
TECHNIQUES FOR HIGH BANDWIDTH, LOW 
LATENCY INTERCONNECTION NETWORK 

OPERATION AT HIGH OFFERED LOADS
by

M it h u n a  S . T h o t t e t h o d i

Department of Computer Science 
Duke University

Date: / #  -  A d

Approved:

AW t(.
Alvin R. Bepeck, Supervisor
i  r ? I  < f i  i i At ,?5

/u A  W
Shubiiemlu S'i'Afukhprjefe, SuperR&or 

W f / i b f f r e y a .  Ch

srshon Kecfem

1 > ‘‘r jt/fj '/
^  Amin M.'Vahdat

Dissertation submitted in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy 

in the Department of Computer Science 
in the Graduate School of 

Duke University

2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 3092889

UMI
UMI Microform 3092889 

Copyright 2003 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT
(Computer Architecture)

TECHNIQUES FOR HIGH BANDWIDTH, LOW 
LATENCY INTERCONNECTION NETWORK 

OPERATION AT HIGH OFFERED LOADS

by

M it h u n a  S . T h o t t e t h o d i

Department of Computer Science
Duke University

Date:
Approved:

f \  Alvin R.«%ebeck, Supervisor 
i : s h i  \  \  \ ! \ \  „ A
U i  i !  \  \ \ \  Z\r\I\

chi S. |ifukHerjee,ISupervisor
f

ey S(. Chase

(^fshon Kerfefn^^'-"

AK?// A  //
Amin Mi Vandat

An abstract of a dissertation submitted in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy 

in the Department of Computer Science 
in the Graduate School of 

Duke University

2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Large-scale, cache coherent, distributed shared memory multiprocessors constitute an 

important and growing segment of the server market. Overall performance in such 

systems depends on compute performance, memory performance, and interconnec

tion network performance. Interconnection network performance lies on the critical 

path of remote misses (which is the key communication mechanism in distributed 

shared memory multiprocessors) and consequently, poor network performance can 

significantly reduce overall system performance.

While there are a number of techniques that have enhanced interconnection net

work performance significantly, known performance problems due to network satura

tion at high offered loads that result in poor bandwidth and high latencies continue to 

pose a challenge to system designers. The symptoms of the problems are as follows: 

the achieved throughput goes up with offered load steadily till a certain point beyond 

which there is a sudden and significant drop in throughput (and a corresponding in

crease in latency). This occurs due to imbalances in network resource usage as well 

as the lack of fast feedback resulting in routers making decisions using only locally 

available information that may be globally detrimental.

Solutions to this problem can be broadly classified into two categories: (a) con

gestion control solutions and (b) load balancing solutions. This thesis proposes and 

evaluates one congestion control technique and two load balancing techniques to 

overcome the performance problems in k-ary, n-cube networks at high loads.

The first technique is a self-tuned congestion control mechanism— Tune—that has 

two key features: (a) it uses global congestion information to throttle the offered load 

when saturation is imminent and thus ensures that the network stays in the high- 

bandwidth, low latency region of operation and (b) it has a global throughput-driven

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



self-tuning mechanism that enables it to adapt to various communication patterns. 

Simulations with various communication patterns show that Tune is able to prevent 

the sudden drop in performance that occurs at saturation. Tune can be used with 

both wormhole and virtual cut-through switched networks.

The second technique— congestion-aware via routing—attempts to achieve load 

balancing to prevent saturation. In this technique, packets are directed away from 

congested network regions using global congestion information by requiring them to 

go via certain intermediate nodes. I demonstrate that this technique achieves limited 

improvements for non-uniform traffic patterns. Simulations show that the benefits of 

congestion aware via-routing, even with perfect global knowledge, are not compelling. 

These results illustrate the inherent limits of load balancing in the minimum rectangle 

and this key insight leads to the next technique.

Finally, I propose a new non-minimal routing (i.e. packets can be routed on hops 

that take them farther from the destination) algorithm—BLAM —that goes beyond 

the constraints of minimal routing which I assumed for the first two techniques. 

Non-minimal routing can deliver better performance because of the additional rout

ing flexibility. However, because packets can go farther from the destination, livelock 

is a concern in non-minimal routing. Existing non-minimal routing algorithms either 

require costly and non-scalable implementations of router-wide priorities or they of

fer only probabilistic guarantees of livelock-freedom. In contrast, BLAM  achieves 

the higher performance of non-minimal routing by using lazy misroutes without the 

drawbacks, i.e., it offers deterministic guarantees of livelock freedom by using limited 

misroutes. Simulations show that BLAM  achieves performance similar to chaotic 

routing, which is a high-performance non-minimal routing algorithm with only prob

abilistic guarantees of livelock freedom.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

A bstract iii

List o f Tables viii

List o f Figures ix

A cknowledgem ents xiii

1 Introduction 1

1.1 C on trib u tio n s................................................................................................  4

1.2 Thesis Organization....................................................................................... 8

2 Background and R elated Work 9

2.1 Background  ................................................................................................. 9

2.1.1 Network Topology ............................................................................  10

2.1.2 Base Router Architecture ............................................................... 10

2.1.3 Deadlock Handling in Minimal Adaptive Routers with Escape
Paths .............................   12

2.2 Related W o r k ................................................................................................. 13

2.2.1 Congestion C o n tro l................................................................  13

2.2.2 Load Balancing in the Minimum R ectangle......................  16

2.2.3 Deadlock, Livelock and Performance Issues in Nonminimal Adap
tive R o u te rs ............................................................................  18

3 Tune: A Self-tuned C ongestion Control M echanism  21

3.1 Gathering global information ....................................   22

3.1.1 Implementing Global Information G a th e r .........................  23

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2 Self-Tuning Mechanism .  ......................       . 27

3.2.1 Hill Climbing  .....................................................................  28

3.2.2 Avoiding Local M a x im a .....................................   30

3.2.3 Summary  .....................................................................  31

3.3 Methodology .  ...........................................   32

3.4 Simulation Results  .................................................................    34

3.4.1 Overall P e rfo rm an ce ........................................................................  35

3.4.2 Obtaining Global In fo rm atio n ........................................................  41

3.4.3 Varying Tune's increment/ decrement v a lu e s ..............................  44

3.4.4 Bursty Traffic  ....................    44

3.4.5 Distributing Information using Meta P ack e ts ..............................  50

3.5 S u m m a ry ......................................................................................................... 54

4 Load Balancing in the M inim um  R ectangle 56

4.1 Via Routing: The M echan ism .....................................................................  57

4.2 Min-triangle and Random-triangle Via Selection P o l ic ie s ....................  59

4.3 Min-Corridor Via Selection P o licy ........................................   60

4.4 Via-Routing Results  .................................................................................. 62

4.5 Summary ......................................................................................................... 64

5 BLAM  routing 74

5.1 Deadlocks, Livelocks and Performance in Nonminimal Adaptive Routing 74

5.2 M is ro u te s .......................   77

5.3 Bypass buffers  ..............................................   79

5.3.1 Implementing Distributed Bypass Buffers....................................  81

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3.2 S u m m a ry .................      84

5.4 Evaluation Methodology  ...................................................................  85

5.4.1 Simulation Details .................................    85

5.4.2 Open vs. Closed L o o p .....................................................................  86

5.4.3 Network Workload  ...........................................................  87

5.4.4 Network and Router Architectures ..............................................   88

5.5 Simulation R e s u l t s ...............................................     89

5.5.1 Overall P e rfo rm an ce ...........................................   90

5.5.2 Varying the Misroute Limit .  ................................................   . 98

5.5.3 Effect of Adding Bypass Buffers  .........................................104

5.5.4 M-misroute, Adaptive router ............................................................ 104

5.5.5 Varying Packet Size and Network Size ............................................112

5.6 Summary ......................................................................................................113

6 Conclusion 123

6.1 S u m m a ry ...... .......... ....................................................................................... 123

Bibliography 126

Biography 133

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

3.1 Tuning decision ta b le ....................................................................................  29

5.1 Design variables for various routing sc h e m e s .......................................... 85

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

1.1 Distributed Shared Memory Systems with k-ary, n-cube networks . . 2

1.2 Interconnection network on Critical P a t h ................................................  3

1.3 Performance Breakdown at Network Saturation, 16x16 2D network,
adaptive routing, deadlock recovery ..........................................................  4

1.4 Minimal Adaptive Routing w/deadlock recovery and Chaotic Routing 5

1.5 Routing Options Minimal vs. Non-minimal .  ......................................  7

2.1 Base Minimal, Adaptive Router with Multiple Virtual Channels . . .  11

3.1 Dimension-wise global aggregation..............................................................  25

3.2 Estimation of global congestion : Previous Snapshot vs. Linear Ex
trapolation..........................    26

3.3 Throughput vs. Full B u ffe rs ......................................................................  28

3.4 Overall Performance W ith Random T ra ffic ..............................................  37

3.5 Overall Performance W ith Bit-Reversal Traffic P a t t e r n ........................ 38

3.6 Overall Performance W ith Perfect-Shuffle Traffic P a t t e r n ....................  39

3.7 Overall Performance With Complement Traffic P a t t e r n ........................ 40

3.8 Effect of Global Information Gathering Delays for Deadlock Recovery
(a & b) and Deadlock Avoidance (c & d)...................................................  46

3.9 Static Threshold vs. Tuning..............................      47

3.10 Self-Tuning Operation : An E x a m p le ..................    47

3.11 Choice of increment/decrement q u a n t a ................................................... 48

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.12 Offered bursty load  .............................................    . 49

3.13 Performance with Bursty Load : Delivered T h ro u g h p u t....................... 49

3.14 Row aggregation using two meta packets  .................................... 51

3.15 Minimum, Maximum and Average gather times using meta packets . 52

3.16 Effect of Meta-packets and Tuning on Throughput................................  53

4.1 Via Routing : Upper and Lower Triangles .............................................  60

4.2 Representation of full input b u f fe r s ..........................................................  62

4.3 Recasting LCPmin as SP problem in directed graph .  ......................  62

4.4 Via-routing for Uniform Random pattern ..............................................  66

4.5 Via-routing for Bit Reversal pattern ........................................................  67

4.6 Via-routing for Complement pattern ........................................................  68

4.7 Via-routing for Perfect Shuffle pattern ..................................................... 69

4.8 Via-routing with TUNE for Uniform Random pattern .............  70

4.9 Via-routing with TUNE for Bit Reversal pattern .......................  71

4.10 Via-routing with TUNE for Complement pattern .......................  72

4.11 Via-routing with TUNE for Perfect Shuffle pattern ....................  73

5.1 Minimal Adaptive Routing w/deadlock recovery and Chaotic Routing 75

5.2 Routing Options Minimal vs. Nonminimal  ...................................   76

5.3 Central Bypass Buffers: C haos................   82

5.4 Distributed Bypass B uffers...........................................................................  84

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.5 Choice of Base configuration       . 88

5.6 Overall Performance With Random T ra ffic .............................  94

5.7 Overall Performance With Bit-Reversal Traffic P a t t e r n ......................  95

5.8 Overall Performance With Perfect-Shuffle Traffic P a t t e r n ...................  96

5.9 Overall Performance With Complement Traffic P a t t e r n ......................  97

5.10 Effects of Varying the Misroute Limit of BLAM, Uniform Random Traffic 100

5.11 Effects of Varying the Misroute Limit of BLAM, Perfect Shuffle Traffic 101

5.12 Effects of Varying the Misroute Limit of BLAM, Complement Traffic 102

5.13 Effects of Varying the Misroute Limit of BLAM, Bit Reversal Traffic . 103

5.14 M-misroute, Adaptive Router, Uniform Random Traffic.......................... 106

5.15 M-misroute, Adaptive Router, Perfect Shuffle T r a f f ic ..............................107

5.16 M-misroute, Adaptive Router, Complement T r a f f ic ................................. 108

5.17 M-misroute, Adaptive Router, Bit Reversal Traffic .................................109

5.18 M-misroute, Adaptive Router with lazy M isrou tes.................................... 110

5.19 M-misroute, Adaptive Router with lazy M isrou tes.............................  . I l l

5.20 Overall Performance For Other Packet Sizes (Uniform Random Traffic, 
16-ary, 2-cube Network) .................................................................................. 115

5.21 Overall Performance For Other Packet Sizes (Bit-Reversal Traffic, 16-
ary, 2-cube N e tw o rk ).................................................................  116

5.22 Overall Performance For Other Packet Sizes (Complement Traffic, 16-
ary, 2-cube N e tw o rk )....................................................................................   117

5.23 Overall Performance For Other Packet Sizes (Perfect Shuffle Traffic, 
16-ary, 2-cube Network) .......................................................................   118

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.24 Overall Performance For Other Network Sizes (Uniform Random Traf
fic, 16 flit packets)  ................    119

5.25 Overall Performance For Other Network Sizes (Bit-Reversal Traffic, 16
flit packets)  ......................   120

5.26 Overall Performance For Other Network Sizes (Complement Traffic,
16 flit packets) .......................................................................................  121

5.27 Overall Performance For Other Network Sizes (Perfect Shuffle Traffic,
16 flit packets) ..................................................................................................122

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

I consider myself lucky to have had Seema by my side these past four years, and I 

don’t think she will ever know how much her love and support has meant to me. I 

am also extremely thankful to my parents for their love, encouragement and support.

I wish to thank my advisors, Professor Alvin Lebeck and Shubhendu Mukherjee, 

whose guidance has been extremely valuable to me. The knowledge and experience 

I have gained under their guidance, both in the methods of research and in specific 

research insights will help me throughout my career. I would also like to thank 

members of my PhD examination committee for their suggestions and comments 

that helped polish my research and thesis.

Working with Professor Siddhartha Chatterjee, Srikanth Srinivasan, Chia-lin Yang 

and Dave Raymond on my initial research projects as a graduate student was a 

rewarding and enriching experience. I have also benefited greatly from the many 

teachers who have taught me at Duke University and IIT Kharagpur.

Finally, it would have been considerably more difficult for me to adjust to my stay 

far away from India but for the company of all my family and friends. Thank you, 

Varsha, Babu, Sri, Gopal, Chia-lin, Karthikeyan, Rama, Om, Krishna, Amit, Pavan, 

Padmini, Kasturirangan, Vamsee, Rajesh, Jaidev, Sphoorthy, Vikram and Rachana 

for everything.

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1: 
Introduction

The market for large-scale cache-coherent distributed shared-memory multiprocessor 

machines (DSMPs) with 16 or more processors has tripled in the past four years [9]. 

In 2001 this server market resulted in an annual revenue of $9 billion. Roughly 

half of this revenue resulted from large-scale machines with 32 or more processors. 

Today most major vendors, such as IBM [12, 22], HP [29, 43, 32], SGI [54], and 

Sun Microsystems [9], offer machines that scale up to a large number of processors 

(usually between 24 and 512).

These systems (Figure 1.1) typically consist of a set of nodes that can communi

cate over an interconnection network. As shown in Figure 1.1, each node consists of 

a processing element (PE), memory (including caches) and a router. The intercon

nection network connects all the routers and allows communication between various 

nodes.

The memory wall problem in uniprocessor design is useful to illustrate the criti- 

cality of interconnection network performance in DSMP performance. In the unipro

cessor system context, the growing gap between processor and memory speeds poses 

a challenge. Memory hierarchies and processor techniques to “tolerate” cache-miss 

latencies mitigate this problem to an extent, but the gap is too wide to be completely 

tolerated. This results in processor stalls and reduces overall performance. Conse

quently, there is a need for high bandwidth and low latency miss servicing to ensure 

that the processor does not stall waiting for data.

The same problem of miss-service latency and bandwidth is exacerbated in DSMP 

systems because a cache miss may potentially suffer the interconnection network de

lay in addition to the memory latency (Figure 1.2). High latencies and/or poor

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PE

MEM

NETWORK

Figure 1.1: Distributed Shared Memory Systems with k-ary, n-cube networks

bandwidth can increase the time required to service remote cache misses and has the 

potential to increase processor stall time. As such, high bandwidth, low latency inter

connection network performance is desirable in order to achieve high system perfor

mance in demanding server applications , such as databases [51]. Further, the advent 

of multiprocessor systems built with highly aggressive, out-of-order, and speculative 

microprocessors, simultaneous multithreaded processors [21], and chip multiproces

sors [16], promises to dramatically increase the offered load on such multiprocessor 

networks.

Unfortunately, network packets are often delayed due to transient network conges

tion. Consequently, many interconnection networks employ virtual cut-through and 

adaptive routing algorithms. Virtual cut-through pipelines a packet among multiple 

routers and buffers it entirely at a router when the packet header is blocked due to 

congestion. This reduces congestion around a router by removing packets from the 

network links. Adaptive routing routes packets around congested spots in a network 

(by adapting to the network state) to achieve higher throughput from the network. 

Virtual channels also help reduce congestion by reducing head-of-line waiting. How

ever, inspite of significant benefits from the use of techniques mentioned above, there 

remain known performance bottlenecks [48] at high loads due to network saturation.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Response (Cache Fili)

NETWORK

Cache FillMiss
Remote cache miss

CPU
CPUnCPU1

REMOTE MEM

\ 7

LOCAL MEM LOCAL MEM

F ig u re  1.2: Interconnection network on Critical Path

Tree saturation occurs when multiple packets contend for a single resource (e.g., a 

link between nodes) creating a hot-spot. Since only one packet can use the resource, 

other packets must wait. These waiting packets occupy buffers and thus delay other 

packets, even though they may be destined for a completely different node and share 

only one link on their paths to their respective destinations. This process continues, 

waiting packets delay other packets producing a tree of waiting packets that fans out 

from the original hot-spot.

The performance degradation caused by network saturation can be severe, as illus

trated in Figure 1.3. The y-axis corresponds to delivered bandwidth (flits/node/cycle) 

while the x-axis shows offered load in terms of packet injection rate (packets/node/cycle). 

The two lines correspond to different communication patterns: randomly selecting 

a destination node (random), and using the node number with its bits inverted as 

the destination (complement) . (I explain communication patterns in greater detail in 

Section 5.4.3.)

From Figure 1.3 we can make two important observations. First, both communi

cation patterns incur dramatic reductions in throughput when the network reaches 

saturation. The second observation is that the network saturates at different points 

for the different communication patterns.

The space of solutions to the problem of performance degradation at network

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.025
Random — e- 

C om plem ent —■-x-
©
£o
0
"Ooc

0.02

Jg 0 .015
o
CO

CL

O
3=
CO
H-
"O
<d

0.01

0.005
CL
©
8<

0.10.01
Packet Injection Rate (Packets/node/cycle)

Figure 1.3: Performance Breakdown at Network Saturation, 16x16 2D network, 
adaptive routing, deadlock recovery

saturation can be divided into two broad sub-spaces: congestion control mechanisms 

and load-balancing schemes. The congestion control approach throttles injection 

of new packets into the network so as to keep the network operating in the high 

bandwidth, low latency region of operation. This region of operation corresponds to 

the peak in Figure 1.3 at loads slightly lower than saturation load. The load balancing 

approach tries to prevent imbalances in load in different regions of the network. The 

rationale behind this approach is that load imbalances can cause network delays in a 

small region of the network that can propagate quickly because of the tree-saturation 

phenomenon.

1.1 Contributions

The contributions of this thesis are the design and evaluation of the following three 

techniques to achieve high bandwidth, low latency interconnection network operation

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16-ary, 2 -cube - Uniform Random Traffic Pattern

Minimal, Adaptive Routing w/  SVC -  
C haos Router

0.025

0.015

0.005

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

Figure 1.4: Minimal Adaptive Routing w/deadlock recovery and Chaotic Routing

at high loads. The first technique falls under the congestion control category and the 

second two techniques fall under the load balancing categories.

