development of new network protocols. We design our con-

gestion control protocols and mechanisms for networks that implement congestion

control in hardware. Therefore, implementing our mechanisms would be impracti-

cal. This dissertation uses two simulators to simulate 1) a RoCE network and 2)

an NVLink network. To simulate a RoCE network, we use an ns-3 (95) simulator

released as an artifact by Li et al. (75), which models RoCE networks, so we refer

to this simulator as the RoCE simulator. The second simulator is based on booksim

(50) and simulates an NVLink network. We use a second simulator because it is the

most accurate model of an NVLink network and implements many hardware fea-

tures that our new protocol uses. Because we use the NVLink simulator exclusively

in Chapter 6, we provide more details about NVLink and the simulated network in

that chapter. We prove more details about simulations in subsequent chapters.

2.5.2 Congestion Control Metrics

The three classic network performance metrics are throughput, latency, and fairness.

Throughput measures how many packets get through the network over a period of

time, and latency evaluates how quickly the packets move through the network. Dif-

ferent applications optimize for different metrics. For example, a web-server workload

constructs webpages for users as quickly as possible. Web-server workloads generally

move small pieces of data, but the data must move quickly, so latency is an important

metric. Other workloads, such as big-data and deep learning, require moving vast

amounts of data quickly between servers, so the application requires high through-

put. To measure bandwidth fairness, we use the Jain fairness index (19). The Jain

fairness index assumes all flows share the same bottleneck and have equal demands,

so we only use it in microbenchmarks because in larger systems, flows are bottle-

necked at different points in the network. If the bandwidth allocation is fair, the
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Jain fairness index equals 1, and if the bandwidth allocation is completely unfair,

the index is
1

N
, where N is the number of flows.

A common metric that unites both latency and throughput for application level

performance is Flow Completion Time (FCT), which measures how long a flow takes

to complete. Generally, this measurement starts when a flow sends its first packet

and concludes when the last packet acknowledgement confirms the network delivered

all the data to the destination. Latency dictates if a small flow has a low FCT and

high throughput lowers long flow FCT. An extension of FCT is FCT slowdown,

where we divide the observed FCT by the theoretical minimum FCT of the flow

based on the network characteristics. FCT slowdown tells us how congestion and

contention limited the performance of a flow. Congestion increases the FCT of short

flows because the switches queued the packets for a long period of time. Contention

increases the FCT of long flows because the long flows require bandwidth, and the

network shared the finite amount of bandwidth between many competing flows.

After running or simulating a workload, we create a distribution of FCTs from

the numerous flows that complete. Median FCT slowdown is a useful statistic for

determining the overall network performance. However, the median case is not useful

to many applications because applications require predictable performance. There-

fore, many congestion control protocols design for the tail FCT, so performance is

sufficient even in the worst case. Tail FCT also informs about fairness. If the net-

work unfairly allocates one flow too little bandwidth, the tail FCT increases. By

improving fairness, we dramatically improved the tail FCT of long flows in Chapter

4. In this dissertation, we often report the median and 99.9% tail FCTs for flows

when evaluating our protocols or mechanisms.

25



2.6 Summary

This chapter gives an overview of congestion control. First, we explain what con-

gestion is and why it harms network performance. We then discuss where we can

implement congestion control and the pros and cons of putting congestion control in

various points in the network. We then give a description of RDMA networks and

why we simulate them. We provide a more in-depth detail about AIMD congestion

control algorithms and how and why they work. We conclude by explaining how this

dissertation evaluates congestion control protocols.

26



3

Performance and Isolation Issues in RDMA
Networks

A fair congestion control protocol ensures that the network treats all flows fairly.

If all bandwidth allocations are fair, all flows perform equally well. However, if

the protocol takes too long to converge to the fair rates, performance and isolation

issues can occur. If the network allocates some flows too little bandwidth for too

long, the flow’s performance suffers. Further, if users can identify when protocols

unfairly allocate flows to much bandwidth, users can abuse the unfairness to gain

extra bandwidth. This section describes why congestion control protocols converge

slowly and measures how slow convergence affects performance and security.

Slow convergence to fair rates causes a long tail for large flow FCT. Because the

bandwidth allocation becomes fair slowly, the network sometimes allocates band-

width bound flows (long) too little bandwidth. This has little effect on overall system

throughput, and most flows perform well, but the small number of flows allocated

too little bandwidth have long FCTs, which negatively impacts applications that

rely on tail latency (25). First, we identify why popular protocols converge slowly

and demonstrate with microbenchmarks how the slow convergence affects FCTs. We
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then show how slow convergence greatly increases the FCT of long flows in datacenter

simulations.

Slow convergence also leaves a network susceptible to performance isolation at-

tacks. Some protocols, particularly those for RDMA networks (110; 75) start sending

flows at line rate and only reduce rates when end-hosts detect congestion. Starting

flows at line rate is a performance optimization that improves small flow comple-

tion time and throughput. However, we find starting at line-rate leaves the network

susceptible to performance isolation attacks because users can exploit the networks

slow convergence to unfairly increase their packet injection rate. Using the attacks, a

nefarious user unfairly receives too much bandwidth and causes severe congestion in

the network. We also show that stopping some of the performance isolation attacks

increases the FCT of small flows, and we discuss the tradeoff. We demonstrate the

attacks in a hardware testbed and then show the attacks degrade system performance

in datacenter benchmarks.

3.1 Long Flow Tail Latency

Congestion control protocols manage packet queues on switches, which enables low

packet latency and high throughput in RDMA networks. Numerous congestion con-

trol algorithms exist for RDMA networks that achieve these two goals (110; 81; 66;

75; 83). Using these protocols, flows often complete quickly and applications perform

well.

While good network performance requires low latency and high throughput, we

identify a third metric that influences FCT, which is largely ignored by previous

work: convergence to fairness. Most protocols are provably fair (109; 75; 66), but

few optimize to converge quickly to fair rates. Faster convergence can dramatically

impact the FCT of long flows that are bound by their bandwidth allocation. Anytime

a protocol allocates bandwidth unfairly, a flow’s performance suffers. This chapter
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identifies why some protocols converge slowly and demonstrates how convergence

impacts performance.

3.2 Background

We provide details about Swift (66) and HPCC (75), the two congestion control

protocols we use for our case study. Swift and HPCC have many similarities. Both

ensure high throughput and low latency but converge slowly with reasonable param-

eters. Both also only perform a multiplicative decrease at most once per-RTT and

converge to fair rates with AIMD.

HPCC and Swift also have many differences. Li et al. (75) and Kumar et al.

(66) designed their protocols for different environments and different network state

information. Li et al. had fairly advanced switches with INT, which gives them fine-

grained data about network state. Kumar et al. assume a network with extremely

simple switches that provide no feedback about network state. Swift assumes the

network cannot even mark ECN bits in the packet header. In this section, we provide

more details about how the protocols work.

3.2.1 HPCC

Alibaba developed HPCC (75) for their datacenters. Alibaba originally used DCQCN

(110) but noticed significant performance issues when running a storage workload

alongside a machine-learning workload. Alibaba improved application isolation by

creating HPCC.

HPCC bases rate adjustments on 3 pieces of telemetry data from INT, 1) queue

depth 2) tx bytes and 3) timestamps. Queue depth informs HPCC about congestion,

and HPCC calculates throughput with tx bytes and timestamps. Most congestion

control protocols are AIMD, but HPCC is both multiplicative-increase multiplicative-

decrease (MIMD) and AIMD. HPCC converges to pareto optimal using MIMD and
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ensures fairness with AIMD.

Additive-increase slowly grabs available bandwidth in many congestion control

protocols, but HPCC can be more aggressive because HPCC knows the amount of

available bandwidth. Therefore, each flow can multiply their injection rate by the

percentage of available bandwidth. This grabs all available bandwidth in one RTT

but is not fair. To ensure fairness, HPCC also uses additive increase, which increases

rates in addition to the multiplicative increase. This gives HPCC higher bandwidth

utilization and AIMD’s fairness benefits.

Like many protocols, HPCC decrease flow’s rates when it detects congestion.

HPCC bases the multiplicative decrease on the queue depth information from INT.

If a queue is large, HPCC decreases injection rates by more than if the queue is

small. HPCC also uses a congestion window, which limits the number of packets in

the network, and packet pacing, which adds delay between each packet’s injection

into the network.

3.2.2 Swift

Unlike Alibaba, Google’s congestion control must rely only on end-to-end metrics,

and protocols cannot rely on ECN, RED, P4, or INT for network state. Swift mea-

sures network congestion with packet RTT; if congestion increases, RTTs increase,

and Swift reduces the congestion window size. Swift reduces the congestion window

when the observed packet latency exceeds target delay. Target delay is the maximum

amount of tolerable delay in the network. A user can tune target delay, but it also

changes dynamically, which we further explore later. Swift adjusts the congestion

window (cwnd) with the following equation:

cwnd “ maxp1´ β ˚ pdelay´ target delay, 1´max mdfq ˚ cwnd (3.1)

where β and max mdf (maximum multiplicative decrease factor) are adjustable
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parameters that make multiplicative decrease more or less severe. Delay is how long

the acknowledgement took to arrive after the end-host sent the data packet. Swift

increases its congestion window slightly each time a packet acknowledgement arrives

and the packet delay is below target delay.

Three components make up target delay : 1) base delay 2) topology-based scaling

and 3) flow-based scaling. Base delay determines the minimum tolerable delay in

the network, and target delay never drops below base delay. Topology-based scaling

adjusts target delay based on a flow’s path. In a datacenter, the length of different

paths can vary wildly, particularly as the datacenter becomes large. If two servers are

far apart, topology-based scaling increases target delay. For example, if two servers

in the same rack communicate, target delay is lower than two servers with 10 switches

between them.

fbs “ maxp0,minp
α

?
cwnd

` βqq (3.2)

α “
fs range

1
?
fs min cwnd

´
1

?
fs max cwnd

, β “ ´
α

?
fs max cwnd

(3.3)

The third and most complicated component, flow-based scaling, adjusts target

delay based on window size. If a flow’s congestion window is small, flow-based scaling

increases target delay. This has two effects 1) if a flow has a small window, it is less

likely the flow reduces its rate because it has more delay tolerance and 2) if there

is a multiplicative decrease, it is less severe because the difference between delay

and target delay becomes smaller, and so does the multiplicative decrease factor.

Equations 3.2 and 3.3 layout the exact equations for FBS. FBS changes target delay

on the range fs min cwnd to fs max cwnd and varies from 0 to fs range. Flow-based

scaling improves fairness because a flow with a smaller congestion window reduces its
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rate less than a flow with a larger congestion window. Kumar et al. found flow-based

scaling improves fairness particularly well when each flow’s congestion window is less

than 1.

This section provided more details about HPCC and Swift, which we analyse in

this chapter. We now detail the exact reasons they converge slowly and measure the

slow convergence.

3.3 Sources of Unfairness

State-of-the-art datacenter congestion control techniques minimize latency (queueing

delay) and maximize throughput. However, in efforts to achieve these goals, several

design decisions eschew fast convergence to fairness in favor of low latency and high

throughput. We outline these decisions and how they lead to slow convergence.

3.3.1 Conservative Additive Increase

AIMD converges to fairness by generating congestion events that trigger multiplica-

tive decrease (31; 19). In the absence of congestion, all flows increase their rates. The

sum of all flow rates eventually exceeds the bottleneck link’s bandwidth because each

flow decreases its rate. Multiplicative decrease reduces a flow’s rate by a multiple

of the rate, therefore the larger a flow’s rate, the more its send rate decreases. This

converges to fairness eventually because the flows with more bandwidth reduce their

rate by more than the flows with less bandwidth, and all flows increase their rates

by a constant amount.

AIMD relies on introducing queueing delays to converge to fair rates. To mini-

mize queueing delay while still converging to fair rates, protocols set additive increase

parameters conservatively to introduce only modest congestion. Protocols also scale

the multiplicative decrease factor with the extent of congestion(4; 75; 66). If con-
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gestion is modest, so are rate reductions. This enables provably fair protocols while

ensuring high throughput and low latency. However, small multiplicative decreases

and small additive increases make the protocol converge to fair rates more slowly

(19). If the network allocates a bandwidth bound flow too little bandwidth, its FCT

increases, which harms application performance.

Insight: Using a conservative AI value favors low latency over fairness.

3.3.2 One Reaction Per RTT

HPCC and Swift fully react to at most one congestion signal per RTT (75; 66). This

prevents the protocols from reacting twice to the same observed congestion. Consider

a flow that sends 10 packets in an RTT, and each packet reports a queue of about

100KB on the same switch. The queue depth or queueing delay each packet reports

is likely the same congestion event. If the protocol reacted to each packet, it would

react to the same congestion event (a queue of about 100KB) multiple times.

Reacting only once per-RTT removes a natural fairness effect. When reacting to

every acknowledgement, the flows that have more acknowledgements are those with

a larger congestion window and therefore a higher rate, and flows with higher rates

react more often than those with lower rates. As an example, suppose a congestion

control algorithm uses ECN as its congestion signal, and there are two flows, and one

uses twice as much bandwidth as the other. The flow with twice as much bandwidth

likely receives twice as many ECN marked packets in an RTT. If the protocol only

reacts once per RTT and divides the rate by two if the switch marked any packet’s

ECN bits in the RTT, both flows divide their rates by half. However, if the protocol

reacted to every ECN marked packet instead of every RTT, then the flow with twice

as much bandwidth and twice as many ECN marked packets would decrease its rate

twice as many times as the flow with less bandwidth. When reacting once per RTT,

less progress is made toward achieving a fair allocation of bandwidth.
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Insight: Not reacting to every congestion signal eschews convergence to fairness

for the sake of throughput.

3.3.3 Deterministic Feedback

Probabilistic feedback is more fair than deterministic feedback. To improve fairness

in DCQCN, Zhu, et al. (110) suggest the maximum probability a switch marks

a packet as experiencing congestion under moderate congestion is 1%. Under these

conditions, a flow without many packets in the queue (low rate) has a low probability

of a packet getting marked even when the link is congested. Therefore end-hosts

sending more packets are more likely to reduce their injection rate of packets. While

this leads to better fairness, Gao, et al. (34) showed that infrequent congestion

signals can lead to poor performance during Incast traffic. We call this probabilistic

feedback.

In contrast, INT and RTT use deterministic feedback because no matter how

many packets the flow has in the queue, it receives generally the same feedback as a

flow with many packets, since both flows experienced the same queueing delay (RTT)

or have nearly the same queue depth upon egress from the switch (INT). Because all

flows see almost exactly the same congestion, the competing flows react the same even

if they have different bandwidth allocations. Meanwhile when using probabilistic

feedback, a flow with a higher rate is more likely to receive feedback that indicates

congestion. Swift’s flow-based scaling (66) addresses this, but it is insufficient to

improve tail FCT of long flows, which we demonstrate with experiments .

Insight: All flows receiving the same feedback leads to unfairness.

3.3.4 Methodology

We demonstrate unfairness in an unmodified version of HPCC and a slightly modified

version of Swift. We use ns-3 (95) code provided as an artifact from HPCC (1)
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Figure 3.1: Microbenchmark Topology

HPCC
AI 50Mb/s

Utilization Rate .95
Increment Stage 5

Swift

AI. 50Mb/s.
β .8

max mdf .5
base delay 5µs

per-hop delay scaling 2µs
fs range 5 * base delay

fs max win 50 (100 in DC sims)
fs min win .1

Table 3.1: HPCC and Swift Parameter Settings

to evaluate HPCC and Swift. The simulator already implemented HPCC, and we

implement Swift to the best of our ability. We run a 16-1 incast traffic pattern, which

is important to datacenter networks (107). To evaluate each protocol’s handling of

incast traffic, we use a single switch topology with 17 hosts and each host has a

100Gbps link to the switch, and 16 of the hosts have one flow to the 17th host.

Figure 3.1 shows the topology. Two flows start every 20 microseconds and each

flow sends 1MB. Each link’s propagation delay is 1µs. Staggering each flow’s start

demonstrates how new network unfairly allocates new flows too much bandwidth.
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Table 3.1 provides a concise summary of the experiment’s parameter settings.

We use the parameters suggested by Li et al. (75) when evaluating HPCC. We set

Additive Increase to 50 Mb/s, utilization rate to 0.95, and increment stage to 5.

We refer to this set of parameters as ”default HPCC”. In the figures, these settings

are labelled as ”HPCC”. We also run HPCC with a higher AI value of 1Gbps to

demonstrate the effect of AI on fairness. This variant is labelled as ”HPCC 1Gbps”.

Additionally, we modified HPCC to use randomized feedback, where feedback from

the network is sometimes ignored. Feedback is disregarded based on the following

equation:

Current Window ă prandpq%Max Windowqq

This creates a linear equation for the likelihood a packet is dropped as a function of

current window size1. If a window size is at its max size, the information is always

used. If the window is 0, the feedback is never used. If the current window is half

the maximum size, there is a 50% chance the packet feedback is used. This process

only occurs if there is a multiplicative decrease and the reaction would update the

reference rate, so it does not affect rate increases. This HPCC variant is labelled

”HPCC Random Feedback”.

Swift does not suggest settings for multiple parameters, so we set reasonable

parameters. Like HPCC, we set additive increase to 50Mb/s. We set β (see Equation

3.1) to 0.8 and the maximum mdf to 0.5. For FBS, we use the parameters in Kumar

et al. (66), except when we are running on the smaller topology because the window

is smaller, so we lower the fs max win from 100 to 50 packets. For topology-based

scaling, we set the base RTT to 5us, and add 2µs of delay per hop. We also run Swift

with randomized feedback and a 1Gbps AI to show the effect on fairness. Because

Swift runs within PonyExpress (77) that maintains long lived connections, Swift does

1 Current Window size refers to the window based on the per-hop, per-RTT rate not the per-ACK
rate.
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Figure 3.2: Experimental Datacenter Topology
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Figure 3.3: Start Time vs. Finish Time 16-1 Staggered Incast HPCC

not define flow start behavior, so we start flows at line rate in Swift to fit with other

RDMA congestion control protocols.

Datacenter simulations demonstrate that faster convergence dramatically im-
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Figure 3.4: Start Time vs. Finish Time 16-1 Staggered Incast in Swift

proves the long flow FCT, particularly at the tail. For these experiments, we use

the same topology as Li et al. (75). Figure 3.2 shows the topology. There are

320 servers divided into 5 pods. Each server connects to its top-of-rack (ToR) switch

with a 100Gbps link; we only show one link per-rack to avoid clutter. Figure 3.2 only

shows 2 of the pods. Each pod has 8 switches in two fully connected layers. The top

layer connects to the 16 spine switches. Figure 3.2 only shows how the first switch in

the top layer of each pod connects to the spine. The next switch in the pod connects

to the next 4 spine switches and so on. The network is not oversubscribed, so there

is as much bandwidth going up each layer as there is bandwidth going down. We run

synthetic traffic based on Facebook Hadoop traffic (108). We run four simulations,

two with default HPCC and Swift and then two additional simulations where both

protocols set additive increase to 1Gbps.
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(c) 16-1 Incast Jain Index in Swift
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Figure 3.5: Jain Fairness Index and Queue depth during Incast Traffic in HPCC
and Swift
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3.3.5 Unfairness in HPCC and Swift

HPCC and Swift exhibit the previously discussed characteristics that create unfair-

ness. Figures 3.3 and 3.4 plot the start time versus the finish time of flows in the

16-1 incast in HPCC and Swift respectively. The trend for both default Swift and

HPCC is the same. Flows that begin last finish first because existing flows reduce

their rates several more times than the most recent flows to start. Increasing AI and

randomizing the feedback eliminates this trend and the flows finish at generally the

same time.

Figures 3.5(a) and 3.5(c) plot the Jain fairness index over time (47). When

the Jain fairness index is closer to one, the rates are more fair. Using the default

parameter settings, both Swift and HPCC take several hundred microseconds to get

close to an index of one. Using randomization and a higher AI improves convergence

to fair rates in both protocols. However, this has negative effects. Figures 3.5(b) and

3.5(d) show both congestion control protocols have larger queue oscillations with a

higher additive increase.

Figure 3.6 shows the 99.9% of FCTs based on flow size in the datacenter sim-

ulations. With the default AI, the FCT slowdown is 35-45x, but with a larger AI,

the slowdown drops to between 10-15x. Any application that relies on long flow

completion time would benefit from this increased performance.

We show that increasing AI improves performance of long flows but has negative

consequences during incast traffic. In Chapter 4, we introduce mechanisms that

improve long flow tail FCTs while maintaining small queues during incast traffic.

In the next section, we explain how slow convergence also creates security issues in

RDMA networks.
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3.4 Performance Isolation Attacks

Datacenter applications demand high throughput, low latency, and low CPU over-

heads. This leads to the growing adoption of Remote Direct Memory Access (RDMA).

The natural next step is thus to bring the benefits of RDMA to cloud users, and this

requires designing for multiple mutually untrusted users sharing an RDMA network.

Researchers identified security issues with RDMA (96; 100), but the CC aspect has

received little attention. TCP/UDP networks cannot assume that a user follows the

CC protocol, but since RDMA NICs (RNICs) enforce CC in hardware, which is out-

side the bounds of user control, RDMA users must follow the CC protocol. In shared

environments, we must consider can malicious users gain more bandwidth than their

fair share by exploiting the current design of RDMA CC mechanisms?

There are several production variants of RDMA (44; 9; 89), so answering this

question broadly is impossible. However, the most common standards are Infiniband

(IB) and RoCE. RoCE is an appendix on the Infiniband specification and implements

the IB protocol layer in an Ethernet network. We use IB and RoCE CC as a proxy

for RDMA networks.

Malicious users trying to gain more bandwidth is not new in a traditional kernel-

based datacenter networking setting. For example, users can open multiple TCP

sockets to gain extra bandwidth (91). Furthermore, a user can simply use UDP to

avoid CC. To disincentivize CC avoidance, researchers developed mechanisms that

drop users’ packets via fair-queuing-based approaches (98; 102) if end-hosts use too

much bandwidth.

RDMA networks differ from TCP networks in two unique ways that render ex-

isting solutions useless. First, applications offload communication to an RNIC, and

thus we cannot have any software-based indirection on the data path. The second

and more important property is that RDMA requires a lossless network, so we can
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no longer drop packets actively in the network as in the existing fair-queuing-based

approaches.

We analyze two major RDMA CC mechanisms, DCQCN (110) and HPCC (75).

DCQCN is the default CC algorithm in RoCE NICs from NVIDIA Networking, a

major RDMA NIC vendor worldwide. Alibaba deploys HPCC and is currently in

the process of being standardized by the Internet Engineering Task Force (IETF).

We uncover several performance attacks that allow a user to take substantially more

bandwidth than is fair. The attacks are feasible because of how IB/RoCE allocates

bandwidth and flows take several RTTs to converge to their fair rates. The attacks

include creating more than one queue pair (parallel QP attack), sending data through

a set of queue pairs in a round-robin fashion to completely circumvent CC (staggered

QP attack), and using multiple overlay topologies for collective communication (shuf-

fled overlay attack). The key property that our attacks exploit is that RDMA CC

algorithms fundamentally favor short flows, i.e., CC is enforced on a per-connection

basis and each queue pair starts at line rate. Users can gain more bandwidth by

abusing flows start sending at line-rate and protocols converging over several RTTs.

These attacks allow a malicious user to harm the network performance of other

well-behaved users. In our testbed experiments, an attacker can obtain 72% of the

available bandwidth with a victim flow on a RoCE NIC using the DCQCN CC

algorithm. Furthermore, ignoring CC causes switch buffers to fill with packets. This

dramatically extends packet queuing delay. In a simulated RoCE datacenter using

DCQCN, the 99% tail of small flow completion times increases by 7 times when a

user attacks the network. Since RDMA networks are lossless and can suffer from tree

saturation (90), these attacks could theoretically render an entire network unusable

as congestion spreads through the network.

In addition to identifying the above attacks, we uncover a fundamental tradeoff

between short flow completion times and the ability to mitigate these attacks. RDMA
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CC protocols start sending packets at line rate for several reasons, but primarily

to allow flows smaller than the network Bandwidth Delay Product (BDP) to send

all packets in one RTT. However, when a protocol allows a short flow to start at

line rate, a user could exploit slow convergence and imitate short flow behavior by

breaking a long flow into several short flows and continuously send packets at line

rate. Therefore, anytime a CC protocol provides exceptions for a certain flow type, it

creates a vulnerability. CC is an attack vector in RDMA networks, and performance

isolation must be considered when designing and evaluating CC algorithms.

3.4.1 IB and Isolation Background

Remote Direct Memory Access allows users to directly interface with hardware re-

sources on an RDMA NIC (RNIC). RoCE and IB are the most popular RDMA

standards and both follow the IB specification. In RoCE, users send messages along

Queue Pairs (QPs), which are similar to sockets in TCP. There are many types of

QPs, but we only consider the Reliable Connection (RC) QP type in our experiments

because it is the only QP type that enables all operation types2 and only has one

destination, which works well with CC.

When implementing RoCE/IB in hardware, there are three choices to enforce

CC. First, CC is optional in IB/RoCE, so hardware is not required to support it.

The second option is for the hardware to enforce CC per-QP, and the third option is

to enforce per-service level (per-SL) (45). A service level is analogous to a priority

and if one QP on a given SL experiences congestion, all QPs on that service level

throttle their rates. Per-SL makes sense in certain topologies, like a ring, where all

QPs may share a common path. However, in high radix topologies like a Clos (21)

or a fat-tree (70; 2), per-QP CC is more intuitive because not all QPs on the same

2 The Dynamically Connected Transport available in Nvidia Networking NICs supports all types
of operations, but it is not part of the IB standard.
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SL are throttled when one QP experiences congestion.

Prior work shows the dangers of per-flow fairness (91; 99). FairCloud (91) ex-

plored this space extensively. They proposed several different methods of enforcing

rate-limiting to ensure that users could not simply open more connections to increase

their bandwidth allocations. However, only one of our proposed attacks involves

using multiple QPs simultaneously to gain an advantage; the others exploit QPs

starting at line rate and only require one QP to send packets at a time. Further, two

of the proposed methods in FairCloud require fair queueing on switches (91). This

either requires a virtual lane per-tenant, which is unimplementable, or approximat-

ing fair queueing with mechanisms like Core-Stateless Fair Queueing (CSFQ)(102)

or Approximate Fair Queueing (AFQ) (98). However, AFQ and CSFQ require drop-

ping packets, so they are not suitable for RoCE/IB. Seawall (99) enforces per-src

CC, which eliminates the improvements of opening multiple connections but causes

asymmetric bandwidth allocation.

3.5 RDMA Congestion Control Attacks

We introduce three performance attacks that work against the current IB/RoCE

specification. The first attack involves opening and sending data on several QPs

simultaneously. The second attack also sends data on several QPs but does so se-

quentially, continuously changing which QP sends data. This allows a user to ignore

CC. The final attack involves changing between multiple equal-cost communication

overlays. By constantly changing the source-destination pairs for communication,

an application can again ignore CC completely. All attacks cause congestion and

allow a malicious user to gain extra bandwidth. These issues exist due to 1) how

connections are defined in the IB/RoCE specification and 2) slow convergence. If

flows converged to their fair rates instantly and used a simple fairness policy, the

attacks would be useless.
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3.5.1 Parallel QP Attack

The Parallel QP attack requires a user to open several QPs to the same destination

instead of a single QP per destination. Because IB/RoCE enforces CC on a per-QP

basis, the share of a bottleneck link is distributed based on the number of QPs each

host sends data along. The parallel QP attack is analogous to opening multiple

TCP sockets (29). However, since the RDMA network is lossless, switches cannot

drop packets of misbehaving users, which is a solution to the issue in lossy networks

(102; 98). Simply using per-src/dst fairness instead of per-QP fairness solves this

issue.

3.5.2 Staggered QP Attack

Using the staggered attack, a user ignores CC completely. Unlike TCP sockets, each

new QP initially sends packets at line rate. If a user continuously sends packets

on new QPs, the NIC never triggers CC. An RNIC waits for at least one RTT

before it receives feedback from the network to reduce a QP’s rate. This is because

destinations generate negative feedback, either in the form of Backward Explicit

Congestion Notifications (BECNs) or Congestion Notification Packets (CNPs). The

packet arriving at the destination and then the congestion information arriving back

at the sender takes at least one RTT. Assuming that the QP does not compete for

RNIC resources, a QP can send at least BDP packets before it throttles its rate due

to congestion.

Several factors affect the utility of a staggered attack. In a 3-tier fat tree with

100Gbps links and 1us of propagation delay, the expected RTT of the network is

12us. This means a QP sending at line rate can send 153KB before it throttles its

rate. As network characteristics change, such as longer delays or more hops, a QP can

send more packets. Another concern is the size of the message. If the message size is

100MB and the BDP is 153KB, a user would need 650+ QPs to the same destination.
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(a) Default Rings (b) New Ring

Figure 3.7: Changing Ring to create more src/dst pairs.

While this is not impossible, using too many QPs can cause performance degradation

due to cache misses of QPs’ metadata (27; 58). There may be several ways to reduce

the number of QPs used. First, rates in IB/RoCE recover over time, so when a QP

is left idle while other QPs send their data, the QPs rate eventually increases back

to line rate. DCQCN has parameters that determine how quickly QP rates recover

over time. Second, a user could destroy old QPs and set up new QPs while other

QPs send data.

This attack is unique to RDMA networks. TCP starts a connection by only

sending a single packet and slowly increasing the window over time, so staggering

connections to have a new connection always starting harms performance. RDMA

network endpoints aggressively inject traffic and only reduce their injection rate if

they detect congestion. By continuously starting new connections, a user can send

at line rate regardless of congestion.

3.5.3 Shuffled Overlay Attack

The shuffled overlay attack exploits common communication patterns to mitigate

the effect of CC. For example, distributed data-parallel deep learning requires an all-

reduce, which is often implemented with a ring communication pattern to maximize
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bandwidth utilization. Avoiding all-to-all communication allows a user to shuffle

communication overlays and thus circumvent CC.

Figure 3.7 shows several unique rings a user can create with just six servers. In

these rings, each server sends to a new destination, either by reversing the original

communication direction, changing the overlay ring, or doing both. Figure 3.7(a)

displays two rings, each going in a different direction. Figure 3.7(b) changes the

overlay, so all the neighbors in the ring are new. As the system scales, there are more

opportunities to create new rings. The number of possible overlays is proportional

to the number of servers. Assuming all servers are connected in a clique, there are

n-1 equal-cost overlays if n ą 8 where n is the number of servers (105).

New servers with multiple RNICs further exacerbate this issue (87). In this case,

a user can create even more source-destination pairs.

Shuffling overlays enable a user to perform the staggered and parallel attacks even

if a system enforces per-src/dst CC opposed to a per-QP basis. A user can perform

the staggered attack by sending across a new src/dst pair each RTT. This lets the

attacker send at line rate and ignore CC. A user can perform the parallel attack by

sending across several overlays simultaneously.

3.6 Attack Evaluation

We demonstrate the parallel and staggered attacks in a small cluster testbed and

ns-3 simulations. We focus on the parallel and staggered attacks since the shuffled

overlay attack is comprised of these primitive attacks. All evaluations take place

on a cluster with 6 servers each with a 100Gbps single port ConnectX5 RoCE NIC

connected to a 100Gbps Mellanox SN2100 Ethernet switch. There is a single switch,

but we emulate a dumbbell topology by connecting the switch to itself and forcing

all traffic through that link. Mellanox NICs use DCQCN as their CC algorithm. The

NICs and the switch use the vendors default settings unless otherwise specified.
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Figure 3.8: Experiment Dumbbell Topology

Figure 3.9: Parallel QP Attack Testbed Results

We experiment further in ns-3 to show the impact these attacks have in a larger

setting. The simulations demonstrate the effects of the attacks in a datacenter set-

ting. We use the same datacenter setup described in Section 3.3.4 and used earlier

in this chapter. We also use the same Facebook Hadoop workload (108).

3.6.1 Testbed Experiments

Parallel Experiment: First, we demonstrate the parallel attack on the testbed.

We run the ib write bw test on 4 servers. Figure 3.8 illustrates the experimental

topology. Both senders and receivers are on the same side of the dumbbell, so the

source-destination pairs share the bottleneck link. On one sender and receiver, we

open several extra QPs and run the write bandwidth test. The victim sender and
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receiver only open one QP. Figure 3.9 shows how the attacker gains more bandwidth

as it opens more QPs in the default hardware configuration. We omit error bars

because all standard deviations are within 1% of the mean.

Congestion Control causes this misallocation. The bar labeled ”16 No CC” shows

the results when we disable CC in our RDMA NICs. Fair arbitration on the switch

shares the bandwidth fairly between the two input ports.

Mellanox hardware does not allocate bandwidth on a per-QP basis. If CC enforces

per-QP allocations, we expect that with an extra QP the attacker would get two-

thirds of the bandwidth. However, the attacker receives far less than that. After

further investigation, we discovered that our NICs did not follow the IB specification3

and instead enforce CC per destination. On our NICs, all QPs to the same destination

use the same send rate.

QPs on the same RNIC share CC information and send rate but do not split

the rate between the QPs. For example, consider two sources sending to a shared

destination on a 100Gbps link. Source 1 opens two QPs and source 2 opens 1

QP. Source 1 calculates that it should send to the destination at a rate of 30Gbps.

However, instead of splitting this rate between the two QPs, both QPs send at a rate

of 30Gbps. Source 1 then sends at 60Gbps to the destination. Source 2 only sends at

40Gbps. Source 1 calculates a lower rate than source 2 (30Gbps vs 40Gbps) because

Source 1 receives more negative feedback from the network due to its overall higher

rate (60Gbps). This results in neither per-QP fair nor per-src/dst fair.

To trick the hardware into doing per-QP CC, we create multiple IP addresses on

the destination and open a new QP on each IP address. This allows us to emulate the

IB/RoCE specification and per-QP CC. Figure 3.9 shows that in implementations

that adhere to the IB/RoCE spec, the attack can get a far larger percentage of the

3 Mellanox (now Nvidia) owns a patent on destination based CC (10). Some QPs (UD and
Mellanox’s DCT (23)) can send packets to multiple destinations, so per-QP CC can throttle the
rate of a QP even if the destination and bottleneck changed.
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Figure 3.10: Parallel and Staggered Attack BW 1.125MB Transfer

bottleneck link.

Staggered Experiment: Next, we demonstrate the staggered attack’s effec-

tiveness in hardware. We run the staggered attack with and without a competing flow

to show the upper bound on performance and also rerun the parallel attack to show

the superiority of the staggered attack. We use 30 QPs, and the bandwidth delay

product of our testbed’s network is 37.5KB. This enables us to do a 1.125MB transfer

for staggered attacks. Figure 3.10 shows the staggered attack results. Running the

staggered attack without a competing flow achieves a throughput of about 74Gb/s;

the maximum bandwidth we achieve on our 100Gb/s RNICs is 92Gb/s. When we

run the staggered attack with a competing flow, the attacker receives 60Gb/s. Since

the link is 100Gb/s, the maximum bandwidth the competing flow could receive is

40Gb/s. However, since we only achieve just over 90Gb/s, the competing flow re-

ceives less than 40Gb/s.

We can’t achieve the same performance as no contention because of switch pa-
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Figure 3.11: Victim Traffic DC Simulation

rameters and per-port fair sharing on the switch. If the victim’s injection rate is at

least half of line-rate, then the victim receives its fair share because the switch only

allocates more bandwidth to the attacker’s port if the victim’s port does not send

enough traffic to saturate the link. Because the attacker only sends 1.125MB and

the switch does not mark packets until the switch queue depth exceeds 200KB, the

victim does not reduce its rate enough for the attacker to achieve line rate in our

system. To demonstrate that a longer-lived attack would be more detrimental to the

victim flow, we lower the ECN marking threshold to 8KB, so the victim backs off

earlier. Figure 3.10 shows that ”Staggered Low Marking” matches the theoretical

limit of the staggered attack.

3.6.2 Datacenter Simulations

To show the drastic effect these attacks have on overall network health, we run

10ms of random traffic with flow sizes based on Hadoop traffic from Facebook (108).

We perform three experiments. First, we run DCQCN with per-QP fairness. We
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rerun the same traffic except we break every flow ą1MB into smaller flows of 150KB

each, so a 1MB flow becomes six 150KB flows and one 100KB flow. We start all

these flows at the same time. In our third experiment, we simulate the staggered

attack and break up the large flows but wait for 13us (RTT of the network) before

starting each new flow. Figure 3.11 plots the 99% FCT slowdown of victim flows

from the three experiments. The FCT slowdown is the relative slowdown to the flow’s

theoretical completion time without congestion (propagation delay plus serialization

delay). Victim flows are smaller than 1MB because they did not break into smaller

flows to get more bandwidth. The parallel and staggered attacks devastate the

performance of small flows. The 99% slowdown of flows less than BDP goes from

about „20x without the attacks to over „80x with the parallel attack and „140x

with the staggered attack. We observe similar trends when we performed the same

experiments with HPCC (75). No matter the CC algorithm, these attacks create

congestion because they allow a user to ignore the CC.

3.7 Potential Solutions and Future Work

The current IB/RoCE specification leaves the network susceptible to several perfor-

mance attacks, and solutions to the hacks expose a fundamental tradeoff between

starting flows at line rate and performance isolation. These attacks exist because

CC is enforced per-QP and QPs start sending packets at line rate. Changing CC

enforcement to per-src/dst easily renders the staggered and parallel attacks useless.

However, enforcing CC on a per-QP granularity and allowing QPs to start at line

rate is a performance optimization. It allows short flows to send all their bytes as

quickly as possible. By enforcing CC on a per-src/dst granularity and potentially

throttling the rate of flows when they start, short flows do not complete as quickly.

This trade-off between isolation and short flow completion time is summarized in

Table 3.2. We also include the susceptibility of our Mellanox hardware. If CC allows

52



IB Spec. CTX-5 Per-src/dst CC
Parallel Vulnerable Vulnerable Secure

Staggered Vulnerable Secure Secure
Shuffled Overlay Vulnerable Vulnerable Vulnerable

Short Flow Penalty? No Yes Yes

Table 3.2: Various Environments Susceptibility to Attack.
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short flows to start at line-rate, a long flow could pretend to be short and hack the

system.

To demonstrate the trade-off between small flow tail latency and performance

isolation, we run datacenter simulations. However, instead of showing this trade-off

in DCQCN, we run simulations with HPCC. This is because the trade-off is more

apparent in protocols with a congestion window and that do not define idle behavior.

DCQCN allows a flow’s rate to recover over time. Per-src/dst still causes performance

issues in DCQCN, but they were not as pronounced in our experiments.
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Figure 3.12 shows the results of 50ms of Hadoop traffic in a network using HPCC

with different CC enforcement. The 99.9% FCT slowdown of flows between the size

of 20KB-110KB goes from 5-10x to 6-34x. This is a dramatic increase for flows that

are smaller than the BDP (denoted with a vertical line in the Figure) of the network.

The 99% of flows also take longer to complete, but the difference is less pronounced.

We garner two insights from this result. First, that improving performance iso-

lation in CC protocols can have an impact on the performance of the application.

Second, researchers should design and evaluate CC algorithms with performance

isolation in mind. We demonstrated that CC enforcement dramatically impacts per-

formance and that it is vital to improving performance isolation.

Further, HPCC and other CC algorithms, like Timely and Swift, omit charac-

teristics that should be defined. For example, designers should consider the idle

behavior of a CC algorithm. In DCQCN, the rate of a flow increases over time, while

in HPCC an idle flow’s rate does not change. Recovering the rate over time in HPCC

may improve performance.