•  Self-tuned, global knowledge based, congestion control. One way to prevent net

work saturation is to use source throttling, which prevents source node packet 

injection when congestion is detected. An oracle could achieve this by knowing 

both the communication pattern and the packet injection rate that maximizes 

performance. The challenge is to develop a realistic implementation that can 

prevent performance degradation at network saturation and adapt to variations 

in communication patterns.

I propose a self-tuned, global knowledge based congestion control mechanism 

that achieves both objectives. The two key innovations of this technique are: (a) 

faster feedback via the use of global congestion information and (b) a through

put driven self-tuned congestion control mechanism that adapts to changes in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



communication patterns.

•  Congestion-aware via routing: An alternate way would be achieve load balanc

ing by making sure that packets do not flood congested regions of the network. 

This prevents congestion from building up in regions of the network and thus 

prevents saturation. I use a mechanism called via-routing that routes packets 

towards certain intermediate nodes (via nodes) en route to the destination node. 

The key innovation of my technique is the use of of global knowledge to direct 

packets to congestion free regions of the network by using global-congestion- 

aware via-node selection policies.

• BLAM  routing: Earlier, we had seen the performance bottleneck of minimal 

adaptive routers, i.e., routers that ensure that packets get closer to the desti

nation with each hop, at high loads due to network saturation. Interestingly, 

however, non-minimal routing algorithms, which allow packets to take hops 

that take them farther from the destination, may perform significantly better 

than a minimal adaptive routing algorithm (Figure 1.4) at high offered loads. 

This is because non-minimal routing algorithms offer greater routing freedom 

compared to a minimal adaptive routing algorithms (Figure 1.5.) Figure 1.4 

compares the performance of a minimal adaptive router with the Chaos router, 

which is a non-minimal adaptive router. The minimal adaptive routing algo

rithm saturates and, thereby, causes the performance to degrade rapidly beyond 

a certain offered load. Chaos’ performance is better on two counts: (a) satu

ration occurs at higher loads and (b) there is no degradation in performance 

at saturation. Unfortunately, the better performance of Chaos is achieved at 

the cost of weaker livelock-freedom guarantees. Chaotic routing offers no de

terministic guarantee of livelock-freedom—only a probabilistic guarantee that

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r
i
i

Non-Minimal Routing Options 

Minimal Routing Options

I  Minimum Rectangle

□ □ □ □ □ □
□  c t h - d

□ - D H O  □  □  □
□ □ □ □ □ □

Figure 1.5: Routing Options Minimal vs. Non-minimal

the chance of a packet continuously circulating in the network diminishes with 

each hop.

Unfortunately, in spite of its high performance, to the best of my knowledge 

no commercially available interconnection network uses the Chaos routing al

gorithm, even though it has been over a decade since the design was proposed. 

The presence of livelo cks-however low its probability may be-causes network 

designers to shy away from using such algorithms in real products. The chal

lenge is to develop a solution that has the benefits of each of the two routing 

algorithms (minimal adaptive and Chaos) without either technique’s pitfalls. I 

propose a new non-minimal routing algorithm—BLAM —that has the best fea

tures of minimal (deterministic guarantees of deadlock- and livelock-freedom) 

and non-minimal routing (better performance due to improved flexibility) with

out the drawbacks of either. The key innovations of this technique are the use of 

lazy misrouting (to prevent spurious and wasteful misrouting) with bypassing 

(to eliminate head-of-line waiting) and the use of limited misroutes (to ensure 

livelo ck-freedom).

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background 

information and discusses related work. The next three chapters describe and eval

uate three techniques to achieve high bandwidth low latency network operation in 

interconnection networks. Chapter 3 describes a congestion control mechanism that 

relies on global information for faster feedback and self-tuning for adapting to various 

communication patterns. Chapter 4 proposes a mechanism for congestion aware via- 

routing that attempts load balancing to overcome the performance problems at high 

loads. Chapter 5 describes a new high performance non-minimal routing algorithm— 

BLAM —that is guaranteed to be livelock- and deadlock-free. Chapter 6 summarizes 

and concludes this thesis.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2: 
Background and Related Work

2.1 Background

High performance interconnection networks in tightly coupled multiprocessors can be 

achieved by using wormhole [14, 15] or virtual cut-through switching [35], adaptive 

routing [28], and multiple virtual channels [13]. Many commercial machines [43, 

53, 39] use a combination of these techniques for their interconnection networks. 

In these systems communication occurs by sending packets of information that are 

routed independently through the network. Each packet is composed of flits (flow 

control units) that are transferred between network nodes.1 Usually, the header flit(s) 

contains information necessary to choose a route to the destination.

In wormhole switching, when a node receives the header flit (which typically 

contains the routing information), it immediately selects a route and forwards the 

flit to the next node. This can provide very low latency compared to store-and- 

forward routing where the entire packet is received by a node before forwarding it. 

However, when a packet blocks in a wormhole network, its flits occupy buffer space 

across several network nodes. In contrast, virtual cut-through routers can buffer the 

entire blocked packet within a single node while also providing low latency at light 

loads, since they forward packet headers without waiting for the whole packet to 

arrive.

In the rest of this section, I describe the network topology and the router archi

tecture I consider in this thesis.

1For ease of exposition I assume each network node contains a processor, memory and a network 
router.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1.1 N etw ork Topology

In this thesis, I consider direct networks of the k-ary, n-cube topology. Direct networks 

are networks where each node can produce/ consume network packets (i.e. each node 

has a processor and memory). In contrast, indirect networks may have intermediate 

switches which relay other packets but do not produce/consume any traffic.

One attractive property of indirect networks is that the node containing the pro

cessor can use all the available pin bandwidth exclusively for its communication 

needs. In an integrated direct network, part of the node’s pin bandwidth may be 

used to relay packets of two other nodes in the system. However, this thesis does not 

consider indirect networks (such as fat-trees, multistage interconnection networks) 

for two reasons: (1) The trend towards higher integration and system-on-a-chip is 

leading towards direct networks since the processor, caches and router can all be inte

grated on one die, (2) Indirect networks can be modeled with direct networks where 

certain hosts do not produce/ consume any traffic, essentially acting as intermediate 

switches.

Of the various possible topologies among direct networks, this thesis considers 

the k-ary, n-cube topology (which is an n-dimensional matrix with k nodes along 

each dimension and wrap-around edges) because it has many desirable properties, 

k-ary, n-cube networks have a large number of alternate routes between a source and 

a destination, k-ary, n-cube topologies are a broad family that include many popular 

topologies such as rings (k-ary, 1-cube), meshes (k-ary, 2-cube with some routing 

restrictions) and hypercubes (2-ary, n-cube).

2.1.2 Base R outer A rchitecture

Above, I described the network architecture. Here I discuss the architecture of each 

router in the network. Figure 2.1 shows the minimal, adaptive router with multiple

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P hysical
LinkO

P hysical 
Link 1

Injection 
Link

VCO
r—lllll

Routing an d  Arb. Unit

VC1
L m ir

VCO

MTDT
VC1

L i r

VCO

VC1
MIDI

4 ..............

II 4

II * ii-
Main

|| 1
XBar

]J ® Hr

*

*

*

—am— 

—am—
MDM-

Physical
I j n k O

Physical 
Link 1

Ejection
Link

Figure 2.1: Base Minimal, Adaptive Router with Multiple Virtual Channels

virtual channels that I use as the base case router in the rest of this thesis. The next 

few paragraphs describe each of these characteristics of my base router in greater 

detail.

Each node has several incoming and outgoing network physical links and injec

tion/ejection channels through which packets enter/exit the network. The physical 

channels are logically split into multiple virtual channels, each with its own buffers. 

The routing and arbitration unit sets up the crossbar connections linking input buffers 

to output buffers. Flits deposited in the output buffer are transferred across the phys

ical link into the corresponding input buffer at the neighboring node.

A packet hop is classified as profitable or minimal if it takes the packet closer to 

its destination. A hop that takes a packet farther from its destination is known as a 

misroute or a non-minimal hop. A profitable channel is a channel on which a packet 

can make a profitable hop. We can classify routers as minimal or non-minimal. A 

minimal router offers only profitable hops whereas a non-minimal router may offer 

misrouting hops as well.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Adaptive routing dynamically chooses from multiple potential routes based on 

current local network state. This offers more routing flexibility compared to a de

terministic routing algorithm, and thus provides higher performance. Unfortunately, 

full adaptive routing can cause deadlock cycles. The next section describes ways to 

handle deadlock cycles that form due to adaptive routing.

2.1.3 Deadlock H andling in M inim al A daptive R outers w ith Escape Paths

Virtual channels allow multiple packets to share a single physical link and can be 

used to eliminate deadlocks. Deadlock avoidance schemes work by preventing the 

cyclic dependencies between storage resources. In particular, I consider a scheme 

that reserves a small set of virtual channels for deadlock-free routing [18], while the 

remaining virtual channels use fully adaptive routing. This technique guarantees 

forward progress, since packets routed over the special channels will never deadlock, 

and eventually free up resources for the fully adaptive channels. The Alpha 21364 

router [43] is an example of a system with multiple virtual channels, adaptive routing 

and deadlock avoidance.

Deadlock recovery [38] is an alternative to deadlock avoidance that can potentially 

achieve higher performance. Deadlock recovery uses full adaptive routing on all 

virtual channels, detects when deadlocks occur (typically via timeouts), then recovers 

by routing packets on a deadlock-free path which uses a central per-node buffer. This 

is the primary difference from deadlock avoidance, which requires buffers per physical 

channel.

In either deadlock avoidance or recovery, the frequency of deadlocks in the adap

tive channels increases dramatically when the network reaches saturation [38]. When 

this occurs, packets are delivered over the relatively limited escape bandwidth avail

able on the deadlock-free paths. This causes a sudden, severe drop in throughput

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and corresponding increase in packet latency.

2.2 Related Work

The contribution of this thesis is the design and evaluation of three techniques to 

overcome the problem of performance degradation at saturation and to sustain high- 

bandwidth, low latency network operation. In this section, I discuss previous research 

and its relation to the three techniques. Section 2.2.1 describes various research stud

ies that used the congestion control techniques and compares it with my technique 

described in Chapter 3. Section 2.2.2 describes previous load-balancing research and 

its relation to my congestion aware via-routing technique described in Chapter 4. 

Finally, Section 2.2.3 describes the livelock, deadlock and performance issues that 

crop up when non-minimal routing is considered. This provides the background for 

Chapter 5 where I describe and evaluate a non-minimal routing algorithm—BLAM.

2.2.1 Congestion Control

Most previous work on congestion control for multiprocessor networks relies on esti

mating network congestion independently at each node and limiting packet injection 

when the network is predicted to be near saturation. This reduces the problem 

to finding a local heuristic at each node to estimate network congestion. Lopez et 

al. [40, 41] use the number of busy output virtual channels in a node to estimate con

gestion. Baydal et al. [4] propose an approach that counts a subset (free and useful) 

of virtual channel buffers to decide whether to throttle or not. Because the above 

schemes rely on local symptoms of congestion, they lack knowledge about the global 

network state, and are unable to take corrective action in a timely manner. This 

reduces their effectiveness under different network load levels and communication 

patterns.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Smai and Thorelli describe a form of global congestion control [56]. A node that 

detects congestion (based on time-outs) signals all the other nodes in the network to 

also limit packet injection. This approach requires tuning the appropriate time-outs, 

and when the timeouts are tuned for robustness at higher loads, there is a performance 

penalty for light loads. Scott and Sohi describe the use of explicit feedback to inform 

nodes when tree-saturation is imminent in multistage interconnection networks [52]. 

This approach also requires tuning of thresholds. The technique proposed by Kim et 

al. [36] allows the sender to kill any packet that has experienced more delays than a 

threshold. This approach pads shorter packets to ensure that the sender can kill a 

packet at any time before its first flit reaches the destination. This can cause larger 

overheads when short messages are sent to distant nodes.

The above techniques for congestion control in multiprocessor networks all at

tempt to prevent network saturation at heavy loads. Unfortunately, these techniques 

either require tuning, lack necessary information about a network’s global state to 

take preventive actions in a timely fashion, or do not provide high performance under 

all traffic patterns and offered load levels.

Flit-reservation flow control is an alternative flow control technique which im

proves the network utilization at which saturation occurs [47]. It uses control flits to 

schedule bandwidth and buffers ahead of the arrival of data-flits. This pre-scheduling 

results in better re-use of buffers than waiting for feedback from neighboring nodes to 

free up buffers. Basak and Panda demonstrate that consumption channels can be a 

bottleneck that can exacerbate tree saturation. They show that saturation bandwidth 

can be increased by having an appropriate number of consumption channels [3].

LANs (Local Area Networks) and WANs (Wide Area Networks) use self-tuned 

congestion control techniques. Various flavors of self-tuning, end-to-end congestion 

avoidance and control techniques have been used in the TCP protocol [33, 6]. TC P’s

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



congestion control mechanism uses time-outs and dropped/ unacknowledged packets 

to locally estimate global congestion and throughput. If congestion is detected, the 

size of the sliding window, which controls the number of unacknowledged packets 

that can be in flight, is reduced. Floyd and Jacobson [26] proposed a scheme where 

TCP packets are dropped when a router feels that congestion is imminent. Dropped 

packets give an early indication to end hosts to take corrective action and scale 

back offered load. Floyd [25] also proposed a modification of TCP where “choke 

packets” are explicitly sent to other hosts. Ramakrishnan and Jain describe a similar 

mechanism for DECbit to explicitly notify congestion whereby gateways set the ECN 

(Explicit Congestion Notification) bit depending on average queue size [50].

Congestion control in ATM [34] uses explicit packets called Resource Management 

(RM) cells to propagate congestion information. Switches along the packet path 

modify bits in the RM cells to indicate the highest data rate they can handle. The 

end-hosts are limited to using the maximum data-rate indicated by the switches to 

not overwhelm the network and/or switches.

Congestion control mechanisms for LANs and WANs that involve dropping pack

ets are not directly applicable in multiprocessor networks. Some LANs and WANs 

can drop packets because higher network layers will retransmit dropped packets for 

reliable communication. The dropped packets serve as implicit hints of network 

congestion. However, multiprocessor networks are typically expected to guarantee 

reliable communication. Thus, additional complexity would have to be built-in to 

store and retransmit dropped packets. The alternative idea of propagating conges

tion information explicitly can be used.

The challenge is in determining the appropriate set of mechanisms and policies 

required to provide a self-tuned congestion control implementation for preventing 

saturation in multiprocessor networks. In Chapter 3, I present my solution for regu-

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



lar interconnection networks with adaptive routing, wormhole switching, and either 

deadlock recovery or deadlock avoidance.

My solution— Tune—is based on two key innovations that collectively overcome 

the limitations of previous congestion control techniques. First, I use a global knowl

edge based congestion estimation that enables a more timely estimate of network 

congestion. The second component is a self-tuning mechanism that automatically 

determines when saturation occurs allowing throttling packet injection. Chapter 3 

describes and evaluates the Tune congestion control mechanism.

2.2.2 Load Balancing in the M inim um  R ectangle

Load balancing schemes generally try to distribute packets evenly over the network. 

One mechanism that has been widely studied to achieve this is to require packets 

to traverse certain intermediate nodes on the way to their respective destination 

nodes. W ith such a mechanism, the problem of balancing load reduces to selecting 

intermediate nodes evenly over the network. The mechanism of requiring packets to 

traverse intermediate nodes is also called multi-phase routing.

Valiant [64] proposed a two-phase routing scheme that randomly selected a single 

via-node that was not necessarily in the minimum rectangle. While this approach 

guarantees balanced loads and good worst case behavior, it effectively doubles the 

expected path-length for each packet. Nesson et al. [44] describe a non-adaptive 

routing technique called ROMM routing which uses multiphase-routing by selecting 

random via-nodes in the minimum rectangle, but their scheme requires twice as many 

virtual channels as phases to achieve deadlock-free routing in a torus. Towles and 

Dally [62] demonstrate that the worst case behavior of ROMM routing is poorer than 

that of static dimension-ordered routing.

The Randomized Load Balancing (RLB) algorithm by Singh et al [55] uses two

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



levels of load balancing. It uses quadrant selection to balance global link loads. This 

results in non-minimal routing as well. It uses 2-phase routing within the selected 

quadrant to balance load locally. This scheme is not adaptive and further, it penalizes 

performance on well-behaved traffic patterns though it improves the performance for 

adversarial communication patterns.

Overlay networks [1] on top of the Internet achieve better performance through 

load balancing and fault tolerance by routing packets via overlay nodes that would 

not normally be on the path if the underlying Internet mechanism had routed the 

packet. Resilient overlay networks [2] use fast feedback to detect heavily loaded net

work regions (as indicated by packet loss rates) faster than the underlying Internet 

infrastructure and hence are able to direct packets over lightly loaded networks in 

a timely manner. However, in overlay networks on the Internet, the problem is not 

only because of slower feedback, but also because the underlying Border Gateway 

Protocol (BGP) deliberately exposes less information than it has. This is done to 

achieve scalability. In contrast, in distributed, shared memory multiprocessor net

works with adaptive routing, there is no such artificial restriction on routing freedom. 

But lack of fast feedback can still result in load imbalances and consequent perfor

mance degradation.

The Source Demand Routing Protocol (SDRP) is an Internet protocol that lets 

source nodes specify the inter-domain hops of packets. However, the impementation 

of SDRP depends on deployment of SDRP-capable routers. In the absence of SDRP 

routers, routing defaults to ordinary hop-by-hop routing as in Border Gateway Pro- 

tocol(BGP) and Internet Domain Routing Protocol (IDRP). A version of SDRP for 

IPv6 called Explicit Routing Protocol (ERP) is also in the works.

For local area networks, Flich et al. [24] propose a scheme to select via nodes, 

to achieve shortest path routing in up*/down* routed irregular networks such as

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Myrinet. This technique of breaking a route into sub-routes retains deadlock-freedora 

and achieves shortest paths.

The key innovations of my congestion-aware via-routing scheme, which is de

scribed and evaluated in greater detail in Chapter 4, is the use of global information 

to achieve centralized adaptive routing within the minimum rectangle. The goal is to 

use global buffer occupancy information and specify, at the source node, that packets 

move away from heavily loaded network regions. This is different from distributed 

adaptive routing in which adaptive routing decisions are made at each hop to achieve 

local load balance. Simulation results show the limitations of load balancing within 

the minimum rectangle and thus gives the necessary insight for achieving better per

formance with a new non-minimal routing algorithm—BLAM.

2.2.3 Deadlock, Livelock and Perform ance I s s u e s  in Nonm inim al Adap

tive Routers

Adaptive routing systems (including out base minimal adaptive router) may be prone 

to deadlocks. Previously I discussed one approach to handling deadlocks in adaptive 

channels: guarantee that packets are able to make forward progress on a logically 

separate subnetwork. Deadlock avoidance [18] and deadlock recovery [38] are exam

ples of this approach. Below, I discuss a different approach to deadlock handling in 

non-minimal adaptive routers that differs in its performance under heavy load and 

in its livelock-freedom guarantees.

Deflection routing is another class of routing algorithms that avoid deadlocks in 

virtual cut-through networks by ensuring that no packets are blocked indefinitely. 

This technique works for networks where the number of input network channels is 

equal to the number of output channels at each node. This property makes it possible 

to match every incoming packet to an output channel. However, such a matching

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cannot guarantee that all matched pairs correspond to profitable routes. In fact, 

using this approach to prevent deadlocks requires an unlimited number of misroutes. 

This approach eliminates the need for deadlock-free escape paths, but guarantees of 

livelock freedom are either weaker (probabilistic) or they come at the cost of added 

complexity to implement timestamping and router-wide priorities.

Synchronous deflection routers [23, 31, 42, 57, 58] assume that all packets arrive 

at an input port at the same time and they are routed to the output ports in a single 

step. Non-synchronous routers use the same principle of deflection routing but relax 

the constraint of synchronous operation by adding buffers that can hold incoming 

packets while waiting for output channels to become free [45, 37]. Such routers need 

additional mechanisms like the packet exchange protocol [45] to prevent deadlocks. 

This protocol demands that if a node a sends a packet on a link to a neighboring 

node b, node a should also be prepared to accept a packet from node b. The Chaos 

router [37] belongs to this category. Ngai et al. [45] and Coates et al. [11] describe 

other examples of non-synchronous deflection routers.

Ngai et al. propose a timestamp based technique to eliminate livelocks, by ensur

ing that the oldest packet in the network is never misrouted. This guarantees deter

ministic livelock freedom but the implementation of router-wide priorities (e.g. find

ing “oldest” packet at the router) can complicate the router and add overheads. The 

S-connect interconnect of the S3.mp system is another example of a non-synchronous 

deflection router [46]. Incoming packets that cannot be mapped to channels indicated 

by the routing table may be routed on any random channel. S-connect also uses an 

implementation of timestamping and router-wide priorities to guarantee livelock free

dom.

I use the Chaos router [37] as a representative of non-synchronous deflection rout

ing algorithms as it compares very well against previous deflection routers. The Chaos

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



router does not provide deterministic guarantees of livelock-freedom, thus eliminat

ing the need to implement router-wide priorities. Instead, it uses randomization to 

select packets to misroute causing the probability of a packet remaining undelivered 

to diminish with time.

In the above discussion, I outlined a design space of routers with minimal adaptive 

routers -  which disallow misroutes and thus eliminate livelocks -  on one end, and 

chaotic routing -  which achieves high performance and deadlock freedom by allowing 

unlimited, lazy misroutes but offers only probabilistic guarantees of livelock-freedom 

-  on the other end. In the Chapter 5, I analyze this design space of routers with 

respect to network performance, livelock-freedom and deadlock-freedom guarantees. 

This analysis provides the insight necessary to develop a routing algorithm—BLAM— 

that has the best features of both classes of routers. Compared to the congestion 

control approach, BLAM offers an additional advantage as it increases the applied 

load at which saturation occurs and avoids throughput degradation at saturation 

without placing limits on packet injection beyond those imposed by simple back

pressure.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3:
Tune: A Self-tuned Congestion Control
M ech an ism

This chapter presents a self-tuned, global information based, congestion control 

mechanism— Tune—for k-ary, n-cube interconnection networks. In general, conges

tion control techniques work by throttling packets at the source when they detect 

that saturation is imminent.

One key innovation of Tune is the use of global information that takes distant 

network conditions into account. Global information enables detection of distant 

network congestion earlier than alternative approaches described in previous stud

ies (Section 2.2.1) that wait for network backpressure to create locally observable 

indicators of congestion (e.g., local buffer occupancy, timeouts). Tune uses global 

knowledge of the number of full network buffers to estimate network congestion. 

This global buffer occupancy is compared against a “threshold” to control packet 

injection. If it is higher than the threshold, packet injection is stopped. When the 

buffer occupancy drops below the threshold, packet injection is resumed.

The second key aspect of the Tune source throttling scheme is a self-tuning mech

anism that monitors network throughput and automatically determines the appropri

ate threshold value. This eliminates manual tuning and allows my scheme to adjust 

to variations in communication patterns.

I believe that my congestion control mechanism is generally applicable to a broad 

range of packet-switched, multiprocessor networks, including virtual cut-through [35] 

networks and wormhole networks [15, 14], However, in this thesis, I evaluate the 

technique in the context of wormhole switched, ft-ary, n-cube networks.

Simulation results for a 16-ary, 2-cube (256 node network) show that the Tune

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



congestion control technique prevents the severe performance degradation caused by 

network saturation. By limiting packet injection, my scheme sustains high through

put and low latency. Compared to an alternative approach that uses local estimates 

of congestion [4], Tune is superior because global congestion estimation enables it 

to detect congestion in its early stages. I also show that a single static threshold 

cannot accommodate all communication patterns because a single threshold over

throttles some workloads and does not prevent saturation in other ones. In contrast, 

simulations reveal that my self-tuning technique automatically adapts to various com

munication patterns, including bursts of different patterns.

Section 3.1 and Section 3.2 discuss the two key innovations of this chapter. Sec

tion 3.1 presents the proposed global information gathering scheme and Section 3.2 

describes the self-tuned congestion control scheme. Section 3.3 and Section 3.4 

present the experimental methodology and simulation results, respectively. Sec

tion 3.5 summarizes this chapter.

3.1 Gathering global information

Any congestion control implementation requires a timely way to detect network con

gestion. Previous techniques estimate network congestion using a locally observable 

quantity (e.g., local virtual buffer occupancy, packet timeouts). While these esti

mates are correlated to network congestion, waiting for local symptoms of network 

congestion is less useful primarily because, by that time, the network is already over

loaded.

Consider the case when network congestion develops at some distance from a 

given node. Schemes that use local heuristics to estimate congestion rely on back

pressure to propagate symptoms of congestion to the node (e.g. filling up of buffers, 

increase in queue delays, etc.). The node takes no corrective action until congestion

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



symptoms are observed locally.

It is possible to detect network congestion in its early stages by taking global 

conditions into account. To achieve this, I use the fraction of full virtual channel 

buffers of all nodes in the network as the metric to estimate network congestion. 

This ensures that far away congestion is accounted for early enough to take corrective 

action. However, there is additional cost, both hardware and latency, to propagate 

the global information.

Tune counts full buffers to estimate congestion but does not take the distribution 

of these full buffers among the nodes into account. At first glance, this appears to be 

a serious limitation because it is unable to distinguish between a case with localized 

congestion (i.e., a large fraction of full buffers are in relatively few nodes in the 

network) and a benign case (in which the same number of full buffers are distributed 

more or less evenly among all the nodes of the network). But the adaptivity of Tune’s 

self-tuning mechanism reduces the impact of this problem by setting the threshold 

differently in the two cases. Tune will set a higher threshold for the benign case than 

for the case with localized congestion.

In the next section, I show how global information can be gathered with reasonable 

cost and used to achieve a robust, self-tuned congestion control implementation.

3.1.1 Im plem enting Global Inform ation Gather

Tune requires that every node in the network be aware of the aggregate number of 

full buffers and throughput for the entire network. (The relationship between full 

buffers, offered load and delivered bandwidth is explained in Section 3.2.) There are 

a variety of ways to implement this all-to-all communication. In this section, I study 

two alternatives: meta-packets, and a dedicated side-band.

One approach to distribute information is to send out special meta-packets con-

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



taining the congestion and throughput information. The required all-to-all commu

nication can be guaranteed by this approach. However, guaranteeing delay bounds 

involves additional complexity. Meta packets flooding the network will also consume 

some of the bandwidth and may add to the congestion. Adding a high-priority vir

tual channel reserved for these meta-packets is one way of addressing these concerns. 

My experiments show that even the addition of a high-priority virtual channel is 

not sufficient to ensure timely information distribution for the purpose of congestion 

control. I discuss the meta packet mechanism in Section 3.4.5 in greater detail.

For the rest of this chapter, I use an exclusive side-band reserved for communicat

ing the congestion and throughput information. This is the costliest implementation 

in terms of additional hardware and complexity. However, it is easy to guarantee 

delay bounds on all-to-all communication and it does not affect performance of the 

main data network. While the extra bandwidth available on the side-band could be 

used for general packet routing, it will only postpone network saturation for a short 

time, and not provide a complete solution like my congestion control scheme.

Apart from meta packets and side-bands, it may be possible to piggy-back the 

extra information on normal packets and use this as an information distribution 

mechanism. However, this approach has the disadvantage that it is difficult to guar

antee all-to-all communication. Since only nodes involved in communication see the 

piggy-backed information, it is possible that some nodes will not see the information 

for an extended period of time, if at all. As such, I do not consider this information 

distribution mechanism in this thesis.

To compute the global buffer occupancy using the exclusive side-band, I use a 

dimension-wise aggregation scheme. Assume the side-band incurs a neighbor-to- 

neighbor communication delay of h cycles. Every node communicates its number 

of full buffers and throughput in both directions along the lowest dimension of the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P h a s e  I P h a s e  II

Figure 3.1: Dimension-wise global aggregation.

network. Each node that receives such information computes the aggregate and has 

the aggregate information for all its neighbors along the zeroth dimension at the 

end of k j 2 hops or (k/2) * h cycles. The nodes then communicate the aggregates 

to neighbors along the next higher dimension. Continuing this procedure along ev

ery dimension, global aggregation in a full-duplex, ft-ary,n-cube network completes 

in (k/2) * h * n cycles. Assuming h = 2, for the 16-ary, 2-cube network configu

ration (n =  2, k =  16) it takes 32 cycles. I refer to the time for such an all-to-all 

communication as the gather-duration (g).

The mechanism described above provides g-cycle delayed snapshots of the network 

congestion every g cycles. Tune’s congestion control policy requires a comparison, 

in every cycle, between the current estimated congestion to the threshold. If the 

system is currently at time t  and the previously observed network snapshots have 

been observed at 52, Si, S0 and so on, Tune must estimate the network congestion 

at time t based on the previous snap-shots of global network congestion.

The simplest solution is to use the state observed in the immediately previous

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Linear
Extrapolation

Snap-shot

TIME

S S

Figure 3.2: Estimation of global congestion : Previous Snapshot vs. Linear Extrap
olation.

network snapshot until the next snapshot becomes available. I use a linear extrapo

lation based on the previous two network-snapshots as an estimate of congestion. In 

general, any prediction mechanism based on previously observed network states can 

be used to predict network congestion. On average, I found the linear extrapolation 

technique yields an improvement in throughput of 3% for the deadlock avoidance 

configuration and 5% for the deadlock recovery configuration over using the state 

seen in previous network snapshot.

To communicate congestion information, nodes exchange full buffer counts. The 

number of bits needed to represent this information depends on the number of buffers 

in the network. The network configuration I use and the number of bits needed to 

represent congestion information for that configuration is specified in Section 3.3.

In summary, global measurement of virtual buffer occupancy provides an early 

estimate of network congestion. This estimate is compared against a threshold to 

determine if packet injection should stop or resume. Obtaining information on the 

global state of the network is only part of the solution. To translate this congestion 

estimate to good congestion control, Tune has to properly choose the threshold.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Tune's self-tuning mechanism, described in the next section, dynamically tunes the 

threshold to the appropriate values.

3.2 Self-Tuning Mechanism

Proper threshold selection is a crucial component of my congestion control implemen

tation. Inappropriate threshold values can produce unstable behavior at high loads 

or unnecessarily limit performance for light loads. Furthermore, there is no single 

threshold that works well for all communication patterns. This section presents a 

technique to automatically determine the proper threshold value.

The goal of Tune's self-tuning mechanism is to maximize delivered throughput 

without dramatic increases in packet latency. Therefore, we can view the task as an 

optimization problem with delivered bandwidth as an objective function dependent 

on the number of full virtual buffers. Consider the relationship between offered load, 

full buffers and delivered bandwidth (See Figure 3.3). As offered load increases from 

zero, the number of full virtual buffers and delivered bandwidth also increase. When 

saturation occurs, the delivered bandwidth decreases while the number of full virtual 

buffers continues to increase.

Tune's self-tuning technique is attempting to find the number of full virtual buffers 

(i.e., the threshold value) that maximizes delivered throughput (B in Figure 3.3). To 

achieve this, Tune uses a hill-climbing algorithm including a technique to avoid local 

maxima. It is possible obtain a measure of global network throughput (the objective 

function) in a manner similar to the way Tune obtains the global count of full virtual 

buffers (see Section 3.1.1). Nodes exchange the number of flits delivered in the past 

g cycles to measure throughput. Since the maximum possible delivered bandwidth 

is 1 flit/node/cycle, the count will not exceed g * NodeCount.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Full Buffers (%)

Figure 3.3: Throughput vs. Full Buffers

3.2.1 Hill Climbing

To automatically tune the threshold, Tune begins with an initial value based on 

network parameters (e.g., 1% of all buffers). Using intuition about the relationship 

between the number of full buffers and delivered bandwidth, I specify a tuning de

cision table that indicates when the threshold value must be increased or decreased. 

Too low a value (A or lower in Figure 3.3) prevents the network from reaching the 

peak by over throttling packet injection. In contrast, too high a value pushes the 

network beyond the peak (C or higher in Figure 3.3), causing saturation just like a 

network without any congestion control.

A discussion of Tune1 s hill-climbing component of its self-tuning mechanism will 

have to answer the following questions.

® How often does Tune alter this estimate ? It uses a very simple scheme in 

which it updates the estimate at a constant frequency. The tuning period is an

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Drop in Bandwidth > 25%? Currently Throttling?
Yes No

Yes Decrement Decrement
No Increment No Change

Table 3.1: Tuning decision table

exact multiple of the gather-duration. If the tuning period is very large, there 

is likely to be slow and inefficient tuning leading to network underutilization 

or network saturation. If it is too small, short-lived crests and troughs in 

throughput could alter the estimate. However, in my experiments, I found 

that, for a reasonable range of values (32 cycles to 192 cycles) the performance 

did not alter significantly. In most experiments, I use a 96 cycle tuning period.

•  What policy determines whether the tuning mechanism should increment or 

decrement the estimate? Tune uses the policy outlined in Table 3.1. The 

two dimensions in the table correspond to observed network throughput and 

whether or not the network is currently throttled. A tuning decision is made 

once every tuning period. A “drop-in-throughput” is said to occur when the 

throughput observed at the end of one tuning period is less than 75% of the 

throughput seen at the end of the previous tuning period. The drop in through

put is not necessarily an indication of saturation. It may also be due to a reduc

tion in offered load. My scheme treats both cases identically and decrements 

the estimate. If indeed the drop in throughput was due to a reduction in offered 

load, the reduced threshold will not harm performance as the threshold will be 

incremented gradually to the desired level when offered load increases.

•  By what increments/decrements does Tune alter the estimate? Tune uses con

stant additive increments and decrements. Simulations with multiplicative

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



decrements show that constant additive tuning is adequate for effective self

tuning (See Section 3.4.3). For a reasonable range of values, (1% to 4% of all 

buffers) performance is insensitive (within 4%) to variations in increment/decrement 

values in a reasonable range of values and all values succeed in preventing per

formance degradation at saturation. The simulations showing the variation in 

Tune performance with different increment/ decrement values are presented in 

Section 3.4.3. I use an increment of 1% of all buffers and a decrement of 4% of 

all buffers. For the network I consider, this corresponds to an increment of 30 

and a decrement of 122.

To avoid local maxima, Tune resets the threshold to m in(N max, Tmax) when the 

throughput achieved in any single tuning period drops below 50% of the max value.

It restarts max computation if the threshold is reset to m in(N max, Tmax) for r =  5 

consecutive tuning periods.

To summarize the proposed implementation of Tune, it uses a sideband for com

municating global congestion and throughput information. This mechanism provides 

delayed (32 cycles for the 16-ary, 2-cube) global snapshots of full buffer counts and 

throughput. Tune updates its threshold every 96 cycles in increments of 30 and decre

ments of 122. To avoid local maxima, Tune uses the scheme outlined in Section 3.2.2 

with r — 5.

3.2.2 Avoiding Local M axim a

To avoid settling at local maxima, Tune “remembers” the conditions that existed 

when maximum throughput was achieved. To do this, it keeps track of the maxi

mum throughput {max) achieved during any single tuning period and remember the 

corresponding number of full buffers (Nmax) and threshold (Tmox).

If the throughput in any tune-period drops significantly below the maximum

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



throughput, Tune tries to recreate the conditions that existed when maximum through

put was achieved. This is done by setting the threshold to min(Tmax, Nmax). If N max 

is higher than Tmax, it means that the network was throttling with a threshold value 

of Tmax when it achieved the maximum observed throughput. In this case, the thresh

old is set to Tmax so that the network can throttle new packets and drain existing 

packets till it reaches the desired load level. If, on the other hand, Nmax is smaller 

than Tmax, then setting the threshold to Nmax is a better choice because it is possible 

that Tmax is not low enough to prevent saturation. This guarantees that the tuning 

mechanism is not stuck at a local maximum after the network saturates.

It is possible that the threshold value which sustains high throughput for one 

communication pattern is not low enough to prevent saturation for another commu

nication pattern. The Tune congestion control mechanism detects and adapts the 

threshold to such changes. If Tune resets the threshold to m in(Tmax, Nmax) for r 

consecutive tuning-periods, this means that even the m in(Tmax, Nmax) value is too 

high to prevent saturation, and Tune must recompute max  value. In this case, max 

is reset to zero and the maximum locating process starts all over again. This ensures 

that the threshold adapts to changing communication patterns. I use r  =  5 for all 

experiments.

3.2.3 Summary

The above discussion provides a general overview of a technique we believe can pro

vide a robust, self-tuned congestion control. Tune gathers full-buffer counts and 

throughput measurements every 32 cycles. The full-buffer counts are used to esti

mate current congestion using linear extrapolation. This estimate is compared to 

a threshold to decide whether new packets are throttled. Tune uses a hill climbing 

algorithm to update its threshold every 96 cycles in increments and decrements of

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1% and 4% of total buffer count, respectively. The hill climbing algorithm, when 

used alone, is susceptible to settling on local maxima after network saturation. Tune 

includes a mechanism to prevent this from happening by remembering maximum 

(max) observed throughput. Finally, Tune recomputes the maximum (max) if the 

threshold is reset for r = 5 consecutive tuning periods.

On a high level, Tune is somewhat analogous to TC P’s self-tuning congestion 

control. Both have an idea of what the network performance should be. Expected 

round-trip time (RTT) in the case of TCP and max throughput in Tune’s case. Both 

schemes allow offered load to incrementally increase as long as network performance is 

not penalized. The sliding window size increases as long as no packets are dropped in 

the case of TCP and threshold increases as long as there is no decrease in throughput 

in Tune. Both techniques take corrective action if network performance suffers. TCP 

reduces its window size and Tune either decrements the threshold or resets it to 

m in(N max, Tmax). Finally, both schemes periodically refresh their estimate of network 

performance. TCP recomputes expected round-trip-time if packets are dropped, 

whereas Tune recomputes max, Nmax and Tmax if m ax  is stale, i.e. if there are r 

consecutive corrective actions.

3.3 M ethodology

To evaluate the Tune self-tuned congestion control scheme, I use the flexsim  [60] 

simulator. I simulate a 16-ary, 2-cube (256 nodes) with full duplex physical links. 

Each node has one injection channel (through which packets sent by that node enter 

the network) and one delivery channel (through which packets sent to that node 

exit the network). I use three virtual channels per physical channel and edge-buffers 

(buffers associated with virtual channels) which can hold eight flits.

The router’s arbiter is a central resource which only one packet can use at a time

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and there’s a one cycle routing delay per packet header. Packets obtain control of the 

router’s arbiter on a demand-slotted round-robin distribution. This is not a bottleneck 

because routing occurs only for the header flit of a 16-flit packet. The remaining flits 

simply stream behind the header flit along the same switch path. It takes one cycle 

per flit to traverse the cross-bar switch and one cycle per flit to traverse a physical 

link.

I evaluate the Tune congestion control mechanism with both deadlock avoidance 

and deadlock recovery mechanisms. Deadlock avoidance uses the method proposed by 

Duato [18] with one escape virtual channel using oblivious dimension-order routing. 

I use the Disha [38] progressive deadlock recovery scheme with a time-out of 8 cycles.

All simulations execute for 60,000 cycles. However, I ignore the first 10,000 cycles 

to eliminate warm-up transients. Most results are presented in two parts: normalized 

delivered throughput (accepted flits/node/cycle) and average packet latency versus 

offered load in terms of packet injection rate.

The default load consists of each node generating 16 flit packets at the same 

fixed rate. I consider four different communication patterns, uniform random, bit- 

reversal, perfect-shuffle and complement. These communication patterns differ in 

the way a destination node is chosen for a given source node with bit co-ordinates 

(a„_i, an_2 , • • •, a\, oq). The bit co-ordinates for the destination nodes are (an_2 , an-3 >

. . . ,  o0, a„_i) for perfect shuffle, (an_ i, an_2 , . . . ,  Oi, a0) for complement and (ao, ai,

. . . ,  an_2 , an_i) for bit-reversal.