Additionally, per-src/dst fairness only solves the parallel and staggered attacks;

solving the shuffled overlay attack requires a more complex solution. Because the src-

dst pairs change completely, the solution is unlikely to be implementable on a NIC.

Chapter 5 shows how we allow flows to start sending at line-rate, but do not leave

the network susceptible to attacks. We have to relax the network’s lossless property,

but we maintain packet ordering and do not detect loss, which are the main reasons

to keep a network lossless. Existing solutions like CSFQ and AFQ (102; 98) do not

preserve these properties.

3.8 Summary

This Chapter introduces two issues with RDMA congestion control that are rooted

in convergence. The first issue shows that some existing RDMA congestion control
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protocols converge to fair bandwidth allocations slowly. This causes the network to

unfairly allocate some flows too little bandwidth, which greatly extends their com-

pletion time. This harms overall application performance by increasing large flow

tail FCT. Next, we demonstrate that allocating bandwidth at a per-QP granularity

and starting flows at line-rate leaves a network susceptible to performance isola-

tion attacks. These attacks give an attacking user too much bandwidth and cause

congestion in the network.

We address the issue of long flow completion time in sender-side protocols in

Chapter 4. In Chapter 5, we make the network safe from performance isolation

attacks using speculative packets and in-network computing.
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4

Improving Long Flow Tail Latency

Tail latencies are critical for many distributed applications (25). In order to minimize

tail latencies, the network must ensure high, predicatable performance. Network

congestion delaying small data transfers is a common example of the network harming

application performance and congestion control protocols optimize small flow FCT.

Many applications also rely on long flow tail latencies. For example, deep-learning

often requires an All-Reduce to aggregate gradients. All-Reduces can move large

amounts of data to all servers within a computational group. Since an All-Reduce

cannot complete until all end-hosts receive data from all other end-hosts it is tail

bound; the operation cannot complete until the last flow finishes.

Chapter 3 demonstrates how state-of-the-art congestion control techniques trade

convergence to fairness in favor of latency and throughput. Because protocols favor

throughput and latency above fairness, most flows complete quickly, but an unfor-

tunate few take several times longer to complete than necessary. To reign in long

flow tail FCTs, we introduce Variable Additive Increase and Sampling Frequency:

two new mechanisms that raise fairness to be on-par with latency and throughput
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Figure 4.1: Unfairness occurring when starting at line-rate

and can be added to many sender-side congestion control protocols. Our mecha-

nisms improve long flow tail FCT without causing congestion or leaving the network

underutilized. Two key observations motivate the new mechanisms for existing pro-

tocols: 1) Bandwidth allocations are unfair when new flows join, and 2) Queues on

a bottleneck link increase dramatically when new flows join.

We observe congestion control protocols allocate new flows significantly more

bandwidth than existing flows because RDMA networks generally start sending new
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flow packets at line rate (75; 110). We use a simple example in Figure 4.1 to demon-

strate this principle. In timestep 1 (T=1), there are two flows, 1 and 2, sharing a

link L with bandwidth B. The bandwidth allocation is perfectly fair, so flows 1 and

2 have the same rate and the sum of their rates is ď B, so no queue builds up. In

timestep 2 (T=2), flow 3 joins and starts sending at line rate. In this situation a

queue builds up on L because the sum of the rates of all flows exceeds B. This causes

a congestion event and all the flows reduce their rate with a multiplicative decrease,

which in this example is 2. Before the multiplicative decrease flows 1 and 2 rates

were B{2 and flow 3’s rate was B. In timestep 3 (T=3) after the decrease, Flow 1

and 2 have a rate of B{4 and flow 3 has a rate of B{2. This example shows how a

new flow joining is the primary source of unfairness since the protocol allocates more

bandwidth to the new flow than the existing flows. Given a reasonable protocol,

the rates should eventually converge to fair rates, but while the protocol converges,

flows 1 and 2’s performance suffers because the network allocates them too little

bandwidth.

The second observation is that a new flow joining the network leads to a large

increase of the queue on the bottleneck link. This occurs because the bottleneck link

is fully or nearly saturated before the new flow joins. The switches queue any addi-

tional packets arriving at the link, which creates congestion. Using this observation,

we infer that a large increase in congestion corresponds to a new flow joining the

network.

4.1 Variable Additive Increase and Sampling Frequency

Using these two observations, we create two new mechanisms that improve fairness

without significantly increasing queueing delay or losing throughput. Chapter 3

outlines how many congestion control protocols improve latency and throughput by

using conservative additive increase parameters and reacting only once per-RTT.
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Our mechanisms maintain low latency and high throughput while also improving

fairness. The first mechanism is a Variable Additive Increase (VAI), which adjusts

the additive increase parameter when the end-host believes the bandwidth allocation

is unfair. Increasing the additive increase only temporarily, forcing fairer bandwidth

allocations without incurring queueing delay in the common case when allocations

are fair. The second mechanism is Sampling Frequency, which updates a flow’s rate

after a certain number of ACKs instead of each RTT. Reducing rates after a certain

number of acknowledges restores a natural fairness affect where flows with more

bandwidth reduce their rate more often than those with less bandwidth. Variable

AI allows a user to trade off latency for the sake of fairness with a smaller latency

penalty than simply increasing a standard additive increase parameter. Sampling

Frequency allows users to trade off bandwidth for slightly lower latency and improved

fairness. Our mechanisms extend the design space beyond the well documented trade

off between latency and bandwidth (5) to include fairness.

4.1.1 Variable AI

Variable AI increases the AI value when the protocol detects the rate allocation may

be unfair and decreases the AI value when the allocation is fair to keep latency low.

HPCC and Swift use Additive Increase to enforce fairness; however, as discussed

previously the AI value is set conservatively to keep queue oscillations small.

Exploiting the observation that bandwidth allocations are generally unfair right

after a new flow joins, we make additive increase a function of congestion. However,

we make careful choices to ensure this does not lead to further congestion during

large congestion events, such as incast.

When congestion occurs, Variable AI creates AI tokens. Algorithm 1 includes

the entire protocol. The protocol produces AI tokens by dividing the difference

between ”Measured Congestion” (Queue depth in HPCC and RTT in Swift) by a
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Algorithm 1 Generating Tokens and Setting Dampener

1: if RTT Finished then
2: if Measured Congestion ą Token Thresh then

3: AI Bank=min(
Meas. Cong.

AI DIV
+AI Bank, Bank Cap)

4: if Measured CongestionąToken Thresh then
5: dampener` “ Meas. Cong.

Token Thresh

6: else if AI Bank ““ 0 then
7: if No Congestion then
8: dampener = 0
9: else if Measured Congestion ă Token Thresh then
10: dampener = max(dampener-1, 0)

11: Measured Congestion = 0

Algorithm 2 Calculate Additive Increase

1: tokens = 1
2: tokens = min(AI Cap, AI Bank)
3: if Rate Adjustment then
4: AI Bank = max(AI Bank - tokens, 0)

5: divisor = (dampener / Dampener Constant) + 1

6: tokens = max(
tokens

divisor
, 1)

7: Additive Increase = tokens * base AI

configurable constant (AI DIV) when ”Measured Congestion” exceeds a threshold

(Token Thresh). The protocol adds these tokens to the AI Bank, which cannot

exceed Bank Cap.

Since Variable AI is a function of congestion and additive increases can cause

congestion, Variable AI can enter a feedback loop. To prevent feedback, we add a

dampener that reduces the effect of Variable AI if queues persist for a significant

amount of time. Dampener is only reset to zero when there are no more tokens in

the AI Bank, and there is no congestion over the entire RTT. No feedback can occur

because there is no more input from Variable AI (no AI tokens), and there is no

congestion to produce new tokens. The protocol increases dampener as a function of

congestion, which improves performance during large congestion events like incast.

If there are numerous new competing senders, like in a 100-1 incast pattern, then

60



Variable AI creates many AI tokens, which causes an elevated AI for a large period

of time, which can increase congestion. In the case with many concurrent senders,

dampener increases quickly, so the elevated AI creates less congestion.

Variable AI creates new tokens every RTT; we now detail how Variable AI spends

those tokens. Algorithm 2 shows how many tokens Variable AI uses when increas-

ing the Additive Increase. When calculating the additive increase, we multiply the

default AI by the minimum of two values, the AI Cap and the number of available

AI tokens. The AI Cap is the largest number of tokens the protocol can expend

in a rate update period. If the rate decreases overall, Variable AI removes tokens

every decrease period, which is set by the Sampling Frequency. If the rate increases,

we remove tokens each RTT. A larger AI Cap leads to higher latencies but better

fairness. Variable AI spreads the increased AI over time, which avoids large queues.

QCN and TCP BIC have a similar mechanism to Variable AI called Fast Recovery

(3; 76). In the face of a congestion event, Fast Recovery assumes that transient queues

cause congestion signals. Therefore flows enter Fast Recovery, which quickly tries to

grab the bandwidth lost during congestion. However, since Fast Recovery is designed

to improve throughput and not fairness it is designed differently. Variable AI is more

conservative because it assumes the link is fully utilized already and does not want

to cause congestion, only improve fairness.

4.1.2 Sampling Frequency

Sampling Frequency tunes how often a protocol reacts to congestion signals. Sec-

tion 3.3.2 detailed how reacting only once per-RTT leads to unfairness. Sampling

Frequency determines how many acknowledgements (ACKs) a flow receives before

reducing its rate. If Sampling Frequency is set low, the protocol reacts to more con-

gestion signals because it reacts after fewer packets, so the flow decreases its rate

more often.
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A low Sampling Frequency (reacts often) reduces bandwidth utilization, but im-

proves fairness and reduces packet latency. If a protocol reacts more often, the rate

decreases more often and therefore is more likely to leave unused bandwidth. How-

ever, this reduces the chances of queueing delay because the rates are lower, so tail

latency is reduced for latency bound flows. Most importantly, flows with more band-

width, which receive more ACKs, reduce their rates more often than flows with less

bandwidth.

Sampling Frequency is only invoked if the rate is decreasing; it has no affect if

the rate increases. If we use Sampling Frequency to also increase rates, flows with

more bandwidth would increase their rate more often, which goes against our goal

of fairness. We recommend flows increase their rates once per RTT.

We provide proof for when Sampling Frequency improves convergence to fair

rates. We use a fluid model similar to the ones used by Zhu et al (110; 109). We

model Sampling Frequency with the equation

f “
s ˚MTU

Siptq

where f is the frequency of the multiplicative decrease, s is the number of ACKs

between rate decreases, and Siptq is the injection rate for flow i using Sampling

Frequency opposed to per RTT. MTU is the maximum packet size. We then model

a generic multiplicative decrease function with

S 1iptq “ ´
β ˚ Siptq

f

where 0 ă β ă 1. If we integrate this over a decrease interval (f), then the rate

decreases by a factor of β, which is the desired behavior. When we substitute f , we

get the full equation
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S 1iptq “ ´
β ˚ S2

i ptq

s ˚MTU

To model a protocol that decreases once per RTT, we use the equation

R1iptq “ ´
β ˚Riptq

r

where r is the measured RTT of the packets, and Riptq is the injection rate for flow i

when performing decreases each RTT. For simplicity, we use a fixed RTT to show the

behavior while the network is congested. Since multiplicative decrease only occurs

when the network is congested, this is a fair simplification.

We now show that rates using Siptq converge faster under reasonable and desirable

constraints. We use two flows and measure fairness as S1ptq ´ S0ptq or R1ptq ´R0ptq

and initially

C1 “ S1p0q “ R1p0q ą S0p0q “ R0p0q “ C0

. Sampling Frequency is more fair when

pR1ptq ´R0ptqq ´ pS1ptq ´ S0ptqq ą 0 (4.1)

at t “ 0 the fairness metric is the same, but we show that over time given certain

constraints, Si becomes fairer faster. We show that the gap between the two protocols

fairness metrics increases faster by showing

pR11p0q ´R
1
0p0qq ´ pS

1
1p0q ´ S

1
0p0qq ą 0

when we simplify, we get the constrains that this is true when

1

r
ă

C1 ` C0

s ˚MTU

When initial injection rates are high and sampling happens frequently and round

trip times are long, the rates using Sampling Frequency converge faster. This is the
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desired behavior. When a new flow joins, its rate is high and it causes congestion, so

RTTs are high. Sampling Frequency converges quickly when we size it appropriately.

Figure 4.2: Plotting difference in fairness between to MD methods. r = 30000,
MTU=1000, s = 30, β=.5

To demonstrate, we graph equation 4.1 with reasonable parameters and show how

the rates converge during congestion in Figure 4.2. We use bytes per nanosecond as

our units for rates, 30,000ns for the observed network RTT (r), 30 for the Sampling

Frequency (s), 1,000 bytes for packet MTU, and .5 for β. The initial rates for the flows

are 100Gbps and 50Gbps. The function becomes positive quickly, which indicates

that Sampling Frequency is more in the short term. Eventually, per-RTT sampling

converges to fair rates as well, so they become equally fair. However, the goal is to

converge to nearly fair rates quickly, which the mechanism achieves and is indicated

by the a positive function value with a small input.

4.2 Implementation

This section details how we implement Variable AI and Sampling Frequency in HPCC

and Swift using the ns-3 network simulator. We constrain this work to HPCC and

64



Swift, two representative state-of-the-art congestion control protocols. Nonetheless,

we believe our mechanisms are broadly applicable to other sender reaction-based

protocols because they address the fundamental issues introduced in Chapter 3.

4.2.1 Variable AI

We implement Variable AI in HPCC and Swift, which require slightly different im-

plementations due to different design methods of rate increases and congestion mea-

surements.

Variable AI in HPCC creates new tokens using queue depth, which HPCC already

requires. Based on the generic protocol in Algorithm 1, we must determine how to

generate AI tokens, increase dampener, and reset dampener. Variable AI creates

AI tokens only if the maximum observed queue depth during the RTT exceeds the

minimum Bandwidth Delay Product (BDP) of the network. We use minimum BDP

as the Token Thresh because unfairness occurs when a new flow joins the network.

Assuming a new flow exists for several RTTs, the new flow creates a queue buildup

equal to the BDP of the flows path. This BDP is at least the minimum BDP of

the network. HPCC converges to pareto optimal in terms of latency and bandwidth

using MIMD. Additive increase ensures fairness. Since HPCC is MIMD, HPCC

always multiplies the existing rate by C, a value calculated using network feedback.

If C is ą 1, the end hosts injection rate decreases. If C is ă 1, the end hosts injection

rate increases. We track the maximum C observed over a round trip time. If C ă 1

for an entire RTT, we determine there is no congestion and Variable AI can reset

the dampener.

Variable AI creates AI tokens in Swift based on RTT measurements. If an RTT

measurement exceeds ”target delay” in Swift, Swift performs a multiplicative de-

crease. Similar to HPCC, we set Token Thresh to the sum of the target delay and

the delay incurred by the minimum BDP of the network, so the protocol likely only
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generates new tokens when a new flow joins. If no packets delay exceeds ”delay tar-

get” over the RTT and the AI Bank is empty, we reset dampener because congestion

alleviated and there cannot be any feedback since there is no input into the system.

Variable AI has one issue that could increase unfairness. An existing flow could

experience congestion for a long period of time and therefore have a high dampener

value, which would lead to a low AI. A new flow, however, starts with a dampener

value of 0. In this case, a new flow could have a higher AI than an existing flow.

We found no way around this issue because it is impossible to distinguish whether

feedback from the increased AI or new flows joining the network caused the ob-

served congestion. We ran experiments with this exact pattern and Variable AI still

improved fairness.

4.2.2 Sampling Frequency

Normally, Swift and HPCC wait one-RTT between rate updates. To implent Sam-

pling Frequency, we amend Swift and HPCC to decrease their rates after a predeter-

mined number of acknowledgements opposed to waiting an RTT. Sampling Frequency

only affects when HPCC and Swift perform rate reductions. Rate increases still hap-

pen once per-RTT. If increases happened on the Sampling Frequency schedule, flows

with a higher rate increase their rate more often and worsen fairness.

HPCC inspired two additional changes in Swift to make Sampling Frequency

more effective. HPCC has a per-ACK and a per-RTT update schedule. HPCC

maintains a ”reference rate” that is updated once per-RTT. HPCC then updates the

per-ACK rate after every acknowledgement, but the per-ACK updates are relative

to the ”reference rate” not previous per-ACK rates. Using Sampling Frequency the

reference rate is updated per-sampling period, which is a configurable number of

acknowledgements. As an example, suppose a flow has an injection rate of R. It

receives an ACK that indicates congestion, so it updates its rate to R
2

, however the
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reference rate remains unchanged from R. The flow receives another packet that

indicates congestion and again reduces its rate. However, it reduces its rate based

on the reference rate, so the injection rate remains R
2

. After an RTT, if congestion

persists, HPCC updates the reference rate to R
2

. If the next ACK after the reference

update indicates congestion, the rate reduces to R
4

. We add this same functionality

to Swift. It improves performance with Sampling Frequency because when rates get

low, Sampling Frequency does not update the injection rate often. The per-ACK

adjustments allow Swift to react without causing long lived unfairness because flows

with a higher injection rate update their per-sampling period rate more often.

The second change is to always perform an additive increase regardless of conges-

tion like in HPCC. This improves the functionality of Variable AI since the tokens

are always spent. This can have a small latency penalty, but it should only incur an

additional latency equal to when latency causes the MD to equal the AI, which is a

small amount of delay.

4.3 Evaluation

We implement our mechanisms and evaluate them as additional parameters in HPCC

and Swift in an ns-3 simulator. Results show that these mechanisms improve fairness

and throughput.

4.3.1 Methodology

We use the same parameters as Section 3.3.4. In addition to the 16-1 incast traffic,

we run three new benchmarks. First, we run a 96-1 incast pattern to show our mech-

anisms work with a higher incast degree. Then we run two datacenter simulations.

The first is based on a hadoop traffic trace from Facebook (108). The hadoop traffic

contains mostly small flows (95% ă300KB). The second datacenter benchmark is

flow size distributions from two applications mixed together to simulate a shared en-
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Parameter HPCC Swift

Sampling Frequency 30 ACKs 30 ACKs
Token Thresh 50KB 4µs

AI DIV 1KB 30ns
AI Cap 100 100

Bank Cap 1000 1000

Table 4.1: HPCC and Swift VAI SF Parameters

vironment. The first application is a Microsoft WebSearch traffic pattern with many

long flows (30% ą 1MB), and the second application is a Alibaba storage work-

load with almost exclusively small flows (97.5% ă256KB and 100% ă 2MB). The

datacenter benchmarks run the network at 50% load for 50ms. For the datacenter

simulation, we use the same experimental setup for the datacenter workloads as in

Chapter 3.