I use synthetic workload, instead of full-blown multiprocessor workloads, for three 

reasons. First, my simulation environment cannot handle full-blown multiprocessor 

workloads. Second, my packet generation frequency corresponds to realistic miss 

rates in databases and scientific applications, which gives me confidence in the results. 

Third, the synthetic workloads nicely demonstrate the problem of network saturation

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and avoids interactions with application-specific features.

For the network under consideration (with 3072 buffers), 12 bits are enough to 

count all buffers in the network. The network configuration needs 13 bits to represent 

the maximum possible aggregate throughput g * NodeCount * M a x T r a f  f i c  =  32 * 

256 * 1 =  8192 flits). Thus, Tune needs a total of 25 bits for the sideband signals. 

However, in Section 3.4.2,1 demonstrate that it is possible to send these 25 bits using 

9-bit sideband channels with very little performance degradation.

For comparison, I also simulate the At-Least-One ( A L O )  [4] congestion control 

scheme. ALO  estimates global network congestion locally at each node. If at least 

one virtual channel is free on every useful1 physical channel or if at least one useful 

physical channel has all its virtual channels free, then packet injection is allowed. 

Otherwise, new packets are throttled.

3.4 Simulation Results

The primary conclusions from my simulations are:

• Tune provides high performance consistently across different communication 

patterns and offered load levels.

•  Tune outperforms an alternative congestion control technique that uses local 

estimates of congestion.

• Tune's self-tuning mechanism adapts the threshold dynamically to varying 

workloads and to bursty traffic.

The remainder of this section elaborates on each of these items.

1 useful is an output channel that can be used without violating the minimal-routing constraint.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4.1 Overall Performance

I begin by examining the performance of a complete implementation, as described in 

Sections 3.1.1 and 3.2. Figure 3.4 shows the bandwidth and latency for a uniform- 

random traffic pattern for both deadlock recovery (a & b) and deadlock avoidance (c 

& d). Note the logarithmic scale used on the y-axis for the latency graphs (b & d).

The curve for the base case illustrates the network saturation problem. As load 

increases, the network throughput increases to a certain extent. However, at satura

tion, there is a sudden drop in throughput since only the escape channels are available 

to drain deadlocks. The configuration with deadlock recovery has lower bandwidth 

beyond saturation because Disha deadlock recovery requires that a packet obtain ex

clusive access to the deadlock-free path. In contrast, the deadlock avoidance scheme 

can break multiple deadlock cycles concurrently.

The results for uniform random traffic in Figure 3.4 clearly show the key point 

that the my congestion control technique (Tune) is stable at high loads. The ALO  

congestion control scheme improves performance in the early stages of congestion for 

the deadlock avoidance case, but it does exhibit severe performance degradation 

eventually. Tune, however, maintains latency and throughput close to the peak 

values.

Figures 3.5, 3.6 and 3.7 show similar performance curves for bit reversal, per

fect shuffle and complement traffic patterns respectively. As in the case of uniform 

random traffic, Tune sustains near-peak throughput and latency network operation 

whereas the throughput for the base case and ALO see degraded performance beyond 

saturation load. Note, the Y-axis limits are different for the graphs since the peak 

throughput varies with traffic patterns. There are some data points for the base case 

(o) and ALO (A) in Figures 3.5, 3.6 and 3.7 when the latency shows sudden im-

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



provements beyond saturation loads even though the throughput remains poor. This 

is because many packets suffer extended latencies and are not delivered till the end 

of the simulation do not contribute to the average latencies. This manifests itself in 

the form of lower number of delivered packets. In general, the latency numbers are 

not meaningful when the throughput has collapsed since overall system performance 

depends on both throughput and latency.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Uniform Random

0,025

0.02

% 0.015
Tune — i—  
Base
ALO  ....0.01

IS 0.005

0.1
Packet Injection Rate (Packets/node/cycle)

0.01

(a) Delivered Throughput vs. Offered Load

Uniform Random
100000

in
g, 10000 
o
&
e  1000 Tune — i—  

Base — o —  
ALO  Ar...

£
- j0)
(0 100o
■I

0.01 0.1
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Deadlock Avoidance
Uniform Random Uniform Random

o-oo

(c)

0.025

0.02

0.015

.52 0.01

0.005 Tune
Base ---e

0.01 0.1
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

1000

 ©--

&
C
CD 100
3
0at00 Tune — i—  

Base © 
ALO  a .....

0.10.01
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

Figure 3.4: Overall Performance W ith Random Traffic

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Bit-Reversal Bit-Reversal

©o 0.018

0.016

0.014

0.012

0.008

0.006

0.004

0.002

Tune — h

H 1---1--- K

0.1
Packet injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

>.O

©
©

10000
Tune — i—
Base  0-
ALO — a

1000

100

10  —  

0.01 0.1
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Deadlock Avoidance
Bit-Reversal Bit-Reversal

0.018

0.016

0.014

0.012
0.01

0.008

0.006

0.004

0.002
0 
0.01

H— I-—H——I—

A  A - - A  - A  A  ... .V ___ -  r.

Tune — i—  
Base  ©
ALO  a-....

0.1

(c)
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

1000

,-A -C/)
©

O
S'c
©c5

_ j

100

©D)
CO

I Tune — i—  
Base — ©—  
ALO  a ...

0.10.01
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

Figure 3.5: Overall Performance With Bit-Reversal Traffic Pattern

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Perfect Shuffle

0.014

0.01

o  0.008
Tune
Base
ALO

0.006

0.004

0.002

0.1
Packet Injection Rate (Packets/node/cycle)

0.01

(a) Delivered Throughput vs. Offered Load

Perfect Shuffle
1000

OT©
s.o ■-<)
&c<D
5mOJto

Tune — i—  
Base 
ALO a

100

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Deadlock Avoidance

•§ 0.014
&
©  0.012 

1
o  0.008 <0 

0 _

0.006 

g  0.004 

S  0.002o
§ 0
<  0.01 0.1

Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load

Perfect Shuffle

1000

CO©o>.O
&c© 100
3©O)

I Tune — i—  
Base - - 0- -  
ALO  * ....

0.10.01
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

Perfect Shuffle

Tune — i—  
Base ~~0~ -  
ALO a

F ig u re  3.6: Overall Performance With Perfect-Shuffle Traffic Pattern

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Complement Complement

0.012
Base —-0

0.01 81

0.008

0.006

— -g.

0.01 0.1
Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

o

i

10000

1000

100

10 L -  

0.01 0.1
Packet Injection Rate (Packets/node/cyde)

(b) Average Latency vs. Offered Load

Deadlock Avoidance

-g 0.012 
&|  0.01

1  0.008 ©O
£  0.006 
O
|  0.004
J—

o 0.002
Q .

|  0
<  0.01 0.1

Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load

Complement
1000

(0©
5 2 .o
>>o
o 100
3ffia
as

Tune — I—  
Base - ~ 0-~  
ALO *

0.10.01
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

Complement

\ f

/
■O

ffl 
a 

©

fA
-

: 
1 

t
i 

i .
...

. 
. _

F ig u re  3.7: Overall Performance W ith Complement Traffic Pattern

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4.2 Obtaining Global Inform ation

This section considers the effect of varying the delay (h, the time for one neighbor- 

to-neighbor communication on the side-band) to gather global information on overall 

performance. If h — 2, that corresponds to a global-aggregation time (g) of 32 cycles. 

For h — 3, g — 48 and for h =  6, g — 96. Note that the tuning period remains 96 

cycles.

Intuitively, we know that stale information is less useful than fresh information. 

That is indeed the case if Tune uses the stale information directly. However, with 

linear extrapolation, it is possible to estimate current information from stale informa

tion with some accuracy. In fact, for “noisy” curves, linear extrapolation may reflect 

the trends better than increased sampling.

Figure 3.8 shows quantitatively the performance losses due to delays in gathering 

global information. Figure 3.8(a) and (b) show the results for the deadlock recovery 

configuration. While there is very little performance degradation going from a 32 

cycle to a 48 cycle gather delay, increasing the gather delay to 96 cycles starts to 

hurt performance at heavy loads because the stale information cannot be effectively 

used by Tune. For the deadlock avoidance configuration (Figure 3.8(c) and (d)), 

Tune suffers a small penalty even with a gather delay of 96 cycles. There are some 

points where Tune works better with a 48 cycle delay than with a 32 cycle delay. For 

the points in question, linear extrapolation gives an average increase in throughput 

of 10% over the “previous snapshot” approach with a delay of 48 against an average 

increase in throughput of 4% with a delay of 32. Figure 3.8 also shows that a delay 

of 96 cycles shows performance degradation due to very stale information.

Note, increasing the neighbor-to-neighbor communication delay can be treated as 

equivalent to narrowing the side-band signal. Consider the 16-ary, 2-cube configura-

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tion discussed in this section. It used a 25-bits wide side-band with a neighbor-to- 

neighbor communication latency of h — 2 cycles. If the side-band were to be narrowed 

down to 9-bits wide, the same 25 bits of information can still be transmitted in three 

instalments of 9 bits each. Breaking up the information transfer into three steps will 

mean that the effecting neighbor-to-neighbor communication delay is now 6 cycles. 

This way, the results in Figure 3.8 can also be interpreted as the effect of varying the 

bit-width of the side-band.

Self-Tuning

This section describes two important aspects about Tune's self-tuning technique. 

First, I show the importance of having a congestion control mechanism that adapts 

to the congestion characteristics of different communication patterns. This is followed 

by an examination of the hill-climbing algorithm and the technique for avoiding local 

maxima.

Recall from Figure 1.4 that saturation occurs at different levels of offered load 

for random and complement communication patterns. These different levels of of

fered load correspond to different buffer occupancies in the network. If saturation 

was occurring at the same buffer occupancies for different workloads, a well-chosen, 

single, static threshold could prevent network saturation. To show that this is not so, 

Figure 3.9 compares the performance on the deadlock recovery network configuration 

of a congestion control mechanism with static thresholds to Tune.

Consider the uniform random (the four solid lines) and complement (the four 

dashed lines) communication patterns in Figure 3.9. A static threshold of 250 (8% 

buffer occupancy) works very well for random traffic but the same threshold is un

able to prevent saturation for the complement communication pattern. In contrast, 

a static threshold of 50 (1.6% buffer occupancy) works well for the complement com-

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



munication pattern but over-throttles the random traffic. This indicates that the 

buffer occupancy at which the network saturates is not uniform across communica

tion patterns. Therefore, it is necessary to have a self-tuning mechanism that adapts 

the threshold as communication patterns change.

To understand the behavior of Tune's self-tuning technique, I analyze its operation 

for a specific configuration. As stated in Section 3.2, I use a gather-period, (g) of 

32 cycles, a tuning period of 96 cycles, an increment of 1% of all virtual channel 

buffers and a decrement of 4% of all virtual channel buffers. The load is of uniform 

random distribution with a packet regeneration interval of 10 cycles and I use the 

deadlock avoidance configuration. With these parameters, Figure 3.10(a) shows the 

tuning of the threshold over time for the duration of the simulation. Recall, the first 

10,000 cycles are ignored to eliminate start-up transients. Figure 3.10(b) shows the 

throughput achieved over the same interval.

The hill climbing mechanism tries to increase the threshold as long as there is no 

decrease in bandwidth and tries to scale back when bandwidth decreases. But it can 

settle down at a local maximum when the decrease in bandwidth happens gradually. 

When this occurs, the network “creeps” into saturation and throughput falls.

W ithout a mechanism to avoid local maxima, the hill climbing algorithm can settle 

on a local maximum corresponding to deep saturation. The solid line in Figure 3.10 

shows this behavior. A gradual drop in throughput begins at approximately 26,000 

cycles. Recall that Tune decrements the threshold only when there is a throughput 

drop of 25% or more in any tuning period. Figure 3.10(a) shows that, although there 

are many decrements, the gradual nature of the decrease in throughput results in an 

overall rise in the threshold, eventually saturating the network.

The dashed line in Figure 3.10 shows the behavior of Tune1 s technique to avoid 

local maxima. The sharp dip in the threshold value (specifically the one at ap-

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



proximately 26,000 cycles) illustrates the corrective action taken when the network 

“creeps” towards saturation. As a result, Tune avoids the performance degradation 

at saturation and sustain higher throughput.

3.4.3 Varying Tune's increm ent/ decrem ent values

In this section, I take a look at the effects of varying the increment/ decrement values 

of Tune's hill-climbing mechanism.

The goal was not to develop the fastest and most robust tuning mechanism, but to 

demonstrate that it is possible to do this for some values of increments/ decrements to 

effectively prevent performance degradation at saturation. As such, my experiments 

are fairly coarse-grained to select some values which demonstrate the effectiveness of 

global information based, self-tuned congestion control in the tightly-coupled, inter

connection network context. Feed-back based tuning mechanisms that employ more 

sophisticated control theoretic techniques will only improve the performance of Tune.

The results in Figure 3.11 shows the experiments with various values of decrements 

(1% to 4%) including one case with multiplicative decrement (factor of 2). I fix the 

increment at 1%. The results show that the tuning mechanism is fairly insensitive 

to changes in decrement values and that the difference in performance for different 

decrements is not significant.

3.4.4 Bursty Traffic

Previous sections evaluated Tune on steady traffic only. Real applications do not 

typically generate steady communication traffic. The communication patterns and 

the load levels generated by real applications are typically bursty in terms of load 

levels and of varying communication patterns during different phases of the applica

tion. To confirm that Tune’s self-tuning mechanism works well under varying load,

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I use a bursty load created by alternating low loads and high loads. In addition, I 

also change the communication pattern for each high load burst. The offered bursty 

load is shown in Figure 3.12. In the low load phase, the communication pattern is 

uniform random and every node tries to generate one packet every 1,500 cycle period 

(corresponding to a packet injection rate of 0.00067 packets/node/cycle). In the high 

load phase, every node tries to generate a packet every 15 cycles (corresponding to 

a packet injection rate of 0.067 packets/node/cycle). The communication pattern in 

each of these high load bursts is different and is indicated in Figure 3.12.

Figure 3.13(a) and Figure 3.13(b) show the delivered throughput with bursty 

load for the deadlock recovery and the deadlock avoidance configurations, respec

tively. W ith deadlock recovery, the average packet latency for Base, ALO  and Tune  

configurations are 2838 cycles, 2571 cycles and 161 cycles respectively. With deadlock 

avoidance, the average packet latency for Base, ALO  and Tune  configurations are 

520 cycles, 509 cycles and 163 cycles respectively. In the high-load phase, Tune con

sistently delivers sustained throughput and predictable latencies. The ALO  scheme 

and the base scheme initially ramp up the throughput but throughput collapses soon 

thereafter due to network saturation.

The deadlock recovery results exhibit an interesting phenomenon in the Base and 

ALO  schemes (Figure 3.13a). There are small bursts in throughput long after the 

offered load is reduced. This is because the network absorbs the heavy offered load 

but goes into deep saturation with many deadlock cycles. We observe this happening 

approximately between 20,000 and 21,000 cycles in Figure 3.13(a). There is a period 

when network packets are draining through the limited escape bandwidth available 

(approximately between 21,000 and 27,000 cycles). It is only when the deadlock 

cycles break that full adaptive routing begins again. The network then drains quickly 

showing the spurt in throughput (approximately between 27,000 and 29,000 cycles).

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery

&
0.025

0.005

0.015

0 0.01

g=32 (h=2) — t -  
g=48(h=3) -~x~ 
g=96 (h=6)  *

0.1

(a)
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

1000

CO0
1 100oc<D15

g=32 (h=2) — i- 
g=48 (h=3) •—x- 
g=96(h=6)  «

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Deadlock Avoidance
>s
I73O
C

*55

<0£o2

0.025

0.02
o<0
a.

<D
Q.

0.015

0.01

0.005 g=32 (h=2) — t—  
g=48 (h=3) - -K - -  
g=96 (h=6) .... * ...

1000

0)
£
ic
CD

3

100

10

x .... *r.................. !
r ___ _____

g~32 (h=2) —h—  
g=48 (h=3) 'X 
g=96 (h=6) ... .......

0.01 0.1
Packet Injection Rate (Packets/node/cycie)

(c) Delivered Throughput vs. Offered Load (d) Average Latency vs. Offered Load

0.01 0.1
Packet Injection Rate (Packets/node/cycle)

Figure 3.8: Effect of Global Information Gathering Delays for Deadlock Recovery 
(a & b) and Deadlock Avoidance (c & d).

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Th
re

sh
ol

d 
(B

uf
fe

r 
O

cc
up

an
cy

 
: A

bs
ol

ut
e)

& 0.025 o

*3©
0 cd

1

D.
8O<
0>
N
10

0.02

0.015

0.01

0.005

w
Static Threshold=250 
Static Threshold=50 

Tune 
Base

Uniform Random 
Butterfly

.........

0.01 0.1
Packet Injection Rate (Packets/node/cycle) 

Figure 3.9: Static Threshold vs. Tuning.

Hill Climbing Only — 
Hill Climbing + Avoid local maxima —1600

1400
401200

1000
800

20600

400

200

Time (cycles)

80
1
3ffl

■§ 0.025
c Hill Climbing Only -------

Hill Climbing + Avoid local maxima -------03O(0Q_
0.02

3aJZo>
3O

0.015

0.01
a8 0.005
■aC
■8
N

£ 8 8 8 8
S  9  2  9

oo1 8  1 9  9  9
8 8 
9  9

Time (cycles)

(b) Throughput vs. Time(a) Threshold vs. Time

Figure 3.10: Self-Tuning Operation : An Example

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Th
ro

ug
hp

ut
 (

Fl
its

/n
od

e/
cy

cl
e)

 
Th

ro
ug

hp
ut

 (
Fl

its
/n

od
e/

cy
cl

e)

0.35
jnc+ nl, d e c ^ T  — i—

--A - -
inc*̂ lijclp(£=3  -a..
inc+=1, dec-=4 —©— 
inc+=1, deo/=2 — * — 

Base — —

0.3

0.25

0.2
0.15

0.1
0.05

0.10.01
Packet Injection Rate (Packets/node/cycle)

(a) Uniform Random

©
|©TJOC
2
lE

o>
=3O

0.3
inc+=1, dec-=1 — i—  
inc+=1, d ec--2  — a —  
inc+=1, dec-=:3  B ...1 r.  ©■ 
inc+=1, d e c /h r  —-x—  

Base — v—

0.25

0.2

0.15

0.1

0.05

0 — 0.01 0.1
Packet Injection Rate (Packets/node/cycle)

(b) Bit Reversal

inc+=1, dec-=1 
inc+=1, dec-=2 
inc+=1, dec-=3 
inc+=1, dec-=4 
inc+=1, dec/=2 

Base

Packet Injection Rate (Packets/node/cycle)

(c) Complement

3̂

0.25

0.15

0.05

inc+=1, dec-=1 
inc+=1, dec-=2 
inc+=1, dec-=3 
inc+=1, dec-=4

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

(d) Perfect Shuffle

F ig u re  3.11: Choice of increment/decrement quanta

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A
cc

ep
te

d 
Th

ro
ug

hp
ut

 (
Pa

ck
et

s/
no

de
/c

yc
le

)
0-o0 C
01
0
IScd
0)
"fa
DC
co

0.1

0.01

0.001

Eo-a
s
DC

os=cCD

co
£2
CD>
CD
DC

CD

©
*+—Dx:
CO
13©t©
CL

c©
E©
Q

EoO

©
I  0.0001
CL

_|____i -I____I------1------1------1------L-

fLO O  t o
r -  CM CM 8 8 § $ S

Time (cycles)

F ig u re  3.12: Offered bursty load

CD

0.025
Base  o - "
ALO — 0 — 

Tune —-x-—0.02

0.015

0.01

0.005

oo
o to

Time (cycles)

0
f
1
W

CL

0.025 Base
ALO —  B 

Tune —-x-

0.015

M-

0.005

Time (cycles)

(a) w / Deadlock Recovery (b) w / Deadlock Avoidance

F igure  3.13: Performance with Bursty Load : Delivered Throughput

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4.5 D istributing Inform ation using M eta Packets

In this section, I evaluate an alternative mechanism to distribute global information. 

Buffer occupancy and throughput information are distributed in special meta-packets 

over the same physical links as regular data packets but they use an exclusive, ad

ditional virtual channel. The additional virtual channel for meta-packets also has 

higher priority than other virtual channels to ensure delay bounds on information 

distribution.

Simulations demonstrate that the Tune congestion control scheme is not effective 

in preventing saturation when using meta-packets as the information distribution 

mechanism. This is partly because of the contention for physical links caused by meta

packets and partly because of the larger gather times resulting in stale information. 

In the rest of the section, I first describe the aggregation technique using meta-packets 

and then present experimental results using 2-flit meta-packets.

Dim ension-w ise A ggregation using M eta Packets

As in the case of side-band, the mechanism aggregates quantities along lower dimen

sions before proceeding along higher dimensions. I now describe the method by which 

my mechanism aggregates buffer occupancy and throughput along a single dimension.

I define a k ’th  dimension row as the set of nodes which differ only in their fc’th 

dimension co-ordinate. (In a k-aiy, n-cube, there are kn~l rows of k nodes each along 

each dimension.) I select one master node in each row for a given dimension. This 

master node sends out two meta packets (ppac and npac as shown in Figure 3.14), 

one in each direction. One of these packets has the master node’s buffer occupancy 

and throughput information and the other packet is initialized to zero. These packets 

traverse the entire row till they are delivered back to the master node after complet

ing a circuit. Each intermediate node modifies the meta-packet by adding in its own

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M = Master Node 
X = All other nodes

— -  npac = packet going in negative direction 

   ppac = packet going in positive direction

Figure 3.14: Row aggregation using two meta packets

buffer occupancy and throughput information before forwarding the packet. Since 

each node modifies the contents of the packet before forwarding it onwards, I assess

a one cycle adder-delay for the meta packets. When the two packets arrive at some

node X  in the row, they contain the partial aggregates of information for two dis

joint sections of the row (See Figure 3.14). The node X  accumulates these partial 

aggregates contained in the meta packets and adds in its own local buffer occupancy 

and throughput information to compute the aggregate for the entire row.

This cycle repeats for rows along the next dimension but instead of adding in local 

information, each node adds in the row-aggregate along the lower dimensions. After n 

such phases, aggregation in a fc-ary, n-cube is complete. In the next section, I present 

experimental results that quantify the gather times using the information distribution 

schemes described above and evaluate the performance of the Tune congestion-control 

scheme using meta-packets.

Experim ental R esults

In this experiment, I measure gather times and study the effect of varying regular 

data-packet load on the gather times. Figure 3.15 plots maximum, minimum and 

average gather times using meta-packet against varying data-packet load for the 

deadlock recovery configuration. The X-axis shows the applied data-packet load in 

packets/load/cycle and the Y-axis shows the gather times in cycles. Results show 

that, on average, the gather time stays between 130 and 160 cycles. The maximum

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



240

220
'm<D
P. 200 
& 
o
E 180

0)
£  160 <a 0

140

120

Average — i— 
Maximum — a-- 
Minimum  o -

(1000̂ per®-:
o  w < v ' c-  -o Q e  - e

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

(a) Uniform Random

170

165

160
tn® ig  155 S
a 150 £
F  145 
o
£  140(d 0

il 4/ \ ;\

Average — I—  
^Maximum — a—

/  \Minimum  ©■--

A \ A A~a-. ,
A \ /'&

135 c
130

125

'f.'cc-o o ■:> ,,  ....©■...

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

(b) Complement

,,A Average — i— 
Maximum 
M.inimutrr -o-;\ I \>

< Pe s ra-0'3- nO vv •> -r> o o     a -Q-
125

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

(c) Bit Reversal

0

200
190

180

170

160

150

140

Average — i— 
% Maximum ~ -a --
/ \  Minimum  ■©—

\ -A------hr-'""

130

. I I l-l—H
o .a ... 0...

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

(d) Perfect Shuffle

F ig u re  3.15: Minimum, Maximum and Average gather times using meta packets

gather times do not exceed 300 cycles because of the higher priority accorded to the 

meta-packet virtual channel. Further, we observe that gather times drop beyond 

saturation loads. This is because data packets are blocked at saturation and thus 

meta-packets see no contention for physical links.

The next experimental result, shown in Figure 3.16, illustrates the effect of using 

the Tune congestion-control scheme with meta-packets as the information gathering 

mechanism for the four communication patterns. Apart from the base case and the 

Tune configuration using meta packets, I consider another case called No tune. The 

No tune configuration does gather the aggregate buffer occupancy and throughput

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



■&
1
CL

0.03

0.025

0.02

0.015

0.01

1 . 0.005 ©

Tune with 2-flit Meta-packets —--x- 
No tune, 2-flit Meta-packets  A

Packet Injection Rate (Packets/node/cycle)

(a) Uniform Random

0.03
Base — e —  

Tune with 2-flit Meta-packets -~ x ~ -  
No tune, 2-flit Meta-packets  —0.025

X I

0.02

dl 0.015

0.01

0.005

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Complement

Base — ©~
Tune with 2-flit Meta-packets ~ -x -  

No tune, 2-flit Meta-packets  A -

0.03

0.025

0.02

0.015

0.01

0.005

0.01 0.1
Packet Injection Rate (Packets/node/cycle)

(c) Bit Reversal

h-
TS
3D.

0.03

0.025

0.02

0.015

0.01

0,005

0

Base — e -
Tune with 2-flit Meta-packets - -k- - 

No tune, 2-flit Meta-packets  A ...

0.01 0.1
Packet Injection Rate (Packets/node/cycle)

(d) Perfect Shuffle

F ig u re  3.16: Effect of Meta-packets and Tuning on Throughput

information using meta-packets but the gathered information is not used to throttle 

network packets. This allows me to isolate the effect of contention caused by meta 

packets and the effect of using meta-packet information to throttle network packets. 

Figure 3.16 shows that distributing meta-packets causes saturation at lighter loads. 

Further, using the Tune mechanism further exacerbates the situation causing satura

tion at lighter loads. This is partly because of the larger gather delays which causes 

Tune mechanism to act on stale information. Recall, experiments with varying gather 

delay (Section 3.4.2) showed that Tune performance suffers at gather times greater

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



than 96 cycles and average gather times with meta packets vary between 130 and 160 

cycles. In conclusion, using meta-packets as the information distribution mechanism 

is not suitable for the Tune self-tuned congestion control scheme.

3.5 Summary

Interconnection network saturation, and the commensurate decrease in performance, 

is a widely known problem in multiprocessor networks. Limiting packet injection 

when the network is near saturation is a form of congestion control that can prevent 

such severe performance degradation. Ideal congestion control implementations pro

vide robust performance for all offered loads and do not require any manual tuning.

The highlight of this chapter is the development of a robust, self-tuned conges

tion control technique— Tune—for preventing performance degradation at network 

saturation. Two key components form the basis for the proposed design. First, I 

use global knowledge of buffer occupancy to estimate network congestion and control 

packet injection. When the number of full buffers exceeds a tunable threshold, packet 

injection is stopped. When congestion subsides, the full buffer count drops below the 

threshold and packet injection restarts.

The second piece of my solution is a self-tuning mechanism that observes deliv

ered network throughput to automatically determine appropriate threshold values. 

Inappropriate thresholds can either over-throttle the network, unnecessarily limiting 

throughput, or under-throttle and not prevent saturation. A self-tuning mechanism 

is important since no single threshold value provides the best performance for all 

communication patterns.

Using simulation, I show that the Tune design prevents network saturation by 

limiting packet injection. The results also show that Tune is superior to an alternative 

implementation that uses local estimates of congestion because global information

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



can detect congestion in its early stages. I demonstrate that different communication 

patterns require different threshold values to prevent saturation without unnecessarily 

limiting performance, and that Tune's self-tuning mechanism automatically adjusts 

to changes in communication patterns.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4: 
Load Balancing in the Minimum R ect
angle

Load imbalances create pockets of congestion where packets suffer delays. The tree 

saturation phenomenon, as described in Chapter 1, can cause such pockets of conges

tion to spread rapidly and degrade network performance. In this chapter, I investigate 

the possibility of sustaining high throughput, low latency operation of the base min

imal, adaptive router by balancing the load on the network to prevent the creation 

of such “hotspots” , thus preventing tree saturation.

The key innovation of my congestion-aware via-routing technique is the use of 

global congestion information—obtained using an oracle—to direct packets towards 

lightly loaded network regions. I assume the use of an oracle for obtaining global 

information for two reasons. First, the global information gathering scheme outlined 

in Chapter 3 is not sufficient for this scheme. This is because congestion-aware via- 

routing requires knowledge of individual buffer occupancies at the nodes rather than 

just the global aggregate. Second, the oracle assumption provides an upper bound 

on the performance improvement possible with realistic mechanisms to gather global 

information.

Routing decisions whose outcome depends on network status are called adap

tive routing decisions. It is important to differentiate between congestion aware 

via-routing and adaptive routing since both techniques involve routing packets de

pending on network conditions. W hat is commonly referred to as adaptive routing 

may more accurately be described as distributed adaptive routing because adaptive 

routing decisions are made in a distributed manner at each hop. This flavor of adap- 

tivity typically considers only locally visible network conditions in making adaptive

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



routing decisions.

The technique I propose in this section proposes the use of the global conges

tion information at the source. The source node uses its knowledge of global buffer 

occupancy to direct packets away from heavily loaded network regions and towards 

lightly loaded network regions. Since the adaptive (i.e., network status dependent) 

routing decision is being made centrally at the source node, this form of adaptivity is 

called centralized adaptive routing. My scheme uses this centralized adaptive routing 

mechanism (that uses global congestion information) on top of distributed adaptive 

routing (that uses local link status information).

Section 4.1 describes the mechanism of my centralized adaptive routing scheme. 

Sections 4.2 and 4.3 examine different load balancing policies. Performance evaluation 

of this scheme is presented in Section 4.4.

4.1 Via Routing: The M echanism

The centralized adaptive routing mechanism I examine is called via routing or multi

phase routing [19]. In this mechanism, each packet is routed towards certain inter

mediate nodes, or via-nodes, on its way to the final destination. The packet header 

carries additional state to indicate the intermediate nodes that it must route toward. 

The challenge is to design policies to pick the intermediate nodes for each packet at 

the time of injection, such that a packet routes away from highly loaded network 

regions and towards lightly loaded network regions.

My mechanism treats via-nodes as hints rather than requirements. This is nec

essary for deadlock-freedom given the other design parameters. This is because, the 

routing constraints on the deadlock-free escape paths are violated if they are used 

for intermediate nodes. To illustrate the violations with an example, consider the 

deadlock avoidance configuration where deadlock-free routing channel uses dimen-

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sion ordered routing. This constraint requires that the packet has to exhaust all 

hops in the X dimension (say) before traversing deadlock-free channels in the Y di

mension. However, packets that are routed on deadlock-free channels towards an 

intermediate node will violate this condition since they may be routed on the Y di

mension deadlock-free channel even though they haven’t exhausted all hops in the X 

dimension towards the destination node.

One way to make traversing via nodes obligatory and still maintain deadlock- 

freedom guarantees is to require that the packets have to be drained at each via 

node and re-injected to ensure deadlock freedom. Draining and re-injecting can 

increase latency because the packet will suffer injection queue delays again at the 

intermediate nodes. This increase in latency through the network can hurt overall 

system performance since packet latency lies on the communication critical path.

An alternative is to make sure that packets do not violate the conditions of 

deadlock-free routing towards the final destination even on paths towards intermedi

ate nodes. This can reduce performance if a packet has deadlock-free paths available 

towards the final destination but is unnecessarily stalled because it is waiting for 

an adaptive path towards a via-node. There are other deadlock avoidance mecha

nisms where the packet can be forced to go to intermediate nodes without violating 

deadlock-freedom guarantees. But these typically require the use of a larger number 

of virtual channels per physical channel. A large number of virtual channels results 

in more complex arbitration and switch circuitry and that can adversely affect clock 

cycle time.

Due to the above mentioned constraints, I chose to treat via nodes as hints to 

try and route towards rather than required intermediate nodes that must be visited. 

In the following sections, I discuss policies of how to choose the via-nodes to achieve 

load balancing in the minimum-rectangle. Section 4.2 proposes a policy that broadly

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



selects one half of the minimum rectangle as the preferred half to route packets 

through. Section 4.3 examines a technique to outline an entire “corridor” from the 

source node to the destination node such that the congestion a packet encounters in 

this corridor is minimized.

4.2 M in-triangle and Random-triangle V ia Selection Policies

In a two-dimensional torus network (k-ary, 2-cube), the minimum rectangle between 

a source-destination pair is defined as the set of nodes and edges that can be reached 

by all possible minimal paths between two nodes. The dashed-rectangle in Figure 4.1 

shows the minimal rectangle for nodes S  and D.

Figure 4.1 also shows the minimum rectangle as being composed of an upper and 

lower triangle, with the primary diagonal forming the dividing line between the two 

triangles. I define primary diagonal as the diagonal that connects the source node to 

the destination node. The secondary diagonal is the other diagonal in the minimum 

rectangle. I define the “central” nodes of the upper and lower triangles as the nodes 

on the secondary diagonal of the minimum rectangle which are one quarter and three- 

quarters along the length of the secondary diagonal. In Figure 4.1, C l is the central 

node of the upper triangle and C 2 is the central node of the lower triangle.

I use the central nodes as via-nodes to try and achieve load balancing. I study the 

performance of the following two via-routing policies: the rand-triangle policy and 

the min-triangle policy. For any source-destination pair, the rand-triangle scheme 

randomly picks a central node in either the upper triangle or the lower triangle 

between those nodes. The min-triangle scheme makes an oracle assumption that 

each node knows instantaneously the number of full buffers in the upper and lower 

triangles. It uses this information to pick the central node of the triangle that has 

fewer full buffers.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



□ □ □ □ □ □ □ □
□ □

1“
□ □ □ □ □ □

□ □!
|
□ □ □ o

E
□

□ □:
s
□ a □ii :□□

□ 1□:□ □ a p in □
□ 1□;©□ D□b □
□ □ □ '□ □ □
□ □ □ □ □ □ □ □

F igure  4.1: Via Routing : Upper and Lower Triangles

4.3 Min-Corridor Via Selection Policy

In this via selection, I assume perfect knowledge of buffer occupancies in all nodes 

in the network and select via nodes along the Least Congested Path in the minimum 

rectangle (LCPmin) at the time of injection. I recast the problem of finding LCPmin 

for a given source-destination pair, to the problem of finding the shortest path (SP) 

in a weighted, directed graph G = (V, E) where:

•  V, the set of vertices contains all nodes in minimum rectangle,

•  E, the set of edges is the set of all possible minimal hops a packet can make

between the nodes in the minimum rectangle, and

• the edge weights for an edge from node A to node B is given by the number of

full input buffers at node B on the physical input from node A.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To illustrate this with an example, I use the notation in Figure 4.2 to represent 

the buffer occupancy at each node for a two-dimensional network. In the example 

shown in Figure 4.2, the diagram on the right shows the expanded view of a two- 

dimensional router with its four input ports and two input buffers associated with 

each physical input port. Full input buffers are shown as “filled” (black) rectangles 

and free input buffers are shown as outline (unfilled) rectangles. I represent the state 

of the router in an abbreviated manner as shown in the diagram on the left side of 

Figure 4.2. I use a square divided into four quarters to represent a router and its four 

input ports. The numbers in the four quarters represent the number of full input 

buffers along the physical each of the four network input ports.

I use this notation to demonstrate how the problem of finding LCPmin in a 

network (shown on the left Figure 4.3) can be recast as a Shortest Path problem 

in a weighted, directed graph (shown on the right in Figure 4.3). Figure 4.3 shows 

a source node, a destination node and the corresponding minimum rectangle. The 

buffer occupancies of the input ports on all possible paths between the source and the 

destination nodes are shown for all nodes in the minimum rectangle. Following the 

procedure for recasting the LCPmin problem to the Shortest Path problem, I generate 

a graph with six nodes (representing the six routers in the minimum rectangle) and 

edges corresponding to every possible minimal hop on the route between the source 

and destination. For example, a packet going from the source node to the destination 

node shown in Figure 4.3 can make an initial hop in one of two directions: (a) 

horizontally to the right, where the neighboring node has three input buffers full or

(b) vertically upward, where the neighboring node has two input buffers full. These 

two possibilities translate to the two edges originating from the source with edge 

weights set to three and two respectively. Similarly, the graph for the whole minimal 

rectangle is constructed. The shortest path between source and destination nodes in

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



N um ber of Full buffers

F ig u re  4.2: Representation of full input buffers

the graph can be mapped back to an equivalent least congestion path between the 

source and destination routers in the network. In my implementation, I use Dijkstra’s 

algorithm [17] to compute the shortest path and use the nodes along the shortest path 

as via-nodes.

Min. Reef.

DST ;■

SRC

F ig u re  4.3: Recasting LGPmin as SP problem in directed graph

4.4 Via-Routing Results

Using the same methodology as described in Chapter 3, the various via-routing poli

cies were simulated. Figs 4.4-4.7 shows the throughput and latency graphs for the

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



via-routing policies for the four traffic patterns. The important observations from 

the results are: (a) Via-routing alone does not prevent the performance degradation 

at saturation. All four traffic patterns see the performance degradation at higher 

loads, (b) Performance benefits of via-routing, in the form of increase in load at 

which saturation occurs, are seen only for the bit reversal pattern (Figure 4.5). For 

the other three communication patterns, there is either no change in saturation load 

(uniform random and complement) or even early saturation (perfect shuffle).

Since, load balancing in the minimum rectangle is not sufficient to sustain high- 

bandwidth, low latency network operation, I now examine combining my Tune con

gestion control system with via-routing. Figs 4.8-4.11 present simulation results 

combining the use of via-routing and the Tune congestion control mechanism for the 

four traffic patterns. From these results, we see that: (a) Peak throughput at satu

ration increases for three of the four (uniform random, bit reversal and complement) 

traffic patterns, (b) For perfect shuffle, while there is no throughput increase, there is 

no performance penalty either. This is vast improvement over the use of via-routing 

alone.

Note, the “spikes” seen in latency beyond saturation are not meaningful when the 

throughput is low. This phenomenon occurs when latency averages reflect latencies 

of packets that have left the network. The latency suffered by packets that do not 

reach the destination till the end of the simulation gets left out. Consequently, the 

latency behavior varies widely with changes in number of delivered packets. This 

phenomenon was also observed in Chapter 3.

Comparing the via-selection policies, we see that for both cases (i.e., via routing 

alone and via-routing with Tune) the performance of Min-Triangle and Rand-Triangle 

closely match. This means that randomization achieves the goal of balancing loads 

and that the use of global knowledge offers very little improvement over randomiza-

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tion. Further,

From the above discussion, we arrive at three conclusions. First, the use of via- 

routing to achieve load balancing within the minimum rectangle does not give uniform 

benefits across communication patterns and is unable to prevent eventual perfor

mance degradation at saturation. Second, using via-routing with Tune congestion 

control does prevent performance degradation at saturation and for three out of four 

traffic patterns, it results in increased saturation load as well. Third, load balancing 

obtained by random via selection is hard to improve upon in any significant manner. 

Using perfect knowledge of congestion in the network to select via nodes adds little 

to no value over random via selection.