We summarize our VAI and SF parameters in Table 4.1. We decrease the injection

rate of packets every 30 ACKs in both Swift and HPCC when they use Sampling

Frequency. For Variable AI, we set Token Thresh to the minimum BDP of the

network, which is about 50KB. For Swift, we use 4µs plus target delay, which is a

base target delay of 5µs and 2µs are added per-hop for topology based scaling. 4µs is

the delay incurred when queue depth is 50KB. In HPCC, Variable AI produces 1 AI

token for every KByte of queue depth (AI DIV) and set bank cap to 1000 tokens. In

Swift, we produce an AI token for every 30ns of queueing delay, and cap the number

of tokens at 1000 as well. Variable AI for both HPCC and Swift can only use 100

tokens at a time (AI Cap). We set dampener constant to 8 in Swift and HPCC.
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Figure 4.3: 16-1 Incast Traffic Start Time vs Finish Time with HPCC
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Figure 4.4: 16-1 Incast Traffic Start Time vs Finish Time with Swift
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(c) Swift 16-1 Incast Jain Fairness Index
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(d) Swift 16-1 Incast Queue Depth

Figure 4.5: 16-1 Incast in HPCC and Swift

4.3.2 Experimental Results

Incast

First, we rerun the 16-1 incast congestion from Chapter 3 and compare our VAI SF

variants with the existing baselines. Figures 4.3 and 4.4 show the start versus finish

time of HPCC and Swift with default settings versus their VAI SF variants. Omitting

the HPCC and Swift with a higher AI and random feedback avoids clutter. The finish

time of the flows is much closer together when using our mechanisms. Figures 4.5(a)

and 4.5(c) further demonstrate the improved fairness. Our mechanisms converge

to a Jain Index of nearly 1 much quicker than with default settings and about as

quickly as the high AI and random variants. Figure 4.5(b) shows that when using
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VAI and SF, HPCC still maintains near 0 queues. Figure 4.5(d) shows that Swift

with VAI and SF sustains smaller queues than all other variants likely because we

do not use FBS, which increases the tolerated queueing delay. Swift VAI SF also has

small queue oscillations.
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(a) HPCC 96-1 Incast Jain Fairness Index
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(c) Swift 96-1 Incast Jain Fairness Index
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Figure 4.6: Jain Fairness Index and Queue depth during Incast Traffic with 96-1
Incast in Swift and HPCC

The same trends continue when we scale the incast to 96-1. Figures 4.6(a) and

4.6(c) show that when using VAI and SF, the system becomes fair quickly. Figure

4.6(b) shows that HPCC VAI SF again maintains near zero queues like the default

HPCC configuration. Meanwhile the other variants sustain queues throughout the

experiment. In Figure 4.6(d), Swift maintains the smallest queue because it does not
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Figure 4.7: 99.9% FCT for various flow sizes in Hadoop Traffic

use FBS, and smaller oscillations because it has a small AI in the steady state.

Datacenter Simulations

We found that a slow convergence to fair rates significantly impacted the performance

of long flows, particularly at the tail. Figure 4.7 shows how the unfairness affects long

flows in a Hadoop traffic pattern. We plot the FCT slowdown as a function of flow

size. We take the 99.9% from each flow size. The FCT Slowdown divides the achieved

FCT by the theoretical minimum FCT (propagation delay + serialization delay).

Because Swift and HPCC keep small queues and enable low packet queueing delay,

small flows complete quickly. However, as the flow sizes increase and FCT becomes

a function of bandwidth allocation, the FCT slowdowns start to increase. For flow

sizes greater than 1MB, HPCC and Swift without our mechanisms perform poorly.

Flows take 20-40x longer to complete than the theoretical minimum. When we add

our mechanisms, long flow performance improves substantially. Our mechanisms

halve the tail FCT of long flows; the FCT slowdown goes from 30-40x without our

mechanisms to 10-15x with our mechanisms.
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Figure 4.8: 99.9% FCT for various flow sizes in WebSearch and Storage Traffic

Figure 4.8 shows the same trend with the Websearch and Storage benchmark.

The FCT slowdown of flows greater than 1MB grows to several times compared to

smaller flows. Meanwhile with our mechanisms the FCT stays several times lower.

This improves the performance of any workload that relies on long flows and needs

small tail latencies like big-data and deep-learning.
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Figure 4.10: Median FCT for various flow sizes in WebSearch and Storage Traffic

VAI and SF improve the tail FCT with no significant repercussions on median

FCT. Figures 4.9 and 4.10 show the median FCT slowdown in the Hadoop and

Websearch/Storage workloads respectively. This shows that VAI and SF do not incur

any extra queueing delay in the common case. The median FCT slowdown in Hadoop

for Swift is significant. Swift only uses a single, constant additive increase, which

may cause rates to recover slowly even if there is significant available bandwidth. The

slowdown is not present in the Websearch/Storage workload. Swift may benefit from

a hyper additive increase setting like in Timely (81), which can help grab available

bandwidth.

4.4 Conclusion

Slow convergence to fairness significantly raises the FCT of long flows. This chapter

identifies that unfairness occurs when new flows join the network and that a new

flow joining causes large packet queue depth on network switches. Based on these

observations, we develop Variable Additive Increase and Sampling Frequency, two

sender-side mechanisms that greatly improve fairness without harming throughput
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or increasing queue size. We evaluate our mechanisms in HPCC and Swift and

show a dramatic improvement in fairness during micro-benchmarks and datacenter

simulations. In a datacenter simulation, our mechanisms improved 99.9% by more

than 2x. While a significant performance improvement, convergence still takes several

round trips. Further, the flows still start sending packets at line-rate, which leaves

the network to the attacks described in Chapter 3. In the next chapter, we describe

how flows can start at line-rate and converge during the first RTT, so the network

is free from performance isolation attacks.
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5

Towards RDMA Performance Isolation and
Effective Congestion Control in High BDP

Networks

Effective and secure congestion control is imperative for networks. Without an ef-

fective congestion control protocol, applications can suffer high latencies (110; 75)

and degraded throughput (46; 90), which harms application performance. As shown

in Chapter 3, if users can abuse a network’s congestion control, a nefarious user can

cause severe congestion in the network and unfairly gain bandwidth. This Chapter

explores mechanisms to ensure that congestion control is effective in shared environ-

ments and future networks.

Two trends challenge existing congestion control methods in RDMA networks: 1)

RDMA is becoming more common in shared environments and 2) network bandwidth

is growing rapidly. Originally, sharing an RDMA network was not an issue. RDMA

was reserved for supercomputers, which are either not shared or partitioned statically,

and there was little chance for performance interference. However, now RDMA is

commonly available in cloud platforms such as Microsoft Azure, Google Cloud, and

Amazon Web Services. Numerous users share these systems at a fine granularity,
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and isolating their performance is essential. Chapter 3 demonstrates how users in

RDMA networks can unfairly gain extra bandwidth. This chapter introduces new

mechanisms that mitigate a user’s ability to unfairly gain bandwidth.

The second issue facing RDMA congestion control is that common congestion

techniques in RDMA networks become ineffective as network BDP increases. RDMA

uses reactive/sender-side congestion control, and end-hosts only reduce their injec-

tion rates when they receive congestion signals from the network, like ECN marked

packets (110), RTT increases (66; 81), or In-band Network Telemetry (75). Many

protocols (110; 81; 75) and the IB specification (45) start sending packets at line-

rate. Since it takes at least one RTT for congestion protocols to throttle injection

rates, an end-host can send BDP bytes before the NIC reduces its injection rate.

Currently this is effective, but in this chapter, we show that as network bandwidth

scales, current reactive congestion control mechanisms are ineffective.

A naive solution to the issues posed above is starting flows pessimistically. A

flow sends a single packet and ramps up its injection rate over time, similar to

TCP. However, this has negative performance implications. Starting flows at line-

rate allows small flows to complete quickly and ensures end-hosts use all available

bandwidth. We want flows to start at line-rate without the congestion and isolation

issues that occur with misbehaving users and networks with large BDPs.

We introduce two mechanisms that mitigate a nefarious users ability to unfairly

gain extra bandwidth: 1) One-RTT Convergence (1RC) and 2) a new flow weighting

scheme. Using 1RC flows converge to their fair rates during the first RTT, so flows

can start sending packets at line-rate, but the network is not susceptible to the

staggered attack or shuffled overlay attack because the network drops packets from

flow’s that exceed their bandwidth allocation. Our new weighting scheme reduces a

flows bandwidth allocation if the flow’s end-host has numerous open connections. We

set a flows weight equal to the inverse of the number of concurrent connections on the
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end-host, so the network allocates less bandwidth to end-hosts with many flows. This

aims to reduce the effectiveness of the parallel attack and parallel shuffled overlay

attack.

Both the issues of performance isolation attacks and congestion control becoming

ineffective stem from flows starting at line-rate and taking at least one-RTT to con-

verge to their fair rates. This chapter shows how we can converge to fair rates during

the first RTT and start sending packets at line-rate. Our mechanism, One RTT

Convergence (1RC) uses speculative packets and system-wide synchronized end-host

clocks (68; 74; 69) to drop certain packets. 1RC only drops a flow’s packets if letting

the packets through would unfairly allocate the flow too much bandwidth. Unlike

existing speculative packet methods, 1RC drops packets in order and detects loss

implicitly, so end-hosts do not need to detect packet loss or reorder packets. We

show that 1RC makes a network less susceptible to performance isolation attacks

and enables congestion control to work even in high BDP networks.

1RC requires a switch-based protocol because the switch must know the flow’s fair

rate. If the switch did not know the fair rate, the switch would not know how many

packets to drop. While there are many effective switch-based protocols (61; 28; 103),

we choose s-PERC because Jose et al. (55) designed it for datacenter networks and it

converges to max-min fair rates in bounded time. Note that 1RC does not guarantee

that a flow converges to its max-min fair rate in one RTT, only to the fair rate

computed by the switch, which may take several RTTs to converge.

Using 1RC, flows converge to their allocated rates during their first RTT, do

not have to reorder packets or detect drops, and receive only their fair share of

bandwidth, even with a misbehaving user. 1RC is not a complete congestion control

protocol and therefore does not calculate injection rates for end-hosts, it is simply

a method to drop speculative packets in-order. 1RC works with any switch-based

protocol and allows flows to start sending packets at line-rate without allocating the
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new flow an unfair amount of bandwidth.

The second method to improve performance isolation is a new weighting scheme.

In traditional fair queueing, increasing a flow’s weight increases the flow’s bandwidth

allocation. For example, a flow with a weight of 2 receives twice the bandwidth as a

flow with a weight of 1. While we do not perform true fair queueing on the switch

because that requires a virtual channel for each flow, one can also weight network

flows at end-hosts (22), so a flow converges to a higher bandwidth allocation as its

weight increases. We instead reduce a flow’s weight as the flow’s source opens more

connections. This reduces the effectiveness of the parallel QP and shuffled overlay

attacks shown in Chapter 3.

5.1 Background

1RC augments several existing congestion control methods. While 1RC works in any

switch-based congestion control protocol, we use s-PERC (55) because it enables

low latency and high throughput networking and converges to max-min fair rates in

bounded time. 1RC also uses speculative packets (49; 51; 42; 43), which are lower

priority packets that the network can drop if the network becomes congested. Finally,

1RC relies on datacenter-wide synchronized system clocks (68; 74; 69). This ensures

1RC drops the correct number of speculative packets. We also introduce work related

to setting flow weights to discourage misbehaving users. This section provides an

overview of these foundational techniques.

5.1.1 s-PERC

s-PERC converges to max-min fair rates in bounded time without storing per-flow

state. s-PERC tracks several summary statistics about the switches usage, such as

the number of flows using the switch, the number of flows bottlenecked at the current

switch, and the rate sum of flows bottlenecked at other switches.
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Algorithm 3 s-PERC

1: b, x, s: vector of bottleneck, allocated rates, and bottleneck states in packet
(initially 8, 0, E, respectively).

2: i: vector ignore bits in a packet (initially, 1)
3: SumE, NumB : sum of limit rates of E flows, and number of B flows at link
4: MaxE, MaxE’ : max. allocated rate of flows classified into E since last round

(and in this round, respectively) at link.
5: if s[l ] = E then
6: s[l ] Ð B
7: SumE Ð SumE - x[l]
8: NumB Ð NumB + 1

9: bÐ(c - SumE ) / NumB
10: for each link j do
11: if i[j] = 0 then p[j]Ðb[j] else p[j] Ð 8

12: p[l ]Ð 8

13: eÐ min p
14: xÐmin(b,e)
15: b[l ]Ðb,x[l ]Ð x
16: if băMaxE then i[l]Ð1 else i[l] Ð 0
17: if flow is leaving then
18: NumBÐNumB - 1
19: else if eăb then
20: s[l] Ð E
21: SumE Ð SumE + x
22: NumB Ð NumB - 1
23: MaxE Ð max(x,MaxE ); MaxE’Ðmax(x,MaxE’ )

To explain the s-PERC algorithm, we show the original algorithm from Jose et al.

(55) in Algorithm 3. In s-PERC, each end-host periodically sends a control packet

that contains four pieces of data for the switches: 1) a vector of the bottleneck rates

at each switch, 2) a vector of the rates allocated by each switch, 3) the flow’s current

state at each switch, and 4) ignore bits.

The switches use the bottleneck rates (b) on the control packet to determine

where the flow is bottlenecked (lines 10 and 11). Each switch calculates the bottle-

neck rate (line 9) adds the bottleneck rate to the control packet (line 15).

If a flow is bottlenecked elsewhere, s-PERC does not want to allocate the flow
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bandwidth that it will not use. To redistribute the bandwidth not used for flows

bottlenecked elsewhere and determine the bottleneck rate for flows that are bot-

tlenecked at the current switch, each switch keeps a sum of the rates for all flows

bottlenecked elsewhere (SumE ). Line 19 determines if the flow is bottlenecked at the

current switch or another switch by comparing the bottleneck rate on the current

switch (b) with the lowest assigned rate at another switch or on the end-host (e). If

the flow is bottlenecked elsewhere, the switch marks that the packets belongs to E

(line 20), adds the minimum allocation for the flow (e) to SumE (line 21), removes

the flow from B (line 22), and checks if the current flow’s allocation is higher than

any other flow in E (line 23).

To calculate the bottleneck for flows bottlenecked at the current switch, line 15

subtracts SumE from the link’s bandwidth (c) and divides that result by the number

of flows currently bottlenecked at that switch (NumB). Line 13 determines the flow’s

previous bottleneck (e), and line 14 determines the minimum rate allocated to a flow

including the current switch (x).

Line 16 sets the ignore bit for the control packet. MaxE is the maximum rate

of a flow bottlenecked at another switch. If MaxE is greater than b, some flow (not

necessarily the flow associated with the current control packet) was bottlenecked at

another switch, but now should be bottlenecked at the current switch. This unfairly

allocates flows currently bottlenecked at the current switch too little bandwidth

because SumE is larger than it should be. s-PERC does not want to propagate this

unfair rate to other switches, so on line 16, if the bottleneck rate is less than MaxE,

the switch sets the ignore bit for that hop on the current flow. This tells subsequent

switches to ignore that allocation because it is unfairly low (line 11). We augment

s-PERC to use 1RC and weights, which make it more secure and robust as BDP

increases. The core s-PERC algorithm does not change, but we make slight changes

that we explain in Section 5.2.
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5.1.2 Speculative Packets

Switch and receiver-based congestion control methods incur scheduling overhead.

For example, in s-PERC if a flow is larger than BDP, the flow must send and receive

a control packet before sending more packets. This ensures the switch allocates the

flow bandwidth before the flow starts sending data packets. s-PERC exempts short

flows (ă BDP), so they can complete quickly. This problem also occurs in other

switch and receiver-based protocols such as ExpressPass (20) and Homa (83), where

all flows must spend an RTT scheduling subsequent packets, which can double small

flow FCT.

To alleviate scheduling overhead, some receiver and switch-based protocols use

speculative packets. Speculative packets are lower priority, and switches can drop if

the switch is sufficiently congested. In the best case, the network is not congested,

and switches deliver all speculative packets, so the flow completes quickly. In the

worst case, the network drops some packets and schedules the flow, so the flow

completes no slower than without using speculative packets.

Several congestion control protocols (49; 51; 42; 43) use speculative packets to re-

duce scheduling overhead. However, no speculative packet method maintains packet

ordering. SRP (49), LHRP (51), and NDP (42) all assume infinite reordering re-

sources at the destination. Aeolus (43) requires packets arrive in order, so if the

network drops a single speculative packet, the source resends all speculative packets

once the destination schedules the flow. This wastes bandwidth because the network

delivers packets that the source resends.

Bai et al. (7) noticed that short flows tail latencies were still high even with

speculative packets because the network dropped speculative packets for short flows.

They introduced SSP (7), which prioritizes short flow’s speculative packets over all

other packets. This enables short flows to complete quickly because their speculative
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packets are rarely, if ever, dropped. While 1RC does not prioritize short flows, it

does reduce the chance the network drops short flow speculative packets because 1RC

lets through a fair number during the first RTT, instead of dropping all speculative

packets during congestion like previous methods.

Further, to our knowledge no existing speculative packet mechanisms consider

speculative packet fairness; if the port queue contains too many packets, the port

drops the speculative packet. In a worst case scenario, if two speculative flows

compete for bandwidth, the switch may let all of one flow’s speculative packets

through and no speculative packets through for the other flow.

1RC provides a speculative packet mechanism that maintains packet ordering

and fairness between flows that start around the same time. This enables simpler

end-hosts that are not required to handle reordering.

5.1.3 Synchronized Clocks

Many applications rely on systems with synchronized clocks, such as transactional

key-value stores (80), ensuring consistency during network operations (72), and con-

gestion control (88). Systems synchronize clocks with mechanisms like PTP (68),

DTP (69), HUYGENS (37), and Sundial (74), which exchange messages between

end-hosts and can achieve clock skews ă100ns.

We use synchronized clocks to ensure flows that start around the same time re-

ceive a similar amount of bandwidth. Without synchronized clocks, we could include

timestamps on packets, but the times would be meaningless on a global scale be-

cause different timestamps could refer to the same physical time due to clock skew.

Synchronized clocks give us a global reference point for when speculative packets

entered the network.
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5.1.4 Diminishing Weight Scheduling

Gart et al. (35) proposed Diminishing Weight Schedulers (DWS) that reduces the

weight of misbehaving users. Garg et al. design DWS for networks where this is no

control over end-hosts. To discourage users from sending too many packets, DWS

reduces a flow’s weight if the flow sends too many packets. DWS then drops packets

from a misbehaving flow if the flow’s rate exceeds its fair share. Similar to DWS,

we decrease a flow’s weight if it might be misbehaving. DWS does not fit our model

because it relies on a single end-host sending along a path and does not account for

a user trying to gain bandwidth by sending along multiple paths simultaneously.

5.2 1RC Design

1RC ensures that whenever a new flow joins, it converges to its assigned rate during

its first RTT. 1RC’s goal is solving the staggered attacks described in Section 3.

There are simpler ways to prevent the staggered attacks, such as slow start or existing

speculative packet methods, but those solutions have drawbacks. For example, slow

start harms short flow performance because a flow that could complete in one RTT

now takes several to ramp up its rate, and existing speculative packet methods require

end-hosts to reorder packets if the network drops speculative packets out-of-order.

1RC allows flows to start sending packets at line-rate, drops packets in-order, and

ensures no flow gets more bandwidth than the protocol allocated to other flows that

sent packets around the same time.

1RC does not determine each end-hosts injection rate, it is simply enforces rates

that an existing switch-based congestion control protocol calculates. It runs on a

switch alongside an existing switch-based congestion control method. 1RC enforces

fairness between flows starting in the same epoch, which is a network wide time

period that determines how many speculative packets should be allowed through
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the network for a new flow. Each epoch, 1RC takes one fair rate calculated by the

switch’s existing congestion control protocol and stores that rate in terms of packets

in the window table. When a speculative packet arrives at the switch, the switch

checks the epoch that the flow started in and discards speculative packets based on

the window table entry for that epoch. If the sequence number is greater than or

equal to the window table entry for the flow’s epoch, the switch drops the packet.

A network administrator can configure the length of an epoch, but we choose

the maximum network RTT when the network is not congested. In other terms, the

longest propagation delay between any two hosts. Epoch length is the same across

the entire network.

The window table determines how many speculative packets the switch lets through

from each flow. When the first control packet in a new epoch arrives, 1RC stores

the rate assigned to that flow in the window table. For example, if the window table

entry for an epoch is 10 packets, 1RC lets the first 10 speculative packets from each

flow that started in that epoch through the switch and drops all subsequent packets.

End-hosts send non-speculative packets once they receive their fair injection rate

from switches on control packets, and switches never drop scheduled packets unless

there are hardware issues.

When a speculative packet arrives at a switch, it indexes the window table based

on the epoch that the flow started in. When a flow starts, the end-host assigns the

flow a Speculative Start Time Stamp (SSTS), which determines a flow’s epoch. The

SSTS for a new flow is the system time when the end-host sent the first control

packet for the new flow. 1RC relies on tightly synchronized system clocks between

end-hosts, so flows that start at the same time have nearly the same SSTS. The

switch calculates the epoch by integer dividing the SSTS by the epoch length. If

division is too computationally intensive for the switch, end-hosts can also calculate

the epoch since epoch length is a network wide parameter. Because each speculative
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packet in a new flow has the same SSTS, they all index to the same epoch in the

window table. If the speculative packet’s sequence number is larger than or equal to

the window table’s entry for the speculative packets epoch, then the switch drops

the packet.
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/* Ctrl Packet Logic */

assigned_rate = SPERC(ctrl_packet)
/* 1RC Logic */
epoch = system_time / epoch_length
if (no entry for epoch in window_table):
  window_table[epoch] = rate_to_window(assigned_rate)

Ctrl Packet

SSTS: 11 Window Table:

Data Packet
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Seq_Num = 0
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\* Data Packet Logic *\

epoch = SSTS / epoch_length

if (packet.is_speculative&&seq_num >= window_table[epoch]

  Drop Data packet

if (seq\_num == 0)

  packet.append(window_table[epoch])
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Figure 5.1: 1RC example demonstrating how 1RC generates window table entries,
indexes the window table, and drops packets. Epoch length is 13 timesteps. The
maximum entry in the window table is 4 because the BDP of this sample network is
4 packets. Vertical black line indicates when the 1RC switch logic runs in the packet
processing pipeline.

Figure 5.1 demonstrates how 1RC works. In this example there are two flows,

flow 1 and flow 2, that start in timestep 11 and 15 respectively (not shown). In
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timestep 20 (t=20), no flow uses the switch and there are no window table entries.

The vertical line delineates when 1RC runs in the switch pipeline. At timestep 21

(t=21), the control packet from flow 1 arrives, and the switch run the control packet

logic and, because there is no entry in the window table for the control packet’s

SSTS, 1RC creates a new entry in the window table. Since there are no other flows,

the rate assigned to that control packet is the maximum rate and, in this example,

corresponds to a 4 packet window. In the next timestep (t=22), two speculative

data packets with sequence numbers 0 and 1 and a SSTS of 11 trigger the switch

logic. They index the window table at epoch 0 (window table entry = 11 div 13) and

because their sequence number is less than the allowed packets through, the switch

drops neither packet. In timestep 23 (t=23), flow 2’s first control packet arrives

at the switch and triggers the control packet logic. The flow 2’s SSTS is 15 and

because the epoch length is 13, the switch creates a new window table entry because

flow 2’s first packet belongs to a new epoch. Now 2 flows use the switch, so SPERC

assigns flow 2 a rate twice as small as flow 1. Because the rate is twice as small, the

switch only allows 2 speculative packets through if the flow started in epoch 1. In

timestep 24 (t=24), the switch allows more data packets from flows 1 and 2 through

the switch because their sequence numbers are less than the window table entries for

their respective epochs. However, in timestep 25 (t=25), packets from flow 2 arrive

with sequence numbers 2 and 3 arrive at the switch logic, and the switch drops them

(denoted with the red X’s) because their sequence number is greater than or equal

to the window table entry for their SSTS.

Notice that 1RC did not require the switch to maintain per-flow state, only

compute each speculative packets epoch based on the SSTS. All speculative packets

from the same flow have the same SSTS by definition because the SSTS indicates

when the flow started. Because all speculative packets from the same flow index

into the same entry into the window table and the switch drops based on sequence
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number, which denotes the packet order, the switch maintains packet ordering when

dropping packets.

1RC reduces the effectiveness of the staggered QP and shuffled overlay perfor-

mance isolation attacks identified in Chapter 3 because the network drops a flow’s

packet if letting that packet through gives the new flow too much bandwidth. Flows

start at line-rate, so small flows complete quickly in the common case that the net-

work is not congested. However, if letting all the flow’s speculative packets through

allocates the flow too much bandwidth, the switch drops the extra packets, so the

flow receives its fair share. 1RC allows flow’s to start sending packets at line-rate

but prevents a switch from allocating a new flow an unfair amount of bandwidth.

We demonstrate 1RC’s effectiveness in Section 5.5.1.

5.3 Setting Weights

In Chapter 3, we found that opening multiple connections simultaneously in IB and

RoCE gives a user more bandwidth. In the simplest case where a user opens multi-

ple connections between a single source-destination pair, simply enforcing congestion

control on a per-src/dst granularity removes any advantage. However, some applica-

tion communication patterns enable multiple equal cost communication paths, and

if a user sends along all the equal cost paths simultaneously, they can get more

bandwidth than they otherwise would.

To prevent users improving their bandwidth allocation by opening more connec-

tions, NICs set a flow’s weight so its allocation reduces as the source opens more

connections. This does not render opening extra QPs useless, but it does reduce a

user’s bandwidth allocation. Traditionally, weights are set to give more bandwidth

to certain flows. A higher priority flow’s weight may be ten, while all other flows’

weight is one. This gives the higher priority flow with a higher weight ten times as

much bandwidth as the competing flows.
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Flow’s are allocated bandwidth with the following equation

Ai “ wi ˚
L

ř

j “ 1Nwj

where flow i’s allocation (Ai) is a function of flow i’s weight (wi) among N competing

flows for a link with bandwidth L.

We set a flow’s weight to
1

open connections
. Using this method, increasing an

end-hosts open connections decreases the bandwidth allocation to each flow on the

end-host. This discourages a user from opening more connections to gain more

bandwidth because each flow receives less bandwidth.

Ideally, weights would completely disincentive someone from sending along mul-

tiple overlays simultaneously (parallel shuffled overlay attack). Unfortunately that

is not the case. We prove that it does not solve the issue with a counter example.

Suppose an end-host 1 opens one flow along link i that has bandwidth L; end-host

1’s allocation along link i is

Ai,1 “
L

Wi ` 1
(5.1)

where Wi is the weight sum of all other flows using link i. Now suppose end-host 1

opens a second connection along link j that is equally in demand so Wj “ Wi. The

total bandwidth allocated to both flows is both their allocations summed when both

flow’s weights are
1

2
. We represent the sum of their allocation with the equation

Ai,1 ` Aj,1 “
1

2
˚

L

Wi `
1
2

`
1

2
˚

L

Wj `
1
2

(5.2)

where Ai,j is end-host j’s allocation along path i. We want to show that a users

total bandwidth allocation between all their flows improves when they open multiple

connections, which we represent with the inequality

Ai,1 ` Aj,1 ą Ai,1 (5.3)
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Because Wj and Wi are equal, we can substitute. If we substitute Equation 5.1 and

5.2 into Equation 5.3, we get

L

Wi `
1
2

ą
L

Wi ` 1
(5.4)

which reduces to

1 ą
1

2
(5.5)

which proves that when a users opens a second connection on a different path that

is equally in demand, the user receives a greater total bandwidth allocation. Even

though this weighting method does not completely mitigate the benefits of the paral-

lel shuffled overlay attack, it does reduces its effectiveness because each flow receives

less bandwidth.

Our weighting scheme does not solve the parallel shuffled overlay attack because

a weight of
1

2
allocates a flow half the bandwidth of competing flows, not half the

bandwidth that the flow was originally allocated. For example suppose flow 1 and 2

use link i. Both allocations are

A “
L

2
(5.6)

To solve the parallel shuffled overlay attack, opening a second connection must

halve a flow’s bandwidth allocation, but if we open a second connection on flow 1’s

end-host, flow 1’s weight becomes
1

2
, and, flow 1’s allocation becomes

Ai “
1

2

L
3
2

“
L

3
(5.7)

but we want the allocation to be

Ai “
L

4
(5.8)
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We explored assigning weights to get the desired behavior. We want flow 1’s alloca-

tion with c flows to be
1

c
times its allocation with 1 flow. Formally,

A1,c “
1

c
˚ A1,1 (5.9)

where Ai,j is end-host i’s allocation with c connections. To determine the proper

weight, we must solve the equation

wi ˚
L

W ` wi

“
1

c
˚

L

W ` 1
(5.10)

for wi. W is the weight sum excluding i. Solving for wi, we get

wi “
W

cpW ` 1q ´ 1
(5.11)

so the weight for any flow wi depends on the number of connections (c) on the source

and the weight sum W .

On the surface, this seems easy to calculate. A control packet for flow i could

carry c and the switch knows the weight sum, W . However, anytime we update the

weight for one flow, the weight sum changes for another flow. To solve this for all

flows, the switch would need to know the ci for each flow i and solve a large system

of equations. This would require per-flow state on the switch (storing c for all flows)

and the switch to perform a vast amount of computation (solving the large system

of equations). For these reasons, we choose the sub-optimal solution of setting the

weight equal to the number of open connections. While this does not solve the

parallel shuffled overlay attack, it does limit its effectiveness.
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/* Ctrl Packet Logic */

assigned_rate = SPERC(ctrl_packet)
/* 1RC Logic */
epoch = system_time / epoch_length
if (no entry for epoch in window_table):
  window_table[epoch] = rate_to_window(assigned_rate)
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\* Data Packet Logic *\

epoch = SSTS / epoch_length

if (packet.is_speculative&&seq_num >= window_table[epoch]

  Drop Data packet

if (seq\_num == 0)

  packet.append(window_table[epoch])
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Figure 5.2: Flows 1 and 2 belong to the same end-host. Shows how starting two
flows in the same Epoch enables an end-host to send more speculative packets. Epoch
length is 13 timesteps. The maximum entry in the window table is 4 because the
BDP of this sample network is 4 packets. Vertical black line indicates when the 1RC
switch logic runs in the packet processing pipeline.

5.3.1 1RC, Weights, and Fairness

1RC’s original goal was solving the staggered attack as described in Chapter 3, where

a user sends along a new QP each BDP. This allows a user to send at line-rate and

minimizes the QP’s used during the attack. 1RC mitigates the staggered attack in

this context because the network drops a misbehaving flow’s packets. However, if we

use 1RC as described in Section 5.2, a malicious user can still gain extra bandwidth.
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Figure 5.2 demonstrates how a malicious user can gain more bandwidth by exploiting

speculative packets. In Figure 5.2, we have a network with a BDP of 4 packets and

the fair rate for a new flow is 2 packets. When flow 1 in Figure 5.2 starts, the network

allows 2 packets for the new flow through. However, user 1 is malicious and starts

a second flow in the same epoch, but slightly after the first flow. Since 1RC drops

packets based on sequence numbers and a new flow has different sequence numbers,

1RC allows 2 packets from both flow 1 and flow 2 onto the switch. This allocates

the misbehaving user too much bandwidth.
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/* Ctrl Packet Logic */

assigned_rate = SPERC(ctrl_packet)
/* 1RC Logic */
epoch = system_time / epoch_length
if (no entry for epoch in window_table):
  window_table[epoch] = rate_to_window(assigned_rate)
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\* Data Packet Logic *\

epoch = SSTS / epoch_length

if (packet.is_speculative&&seq_num >= window_table[epoch]

  Drop Data packet

if (seq\_num == 0)

  packet.append(window_table[epoch])

Window Table:
Epoch 0: 2

Data Packet

SSTS: 11


Seq_Num = 3

Data Packet

SSTS: 11


Seq_Num = 1

Data Packet

SSTS: 11


Seq_Num = 4

Data Packet

SSTS: 12


Seq_Num = 5

t = 20

t = 21

Window Table:
Epoch 0: 2

t = 22

t = 23
Data Packet


SSTS: 11

Seq_Num = 0

Data Packet

SSTS: 12


Seq_Num = 6

epoch_length = 13

Key:
Flow 1
Flow 2

Data Packet

SSTS: 11


Seq_Num = 1

Window Table:
Epoch 0: 2t = 24

Data Packet

SSTS: 11


Seq_Num = 0

Data Packet

SSTS: 12


Seq_Num = 5

Data Packet

SSTS: 12


Seq_Num = 5

Data Packet

SSTS: 12


Seq_Num = 6

Data Packet

SSTS: 12


Seq_Num = 7

Figure 5.3: Flows 1 and 2 belong to the same end-host. The flows from the same
end-host share speculative sequence numbers, so opening multiple connections does
not improve the users bandwidth allocation. Epoch length is 13 timesteps. The
maximum entry in the window table is 4 because the BDP of this sample network is
4 packets. Vertical black line indicates when the 1RC switch logic runs in the packet
processing pipeline.
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Using flow weights helps because we can multiply the number of speculative

packets allowed through by the flows weight, which is the inverse of the number of

concurrent connections. While this reduces the user’s bandwidth, 1RC still lets too

many packets through. When the first flow started, there is only one open connection,

1RC allows 2 of the first flow through. The second flow’s weight is two, so 1RC allows

1 packets through. Together, 1RC allows 3 speculative packets through for the new

flows in that epoch, which is still too many (2 is the goal).

To further mitigate a malicious users ability to gain more bandwidth, flows start-

ing in the same epoch share speculative packet sequence numbers, which Figure 5.3

demonstrates. Using this method, either flow sending in that epoch increments the

sequence number and together they can only get 2 speculative packets through, which

is that end-hosts fair rate.
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/* Ctrl Packet Logic */

assigned_rate = SPERC(ctrl_packet)
/* 1RC Logic */
epoch = system_time / epoch_length
if (no entry for epoch in window_table):
  window_table[epoch] = rate_to_window(assigned_rate)
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\* Data Packet Logic *\

epoch = SSTS / epoch_length

if (packet.is_speculative&&seq_num >= window_table[epoch]/weight

  Drop Data packet

if (seq\_num == 0)

  packet.append(window_table[epoch])
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Figure 5.4: Flows 1 and 2 belong to the same end-host. Flow 2 has a higher weight
because flow 1 already existed when it started The flows from the same end-host share
speculative sequence numbers, so opening multiple connections does not improve the
users bandwidth allocation. Epoch length is 13 timesteps. The maximum entry in
the window table is 4 because the BDP of this sample network is 4 packets. Vertical
black line indicates when the 1RC switch logic runs in the packet processing pipeline.

The weight 1RC uses to determine the number of speculative packets let through

is the number of concurrent connections at the start of the epoch. This prevents

shared speculative packets and flow weights from both throttling speculative packets

at the same time. Figure 5.4 shows how using shared sequence numbers and incorrect

weights at the same time leads to suboptimal results. Flow 2’s weight is 2 because

flow 1 already existed when flow 2 started. If this weight reduces the number of

speculative packets allowed through, 1RC only allows packets with a sequence num-

ber less than one through for flow 2. In this example, 1RC only allowed one packet

through for both flow 1 and flow 2 combined when it should only allow two packets

through because of flow 2’s increased weight. By using a weight equal to the number

of concurrent flows at the start of the epoch, flow 1 and 2’s weight are both 1, and
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1RC allows the correct number of packets through.

5.4 Implementing 1RC and Weights in s-PERC

In the previous sections, we explain how 1RC and our weights converge to fair rates

during the first RTT and limit a malicious users ability to unfairly get more band-

width. Now we explain how we use 1RC and weights in s-PERC.

Algorithm 4 shows the complete s-PERC algorithm with our changes marked in

red. 1RC and adding weights requires four new fields in the s-PERC control header

1) let through, 2) old weight, 3) new weight, and 4) when the end-host sent the control

packet (timestamp). let through notifies the end-host how many of the new flow’s

speculative packets the switch allows through. This enable an end-host to determine

which packet is sent next. let through notifies the end-host which packets the switch

dropped, so the end-hosts do not require NACKs or timeouts.

Packets carry a flow’s weight from the previous RTT (old weight) and the current

RTT (new weight). Lines 12 and 13 update the switch state when the flow’s weight

changes. We subtract out the old weight from the total weight and add in the new

weight. Lines 10 and 31 reduce a flows allocation based on the flow’s weight x[l]

on line 10 and x on line 33. When setting the injection rate at the end-host, the

end-host divides the injection rate by the flows new weight if a switch bottlenecks

the flow. A flow’s weight is the number of active flows on the flow’s source end-host.

Each end-host simply tracks its number of open flows and increments the counter

when a new flow is created and decrements the counter when a flow finishes.

We do not enforce the increase weight and the shared sequence numbers at the

same time. This would prevent the correct number of speculative packets from

making it through the switch because a speculative flow would have inflated sequence

numbers and a reduced number of speculative packets allowed through.

To implement 1RC, s-PERC simply checks if the packet timestamps entered a new
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Algorithm 4 s-PERC with 1RC and Weights

1: b, x, s: vector of bottleneck, allocated rates, and bottleneck states in packet
(initially 8, 0, E, respectively).

2: let through: minimum number of speculative packets let through any switch
3: old weight, new weight : The flows weight in the previous RTT and current RTT.

4: timestamp: Time when end-host sent control packet
5: i: vector ignore bits in a packet (initially, 1)
6: SumE, NumB : sum of limit rates of E flows, and number of B flows at link
7: MaxE, MaxE’ : max. allocated rate of flows classified into E since last round

(and in this round, respectively) at link.
8: if s[l ] = E then
9: s[l ] Ð B
10: SumE = SumE - (x[l] / old weight)
11: NumB Ð NumB + 1 / new weight
12: else if old weight ‰ new weight && s[l ]!=NEW FLOW then
13: NumB Ð NumB - 1 / old weight + 1 / new weight

14: bÐ(c - SumE ) / NumB
15: if no entry for window table[timestamp / epoch length] then
16: window table[timestamp / epoch length] = rate to window(b)

17: if s[l] = NEW FLOW then
18: epoch entry = window table[timestamp / epoch length] / pÑ new weight
19: let through = max(1, min(epoch entry, let through))

20: for each link j do
21: if i[j] = 0 then p[j]Ðb[j] else p[j] Ð 8

22: p[l ]Ð 8

23: eÐ min p
24: xÐ min(b,e)
25: b[l ]Ðb,x[l ]Ð x
26: if băMaxE then i[l]Ð1 else i[l] Ð 0
27: if flow is leaving then
28: NumBÐNumB - 1 / flow weight
29: else if eăb then
30: s[l] Ð E
31: SumE Ð SumE + x / flow weight
32: NumB Ð NumB - 1 / flow weight
33: MaxE Ð max(x,MaxE ); MaxE’Ðmax(x,MaxE’ )
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Algorithm 5 s-PERC and 1RC Speculative Packet Logic

1: epoch = p.SSTS / epoch length
2: let through thresh = max(1, window table[epoch] / p.weight)
3: if p.is speculative && p.seq num ě let through thresh then
4: Drop p

epoch (line 15) and if there is a new epoch, it adds a new entry into the window table

that maps the new epoch to a certain number of speculative packets. Algorithm 4

only shows the changes to control packets. Algorithm 5 shows how 1RC handles data

packets. Line 1 calculates the epoch. Line 2 checks the sequence number, and if that

is the first speculative data packet for a new flow, the switch records the minimum

speculative packets that flow got through any switch so far. On line 4, the switch

checks if the packet is speculative and if the sequence number is greater than the

window table entry for that flow’s epoch. 1RC also divides the window table entry

by the flow’s weight because we want to enforce the weight for the new flow. If

the packet is speculative and the sequence number is too high, the switch drops the

packet.

One potential issue arises if there is no window table entry for a speculative

packet’s epoch. This can never happen because a flow sends its first control packet

before the flow sends any speculative packets and the timestamp on the first control

packet is equal to the speculative packet’s SSTS, so the control packet creates a

window table entry for the speculative packets. We are currently investigating how

many window table entries are necessary. We will need some sort of garbage collection

mechanism to remove entries and a policy to handle the case where a flow from a

garbage collected epoch arrives at the switch.