4.5 Summary

My congestion-aware via-routing scheme tries to exploit global knowledge of load im

balances to bias the routing of packets towards lightly loaded network regions within 

the minimum rectangle. In this section, I proposed and evaluated the mechanism 

(via-routing) and policies (Rand-triangle, Min-Triangle and Min-Corridor) to imple

ment load balancing. My evaluations demonstrate that using via-routing on top of 

the Tune congestion control mechanism results in throughput improvement for three 

of the four communication patterns over the use of Tune alone. My results also show 

that assuming perfect knowledge of global buffer occupancies using an oracle assump

tion does not improve performance in any significant way over the use of randomized 

load balancing.

In both the Tune congestion control mechanism and load balancing using via- 

routing, I have restricted packets to minimal routing. However, previous research 

shows that there is scope to further improve performance and sustain high bandwidth, 

low latency operation beyond saturation loads if this constraint is relaxed [37]. Apart

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



from experimental results, theoretical limits [62] on performance within the minimum 

rectangle also lead to the conclusion that non-minimal routing is an interesting seg

ment of the design space. In the next chapter, I explore the use of non-minimal 

routing techniques to achieve high bandwidth, low latency network operation at high 

loads.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Uniform Random Traffic Pattern Uniform Random Traffic Pattern

.2?
|tu
-o
o

0.025

0.02

0.015

0.01

0.005

0 0.01

B ase case  — x—
Rand-triangle —-s—

Min-triangle ....<5....  .

s F  1
' j F  i

j / j  1
r  1 l\

Min-Corridor — a-—

;

■ I 1\
0.1

Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

100000
Base case — x—  

Rand-triangle e — 
Min-triangle_ -o....©

o
10000

oc©
13
©o>

1000

CO 100©

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Deadlock Avoidance

©
|oTJ0
f
1
§
Q.

T>sa.

Uniform Random Traffic Pattern

Base case  — x — 
Rand-triangle —-a- 

Min-triangle o  
Min-Corridor — a —

Uniform Random Traffic Pattern

0.025

0.015

0.005

Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load

100000
B ase case  -—x- 

Rand-triangle -—b - 
^  Mln-triiCO©o>*u

"O..
10000

oc 1000©
CO

©o>© 100

0.10.01
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  4.4: Via-routing for Uniform Random pattern

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Bit-reversal Traffic Pattern Bit-reversal Traffic Pattern

0.02
Base case  — x—  

Rand-triangle — e - — 
Min-trii '

Min-Corridor — a —0.015

0.01

1- 0.005

a

0.01
Packet Injection Rate (Packets/node/cycle)

10000
Base case  — x—  

Rand-triangle —- b ~ -
Min-triangle  -e....

Min-Corridor — a - ..
1000

100

10 C- 
0.01 0.1

Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load (b) Average Latency vs. Offered Load

Deadlock Avoidance
Bit-reversal Traffic Pattern Bit-reversal Traffic Pattern

0.02
&
CD

2H■a
CD
a.s

0.015

0.01

0.005

Base case  — x 
Rand-triangle —-b  

Min-triangle ~~-o 
Min-Corridor — a

(c)

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

10000
Base case  — x—  

Rand-triangle —■~ b —
Min-triangle  o ...

Min-Corridor — a —
to

I 1000
S'cQ>
Q>D) 1002
CD

i.

0.10.01
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  4.5: Via-routing for Bit Reversal pattern

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Complement T ratfic Pattern Complement Traffic Pattern

0
o>>o 0.014
0T>o 0.012
c

0.010DsCO<0 0.008
a
o 0.006it=
2
h- 0.004
*o0
Q. 0.002

! 0
< 0.

MP

Base case 
Rand-triangle —■& 

Min-tri;
Min-Corrii

iangle ■ 
irridor —

Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

10000
B ase case — x—  

Rand-triangle 
Min-triangle 

Min-Corridor
to©
I
I0 1000
©o>co©
S.

0.1
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Deadlock Avoidance
Complement Traffic Pattern

Base case  — x— 
Rand-triangle — B~

Min-triangle  e- ■
Min-Corridor — a -

0.014

0.012
0.01

0.008

0.006

0.004

0.002

1.01 0.1 
Packet Injection Rate (Packets/node/cycle)

Complement Traffic Pattern
10000

B ase case  — x—  
Rand-triangle

Min-triangle  o ....
Min-Corridor — a —©

&o
>
oc£]3
CDO)

1000

CD

I
100 0.10.01

Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load (d) Average Latency vs. Offered Load

F ig u re  4.6: Via-routing for Complement pattern

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Perfect Shuffle Traffic Pattern

Base case  — x- 
Rand-triangle — b -

Min-triangle  e-
Min-Corridor

Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

Perfect Shuffle Traffic Pattern
10000

Base case — x- 
Rand-triangle — b - 

Min-triangle 
Min-Corridor

(0<D  ■©..
1000

>.oc<u ..©--0
100

0.10.01
Packet Injection Rate (Packets/node/cycie)

(b) Average Latency vs. Offered Load

Deadlock Avoidance
Perfect Shuffle Traffic Pattern 

B ase case

Perfect Shuffle Traffic Pattern

Rand-triangle —-B—
Min-triangle  o ...

Min-Corridor —

0.014

0.012
0.01

0.008

0.006

0.004

0.002

0.1
Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load

10000
B ase case  — x—  

Rand-triangle — s —
Min-triangle  ■©...

Min-Corridor — &—
<0

1000
ojo
o 100O)cc

0.10.01
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  4.7: Via-routing for Perfect Shuffle pattern

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Uniform Random Traffic Pattern

0.025
Base case 

R and-triangle—-b  
„  ' ■■■© 

® W n-CorridoP— &

0.015

0.005

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

10000

ajg
&  1000

100

10 
0.01

Uniform Random Traffic Pattern

Base case - x -
Rand-triangle ~ ~ b —

Min-triangle  e ....
Mjrl'Corridor -  A -

/  V
•A*'*

JET , -x  x

0.1
Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load (b) Average Latency vs. Offered Load

Deadlock Avoidance
Uniform Random Traffic Pattern

■2 0.025

■a

Base c a s e — *• ,_e.

-Goffiddr

ibqb q .s -0~b ~b -'b --~b ~ -b — -b — a

J  A A-AA A------Ar—A.------ A ■—A-....A

0 
0.01 0.1

Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load

Uniform Random Traffic Pattern
1000

.■A-A~A~A~.-Ar—^  'At Efa33Baa&B-B-B-B-g-aB̂ drtf̂ ngfe —e—-
i a ( Min-triangle  -o..

r" Min-CdffridQ5 - a —

10 
0.01 0.1

Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  4.8: Via-routing with TUNE for Uniform Random pattern

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Bit-reversal Traffic Pattern Bit-reversal T raffic Pattern

0

%
'Oo£
o<0

CL

(0h-

0.02

0.015

0.01

0.005

a^ s s s m
/ /  Min-triangle  •©

Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

&c0

0
5

10000
B ase case  — *—  

Rand-triangle —a - —
Min-triangle - ~ e ....

Min-Corridor — ..
k.  A

"-•-A-"''1000

100

10  f— 
0.01 0.1

Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Deadlock Avoidance
Bit-reversal Traffic Pattern Bit-reversal Traffic Pattern

0.02

g  0.015

CL

at-

0.01

0.005

Base case 
RaMktrigngle —a —

© 'Min-triangle  ■&...
Min-Corridor — A

X v  X

B-aB-g — a - — |

Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load

10000
Base case — *—  

Rand-triangle
Min-triangle  ■©...

Min-Corridor — - a —
CO

o m n n  ■ £>•
&c
Bto :..o-
<DU)<0 100

0.10.01
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  4.9: Via-routing with TUNE  for Bit Reversal pattern

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Complement Traffic Pattern Complement T raffic Pattern

■o0>
Q.

Base case  
Rand-triangle 

Min-triangle 
Min-Corridor

0.014

0.012

A

0.006

0.004

/VaA.

10000
p a se  case  — x—  

R a h d \ian g l% —-a—  
Min-trtgngte 

^Min-Corridor
tfi ... -o-
o
&
&
I /.a1000

i..a jar

100
0.10.01

Packet Injection Rate (Packets/node/cycle) Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load (b) Average Latency vs. Offered Load

Deadlock Avoidance

0
O
& 0.014
<D

■ Q
o 0.012
£

■*5 0.01I
§ 0.008

Q _ _

o 0.006
' ( 0
1 - 0.004
X 3
CD
Q . 0.002
0
8 0< 0.

Complement Traffic Pattern

B ase case — * ~  
Rand-triangle —-B-

Min-triangle  o  -
Min-Corridor

"■AAA-A-  —

0.1

Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load

10000

® 1000 j00)
CD<0
I

Complement Traffic Pattern

B ase case — x -  
Rand-triangle —■b -

Min-triangle  -Q--
Min-Corridor — a-

...
.g .- 'ia

Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  4.10: Via-routing with TUNE for Complement pattern

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Perfect Shuffle Traffic Pattern Perfect Shuffle Traffic Pattern

©o&©XJoc

X J©
Q.

Base case  — * 
Rand-triangle -----& 

Min-triangle  -o-MfrCorfidofr-pf-̂

0.014

0.012
0

0.008

0.006
 A—A A.

0.004

0.002

Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

10000
Base case  — x—  

Rand-triangle
Min-triangle -~-e....

Min-Corridor— a —
</)
©

I 1000 •o

100

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Deadlock Avoidance
Perfect Shuffle Traffic Pattern Perfect Shuffle Traffic Pattern

o
T3o

t-
•o0

B ase case  — *  
Rand-triangle B

Min-triangle  -e
_ _ (fitter. -a

vb - b —s —S — a-— a

0.014

0.012

0.008

0.006

0.004

0.002

Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load

10000

&c
0

10 
0.01

1000 t

100

Base case  — *— 
Rand-triangle - - a —

Min-triangle  -o--
Min-Corridor — a -

E3--B-H3

0.1
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F igu re  4.11: Via-routing with TUNE for Perfect Shuffle pattern

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5: 
BLAM  routing

In the previous two chapters, I described techniques to sustain high bandwidth, 

low latency network operation at high loads that ensure that packets are routed 

on minimal paths, i.e., packets never take a hop that takes them farther from the 

destination. The first was a congestion control technique (Tune and the second was 

a load balancing technique (via-routing).

In this chapter, I will describe BLAM—a non-minimal adaptive routing algo

rithm 1 that achieves high bandwidth and low latencies at high offered loads.

Non-minimal routing algorithms may use different deadlock handling approaches 

that change their livelock-freedom guarantees and performance. Section 5.1 compares 

and contrasts the livelock, deadlock and performance characteristics of non-minimal 

routing algorithms and minimal routing algorithms and describes a point (BLAM) 

in the router design space. Section 5.2 and Section 5.3 elaborates on this design 

by look the two key components of the BLAM routing algorithm: misroutes and 

bypass buffers. Section 5.4 and Section 5.5 present the experimental methodology 

and simulation results, respectively. Finally, Section 5.6 summarizes and concludes 

this chapter.

5.1 Deadlocks, Livelocks and Performance in Nonminimal 
Adaptive Routing

Adaptive routing algorithms can be deadlock-prone in networks, such as k-ary n-cube 

networks, that allow packets to create a cyclic dependence. In previous chapters, I 

concentrated on one approach to handle deadlocks in adaptive virtual channels. This 

XA routing algorithm that allows packets to take hops that take them farther from the destination

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16-ary, 2-cube - Uniform Random Traffic Pattern

Minimal, Adaptive Routing w/ SVC
Chaos Router —

0.025

0.015

<8 0.005

0.01
Packet Injection Rate (Packets/node/cycle)

Figure 5.1: Minimal Adaptive Routing w/deadlock recovery and Chaotic Routing

approach guarantees the presence of forward escape paths for packets that deadlock in 

the adaptive channels and examples of this approach include deadlock avoidance [18] 

and deadlock recovery [38]. These solutions can be thought of as consisting of two log

ical networks: one fully adaptive network and another deadlock-free network. Dead

lock is not possible because stalled packets can always make forward progress on the 

deadlock-free network.

A different approach to handling deadlocks in non-minimal routing algorithms 

such as Chaotic routing, rely on the deflection principle and the packet exchange 

protocol (see Chapter 2) to avoid deadlocks. This approach guarantees deadlock 

avoidance by making sure that packets are never blocked indefinitely, but it is possible 

that packet hops may be taking them farther from the destination.

Adaptive routing algorithms can be livelock-prone if the routing algorithm does 

not guarantee delivery of a packet from source to destination within a finite number of 

hops. Livelock can never occur in minimal adaptive routing, (e.g., Alpha 21364 [43]), 

as packets always reach their destination within a finite number of hops because every

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



□  □ 1 1 1 1 □ 0 ! □ Non-Minimal Routing Options

□  □ 0 - □  ! □ —► Minimal Routing Options

□  □ □ " " □ I T □ ] i Minimum Rectangle

□ □ □

□  □ □ □ □ □
Figure 5.2: Routing Options Minimal vs. Nonminimal

hop take a packet closer to its destination. In contrast, non-minimal adaptive routing, 

such as the Chaos routing algorithm [37], is not provably livelock-free, because it 

allows packets to be “misrouted” outside the minimal rectangle at every hop. That 

is, it allows hops that takes a packet farther from its destination and, hence, does 

not guarantee delivery within a finite number of hops.

Interestingly, however, the Chaos routing algorithm performs significantly better 

than a minimal adaptive routing algorithm (Figure 5.1) at high offered loads. This 

is because the Chaos routing algorithm offers greater routing freedom compared to 

a minimal adaptive routing algorithm (Figure 1.5.) The minimal adaptive routing 

algorithm I simulated (Figure 5.1) saturates and, thereby, causes the performance to 

degrade rapidly beyond a certain load.

Unfortunately, in spite of its high performance, to the best of my knowledge no 

commercially available interconnection network uses the Chaos routing algorithm, 

even though it has been over a decade since the design was proposed. The presence 

of livelocks-however low its probability may be-causes network designers to shy away 

from using such algorithms in real products. The challenge is to develop a solution 

that has the benefits of each of the two routing algorithms (minimal adaptive and 

Chaos) without either technique’s pitfalls.

In this chapter, I propose a new adaptive routing algorithm called BLAM that

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



achieves Chaos-like performance without livelocks or deadlocks. BLAM has four 

salient features. First, like Chaos, BLAM allows packets to be misrouted outside the 

minimal rectangle, thereby giving packets greater routing freedom. Second, to avoid 

livelocks, BLAM limits the number of times a packet is misrouted to a predefined 

threshold. Third, BLAM uses “lazy” misrouting in which packets are misrouted 

only after they fail consistently, over a period of time, to route within the minimal 

rectangle. Finally, BLAM uses “bypass buffers” at input ports to make sure that 

packets that fail to route profitably do not block the paths of other packets that 

follow.

In the following sections, I examine the issues Section 5.2 discusses misroutes and 

Section 5.3 discusses how I use bypass buffers to implement lazy misrouting.

5.2 M isroutes

Minimal adaptive routers do not allow misroutes by definition because this eliminates 

the possibility of livelock. A packet is guaranteed to move closer to the destination 

in each hop. Minimal routing, combined with deadlock-freedom, guarantees that 

a packet will be delivered to its destination. Another disincentive for the use of 

misroutes is that they may waste network bandwidth since packets move farther 

from their destinations.

However, there are three motivations to use misroutes. First, misroutes can be 

used to avoid deadlocks in the adaptive channels. Chaos uses misroutes, in addition 

to the packet exchange protocol, to avoid deadlocks. Chaos can, thereby, avoid the 

use of a separate, logical deadlock-free network. Second, by allowing non-minimal 

routing, they can provide fault tolerance by routing around faulty links. Third, 

again, by non-minimal routing, misrouting can provide higher network throughput 

by routing around congested areas in the network.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To use misroutes, policies that answer the following questions must be in place.

• Should there be a limit on the number of misroutes? Unlimited misroutes 

are fundamental to ensure deadlock-freedom in chaotic routing, but this results in 

probabilistic (i.e., not deterministic) livelock-freedom. Since the goal is to have deter

ministic guarantees of livelock-freedom, I place a limit on the number of misroutes a 

packet may take. The decision to limit misroutes removes the guarantee of deadlock- 

freedom on the adaptive channels. This necessitates inclusion of a deadlock handling 

mechanism.

•  What should the misroute limit be? It is difficult (or even impossible) to rec

ommend a single number for this limit without any information about the workload. 

Instead, I examine the tradeoffs involved if the limit is too high or too low. The idea 

is to set the limit high enough to ensure that most packets get delivered before they 

use all their misroutes. This reduces the latency of packet delivery from the source 

to the destination. In networks that have low-bandwidth deadlock-free paths, a high 

enough limit also ensures that these paths do not get unduly congested.

•  When is a packet misrouted? Eager misrouting is a policy that lets packets 

misroute on a free channel if they cannot obtain a free profitable channel. Lazy 

misrouting policies impose some other condition that delays using misroutes.

In general, the choice of when packets are misrouted depends on the motivation for 

misroutes. When the purpose for misroutes is fault tolerance, an eager misrouting 

strategy may be sufficient. (If the only profitable channels for a given packet are 

known to be faulty, there is no point in delaying the misroute.)

The purpose is to achieve high performance and to avoid deadlocks in adaptive 

channels. Anjan and Pinkston [25] have shown that eager misrouting can hurt per

formance for uniform traffic. I confirm this result in Section 5.5.4. As such, a lazy 

misrouting strategy that postpones misrouting until it is either hurting performance

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



because of packets stalling behind it or because misrouting is mandated by the packet 

exchange protocol to avoid deadlocks in adaptive channels is preferable. This lazy 

misrouting strategy minimizes wasted network bandwidth. Note, Chaos also uses 

lazy misrouting.

With a lazy misrouting strategy, it is important to ensure that a blocked packet 

waiting to be misrouted does not block other packets that could otherwise make 

forward progress. I achieve this by using bypass buffers. Experiments show that lazy 

misrouting without bypass buffers decreases performance (Section 5.5.4).

5.3 Bypass buffers

I use bypass buffers to facilitate lazy misrouting. A bypass buffer allows a blocked 

packet to “step aside” from the critical path of other packets by buffering the blocked 

packet and releasing the input buffer. Once a packet enters a bypass buffer, packets 

behind it can use the free input buffer and bypass the blocked packet if they find 

profitable channels. Packets resident in these bypass buffers are candidates for lazy 

misrouting.

Bypass buffers have a secondary effect of increasing the total amount of buffer 

space at an input port. This may help improve performance. However, my simula

tions show, if the number of input buffers are chosen appropriately (perhaps using 

Little’s Law), then additional buffering provides no or marginal improvement in per

formance. I demonstrate this effect in Section 5.5.3 by adding bypass buffers (but 

with no misrouting) to a minimal adaptive routing algorithm.

Below, I examine the policies needed to manage bypass buffers for lazy misrouting.

•  When do packets enter the bypass buffers? Packets in input buffers that are 

unable to make progress on profitable channels move to bypass buffers when they 

have waited “sufficiently long” or for implementing the packet exchange protocol.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Chaos router considers a packet to have waited sufficiently long at a node if 

the whole packet (including the tail flit) has arrived at that node. I use the same 

definition. (The packet cannot be moved before all flits arrive. Waiting in the input 

buffer after arrival of the full packet can only delay the

The packet exchange protocol dictates that if a node sends a packet to a neigh

boring node, it should also be prepared to accept a packet from that node. To this 

end, when a packet is sent out on an output channel, an input channel in the reverse 

direction (on the same physical link) should be made free in anticipation of an in

coming packet. To do so, one packet that is in the input buffer is moved to a bypass 

buffer.

•  Should packets in the bypass buffers have priority? If both the bypass buffer 

and its corresponding input buffer have packets to nominate to a particular virtual 

channel, then the routing algorithm must decide which packet to pick. One policy is 

to use a fair-mechanism like round robin among all input and bypass buffers. Another 

option is to give priority to packets in the bypass buffers, since these packets are older. 