5.5 Evaluations

We evaluate 1RC and our weighting scheme in two contexts. First, we show that as

network BDP grows 1RC enables a congestion control protocol to manage network
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congestion. Next, we show that using speculative packets in conjunction with how we

set weights prevents a user from opening extra connections to gain an advantage over

other users. We evaluate 1RC using a simulated datacenter workload and demon-

strate that 1RC effectively manages congestion while still ensuring congestion does

not impact short flows. We evaluate performance isolation with microbenchmarks

and show how a misbehaving user does not receive more bandwidth than a well-

behaved user. Finally, we show that a mis-behaving user does not cause congestion

in a datacenter workload.

5.5.1 1RC Performance Evaluations

When evaluating the performance improvements with 1RC, we use the same data-

center topology used in Chapter 3 and 4. However, we increase link speed by 16ˆ

to simulate future networks. The end-host NIC speeds increase from 100Gb/s to

1.6Tb/s and inter-switch connections increase from 400Gb/s to 6.4Tb/s. We evalu-

ate 1RC’s performance benefits with an Alibaba storage workload because all flows

are smaller than BDP in our faster network. This demonstrates how workloads with

small flows evade congestion control as BDP grows. We run the workload in ns-3 at

70% load for 10ms.

We evaluate three different congestion control methods. First, we run the origi-

nal s-PERC without any modification. s-PERC manages congestion poorly because

all flows less than BDP are exempt from congestion control, so they can complete

quickly. However, in this benchmark, all flows are less than BDP, so s-PERC does

not manage congestion. We then run s-PERC again and lower the scheduling thresh-

old to 153KB, so any flow longer than 153KB cannot start sending packets until its

first control packet returns. We chose 153KB because that is the threshold (BDP)

in the smaller 100Gb/s network. This incurs scheduling overhead for flows larger

than 153KB. Finally, we run a modified version of s-PERC that includes 1RC and
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show that it maintains high throughput for long flows, while still maintaining small

queues, so short flows complete quickly.
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Figure 5.5: Alibaba Storage 99.9% tail latency using 1RC alongside s-PERC.

Figure 5.6 reports the 99.9% FCT slowdown from the three experiments. As

expected, using default s-PERC leads to severe congestion, which causes short flows

to complete eight time longer than they would in a non-congested network. When

using 1RC alongside s-PERC, congestion is minimal, and small flow FCT slowdown

reduces from about eight to around three. This is a significant reduction in tail

latency. The best performing in terms of short flow tail latency is s-PERC with a

153KB threshold. This is likely because 1RC allows some packets through for long

flows during the first RTT, while s-PERC with a threshold schedules the flow before

sending any packets. The speculative packets let through the network cause a small

amount of congestion. Using 1RC and the threshold have similar performance for

flows longer than 153KB.
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Figure 5.6: Alibaba Storage 50% tail latency using 1RC alongside s-PERC.

The advantage of 1RC over a threshold becomes apparent when we look at the

median FCT slowdown. For small flows, 1RC and threshold perform similarly. How-

ever, as flow size exceeds 153KB, 1RC significantly outperforms threshold. 1RC

increases throughput for flows larger than 153KB by 21% over the 153KB threshold

version. These experiments show that 1RC allows short flows to complete quickly in

high BDP networks while still maintaining high throughput.

5.5.2 Performance Isolation Evaluation

We now evaluate how well 1RC and our weight assignment method isolates the

performance. First, we show with a microbenchmark that a misbehaving user gets

no more bandwidth than well-behaved users. Next, we show that in a datacenter

workload a misbehaving user running a large workload does not cause congestion in

the network, so tenants sharing that network would not experience congestion due

to the performance isolation attacks.
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Figure 5.7: Impact of staggered attack on network performance in 16-1 Incast
benchmark average victim traffic with and without 1RC and Weights (higher is
better)

For the microbenchmarks, we use the same microbenchmark topology as in Chap-

ters 3 and 4, and a similar incast benchmark. 16 senders all send packets to a single

destination at the same time. We then choose one flow to be the “attacker”, which

performs the staggered attack by starting a new flow every RTT and sends BDP

bytes along each new flow. The “attacker” sends 10MB and all other flows send

1MB. We show that an attacker reduces the victim flows’ bandwidth when using

default s-PERC. We then show that when we use 1RC and weights, the offending

flow no longer negatively impacts the victim flows. Figure 5.7 shows that without an

attack and using s-PERC, flows average throughput around 6Gb/s. When one flow

attacks the network, the victim throughput drops to below 4Gb/s. Adding 1RC and

weights isolates the victims’ and attacker’s performance, and restores the victims’

throughput. Our simulated switches do FIFO queueing opposed to round robin. In

this exact experiment, round robin arbitration between input ports would remove

the degraded performance because each flow has its own ingress queue. However, in

a more complex topology where flow’s share queues, round robin arbitration would

not solve the problem.
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Figure 5.8: Attacking Flow FCT in 16-1 Incast with and without 1RC and Weights
(lower is better)

In the next microbenchmark, we show that a misbehaving user gains throughput

by attacking the network and that 1RC and weights mitigate the performance gains.

In this experiment, we show that the attacking flow completes far more quickly

than competing flows when using default s-PERC, and that using 1RC and weights

removes the attackers performance benefits. This experiment has 16 flows, and they

all send 1MB to the same destination. One user attacks the network and performs

the staggered attack by breaking it’s 1MB into several smaller flows equal to BDP

spaced one RTT apart. Figure 5.8 demonstrates that when using default s-PERC,

the attacker’s performance greatly improves. When we run the attack using 1RC and

weights, the attack loses all performance benefit and performs nearly the same as

when it does not attack the network. Therefore, there is no incentive for the user to

attack the network. In summary, the microbenchmarks show that an attacking user

limits victim flow’s throughput and improves the attacker’s throughput. We then

demonstrate how adding our performance isolation mechanisms, 1RC and weights,

removes the performance gain and restores victim flow throughput.

Next, we show that 1RC and weights mitigate congestion caused by misbehaving

users in a simulated datacenter. We run the same Facebook Hadoop datacenter work-

load (84) for 50ms on the 100Gb/s network with a fat-tree topology from Chapters
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3 and 4. We run the experiment with s-PERC with and without our mechanisms.

s-PERC is the baseline and demonstrates how s-PERC handles traffic without our

mechanisms. s-PERC with 1RC and weights shows how our mechanisms affect perfor-

mance when no one attacks the network. Ideally, our mechanisms would not degrade

performance relative to the default s-PERC baseline. We then run simulations where

a misbehaving user performs the staggered attack. To simulate the staggered attack,

we take any flow longer than BDP and divide it into smaller flows that each send

BDP each and space the new, smaller flows an RTT apart. We simulate an attack

in both default s-PERC and s-PERC with our mechanisms.
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Figure 5.9: s-PERC with and without 1RC and weights simulating Hadoop traffic
in a datacenter with and without staggered attacks
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Figure 5.10: Packet latency during staggered attacks using s-PERC variants

Figure 5.9 demonstrates that in the absence of attacks s-PERC and s-PERC with

1RC and weights perform well. s-PERC with 1RC and weights performs slightly

worse for longer flows, likely due to flow’s co-located on the same end-host reducing

each others weight. When long flows perform the staggered attack in default s-PERC,

short tail FCT increases dramatically due to increased congestion. To support this

claim, we measured packet latency in addition to FCT. To measure packet latency,

we record each flow’s max packet latency for all packets in the flow. Of these max

packet latencies, we then took the 99.9% percentile latency. Figure 5.10 shows that

s-PERC’s packet latencies during the attack exceeds 1.6ms. Meanwhile, when using

1RC and weights, latencies are about 30µs during the attack. When a user performs

the staggered attack, latencies do increase by about 10µs when using our mechanisms,

but this is a significant improvement over default s-PERC. Congestion is one way

that applications interfere with one another. By significantly reducing congestion

during an attack, 1RC and weights improve performance isolation.

When using our mechanisms, flows from about 10KB to 1MB see a dramatic

increase in FCT slowdown. We hypothesize that this is not due to a poor bandwidth

allocation by switches, but caused by the a flow being co-located with one or several
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attacking flows that decrease the weight of all flows on the end-host. To support

this claim, we record each flow’s average weight over its lifetime and multiply it by

its FCT slowdown. If a flow has many co-located flows on the end-host, it has a

low weight, and multiplying the weight by the FCT slowdown should yield a much

smaller value.
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Figure 5.11: Hadoop 99.9% FCT slowdown multiplied by weight

Figure 5.11 shows the 99.9% FCT slowdown when multiplied by a flows weight.

Without multiplying by the flow’s weight, the FCT slowdown for flows between 10KB

and 1MB is around 100x. However, when we multiply by the flows weight, the 99.9%

FCT slowdown reduces to less than 4x. This indicates that the flows have many co-

located flows on the end-host, likely due to the user attacking the network. Therefore

the weights are working correctly because the goal of the weights is throttling rates

of end-hosts that open many connection.

In this section, we show that in default s-PERC a user gets significantly more
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bandwidth when performing the staggered attack in microbenchmarks, which also

reduces the bandwidth allocated to well-behaved users. We then demonstrate that

when using 1RC and weights, a misbehaving flow does not take bandwidth away from

other users and performing the attack yields no performance gains. In a simulated

datacenter workload, we show that without our mechanisms the staggered attack

creates significant congestion, which would interfere with other applications. Using

our mechanisms, the increased congestion during the attack is marginal and would

isolate application performance well.

There are currently some issues with using weights in the datacenter workloads.

Each new connection decreases existing an flow’s weight on the same end-host, even if

the new connection needs little bandwidth. Therefore workloads with a large number

of small flows can decrease overall system throughput even when the user is well-

behaved. We are currently examining how we can mitigate this issue and maintain

high performance in all workloads.

5.6 Conclusion

As BDP increases and sharing becomes more common in RDMA networks, we must

reexamine congestion control. In this Chapter, we introduce 1RC and a new weight-

ing scheme that improve performance in high BDP networks and mitigate perfor-

mance isolation attacks. We show in datacenter simulations that existing congestion

control in high BDP networks fails to manage congestion and that using 1RC en-

ables high throughput while maintain low congestion levels. Next, we show that

performance isolation attacks give a mis-behaving user more bandwidth then well-

behaved users. Using our mechanisms restores fairness to the network and gives

all users, well-behaved and mis-behaved, equal bandwidth allocations. Further, we

demonstrate that in a datacenter simulation a mis-behaving user can cause severe

congestion and interfere with other applications. 1RC and our weight scheme sig-
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nificantly decrease the congestion caused by misbehaving users, which helps ensure

isolation between users.
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6

Multicast Congestion Control

Traditionally, datacenter networks are designed for unicast traffic where each packet

has a single source and destination. However, many applications from HPC (64)

and machine learning (ML) (8) use collective operations to transfer data. During a

collective operation, a group of end-hosts all communicate together. While unicast

traffic can implement collective operations, multicast traffic can accelerate collective

communication. Multicast packets allow a single end-host to send packets to several

destinations simultaneously. Networks can accelerate multicast operations by repli-

cating and reducing multicast packets in the network to decrease load and increase

effective bandwidth. To accelerate collective communication, researchers created

multiple implementations of in-network collectives, such as SHArP(39), Klenk et al.

(65), ATP (67), SwitchML (97), and Panama (36). These networks can increase the

throughput of large all-reduce operation by up to 2x and improve latency sensitive

small collectives even more drastically.

While in-network collectives can provide large performance gains, this potential

is only realized when network congestion does not severely limit achieved bandwidth

and increase packet latency. Congestion control (CC) mechanisms ideally mitigate
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the congestion problem before the level of congestion creates a noticeable bottleneck.

Sources throttling packet injection rates can help the network avoid congestion, how-

ever numerous problems must be solved to achieve this ideal network.

Existing mechanisms like round-trip time (RTT) measurements and ECN mark-

ings simplify congestion detection. The challenge is incorporating local conges-

tion observations into a global understanding of how to converge to optimal in-

jection rates. Existing end-point based CC mechanisms (110; 66; 75) use additive-

increase multiplicative-decrease (AIMD) algorithms to probe for optimal injection

rates, which is proven to be fair (19). This poses two issues. First, congestion

control information is inherently delayed because congestion information takes time

to propagate through the network. While the information propagates, the conges-

tion may cause performance degradation (104). Second, AIMD algorithms converge

slowly to optimal injection rates. While servers determine their optimal injection

rates, the network may still be congested or under-utilized, leading to sub-optimal

performance.

In-network collectives exacerbate both of these issues because multicast opera-

tions expand in the network and can cause congestion in several places quickly. To

manage congestion in multicast networks, we introduce a new multicast congestion

control protocol. Coupling an existing in-network collectives with a novel collective

aware CC mechanism significantly reduces congestion issues in multicast networks

by converging quickly to near optimal rates and achieving near ideal network perfor-

mance.

Our network performs in-network collectives with an architecture similar to Klenk

et al.’s (65) where users implement collective operations in a memory fabric that

supports multicast writes and read reductions. To avoid congestion, Klenk et al.

statically limit the number of outstanding multicast operations in the network at

any given time. Unfortunately, this approach can underutilize the network when
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the window does not match the dynamic network state because a static congestion

window does not adjust as network traffic characteristics change.

Ideally, we want a congestion control protocol that converges quickly, avoids mul-

tiple round-trips to probe network state, and provides high network utilization as

network state changes. We observe that multicast operations exhibit unique proper-

ties that we exploit to meet this challenge. Specifically, when an end-host receives a

multicast packet, the receiving end-host knows that same packet is replicated on sev-

eral links in the network. The receiving end-host can therefore infer global congestion

state based on local information.

We propose the Collective Congestion Control PrOtocol (3CPO), which mitigates

congestion in networks that use multicast writes and read reductions to implement

collective operations. 3CPO exploits the symmetry of multicast operations to con-

verge to effective injection rates quickly and mitigate congestion while maintaining

high throughput. 3CPO works on each end-host independently and observes the

multicast operations that the end-host receives, which informs 3CPO about poten-

tial congestion at other points in the network. Since multicast operations do not

exist alone in the network, we also develop a method to allow 3CPO to interoperate

both multicast CC and unicast CC for networks where both traffic types are present.

When compared to a hand-tuned CC window during an all-reduce operation with

64 end-hosts, 3CPO reduces bandwidth by less than 2% and decreases median tail

latency by about 200 cycles. We further scale 3CPO to a system with 128 end-

hosts and observe similar performance. We also evaluate 3CPO in a situation with

a dynamic multicast traffic and unicast traffic flows to show that it adjusts injection

rates quickly to meet application demands.
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6.1 Background and Motivation

3CPO builds on several prior works; this section provides an overview of these foun-

dational techniques. We first present background on collective communication and

the in-network collective architecture that 3CPO builds upon. Swift (66) inspires

the unicast congestion control in 3CPO. We give an overview of Swift in Chapter

3. We then explain the injection throttling mechanism in our network. Finally, we

demonstrate why existing CC for in-network collectives is insufficient for dynamic

workloads or is ineffective.

6.1.1 Collective Communication

Collective communication involves a group of servers that communicate with one

another. Collective operations include: 1) barrier, which synchronizes servers in the

group; 2) broadcast, where one server sends data to all others in the group; and 3)

reduce, where a user applies an operator (Relational, bitwise, arithmetic operations)

to a dataset and each server in the group provides a subset of the data. Machine

Learning (8) and HPC (64) applications often use collective communication, which

makes collectives a common target for acceleration (65; 67; 36; 97; 73).

Klenk et al. proposed a collective communication architecture for shared-memory

multiprocessor collectives (SMMC) (65). Klenk et al. designed SMMC for clusters

of accelerators like the Nvidia DGX-2 systems, which use NVLink to communicate

between GPUs in a globally shared address space. NVLink allows any GPU to access

the memory of any other GPU through writes, reads, and atomic operations. To fit

within the communication model of the NVLink network, SMMC added multicast

regions to the global address space to create multicast groups. GPUs can register

existing memory allocations to the multicast regions and map the multicast regions

into their virtual address space to join the multicast group. Network switches use
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tables to store multicast regions to GPU address mappings that indicate how switches

should forward and replicate multicast packets. When any GPU issues a memory

access to a multicast region, switches trigger a collective operation to all GPUs

registered to the region. A write operation to a multicast region causes the write to

be replicated to all GPUs participating in that multicast. A pull operation (a read

with a reduction operator) from a multicast region causes a read request to be sent

to all GPUs participating in that multicast, and the reduction operator is applied to

all read responses before a single read response is returned to the requesting GPU.

3CPO builds upon SMMC.

6.1.2 Swift

Numerous congestion control algorithms exist that work in a variety of networks.

Our work focuses on sender-side protocols, where servers throttle the injection of

packets based on congestion feedback like ECN marked packets (110), In-band Net-

work Telemetry (INT) (75), and RTT measurements (66). We use a protocol similar

to Swift (66) to limit unicast congestion. Chapter 3 provides background information

on Swift.

6.1.3 Injection Throttling

Network interfaces use various mechanisms to limit packet injection. For example,

Swift (66) limits the number of inflight bytes from each end-host, and Infiniband

(45) waits a certain number of cycles before injecting a new packet. The existing

shared-memory network uses a leaky bucket (94; 26; 106; 18) that contains injection

rate limiting (IRL) tokens. Memory request packets consume IRL tokens when they

enter the network. End-hosts do not send a request packet if there are insufficient

tokens. The network interface maintains two types of IRL tokens: response tokens

and request tokens. Request packets consume both types of tokens when the requests
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Figure 6.1: Watermark throttling reducing injection rate of 5-flit packets

enter the network. For example, if a write operation has nine request flits and one

response flit, the packet consumes nine IRL request tokens and one IRL response

token. Response packets do not consume any IRL tokens and by limiting the injection

rate of the request packets we indirectly limit the responses.

GPUs generate IRL tokens over time based on a watermark, which corresponds

to the injection rate of packets. A high/low watermark indicates a high/low injection

rate. Each GPU adjusts its watermark by observing network conditions. Each cycle,

each GPU generates a random number between 0 and WM MAX, the maximum

possible watermark value. The GPU generates a new token only if the random

number is less than the watermark.

Figure 6.1 demonstrates how a lower watermark makes a GPU generate fewer

tokens. In the table on the left, the watermark is 10 and WM MAX is 10, so the GPU

always generates a new token. However, on the right the GPU lowers the watermark
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to 5, so the GPU on average only generates a token every other cycle. This makes the

GPU send packets half as often, which lowers the level of congestion in the network.

Since the network uses both request and response tokens, the network has request

and response watermarks that adjust separately. In general request tokens throttle

write operations, which have large request packets and small response packets, and

the response tokens throttle read operations, which have small request and large

response packets.

The network interface adjusts a GPU’s watermark once per RTT based on the ob-

served packet delay in the network. If the network RTT exceeds a certain threshold,

the watermark reduces multiplicatively. If the network RTT is below that threshold,

the watermark increases additively. The watermark cannot be less than WM MIN,

which must be greater than zero. 3CPO extends this leaky bucket model by tailoring

token consumption for collective operations.

6.1.4 Existing Multicast CC

SMMC statically limits the number of outstanding multicast operations each GPU

can have in the network at any given time. For example, the network may limit each

GPU to five outstanding write multicasts and five outstanding read reductions each,

which limits network congestion.

To demonstrate that static windows are inadequate for SMMC, we simulate a 64

GPU network, and each GPU is connected with a 25Gbps link and are organized

in a 2-level fat-tree topology where each ToR switch connects to 8 GPUs and there

is no over-subscription. The simulated switch has a latency of 150 cycles and a

bandwidth of 25GB/s per port. The switch can sustain all-to-all uniform random

traffic at greater than 95% throughput. The switch’s internal architecture is output-

queued with two virtual channels to segregate request and response traffic, with the

exception of GPU injection channels which have separate VCs for read and write
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Initiators 64 32 16 8 4 2 1
Window
Size

3 5 12 24 48 128 128

Table 6.1: Tuned Window Size for Different Number of Initiators

requests. The output queues are sized to handle the round-trip latency between

switches. The maximum packet payload is 128B and each packet has a 16B (1 flit)

header, so the maximum packet size is 144B. Read requests and write response are

single-flit packets. The GPU’s memory system is given a static latency of 180 cycles.