Routing older packets first is a good heuristic to achieve better performance. The 

Rotary Rule mode of the Alpha 21364 network uses a similar heuristic to assign higher 

priority to packets arriving from a network link than to new packets trying to enter 

the network [43].

Priorities for broad classes of packets (e.g., priority packets in bypass buffers over 

packets in input buffers, packets arriving from network link over packets arriving 

from node, coherence replies over requests, etc.) can be implemented in simple and 

scalable ways. However, router-wide priorities (e.g., priority for “oldest” packet) are 

not only more complex designs, they also require central structures that can become 

clock-scaling bottlenecks.

Note, giving priority to packets in input buffers over packets in bypass buffers is

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



not a valid design point if it comes without additional safeguards to prevent starvation 

of packets in the bypass buffers.

5.3.1 Im plem enting D istributed Bypass Buffers

In this section, I describe an implementation of bypass buffers using distributed 

buffers. First, I examine the centralized implementation used in chaos and then 

suggest my own. Note, I assume that additional bypass buffers are required. The 

same effects may be achieved by managing input buffers differently. For example, 

the Alpha 21364 router allows packets to be routed in non-FIFO order [43]. A local 

arbiter considers all the packets at an input port and nominates packets in least- 

recently selected order to achieve the effect of bypassing.

The Chaos R outer M ultiqueue

The original Chaos router design for two dimensional networks augments a basic 

router with an additional central multiqueue to provide a central pool of bypass 

buffers (see Figure 5.3). This central multiqueue requires additional routing logic 

and a cross bar on the input side of the queue. Note, Figure 5.3 shows only the 

datapath of the two-dimensional chaotic router. The routing and arbitration units 

for the two crossbars are omitted. The Chaos router does not use multiple virtual 

channels per physical channel. As such, the input buffers (or frames) are associ

ated with the physical channel. The four network physical channels that connect 

to neighboring nodes are marked with labels that indicate the dimension (X or Y) 

and direction (positive or negative) they traverse. Each header contains the number 

of hops required in each dimension to reach the destination. This header informa

tion is modified (incremented or decremented) appropriately depending on its output 

channel.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



 +X Output Frame
dec-*-lllll 11

+X Input Frame

-X Output Frame
U m r  11—

-X  Input Frame
inc

 +Y Output Frame
dec—*-11111 T1

+Y Input Frame
— 11111 IF Main

XBar
Q Slot 1

- rrm
Q Slot 2

~ M Z Z
Q Slot 3

■Y Output Frame-Y Input Frame
inc -*-HQ ueue

Input
XBar Ejection FrameInjection Frame

Q Slot 4

Q Slot 5

MultiQueue

Figure 5.3: Central Bypass Buffers: Chaos

D istributed Bypass Buffers BLAM

For my BLAM implementation (Figure 5.4), I use distributed bypass buffers rather 

than the centralized pool approach of the Chaos router. Previous research [46, 59] has 

recommended centralized buffer-pools over distributed buffers arguing that dynamic 

sharing of the central buffer pool leads to more efficient use of buffers. However, buffer 

efficiency is not a critical concern when we consider on-chip routers (such as the Alpha 

21364 router [43]) where additional buffers are cheap. Clock scaling is more important 

design concern for high-speed routers and central structures (queues, implementation 

of router-wide priorities, etc.) are unsuitable as they become bottlenecks for clock 

scaling. Further, with enough buffers, a shared buffer pool and distributed buffers 

should be similar in performance. Consequently, routers with distributed buffers are 

attractive design points [43] and distributed bypass buffers are a natural fit for such 

designs.

Figure 5.4 shows the datapath of the BLAM router. Since BLAM permits a finite

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



number of misroutes for each packet, the header maintains a count of the number of 

misroutes taken. This is incremented (in the Inc/Nop block) each time the packet is 

misrouted. No change is required for profitable hops. There is an additional bypass- 

buffer associated with each input buffer belonging to an adaptive virtual channel. 

Bypass buffers are not associated with injection channels. Note, Figure 5.4 assumes 

fully adaptive routing with the deadlock recovery scheme. Therefore, all virtual 

channels are adaptive channels with associated bypass buffers. If deadlock avoidance 

is used, there are no bypass buffers associated with the deadlock-free channels.

The operation of bypass buffers is similar to the chaotic router implementation in 

some respects. Packets move from the input buffers to the bypass buffers when the 

whole packet has arrived at the node or when such a transfer is necessary due to the 

packet exchange protocol. In the common case, when packets are making forward 

progress, the bypass buffers are not on the critical path and packets go directly from 

the input buffers to the output buffers. Packets in the bypass buffers have priority 

over packets in the input buffers when they compete for the same output channel. 

A packet in a bypass buffer is misrouted when the corresponding input buffer entry 

wants to enter the bypass buffer (either due to stalling or due to the packet exchange 

mechanism.)

Unlike Chaos, BLAM’s one-to-one correspondence between adaptive virtual chan

nel input buffers and bypass buffers eliminates the need for the queue input cross bar 

and associated routing logic. However, this approach removes the element of ran

domization present in chaotic routing. In chaotic routing, when a packet needs to 

enter the “multiqueue” (either due to stalling or due to the packet exchange proto

col) and the “multiqueue” is full, one entry is selected at random to be misrouted. 

This is fundamental to the probabilistic guarantees of livelock-freedom. Since my 

BLAM implementation allows a packet to move to only one possible bypass-buffer,

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B ypass Buffer for PLO, VCO

VCO
in c/Nop

Physical
LinkO

B ypass Buffer for PLO, VC1Physical
LinkO ' VC1

uon Inc/Nop
B ypass Buffer for PLO, VCO

VCO
rW. — •" Inc/NopM ain

XBar
B ypass Buffer for PLO, VC1 Physical 

Link 1
P hysical 

Link 1 VC1
— ► Inc/Nop

VCO
pffli
■ VC1

Ejection
Link

Injection
Link

Figure 5.4: Distributed Bypass Buffers

the packet in that bypass buffer must be selected for misrouting and there is no 

scope for randomization. However, my design provides deterministic guarantees of 

livelock-freedom without using randomization because of the limit on the number of 

misroutes.

5.3.2 Summary

From the above discussion, we see that there exists a potential design point between 

a minimal adaptive router and the chaos router. This router uses Bypass buffers, 

with Limited, Adaptive, lazy Misroutes and deadlock handling (BLAM ). Limited 

misroutes gives BLAM three advantages: livelock-freedom (compared to chaos), more 

routing flexibility and reduced frequency of use of deadlock-free escape paths (com

pared to the base router). Lazy misrouting with bypassing is an important feature 

of BLAM that enables chaos-like high performance.

Table 5.1 summarizes the properties of BLAM and compares it against a M-

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Routing
Scheme

Misroutes Bypass
buffers

Deadlock
Han
dling

Comments

M-
misroute,
adaptive

M
(M  = 0 
for mini
mal)

No Required Deadlocks possible in adaptive 
channels. Deadlock handling 
required. Guaranteed livelock- 
free

Chaos Unlimited Yes Not Re
quired

Guaranteed deadlock-free. 
Probabilistic livelock-freedom.

BLAM M Yes Required Deadlocks possible in adaptive 
channels. Deadlock handling re
quired. Minimize deadlock han
dling use by increasing M. Guar
anteed livelock-free

Table 5.1: Design variables for various routing schemes 

misroute, adaptive router2 and the chaos router.

5.4 Evaluation M ethodology

I describe the simulation details in Section 5.4.1. The simulators I use are not full 

system simulators that model the entire cache-coherent, distributed shared memory 

multiprocessor (DSMP) system. Instead, I simulate only the interconnection net

work with synthetically generated traffic. Section 5.4.2 discusses how my simulation 

parameters model realistic DSMPs. Section 5.4.3 describes the nature of the syn

thetic traffic I use to evaluate BLAM. The network and router architecture that my 

simulator models is outlined in Section 5.4.4.

5.4.1 Sim ulation D etails

To evaluate the various routing schemes I use the flexsim  simulator [60] and the 

chaos simulator available from the University of Washington [8]. The Chaos router 

is simulated on the chaos simulator. I use the flexsim  simulator for all other con-

2 An M-misroute adaptive router is an adaptive router that allows each packet to take atmost M  
misroutes. Note, a minimal adaptive router is an M-misroute adaptive router with M  =  0.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



figurations. All simulations execute for 60,000 cycles. However, I ignore the first 

10,000 cycles to eliminate warm-up transients. I have verified, for a subset of experi

ments, that longer simulations of 300,000 cycles do not change the results significantly. 

(Bandwidth is within 2% and latency is within 4% of the results from a 60,000 cycle 

simulation.) I use an extension of the Chaos Normal Form (CNF) [7] standard for 

presenting simulation results. I present two graphs (throughput vs. applied load 

and latency vs. applied load) for each configuration. The CNF standard requires 

throughput and load to be normalized to its definition of 100% throughput for uni

form random traffic. However, I use a modification that uses additional lines on the 

graph to show normalized throughput (as defined by CNF) and I calibrate the axes to 

provide absolute (i.e. not normalized) throughput and load values in terms of packet 

injection/delivery rate.

5.4.2 Open vs. Closed Loop

The simulators I use model open-loop systems with independent messages and a 

source queue size of 1024 packets. In real closed loop systems, there are request- 

response dependencies and this results in inherent throttling when network latencies 

increase. Consider, a program suffers a remote miss in a DSMP. It sends a request for 

the required cache block. In the absence of latency tolerance mechanisms, the pro

gram has to stall till the cache block is supplied in a response packet. However, out-of- 

order lockup-free execution, aggressive data-speculation, multiple contexts per node 

(due to technologies like SMT and CMP) result in significant latency tolerance. For 

example, current technologies with 8-way multithreading and 8 outstanding misses 

per thread (due to out-of-order lockup-free ILP exploitation) can already generate 64 

outstanding requests. Further, we have to consider the requests received at a node 

that result in response packets that need to be sent back. If we make the simplifying

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



assumption that each node receives as many requests as it sends out, the number 

of outstanding packets stand at 128. Thus, the use of a source queue size of 1024 

packets, while aggressive, is appropriate if we extrapolate the technology trends.

The extension of a system with independent messages to a system with request- 

response dependencies can be achieved by splitting request and response virtual chan

nels.

5.4.3 Network Workload

The offered load consists of each node generating 16-flit packets at the same fixed rate 

for the duration of the simulation. The goal is to show that the simulation results are 

valid for a variety of loads. Ideally, we would like to measure interconnect performance 

by using real communication workloads from parallel applications. Unfortunately, 

due to inadequate simulation infrastructure and problems associated with trace-based 

simulation [10], it is the state-of-the-practice to evaluate interconnection network 

performance with synthetic communication workloads.

The use of synthetic communication patterns that are “difficult” (i.e., they in

crease contention for resources, resulting in sub-optimal/ worst-case performance [62]) 

and/or “useful” (i.e., they correspond to the communication pattern for various par

allel numerical algorithms [20]) to evaluate interconnection network performance is 

widespread in the literature [4, 27, 36, 40, 41, 61, 49]. Towles and Dally [62] demon

strate a technique to construct a synthetic traffic pattern that results in the worst-case 

performance for oblivious routers, but this technique is not applicable to adaptive 

routers.

Apart from the widely used, uniform random traffic pattern, we consider three 

synthetic communication patterns, hit-reversal, perfect-shuffle and complement to 

stress the network in non-uniform ways. The communication patterns differ in

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Uniform Random Traffic Pattern
©
o
£T
o5
oc

~tn
fflJsdO
CO
cl
o
3=<c

ffl•*»«
CL©
8<

0.025

0.015

a-—-a

0.005

100% (Torus) Deadlock recovery -
........................... Static',' 'Dimension 'Order' ';::heF

Deadlock Avoidance  a ~

100% (Mesh)

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

Figure 5.5: Choice of Base configuration

the way a destination node is chosen for a given source node with bit co-ordinates 

(a„_i, an_2, • • ■, ai, a0). The bit co-ordinates for the destination nodes are (a„_2, an_3,

. . ,  Uq, a„_i) for perfect shuffle, (an_i, a„_2, . . . ,  « i, ao) for complement and (ao, a!, 

. . ,  a„_2, an_i) for bit-reversal.

5.4.4 Network and R outer A rchitectures

I use a minimal, fully-adaptive router (Figure 2.1) as the base configuration. I eval

uate the base (minimal, adaptive) and BLAM network configurations with both the 

Disha [38] progressive deadlock recovery scheme with a time-out of 25 cycles and 

deadlock avoidance [18]. (Note, Chaos does not need either of these two schemes.)

I use these configurations to maximize performance in the common case (i.e. 

before saturation). Deterministic deadlock-free routing (□ in Figure 5.5) places re

strictions on routing which results in lower performance and earlier saturation. Turn 

model based schemes offer partial adaptivity and better performance in meshes, but 

these schemes are not enough to prevent deadlocks in k-ary, n-cubes because the

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



wrap-around edges in the torus enable deadlock cycle formation without taking any 

turns in the topology. The maximum throughput achievable using the turn model 

in a 16x16 mesh (the 100% (mesh) line in Figure 5.5) is poorer than the through

put achieved in a 16-ary, 2-cube (torus) using a static dimension-ordered routing. 

This is because the addition of the wrap-around edges alters the network properties 

significantly enough to double the theoretical maximum throughput [5]. As such, 

the excellent performance demonstrated by various flavors of the turn model are not 

applicable in the context of k-ary, n-cubes [30, 63].

I have evaluated the following fc-ary, n-cube topologies: 16-ary, 2-cube (256 

nodes), 8-ary, 3-cube (512 nodes), 32-ary, 2-cube (1024 nodes). I present detailed 

results and analysis for the 16-ary, 2-cube in Sections 5.5.1-5.5.4. Section 5.5.5 de

scribes BLAM performance on the other two topologies that I consider, i.e., 8-ary, 

3-cube and 32-ary, 2-cube.

Each router has one injection channel (through which packets sent by that node 

enter the network) and one delivery channel (through which packets sent to that node 

exit the network). The routers use edge-buffers (buffers associated with virtual chan

nels) that can hold an entire packet. There is a one cycle arbitration delay and a one 

cycle routing delay per packet. This is not a bottleneck because routing/arbitration 

occurs only for the header flit of a packet. The remaining flits simply stream behind 

the header flit along the same switch path. It takes one cycle per flit to traverse the 

cross-bar switch and one cycle per flit to traverse a physical link. Each physical link 

is capable of full duplex communication.

5.5 Simulation Results

This section presents simulation results. I begin by examining the overall performance 

of the BLAM router. This is followed by a comparison of BLAM with three virtual

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



channels (i.e., three each of the input and bypass buffers per physical channel) against 

a minimal, adaptive router with six virtual channels. I call this a ” resource-neutral” 

comparison, because these two configurations have the same number of buffers and 

crossbar inputs. Next, I evaluate the effects of varying the maximum number of 

allowed misroutes. Finally, I dissect BLAM performance by examining the effects of 

adding eager misroutes, lazy misroutes and bypass buffers, in isolation, to the base 

router.

The primary conclusions from the simulations are:

1. The BLAM router sustains near- Chaos throughput for all considered commu

nication patterns at high offered load levels where the base case suffers a drop 

in throughput.

2. The combined use of lazy misroutes and bypass buffers are necessary for high 

performance.

3. I isolate the effects of misroutes to validate and extend previous research find

ings that misroutes alone, whether eager or lazy, decreases performance.

5.5.1 Overall Perform ance

This section examines the performance of a complete BLAM router implementation 

with a limit of 16 misroutes on a 16-ary, 2-cube with 16-flit packets. I explore other 

topologies and packet sizes later in this section. Figure 5.6 shows the bandwidth (left 

graphs [a] and [c]) and latency (right graphs [b] and [d]) with the random communi

cation pattern for the base cases with deadlock recovery (top graphs [a] and [b]) and 

deadlock avoidance (bottom graphs [c] and [d]). Figure 5.7 have similar graphs for 

the bit-reversal, complement and perfect shuffle traffic patterns respectively. Note 

the logarithmic scale used on the y-axis for the latency graphs.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Consider the graphs for the uniform random traffic (Figure 5.6). The curve for 

the base router illustrates the network saturation problem. As load increases, the 

network throughput increases to a certain extent. However, at saturation, there is a 

sudden drop in throughput since only the escape paths are available for packets to 

make forward progress.

There are two curves corresponding to the BLAM router: one for the configuration 

with three virtual channels (SVC) per physical channel (x in Figure 5.6-Figure 5.8) 

and another for the configuration with six virtual channels (6VC) per physical channel 

(A in Figure 5.6-Figure 5.8). Both curves show that BLAM is able to prevent the 

drop in performance that occurs at high loads due to deadlocks in adaptive channels. 

Furthermore, BLAM achieves performance comparable or superior to chaos while 

providing deterministic guarantees.

Similar results for deadlock avoidance show that, qualitatively, the only difference 

in performance as compared to the deadlock recovery configuration is the higher 

saturation throughput for the base case. BLAM (on top of deadlock avoidance) still 

outperforms the base deadlock avoidance configuration.

T hroughput/L atency Tradeoff

Figure 5.6 also demonstrates a throughput/latency tradeoff based on the number 

of virtual channels. The 6VC configuration shows higher throughput than the 3VC 

configuration, however this comes at the cost of higher latency. The reason is the 6VC 

BLAM has a higher number of bypass-buffers, and a packet is able to stay in a buffer 

for a longer period of time. Recall, a packet is misrouted only when another packet 

needs to enter the same bypass buffer. I verified this phenomenon by measuring 

the amount of time a packet spends in the bypass-buffers. For the six heaviest 

applied loads in Figure 5.6, where the difference in latencies becomes obvious, packets

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



stay in the bypass buffers 35%, 77%, 55% and 48% longer, on average, in the 6VC 

configuration than in the SVC configuration for the uniform random, perfect shuffle, 

complement and bit reversal traffic patterns, respectively. To better understand this 

throughput /latency tradeoff, I compare the bandwidth and latency of 6 VC BLAM 

and SVC BLAM to the throughput and latency of Chaos for the six heaviest applied 

loads.

6VC BLAM achieves better throughput than chaos for three of the four commu

nication patterns. The throughput improves by as much as 56% (for bit-reversal) 

and is 5% lower only in the case of uniform random traffic. The behavior of 3VC 

BLAM is qualitatively similar with slightly lower throughput. For 3VC BLAM, the 

throughput vary from 10% lower to 48% higher than chaos.

The latencies for 6VC BLAM are between 35% (for bit-reversal) and 151% higher 

(for perfect shuffle) than Chaos latencies, on average. A similar latency comparison 

for 3VC BLAM shows that it achieves latencies varying from 22% lower (for comple

ment) to 42% higher (for perfect shuffle) than Chaos latencies. In conclusion, 6VC 

BLAM suffers from increased latency to achieve better-than-chaos throughput. In 

contrast, 3VC BLAM achieves much better latencies than 6VC BLAM for a small 

penalty on throughput.

R esource-N eutral Comparison

Comparing the six virtual channel base case against the BLAM router with six vir

tual channels is not a resource-neutral comparison. This is because BLAM requires 

additional bypass buffers for each virtual channel, in this case doubling the number 

of buffers. BLAM also requires a larger crossbar with twice as many inputs: the base 

virtual channel inputs and the bypass buffer inputs. A resource neutral comparison 

can be made between the six virtual channel minimal adaptive router and the BLAM

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



router with three virtual channels. From Figs 3.4-3.7 this resource neutral compar

ison reveals that the 3VC BLAM router (x) outperforms the base router (o) for all 

traffic patterns. The 3VC BLAM router maintains high throughput at higher load 

levels whereas the 6VC base router saturates.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0)
8L
183
■§
Icaa
o£
H-
Q.

0.045

0.035
100% (CNF),..