All 64 GPUs belong to the same multicast group.

We evaluate static window size (Hand-Tuned Window) compared to a baseline

configuration without CC (Baseline) and to a simple additive increase, multiplicative

decrease protocol (AIMD). AIMD sends a probe packet each RTT and adjusts the

watermark based on the probe packet latency. If the latency exceeds 5,000 cycles,

AIMD reduces the watermark by half. If the packet latency is below 2,000 cycles,

AIMD increases the watermark by 50. The multiplicative decrease factor linearly

scales from 1 to 0.5 as the packet latency goes from 2,000 to 5,000 cycles. The

WM MAX is 2,468 and the WM MIN is 100.

We run several experiments, each with a different number of initiators. An initia-

tor is a GPU that issues multicast operations. If there is only 1 initiator, only 1 GPU

sends multicast operations, but all 64 GPUs receive the multicast operations. In this

experiment, each initiator performs 128 read reductions and 128 write multicasts op-

erations to simulate an all-reduce implemented as a reduce scatter and followed by

an all-gather. If there are 64 initiators, all 64 GPUs send multicast operations. We

empirically determine each static window size by attempting to maximize throughput

while minimizing packet latency. Table 6.1 shows how the window size changes with

the number of initiators. As expected, the window size reduces dramatically as we

increase the number of initiators. In a real environment, a GPU may not know the
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Figure 6.2: Effective bandwidth of All-Reduce
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Figure 6.3: Average and 100% Tail Packet Latency of All-Reduce

number of initiators, so it could not adjust to the correct window size dynamically.

We measure latency in number of cycles and measure network throughput using

“effective bandwidth”, which is the “effective” number of flits transferred divided

by the number of cycles required to transfer all data. With in-network collectives, a

network’s effective bandwidth can be greater than one. For example, if a 64-way read

reduction operation completes, only a single read response is sent from the network
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to the GPU, but the GPU effectively received results of 64 read responses. In the

system we model, the maximum effective bandwidth of an all-reduce operation is

two and the zero-load latency is just below 1,000 cycles.

Figures 6.2 and 6.3 demonstrates the drastic effect congestion management has on

packet latencies and bandwidth. With a tuned congestion window and 64 initiators,

effective bandwidth is nearly two, tail packet latencies are below 5,000 cycles, and

average packet latencies are below 3,100 cycles. Meanwhile with no CC, the effective

bandwidth drops to about one, and the tail packet latency is close to 70,000 cycles.

Effective bandwidth degrades because there is tree saturation when the network is

congested, which limits the throughput (60). AIMD is not effective because it reacts

too slowly, taking several RTTs to find the correct injection rate, but the experiment

ends before that occurs. A congestion window equal to bandwidth-delay product

often helps limit congestion, but since it takes the single initiator all 128 transactions

to saturate the network, the window would have to be at least 128 transactions to

maximize throughput.

A congestion window is not a one-size-fits-all solution to congestion in multicast

networks because it is static and traffic in the network can be dynamic. Limiting

the number outstanding multicast operations works when used on known, static

workloads, but performance suffers if the workload changes. Figure 6.2 demonstrates

the loss of throughput when a static congestion window is misapplied. Static-64

applies the window used for 64 concurrent senders to all initiator sizes. Performance

is great for 64 initiators, but for fewer initiators, this window size is too small and

throughput drops precipitously.

For some applications the number of senders is known beforehand (48; 101) and

a tuned congestion window works well if there is no skew between each end-host

starting to send their data. However, skew between end-hosts initiating their data

transfers is inevitable, and as demonstrated above, if the congestion window is too
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small for the number of initiators, the network is underutilized. For other types of

applications the number of concurrent senders may not be known a priori by the

hardware. Therefore, an ideal CC protocol must handle dynamic traffic conditions

where the packet sources can change rapidly. The next section describes our dynamic

CC protocol for multicast networks.

6.2 3CPO Design

6.2.1 Intuition of Multicast CC in 3CPO

Network multicasts and reductions exhibit unique properties that we exploit to cre-

ate an effective congestion control (CC) protocol. A collective operation generates

traffic at every GPU in a multicast group. Therefore, if a GPU receives a collective

operation on a multicast group, and it is sending collective operations on that same

multicast group, the GPU can infer that it has contention on that multicast group

and should inject fewer packets, either by producing fewer IRL tokens or consuming

extra tokens.

We use this observation to create a CC protocol that quickly converges to an

effective injection rate for collective operations. The multicast CC in 3CPO scales

the number of IRL tokens required to send a packet with the number of concurrent

senders on that multicast group. Figure 6.4 demonstrates how increasing the cost

of sending a packet in proportion to the number of concurrent senders converges

quickly to a rate that does not cause congestion and has high throughput. With no

rate throttling, the protocol sends a packet roughly every 5 cycles. Since these are

5 flit packets and the switch is capable of sending 1 flit per cycle, the table on the

left sends at line rate. When using 3CPO, the throttled GPU injects a packet every

20 cycles. Generally, 3CPO wants to wait N ˆ flits cycles between sending each

packet, where N is the number of concurrent senders. This keeps links fully utilized,

but latency low.
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Figure 6.4: Example of injection rate throttling using 3CPO for 5-flit multicast
packets

6.2.2 Multicast CC in 3CPO

Normally, a request packet only consumes IRL tokens at the source GPU. To increase

the IRL token cost of a multicast request, a multicast request consumes IRL tokens

at the destination GPU when the destination GPU receives the request. This allows

GPUs to consume each other’s IRL tokens. However, we must ensure that the way

GPUs consume each other’s IRL tokens is fair. For example, if GPU A starts sending

requests 10 microseconds before all other GPUs in the multicast group, then GPU

A’s requests arrive first and consume all the IRL tokens of the GPUs in the multicast

group. This prevents any other GPU in the group from sending a request. To avoid

this scenario, GPUs only take each other’s IRL tokens if the destination GPU is also

sending multicast requests.

3CPO should only throttle packet injection when there is active contention in

the network. To achieve this, we introduce data structures to 1) match sent and
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Figure 6.5: Process of matching local and remote operations and consuming IRL
Tokens.

received multicast traffic and 2) to avoid matching old and new traffic and therefore

unnecessarily throttling injection rates. For each data structure, we maintain state

for both request and response traffic, but we only detail one set for simplicity because

both share the same behavior. The unmatched array tracks the amount of unmatched

received or sent traffic in the granularity of flits. Whenever a packet is sent or

received, it indexes the unmatched array to determine whether the packet should

consume extra tokens. 3CPO increments the unmatched array when it sends flits

and decrements unmatched when it receives flits. The rest of this section details how

sending and receiving packets changes the data structures and influences IRL token

consumption.

Figure 6.5 shows the process of matching and tracking the state of the unmatched

array. In the example there are four GPUs, GPU[0-3], and we observe the state on

GPU 3 as it receives remote request from the other 3 GPUs and sends its own requests

into the network. GPU 3 receives a 1 flit remote request from each of the other three

GPUs, and during this time GPU 3 sends no requests. The unmatched array now
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has -1 for each index in the array, and GPU 3 consumes no IRL tokens because

the requests are unmatched. GPU 3 then sends a 1 flit multicast request into the

network, which matches with the 3 previously received remote requests and consumes

4 IRL tokens (1 token for the 1 flit request and 3 tokens for the 3 remote requests

that matched). Immediately after, GPU 3 sends a second multicast request, and

because there are no unmatched remote requests, sending the packet only consumes

1 IRL token, but the unmatched local request increments the unmatched array.

Later, remote requests arrive on GPU 3, which match with the previously sent local

multicast request and consumes IRL tokens. This method of matching works well if

all GPUs send requests around the same time. However, after a certain amount of

time, the array may contain stale information because enough time passed that the

local and remote traffic no longer contend for bandwidth.

Avoiding Stale Matches When Receiving To avoid keeping stale information in the

unmatched array, we introduce the outstanding array and the Local Ops counter,

which track the maximum possible matchable flits. Flits are unmatchable when the

packet the flits correspond to is no longer in the network. The outstanding array

decrements when remote requests arrive and increments over time based on network

congestion. The Local Ops increments when the GPU sends a request and decrements

when the GPU receives a response.

Suppose there are five RTTs between the last local request and the last set of

the remote requests arriving, yet they still match even though they do not contend

for bandwidth. To avoid spurious matches, we track the number of outstanding

local operations (Local Ops) and elements in the unmatched array cannot exceed the

number of outstanding operations. In Figure 6.6, Local Ops increments when a local

request sends and decrements when the response arrives. When the first response

arrives, the unmatched array remains unchanged because no index in the unmatched

122



Figure 6.6: Tracking local requests reduces the chance of matches between requests
that do not contend for bandwidth.

array exceeds Local Ops. However, once the second response arrives, Local Ops

becomes 0. Since indices 0 and 1 in unmatched exceed Local Ops, 3CPO sets the

indices equal to Local Ops, which is now zero. When the new remote requests arrive

four RTTs later, they no longer match with the previous local requests and therefore

do not consume IRL tokens. This is the desired behavior because we do not want

remote requests matching with old local requests that are no longer in the network.

Avoiding Stale Matches When Sending The opposite issue can also occur; old remote

requests may match with new local requests. Figure 6.7 shows the process of adding

and removing items from the queue and changing the state of the outstanding array.

We maintain the outstanding array to track the number of received requests from each

remote host. The value of an entry in the unmatched array must be greater than the

corresponding entry in the outstanding operations array. We then store some meta

data about received requests in the Remote Op Queue. We remove entries from the

queue over time, and then increment the outstanding array, which reduces the chance
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Figure 6.7: Tracking outstanding requests and incrementing unmatched if out-
standing requests is greater. Outstanding operations is incremented when items in
the remote request queue expire.

of a spurious match. Each entry stays in the queue for about an RTT. We use local

RTT measurements to determine how long a request is held in the queue. However,

only incorporating RTT is insufficient, so we also include how long a packet waits at

the head of the queue. Therefore, meta data remains in the queue for an RTT plus

the delay between packets sent.

By tracking information about remote requests, we avoid matching two requests

that do not contend for bandwidth. 3CPO removes remote requests when the cur-

rent clock hits the arrival time of the packet plus the sum of the currently observed

network RTT and the delay between sending multicast packets. As 3CPO removes

entries from the remote request queue, we increment outstanding operations for the

corresponding index and increment unmatched if unmatched [source] is less than out-

standing [source].

This protocol works well at managing congestion but leaves the network slightly

underutilized. To increase throughput, we added multiplicative increase to 3CPO,

which reduces the number of IRL tokens taken by remote request operations. If the

measured latency of a collective operation is less than 1,000 cycles, remote operations

only take eight tenths the number of tokens that they normally do. In the range
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from 1,000 cycles to 2,000 cycles, the cost increases linearly from .8 to 1. If the RTT

exceeds 2,000 cycles, the cost is 1. This improves the throughput of the protocol.

6.2.3 Unicast CC

Swift (66) inspired the unicast CC in 3CPO. Like Swift, 3CPO uses RTT as a conges-

tion signal. If the network is congested, RTTs increase because packets spend more

time in switch queues. Like Swift, 3CPO scales the multiplicative decrease factor

based on congestion; 3CPO decreases the watermark more as congestion increases.

3CPO uses a mechanism similar to Flow-Based Scaling (FBS) in Swift. Instead

of using FBS to adjust target delay (Section 6.1.2 describes in detail) like in Swift,

we use a FBS inspired function to adjust the multiplicative decrease factor. This

makes the multiplicative decrease a function of injection rate and improves fairness.

3CPO measures congestion by always having an outstanding probe packet. If

the probe packet’s RTT exceeds the congestion threshold, then 3CPO lowers the

watermark using a multiplicative decrease factor. If the RTT is below the congestion

threshold, then 3CPO increases the watermark by a constant amount. Since the

unicast portion of 3CPO is AIMD and converges to a fixed RTT latency, it is fair

(19; 109).

6.2.4 Conversion from Multicast CC to Unicast CC

3CPO throttles multicast traffic by increasing the cost in terms of IRL tokens (mul-

ticast CC), and unicast CC works by lowering the watermark. We want to support

both types of traffic but need to avoid both methods from triggering simultaneously,

which can leave the network under-utilized, unless strictly necessary.

During the startup of a collective, congestion is inevitable because the multicast

portion of 3CPO takes time to reduce congestion, and 3CPO should not lower the

watermark. 3CPO only lowers the watermark if the multicast CC throttles packets
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less than lowering the watermark would. To determine which method of congestion

control throttles more, we develop a method to convert between the unicast CC and

multicast CC present in 3CPO, which we explain in this section.

3CPO takes a sample from the network each RTT to determine the extent of

congestion. Over this time period, 3CPO records how many extra tokens it con-

sumed when sending multicast packets, which measures multicast packet throttling.

3CPO then determines what change in the watermark leads to the same reduction of

packets sent over the packet’s RTT. We first calculate the number of tokens that the

GPU likely generated over the last RTT, which we can determine using the current

watermark.

L ˚ pwatermark{WM MAXq

where L (for latency) is the RTT of the packet. We then create a second expres-

sion that determines how many tokens would be produced over L if we lowered the

watermark by X.

L ˚ ppwatermark ´Xq{WM MAXq

We then subtract these two expressions and set them equal to the tokens con-

sumed in the current RTT (N).

N “ L ˚
watermark

WM MAX
´ L ˚

pwatermark ´Xq

WM MAX

which simplifies to

X “ pWM MAX ˚Nq{L

This gives us a conversion from reducing the rate with multicast CC to reducing

the rate with unicast CC. 3CPO then evaluates how much the watermark equivalent

changed over the last RTT, which informs 3CPO’s changes to the watermark.
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Figure 6.8: Example of congestion being resolved exclusively by the multicast CC.
Reducing the watermark after the first RTT would result in a loss of throughput.

Figure 6.9: Demonstrates when unicast CC takes over if congestion persists and
the multicast CC does not increase, the 3CPO will throttle the rate.
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Figures 6.8 and 6.9 demonstrates that 3CPO only lowers the watermark if mul-

ticast CC is insufficient to manage the network congestion. In the first RTT, there

is congestion and the multicast CC starts throttling aggressively and calculates a

watermark equivalent of 73.33. Since 73.33 ą 50 (watermark equivalent compared

to MD * WM), 3CPO does not change the watermark because 3CPO waits to see

if the congestion alleviates with just the multicast CC. In Figure 6.8 the network

congestion stops, but in Figure 6.9, the congestion persists, and the change in wa-

termark equivalent (-6.67) is smaller than the watermark reduction (100 * 0.5), so

3CPO lowers the watermark, which resolves the congestion.

3CPO adjusts the watermark based on probe packet delay and the multicast CC

as shown in Algorithm 6. Line 1 determines the multiplicative decrease, which is a

linear function from 1 to base md based on the latency. The larger the latency, the

larger the decrease. Note, a lower md indicates a larger watermark decrease. Line 3

ensures that this is a probe packet.

Lines 4-9 scale the request tokens decremented (global dec) based on the per-

centage of multicast operations that were writes. Without scaling the tokens, 3CPO

may incorrectly reduce the watermark for the minority type of traffic. For exam-

ple, suppose 3CPO handles a read dominate workload, so 3CPO mostly consumes

response IRL tokens, and 3CPO consumes few request tokens. When 3CPO does

the conversion from consumed request tokens to watermark equivalent, 3CPO cal-

culates a low watermark, which indicates the protocol did not throttle packets, and

3CPO should lower the request watermark. However, this is not necessarily true.

The request watermark equivalent is only small because the user sent few writes. To

prevent 3CPO from unnecessarily lowering the request watermark, we increase the

watermark equivalent based on how skewed the workload is.

Line 11 calculates the watermark equivalent and Line 12 calculates the max pos-

sible tokens produced over the last RTT. Line 13 checks to see if the watermark
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Algorithm 6 Protocol when Probe Packet Arrives

1: md scaling = packet lat´lat thresh
max lat thresh´lat thresh

˚ base md
2: md = 1 - max(1-md scaling, base md)
3: if RTT Finished then
4: percent mcast writes= sent mcast writes

sent mcast total

5: if percent writes ď .5 then
6: size diff = write size-write ack
7: scaling fact “ p2 ˚ p1´ percent writesq ´ 1q
8: global dec` “ size diff ˚ global dec ˚ scaling fact

9: global dec += carry over
10: wm eq “ WM MAX˚global dec

packet lat

11: max possible “ wm{WM MAX ˚ packet lat
12: if wm eq ą last wm eq then
13: wm ∆ “ wm eq´ last wm eq
14: wm “ minpwm` wm ∆,WM MAXq
15: if ppacket lat ą lat thresh && wm ∆ ă wm ˚mdq then
16: fbs “ maxpp1´ pα{

?
wm´ wm eq´ βq, .05q

17: wm “ wm - fbs ˚md ˚ (wm-wm eq)

18: else if packet lat ą lat thresh then
19: fbs “ maxpp1´ pα{

?
wm´ wm eq´ βq, .05q

20: wm “ wm - fbs ˚md ˚ (wm-wm eq)

21: last wm eq “ wm eq
22: carry over = calculate carry over()
23: global dec = 0
24: sent mcast writes = 0
25: sent total = 0
26: if packet lat ă lat thresh then
27: wm = min(wm + WM AI, WM MAX)

28: wm = min(max(wm, WM MIN), WM MAX)

equivalent grew over the last RTT. If it did grow, Line 14 checks the change in

watermark equivalent. If the network is congested and the change in watermark

equivalent is less than the potential multiplicative decrease, we scale the multiplica-

tive decrease based on the current watermark and watermark equivalent. We then

decrease the watermark. Like in Swift, our version of FBS has two parameters, α
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and β, which are set with the following equations from Swift (66).

α “
1

1
?

WM MIN
´

1
?

WM MAX

, β “
α

?
WM MAX

On lines 20-22, 3CPO decreases the watermark if the watermark equivalent

shrunk over the last RTT and the network is congested. Lines 24-28 updates state

for the next RTT. On lines 29-31, we perform an additive increase if there is no

congestion. Line 32 ensures the watermark is in is bounds.

6.2.5 Virtual Channels and Arbitration

To make 3CPO effective, we modify how the network interface assigns packets to

virtual channels (VCs) and how the network arbitrates between those VCs. Origi-

nally, the network used 2 VCs: one for request traffic and one for response traffic.

The network uses additional VCs when a topology introduced potential circular de-

pendencies. The switch used a round robin arbiter between VCs.

Sending reads and writes on the same VC and using round robin arbitration

between the VCs led to issues with 3CPO during all-reduce traffic patterns. To

execute the all-reduce, each GPU reduces a subset of the data, and then the GPU

broadcasts the reduction result. During a large all-reduce the network interface

throttles the injection of packets to a small fraction of its maximum injection rate,

so there is significant queueing between the GPU and the network. Then once

each read completes, the application issues the corresponding write to broadcast the

partial result, but the reads block the writes from entering the network. Since the

network is most effective when reads and writes are interleaved, reads blocking the

writes leads to poor performance.

To fix this issue, we use separate VCs for reads and writes on the GPU injection

channel. The network moves the reads and writes to the same VC after the first
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hop. We also change from round robin arbitration to least recently used arbitration.

Round robin arbitration worked poorly with 3CPO because the arbiter skips a VC

if there is insufficient IRL tokens. However, when enough IRL tokens existed for the

skipped VC, the round robin arbiter often did not point to the starved VC. Using

least-recently used arbitration fixed this issue, and we use this new arbiter and VC

allocation policy in all experiments.

6.3 Evaluation

We evaluate 3CPO on several synthetic congestion benchmarks to shows its effective-

ness. We demonstrate that 3CPO manages congestion in common communication

patterns: all-reduce, write multicast, and read reductions. We evaluate using an all-

reduce because its performance is critical to deep-learning workloads (73). We then

run workloads to demonstrate that 3CPO works in dynamic traffic situations. In

one workload, we run unicast traffic intermixed with multicast traffic, which shows

3CPO manages congestion with both types of traffic. We also run a random mul-

ticast workload, where the number of GPUs initiating multicasts changes rapidly,

which shows how 3CPO adjusts when network conditions change. Finally, to simu-

late a shared network, we run two disjoint workloads in the network simultaneously,

which demonstrates 3CPO provides reasonable performance isolation in shared en-

vironments.

6.3.1 Methodology

We test 3CPO in a heavily modified version of booksim (50). For all simulations, we

use a two-level fat-tree topology with 64 or 128 GPUs. Each ToR switch connects

to 8 GPUs, and the network is not oversubscribed. In the 128 GPU network, there

are 16 ToR and 16 Core switches, and there are 8 ToR and 4 core switches for

the 64 GPU network. The switches are the same as the ones we used in Section
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Figure 6.10: Effective Bandwidth of in All-Reduce Workload 64 GPUs

6.1.4. Scaling 3CPO beyond 128 GPUs is future work. We compare 3CPO to a

baseline network with no CC, and a hand-tuned congestion window, which we size

to maximize bandwidth and manage congestion. For all experiments, we do not

change any 3CPO parameters, which demonstrates how well 3CPO adjusts to traffic

without network administrator intervention.

3CPO has several parameters that we set empirically for our evaluation. Multicast

CC has three parameters that determine the multiplicative increase and are described

in Section 6.2.2. 3CPOs unicast CC uses the same parameters as the AIMD protocol

in Section 6.1.4.

6.3.2 Varied Initiators

We perform the same experiments from Section 2 using 3CPO. In these experiments,

we perform an all-reduce where each initiator performs 128 read reductions, each of

which is followed by a corresponding write multicast. We call a read-write operation

pair a transaction. There are 64 GPUs in the network. We then vary the number of

initiators across experiments. Figures 6.10 and 6.11 shows the effective bandwidth

and packet latencies. 3CPO and the hand-tuned window have similar average packet

latencies, but 3CPO has a slightly higher 100% tail latency because 3CPO takes
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Figure 6.11: Average and Tail Packet Latency in All-Reduce Workload 64 GPUs
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Figure 6.12: Effective Bandwidth of in All-Reduce Workload 64 GPUs

time to adjust the injection rate, so there is transient start-up congestion. However,

recall that the hand-tuned window size changes for each unique number of initiators.

In contrast, 3CPO adjusts dynamically to the observed traffic conditions, making

3CPO a practical congestion management method.

3CPO dynamically achieves performance comparable to a congestion window

that is tuned specifically for each experiment. Like the hand-tuned window, 3CPO

maintains high throughput for all experiments. 3CPO performs slightly worse than

the hand-tuned window because 3CPO slightly over-throttles during startup. Figure
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Figure 6.13: Effective Bandwidth of Symmetric Workloads 128 GPUs
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Figure 6.14: Average Packet latency in Symmetric Workloads with 128 GPUs

6.12 shows effective bandwidth as we increase the number of transactions (perform

a larger all-reduce). As we issue more transactions during the experiment the dif-

ference between 3CPO and the hand-tuned window decreases. For the rest of the

experiments, we omit AIMD since it is clearly an ineffective method of CC in our

network.

6.3.3 Symmetric Multicast Workloads

We run three workloads that each involve all 128 GPUs performing the same oper-

ations at the same time and show that 3CPO handles these cases well. We run one
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workload that is 128 read reductions, one workload issues 128 write multicasts, and

the third is an all-reduce that issues 128 read reductions and 128 write multicasts.

Figures 6.13 and 6.14 show the effective bandwidth and average packet latencies of

the three workloads. We compare 3CPO with a hand-tuned window based approach

and a baseline network with no CC. In the read-only workload all three variants

achieve nearly the same effective bandwidth. However, the packet latencies differ

greatly. With no CC, the average packet latency is nearly 140,000. Meanwhile, the

average packet latency with the window is 5,600 cycles and 1,800 cycles with 3CPO.

3CPO maintains high performance during the write and all-reduce workloads.

In the write-only workload, all three variants have the same effective bandwidth,

but again the packet latencies in 3CPO and static window are small compared to

baseline. In the all-reduce workload, effective bandwidth in baseline suffers due

to reads blocking writes in the network. Window and 3CPO have high effective

bandwidths and maintain low packet latencies. 3CPO has slightly lower effective

bandwidth due to over throttling the injection of packets during application start-

up. We already showed this discrepancy reduces as we perform longer experiments.

6.3.4 Dynamic Traffic Patterns

To demonstrate that 3CPO works in dynamic traffic patterns, we create two new

benchmarks that change the traffic characteristics during the simulation. The first

workload shows that 3CPO adjusts quickly when GPUs randomly start and stop

sending packets. The second workload shows 3CPO is effective when both unicast

and multicast packets exist in the network. First, we create a random multicast

benchmark (Random-Multicast) where each GPU injects 10 sets of multicast opera-

tions. Each operation has an equal chance to be a read or write multicast. Each set

is a random number of multicast operations on the range 64 to 256. Between each

set of multicast operation, the GPU sits idle for a random number of cycles on the
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range 5,000 to 10,000 cycles. This randomizes the number of GPUs injecting traffic

at any given time and shows how 3CPO adjusts to dynamic traffic situations.

The second workload mixes unicast traffic with multicast traffic (Multicast-Uni).

Like Random-Multicast, Multicast-Uni hosts generate a random number of opera-

tions to perform. However, in Multicast-Uni the sets of operations alternate between

being unicast packets and multicast packets. All operations in the same set are the

same type, either unicast or multicast; no set of operations has both unicast and

multicast packets. If a set is unicast packets, then the random number of operations

in the set is multiplied by 5. All unicast packets in a set share a destination. Be-

cause each GPU sends a random number of operations in the workload, instead of

reporting the average packet latency across all GPUs, we take the average latency

for each GPU and then find the mean of those averages.

Figures 6.15 and 6.16 show the effective bandwidth and average packet latency

during these experiments. 3CPO maintains high throughput and low latencies during

both workloads. Baseline suffers from high packet latencies and the window based

CC cannot adjust its static window in Random-Multicast, so it has lower throughput.

We could make the difference in performance larger with sparser communication, but

Section 2 already shows how sparse communication reduces throughput with a static

window. 3CPO has the highest effective bandwidth because it correctly adjusts the

injection rate of packets to meet the current demand. 3CPO also keeps packet laten-

cies low. 3CPO has higher packet latencies in the Multicast-Uni benchmark because

the unicast packet throttling reacts slower than the multicast packet throttling.
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Figure 6.16: Average Packet Latency of Dynamic Workloads 128 GPUs
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Figure 6.15: Effective Bandwidth in Dynamic Workloads 128 GPUs

6.3.5 Shared Network Workloads

Another motivation for managing congestion in our network is performance isolation.

For example, two users may be sharing the NVLink network and congestion can cause

the applications to interfere with one another. To demonstrate application interfer-

ence and how congestion management can improve performance, we run several sim-

ulations where two applications run in the network simultaneously. Each workload

runs on a randomly selected group of 64 GPUs in the 128 GPU network. Figure 6.17
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Figure 6.17: Effective Bandwidth of Shared Network Workloads 128 GPUs

shows the effective bandwidth of an all-reduce workload, which performs 512 trans-

actions, run alongside a write multicast workload, which performs 512 writes. The

bars labeled “Run Alone” demonstrate the workload’s throughput when each work-

load is run in the network alone on 64 GPUs with a perfectly configured window,

so there is no interference. Baseline shows that without congestion management,

both workloads performance suffers. 3CPO performs only slightly worse than the

hand-tuned congestion window. All the workloads have average packet latencies in

the range 1,300 to 1,600 cycles, except in the experiment without congestion man-

agement, which has packet latencies around 75,000 cycles. Expanding beyond two

applications is left for future work.

6.4 Conclusion

Many data-intensive applications now rely on distributed accelerator systems to meet

computational and energy-efficiency demands. While distributed systems meet these

demands, the network interconnecting the devices can bottleneck application perfor-

mance. To improve application throughput, networks integrated in-network collec-

tives, which increase the effective bandwidth of the network for certain traffic patterns
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common to HPC applications and Machine Learning. These networks increase perfor-

mance but perform poorly when congested. We greatly improve existing congestion

control for multicast networks by exploiting the symmetry in multicast operations to

converge quickly to effective injection rates. We develop 3CPO, a congestion control

protocol for multicast networks that integrates with existing unicast congestion con-

trol. We show that 3CPO adjusts quickly to dynamic traffic situations, maintains

high throughput, and keeps packet latencies low. The performance of 3CPO is com-

parable to application specific hand-tuned CC and maintains flexibility to adjust to

dynamic workloads.
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7

Conclusion

Distributed systems underpin many critical workloads like Artificial Intelligence, Sci-

entific Computing, and web-services. Although distributed applications can scale to

massive size, large and complex distributed systems create the potential for per-

formance bottlenecks. One possible bottleneck present in distributed systems is

communication delay. Different processing elements within the system often must

communicate with one another to exchange data or synchronize. If communication

costs are high, overall application performance suffers because the application spends

excessive time performing network operations instead of computation.

RDMA networks provide extremely low network latency and high bandwidth,

which increase network performance. To exploit this performance, many applica-

tions tightly integrate RDMA into the application. While RDMA network hardware

enables low communications costs, it is not sufficient to guarantee good network per-

formance. To ensure RDMA networks perform up to their potential, networks often

use congestion control protocols, which limit the packet injection if too many packets

occupy network queues.

A congestion control protocol aims to fully utilize network bandwidth without
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causing switch queues to fill with packets while also ensuring the network allocates

bandwidth fairly to competing entities. If a congestion control protocol does not

utilize network bandwidth, it wastes valuable resources and harms application per-

formance. If there is excessive queueing delay in the network, small, latency bound

flows complete slowly and harm application performance. Further, since most RDMA

networks are lossless, they suffer from tree saturation when packet queues become

full. Further, if the network does not allocate bandwidth fairly, flows with too little

bandwidth perform poorly.

These three criteria: 1) low latency, 2) high bandwidth utilization, 3) and fairness

are difficult to achieve on a short time scale. Because network latencies are so low

and network bandwidth is so high, flows complete quickly and the congestion control

needs to make fast decisions to ensure good performance. Often times bandwidth

allocations to end-hosts are not optimal, so they do meet one of the three criteria.

Over time, the protocol ideally finds the optimal injection rates, but while the pro-

tocol searches for the correct injection rates, application performance suffers. This

dissertation introduces mechanisms that improve converge to optimal injection rates

that meet the three criteria.

7.1 Key Contributions

This thesis makes contributions in four key areas of congestion control convergence:

1) identifying performance and security issues related to slow convergence, 2) im-

proving convergence in sender-side congestion control protocols, 3) converging to

fair rates in the first RTT in switch-based protocols, and 4) improving convergence

in multicast networks.

We found that when protocols converge slowly to fair rate allocations long flow

tail latency becomes extremely high and the network becomes susceptible to perfor-

mance isolation attacks. Anytime the network’s bandwidth allocation is unfair, a
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flow’s performance suffers because the network allocates at least one flow too little

bandwidth. This flow then takes longer to send its data, so it takes longer to com-

plete. Our experiments show that improving convergence to fair rates can reduce long

flow tail FCT by 2ˆ. This poor performance is then passed along to the application,

which requires the flow to complete. Further, we found that bandwidth unfairness

in common RDMA networks is predictable, which allows a misbehaving user to gain

an unfair bandwidth allocation. We demonstrate that a user can completely ignore

RDMA congestion control and in a small testbed experiment, a misbehaving was

able to get 75% of the available network bandwidth. We also find a fundamental

tradeoff between performance isolation and starting flows at line-rate.

Most RDMA networks rely on sender-side protocols, where an end-host receives

congestion feedback from the network and then adjusts its injection rate based on

that feedback. We find that existing congestion control protocols converge to fair

rates slowly, extending long flow tail FCT. To improve convergence to fair rates, we

design two mechanisms, Variable Additive Increase and Sampling Frequency, that

augment existing sender-side protocols to improve convergence to fair rate alloca-

tions. These new mechanisms require no changes to switches or network telemetry.

Variable Additive Increase infers unfairness on the end-host by observing network

state and adjusting the additive increase temporarily to improve fairness without

increasing latency in the long term. Sampling frequency adjusts the multiplicative

decrease schedule to be per-ACK instead of per-RTT. This exploits a natural fair-

ness affect where a flow with more bandwidth receives more ACKs. Using sampling

frequency, a flow with more bandwidth decreases its rate more often. When we

augment Swift and HPCC with Variable Additive Increase and Sampling Frequency,

the 99.9% tail long flow completion time is 2x lower than without our mechanisms.

Variable Additive Increase and Sampling Frequency also maintain high throughput

and low latency, and do not harm performance during incast traffic.

142



The next contribution moves into switch-based congestion control protocols. To

mitigate performance isolation attacks and ensure congestion control is effective in

high BDP networks, we introduce 1RC and a new weighting scheme. 1RC enables

flows to converge to their near fair rate during the flow’s first RTT, does not require

storing per-flow state on switches, and maintains packet ordering, which similar

mechanisms do not. 1RC allows flows to start sending packets at line-rate, but

the switch drops packets from new flows if letting the packet through the switch

allocates the new flow too much bandwidth. This prevents performance isolation

attacks because a new flow is no longer allocated more bandwidth than an existing

flow. Further, it enables congestion control protocols to manage congestion well

even when BDP product is larger the number of bytes most flows send. Our new

weighting scheme decrease a flows bandwidth allocation as the flows weight increases.

We then set a flows weight to the number of concurrent flows the end-host has, which

discourages a user from opening more flows to gain more bandwidth.

The final contribution is 3CPO, a congestion control protocol specifically for mul-

ticast networks that exploits the symmetry of multicast operations and converges to

near optimal rates almost instantly. Our protocol is particularly effective during

collective operations, which are important for HPC and AI workloads. 3CPO also

integrates seamlessly with unicast congestion control, so it can manage both traf-

fic types simultaneously. Our new congestion control protocol achieves throughput

within 2% of a hand-tuned congestion control window and has similar packet laten-

cies.

7.2 Future Work

7.2.1 Hardware Implementations

This thesis exclusively evaluated new congestion control designs with simulators.

While simulators effectively model algorithm behavior and enable evaluating new
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features quickly, they do not model all of a network’s complexities. Implementing

our congestion control methods in switches and NICs would provide a more robust

evaluation of our features.

7.2.2 Sharing In-Network Collective Resources

Congestion control is a distributed scheduling problem, where we want to allocate

bandwidth between several competing entities (flows, users, applications, etc). How-

ever, Chapter 6 introduces in-network collective functionality, which is tied closely

to bandwidth, but has separate resources. Now the network must share in-network

collective resources between users in addition to network bandwidth. Further com-

plicating in-network collective resource sharing is how bandwidth allocations and

in-network collective allocations can affect each other. In Klenk et al. (64), if a

multicast packet cannot reserve in-network collective resources, packets waits for the

switch to free resources as other multicast operations complete. Because the mul-

ticast packets wait in network queues, this can cause head-of-line blocking for uni-

cast packets stuck behind the waiting multicast packet and reduce overall network

throughput. Therefore, a poor in-network collective resource allocation can reduce

an applications performance even if the packets do not rely on multicast resources.

Congestion control protocols for networks with in-network collectives must consider

collective resources in addition to bandwidth when making scheduling decisions.

7.2.3 Adaptive Routing and Congestion Control

Adaptive routing complicates congestion control because packets from the same flow

may take different paths, making accurate congestion detection more difficult and

introducing a new potential avenue for unfairness between competing flows. Net-

work congestion decisions depend on a flows path. In HPCC (75), end-hosts adjust

injection rates based on fine-grained feedback from network switches. However, if
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the network adaptively routes the packets, the end-host does not know which path

the packets take and therefore does not know exactly how much to reduce or in-

crease its injection rate. Adaptive routing also complicates Swift (66) because Swift

relies on RTT measurements and adaptive routing may use non-minimal adaptive

routing, which changes the packet’s path’s length. Non-minimal adaptive routing is

common in Dragonfly networks (63; 52), which makes packets from the same flow

have different base RTTs.

Adaptive routing also has new fairness implications. Since an end-host does not

know the path its packets take, it cannot converge to fair rates because the fair rate

may be different along each path. Investigating how adaptive routing affects fairness

remains an interesting, open problem.

7.2.4 Improving and Implementing 3CPO

Currently, 3CPO effectively manages congestion in Klenk et al.’s multicast architec-

ture (64). However, 3CPO may have some features that are difficult to implement

in a network interface. For example, the remote op queue described in Section 6.2.2

can become large and potentially exhaust network interface resources. We want to

investigate simpler designs for 3CPO that may be more amenable to simple network

interfaces.

We also stopped scaling 3CPO at 128 GPUs because this more than covers the

largest existing NVLink systems. However, future NVLink systems may be larger,

and we must study how 3CPO scales. Further, we only investigated how 3CPO han-

dles 2 applications running simultaneously. We plan to see how 3CPO performs when

more applications share the network. More applications will cause more network con-

gestion in the network core due to how packets are replicated and reduced. 3CPO

therefore needs to quickly handle congestion deep within the network topology.
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7.3 Conclusion

Distributed systems rely on congestion control to ensure network performance meets

application demands. We identify several ways in which modern RDMA networks

perform poorly, including susceptibility to performance isolation attacks and poor

convergence to fair rates. We measure the effectiveness of performance isolation

attacks and showed they can devastate network performance. We then show that

slow converge to fair rates significantly increases long flow tail FCT.

To improve network performance, we introduce several novel congestion control

methods 1) Variable Additive Increase and Sampling Frequency, which improve con-

vergence to fair rates in sender-side protocols, 2) 1RC and a new weighting scheme

to prevent or discourage users from trying to unfairly gain bandwidth, and 3) 3CPO,

a congestion control protocol specifically designed for multicast networks. All these

systems improve convergence to effective congestion rates in different contexts. These

mechanisms improve congestion control performance and security, so distributed ap-

plications perform well.
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bandwidth sharing: A study of congestion at flow level,” in Proceedings of the
2001 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM ’01. New York, NY, USA:
Association for Computing Machinery, 2001, p. 111–122. [Online]. Available:
https://doi.org/10.1145/383059.383068

[32] E. Gafni and D. Bertsekas, “Dynamic control of session input rates in commu-
nication networks,” IEEE Transactions on Automatic Control, vol. 29, no. 11,
pp. 1009–1016, 1984.

[33] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and S. Shenker,
“phost: Distributed near-optimal datacenter transport over commodity net-
work fabric,” in Proceedings of the 11th ACM Conference on Emerging Net-
working Experiments and Technologies, 2015, pp. 1–12.

[34] Y. Gao, Y. Yang, T. Chen, J. Zheng, B. Mao, and G. Chen, “Dcqcn+: Taming
large-scale incast congestion in rdma over ethernet networks,” in 2018 IEEE
26th International Conference on Network Protocols (ICNP), 2018, pp. 110–
120.

[35] R. Garg, A. Kamra, and V. Khurana, “A game-theoretic approach towards
congestion control in communication networks,” ACM SIGCOMM Computer
Communication Review, vol. 32, no. 3, pp. 47–61, 2002.

[36] N. Gebara, M. Ghobadi, and C. Paolo, “In-network aggregation for shared ma-
chine learning clusters,” Proceedings of Machine Learning and Systems, vol. 3,
2021.

[37] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, and A. Vah-
dat, “Exploiting a natural network effect for scalable, fine-grained clock syn-
chronization,” in 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), 2018, pp. 81–94.

[38] E. Georganas, R. Egan, S. Hofmeyr, E. Goltsman, B. Arndt, A. Tritt, A. Buluç,
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