0.005

Base — e -  
6VC BLAM (16 misroutes) — -A~
3VC BLAM (16 misroutes)  x-

Original Chaos  - v  -

Deadlock Recovery 
100000

0.1
Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

® 10000

©

1000

100

10 0.01

o—0— e - —e — o

/  Jbr----A~ ~A------A

/  /" ..X .....*" — V

Base — ©—  '
6VC BLAM (16 misroutes) —~Ar—-
3VC BLAM (16 misroutes) .... x-....

Original Chaos — v-...

0.1
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Deadlock Avoidance
Uniform Random Traffic Pattern Uniform Random Traffic Pattern

a
!■O0
1p

8=2s-
-o£
ClO

0 0.01

Base — ©■— 
6VC BLAM (16 misroutes) -----a----
3VC BLAM (16 misroutes)  x ....

Original Chaos — -w—

0.1
Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load

10000

1000

100
w—V

Base ' q— 
6VC BLAM (16 misroutes)
3VC BLAM (16 misroutes)  -x-

Original Chaos — v -

0.1
Packet injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  5.6: Overall Performance W ith Random Traffic

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Bit-Reversal Bit-Reversal

o
OS
0.

©
Q .

8

0.018

0.016

0.014

0.012

0.008

0.006

0.004

0.002

Packet injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

10000
Tune — i—  
Base ---o —- 
ALO *<0©

&9. 1000
S'c©(0
©O)to

100
0><

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

0.035

0.03

0.025

0.02
0.015

0.01
0.005

0.01

Deadlock Avoidance
Bit-reversal Traffic Pattern

Base — ©— 
6VC BLAM (16 misroutes)
3VC BLAM (16 misroutes) x 

Original Chaos —^
A &-------

■ S -K -X - - X  X- X X

" ■ " A ,

""y?—‘v'--- V “

O-©-©—S—

0.1

Bit-reversal Traffic Pattern
10000

1000

100

10

Base —0„ 
6VC BLAM (16 misroutes) — A -
3VC BLAM (16 misroutes)  -x-

Original Chaos — v -

0.01 0.1
Packet Injection Rate (Packets/node/cycle) Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load (d) Average Latency vs. Offered Load

F igu re  5.7: Overall Performance W ith Bit-Reversal Traffic Pattern

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
0.035_©

& 0.03©
T 3

|  0.025s ©-g 0.02«o 
CL

0.0153= toH 0.01 ■o
I -  0.005 o o
< 0 0.01

(a) Delivered Throughput vs. Offered Load

10000

(0©o& 1000
&C©©

100
g ase  ,-__Q_

6VC BLAM (16 misroutes) —-A~-
3VC BLAM (16 misroutes)  x~

 Original Chaos —

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

3VC BLAM (16 misroutes)  x ....
Original Chaos — v —

r- • • .X-.. /■
V  V - ' ̂  -V  ■" v  V  

X \  v ~ 7,.-~v

-e—©—e—o
0.1

Packet Injection Rate (Packets/node/cycle)

Deadlock Avoidance
Perfect Shuffle Traffic Pattern Perfect Shuffle Traffic Pattern

o>
|
■ao

0.035

0.03

0.025

0.02
0.015

0.01
0.005

Base — e -  
6VC BLAM (16 misroutes)
3VC BLAM (16 misroutes)  x -

Original Chaos — v~

*•—*-—*

0 0.01 0.1
Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load

10000

o

1000

100
Base — e~  

6VC BLAM (16 misroutes) —-&~
3VC BLAM (16 misroutes)  x~

Original C haos — f -

0.1
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  5.8: Overall Performance With Perfect-Shuffle Traffic Pattern

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.035

<0h-
T3

100% (CNF)

0.025

0.015

0.005

Base — e —
6 VG BLAMf 16- misroutes)....
3VC BLAM (16 misroutes)  x  -

Original Chaos — •?—

Deadlock Recovery 
10000

0.1
Packet Injection Rate (Packets/node/cycle)

0)
% 1000

100

 x...

10 0.01

Base — e -  
6VC BLAM (16 misroutes) —
3VC BLAM (16 misroutes)  x  -

Original Chaos  -v—
0.1

Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load (b) Average Latency vs. Offered Load

Deadlock Avoidance
Butterfly Traffic Pattern Butterfly Traffic Pattern

B ase — e -  
6VC BLAM (16 misroutes) — a ~ 
3VC BLAM (16 misroutes) x-~ 

Original Chaos —

0.035

0.015
x-x

0.005 e - e - e -  o —e — e

Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load

10000

1000

Base — e  
6VC BLAM (16 misroutes)
3VC BLAM (16 misroutes)  x

Original Chaos  -v

100

Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F igu re  5.9: Overall Performance With Complement Traffic Pattern

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.5.2 Varying th e  M isroute Limit

The previous results use a BLAM router with up to 16 misroutes. In this subsection, 

I examine the trade-offs involved in varying this limit. Figure 5.11 shows the perfor

mance of 6VC BLAM as the misroute limit is increased progressively from 3 to 8 to 

16. In general, increasing the number of misroutes postpones saturation as packets 

can use the adaptive channels for a longer period of time.

For uniform random traffic, a limit of three misroutes is enough to prevent satura

tion. Increasing the number of misroutes beyond three does not change the behavior 

in any significant manner. In contrast, the perfect-shuffle communication pattern (see 

Figures 5.11c & 5.lid )  shows well-separated performance curves as the misroute limit 

is varied. This facilitates explanation of network behavior in response to variations 

in the misroute limit.

As the misroute limit increases, network saturation (and the corresponding drop 

in performance) occurs at higher and higher loads. Allowing upto three misroutes 

prevents saturation at certain loads. But at higher loads, the packets use up all 

the allowed misroutes and are then constrained to route only within the minimum 

rectangle. This increases the frequency of deadlock cycles forming in the adaptive 

channels and hence increases the frequency of deadlock-free channel usage. Similarly, 

8 misroutes, while better than 3 misroutes, is unable to prevent saturation at the 

higher loads.

Note, 16 misroutes is high enough for all the loads and communication patterns 

I considered. In general, the number of misroutes should be set to a value that is 

high enough to reduce the probability of using the deadlock-free escape paths for any 

workload that the network may handle. However, for some workloads the network 

could saturate but the resulting behavior will be no worse than that of a minimal

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



adaptive router. Theoretically, high latencies are possible if the limit on misroutes 

is very high, because my BLAM implementation does not have the randomization 

property of the Chaos router which increases the probability of packet delivery with 

increasing time. However, I have not observed this in practice.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Uniform Random Traffic Pattern Uniform Random Traffic Pattern

I--o

B ase — * — 
6VC BLAM, 16 misroutes — 0 ~

6VC BLAM, 8 misroutes  -0 ■

6VC BLAM, 3 misroutes 
6VC‘ BLAM; Omisrautes

0.045

0.035 1.QQ%..(CMR
0.025

0.015

0.005

1.01 0.1 
Packet Injection Rate (Packets/node/cycle)

100000

10000

&
§

Base
BLAM, 16 misroutes 

6VC BLAM, 8 misroutes 
6VC BLAM, 3 misroutes 
6VC BLAM, 0 misroutes

1000 -

100

0.01
Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load (b) Average Latency vs. Offered Load

Deadlock Avoidance
>
■S
o

<-o

o2
(c)

0 
0.01

Uniform Random Traffic Pattern Uniform Random Traffic Pattern

Base — * -  
BLAM 16 misroutes — b ~ 

BLAM 8 misroutes  o

100%

BLAM 3 misroutes 

f (C

0.1
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

100
Base

B D ^ K a m is ro u te s  
B j^M frTTfSftSSf 

jJt'AM 3 misroutes 
ffiLAM 0 misroutes

w
Si
8.
o
cO

 -0

<DD)

I

0.10.01
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

Figure 5.10:
Traffic

Effects of Varying the Misroute Limit of BLAM, Uniform Random

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Perfect Shuffle Traffic Pattern Perfect Shuffle Traffic Pattern

o
0 3a.

<ob~■o
•2
CL

0.035
100% (CN F] eve BLAM; te misroutes “

6VC BLAM, 8 misroutes  -e
6VC BLAM, 3 misroutes — a 
6VC BLAM, 0 misroutes0.025

-b - b - b —s -0.015

0.005

Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

10000

201
I

1000

100

10 
0.01

Base
6VC BLAM, 16 misroutes 

6VC BLAM, 8 misroutes 
6VC BLAM, 3 misroutes 
6VC BLAM, 0 misroutes

_x_
~ B ~
~ e - ~

0.1
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Deadlock Avoidance
©o

't/s
©

©■s.
8

©eoz
(c)

Perfect Shuffle Traffic Pattern

Base — x -
BLAM.. m isroutes.

BLAM 8 misroutes  -e -
BLAM 3 misroutes —-a -  
BLAM 0 misroutes — v — 

100% throughput (Chaos Papers) --------

0.035

0.025

0.015

0.005

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

Perfect Shuffle Traffic Pattern
1000

Base — x—  
BLAM 16 misroutes — B~—

BLAM 8 misroutes  -0....
BLAM 3 misroute® — &-....

100
S-
C
©

©o

I
0.10.01

Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  5.11: Effects of Varying the Misroute Limit of BLAM, Perfect Shuffle Traffic

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Butterfly Traffic Pattern Butterfly Traffic Pattern

g.
,0
a>-ao
"I

©
H.
<0

0.035

0.03

0.025

0.02

0.015

0.01

0.005

10p%JCNF5 [3c1S6  x  ■
■ 6V C BLAM, TSm isroutss'

6VC BLAM, 8 misroutes  -Q-
6VC BLAM, 3 misroutes —•*— 
6VC BLAM, 0 misroutes — v ~

Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

10000

® 1000

©
Base

6VC BLAM, 16 misroutes ---e
6VC BLAM, 8 misroutes  ©
6VC BLAM, 3 misroutes — *  
6VC BLAM, 0 misroutes — v

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Deadlock Avoidance
Butterfly Traffle Pattern Butterfly Traffic Pattern

©-ao
■s■S

!

(c)

0.035

0.03

0.025

0.02

0.015

0.01

0.005

Base
~BtAM~18 misroutBs r

- x -=B=
BLAM 8 misroutes  ©
BLAM 3 misroutes — ^  
BLAM 0 misroutes — v- 

100% throughput (Chaos Papers) - —

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

1000
Base — x—  

BLAM 16 misroutes —e-—
BLAM 8 misroutes  ■©—
BLAM 3 misroutes — a —

Oi0)
o 100
>*oco
3<0
CD<C0)
I

0.10.01
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  5.12: Effects of Varying the Misroute Limit of BLAM, Complement Traffic

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Bit-reversal Traffic Pattern Bit-reversal Traffic Pattern

100%(CNF)....
6VC BtAM;' t S 'T r T i s r a u t e s  " 

6VC BLAM, 8 m i s r o u t e s  
6VC BLAM, 3 m i s r o u t e s

o..

0.1
Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

10000

<D
CD

§<

1000 r

100

10 0.01

Base — x— 
6VC BLAM, 16 misroutes —-B--

6VC BLAM, 8 misroutes  -0-
6VC BLAM, 3 misroutes  a~
6VC BLAM, 0 misroutes — r —

0.1
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Deadlock Avoidance

0.035

0.03

0.025

0.02
0.015

0.01
0.005

0 0.01

Bit-reversal Traffic Pattern Bit-reversal Traffic Pattern

Base
------------------- BLAMT0'rm'srocrtesr==e‘*

BLAM 8 misroutes  ©
BLAM 3 misroutes -..

100% throfl^gput (Chaos Papers) -----

\
\

0.1

(c)

Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

1000

® 100 -

I

BLAM 16 misroutes
BLAM 8 misroutes  © ■
BLAM 3 misroutes 
B L^/10 misroutes — v-

y—̂._y~-S

Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

Figure 5.13: Effects of Varying the Misroute Limit of BLAM, Bit Reversal Traffic

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.5.3  E ffect of Adding Bypass Buffers

The bypass buffers create additional buffering capacity in each node which can break 

some hold-and-wait cycles, thus improving performance over the base case. The curve 

for zero misroutes (v) in Figure 5.11 isolates the effect of only adding bypass buffers 

to the base router. While there is some marginal improvement over the base case, 

increasing network load eventually saturates the additional buffers.

5.5.4  M -m isro u te , A daptive router

The next section examines the effects of adding misroutes (both eager and lazy) 

without bypass buffers to the base router.

Eager Misroutes: In this scheme misroutes are initiated eagerly whenever a packet 

is unable to find a profitable route. Figure 5.15 shows the simulation results with 

eager misroutes. From these simulations, we observe that eager misrouting without 

bypass buffers is insufficient to prevent saturation. In fact, eager misrouting consis

tently performs worse than the base router, and increasing the misroute limit further 

exacerbates saturation. This behavior matches expectations.

Previous research [38] shows that starting out with a minimal adaptive router 

(with wormhole routing and Disha deadlock recovery) and enabling a limited num

ber of misroutes does not improve performance for uniform random traffic. My 

experiments reproduce this result for virtual cut-through switching and other traffic 

patterns. Note, previous work did show that misroutes can be helpful in the case of 

hot-spot traffic pattern (where one node is the destination for packets coming from 

many source nodes.)

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lazy misroutes: BLAM performance combines the effects of bypassing and lazy

misrouting. To separate the effects of bypassing from lazy misrouting I modified the 

eager misrouting technique to delay misrouting for a set number of cycles—called 

spin-cycles. During this time the packet continues to try and obtain a profitable 

route but packets that follow cannot bypass the stalled packet. Simulation results 

show that while lazy misrouting is better than eager misrouting, it is still worse than 

the base case. Figures 5.18 and 5.19 shows the performance of the base configuration 

with upto 3 misroutes and various spin-cycles. These results demonstrate that the 

benefit of avoiding unproductive misroutes is lost because of the lack of bypassing, 

which stalls packets that follow.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Uniform Random Traffic Pattern Uniform Random Traffic Pattern

0
g,
1•o
o
c

ocd
CL

(0t-

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

00.

Base -—X-----

16 misroutes - .

100% (CNF) 8 misroutes •-•0......
3 misroutes -—A-..- -

fl....Min.....Mm......MM........ea

01 0.1
Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

100000
<0
©o&
&
c

10000

1000©

3
0o>2Cl
■5

Base — *—  
16 misroutes -~ a -~

8 misroutes  -o...
3 misroutes —

100

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

a
■o
o

H
x>

£

<0
£
oz

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

Deadlock Avoidance
Uniform Random Traffic Pattern

0 
0.01

Base —
16 misroutes -----b -
8 misroutes  0 -
3 misroutes — A -

0.1

(c)

Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

Uniform Random Traffic Pattern
100

(O
©

&o 3 misroutes

>.ac
©
ro-J
©D>©
©

0.10.01
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

Figure 5.14: M-misroute, Adaptive Router, Uniform Random Traffic

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Perfect Shuffle Traffic Pattern

Base 
16'misroutes 
8 misroutes 
3 misroutes

LQQ%_(CNFL

Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

Perfect Shuffle Traffic Pattern
10000

1000
>.o
co<0

100
Base — x—  

16 misroutes — e —
8 misroutes  -o....
3 misroutes —A ....

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Deadlock Avoidance
Perfect Shuffle Traffic Pattern

Base — x 
16 misroutes —~H~
8 misroutes  o~
3 misroutes - ..

0.035

0.03

0.025

0.02
0.015

0.01

0.005

0.1
Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load

Perfect Shuffle Traffic Pattern
1000

Base — x—  
16 misroutes —
8 misroutes  ■©....
3 misroutes — A....

<0©
oa- 100
8-
CBto
0)o>fC0)

0.10.01
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

Figure 5.15: M -misroute, Adaptive Router, Perfect Shuffle Traffic

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Butterfly Traffic Pattern Butterfly T raffic Pattern

0

> .
0.036

100% (CNF)
0*oo

0.03

' a i
©

0.025

o
< e

C L

0.02

O
kz

0.015
CO

£
*o

0.01 3
\ \

D .
0
O

0.005

1 L
0.01

Base —
- T6misnoutes~ ••• n  ■

8 misroutes ...
3 misroutes

0.1
Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

100000
(ft

10000

1000
CC
©co10
I

Base — x—  
16 misroutes --~b —-
8 misroutes  -o...
3 misroutes -...

100

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Deadlock Avoidance
Butterfly Traffic Pattern Butterfly Traffic Pattern

T3o

o
<0

CL

2f-

0.035

0.03

0.025

0.02

0.015

0.01

0.005

Base — x -  
16 misroutes — b -  

8 misroutes --©■■■ 
3 misroutes —

0.1
|  Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load

1000
Base —

16 misroutes
8 misroutes  o ....
3 misroutes — —

 -B-—-0

to
©

. o . 100
&c
©(0

_ J0
CD(0

0.10.01
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

Figure 5.16: M -misroute, Adaptive Router, Complement Traffic

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deadlock Recovery
Bit-reversal Traffic Pattern

% 0.035

jt<u 0.03 ■o
|  0.025
©
0  0.02 <a

Q .

Z  0.015

j! 0.01
1  0.005Q .
CD

I  °< 0.01 0.1
Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

Bit-reversal Traffic Pattern
10000

COm
&
•ii 1000
&
c

<o-j
01
C S 100

Base — x—  
16 misroutes — B~~

8 misroutes  -e....
3 misroutes — &—

01

3

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Base — x—  
tS 'T T ii s n o u te s "  ~ - - e —
8 misroutes  -e....
3 misroutes — ^  -

Deadlock Avoidance

0.035

0.03

0.025

0.02

0.015

0.01
0.005

E
o

(cl

0 0.01

Bit-reversal Traffic Pattern

Base — x 
16 misroutes —e ~
8 misroutes  •©-■■■
3 misroutes — A~~

0.1
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

Bit-reversal Traffic Pattern
1000

Base — x—  
16 misroutes —-B-—

8 misroutes  e ....
3 misroutes  —

CO0
1 100
&s
aa

I
0.10.01

Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

Figure 5.17: M-misroute, Adaptive Router, Bit Reversal Traffic

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Uniform Random

S’ 0.035fl)
0 0.03 
"§
5  0.025jx:

1 0.02
e  o .o i52
£  o.oi 0
6  0.005

I 00.01 0.1 
Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

100000

W0
I
&c
s
CDO)

10000

1000

B ase case — x—  
Spin cycles = 8 —a —

Spin cycles = 16  ■&-...
Spin cycles = 32 —-a - -
Eager misroutes — v -~

I 100

0.01 0.1
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

LQ.o%£CNF1.

B ase case  — x—  
Spin cycles = 8 —e - ~

Spin cycles = 16  o ....
Spin cycles = 32 — —

Perfect Shuffle
0.035

m n%  rrN F t B ase case  x
...................... SpifTcyeles = 8 ----- B ~

Spin cycles = 16 
Spin cycles = 32 —  
Eager misroutes — v---0.025

0.015

0.005 X—x—-x---X
Ira S3 ® ....

Packet Injection Rate (Packets/node/cycle)

10000

1000

I
100

Spin cycles = 8 —a —
Spin cycles = 16  a ...
Spin cycles = 32 — 
Eager misroutes — v —100.01 0.1 

Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load (d) Average Latency vs. Offered Load

F ig u re  5.18: M-misroute, Adaptive Router with lazy Misroutes

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bit Reversal
0.035

100% (CNF)
0.03

c  0.025

0.02
0.015

B ase case — x- 
Spin cycles = 8 —-e~

Spin cycles = 16  -Q
S g i n j ^ e ^ S j g  -a -
*E® ir% isroutes — v -

0.01
g- 000 5

0.10.01
Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

10000

</)©
1000

&c£
100

Base case — x—  
Spin cycles = 8 — B ~-

Spin cycles = 16  o ....
Spin cycles = 32 —a —  
Eager misroutes — ■?--

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Complement

©
I©
-gc3̂IS

0■s.0o

0.035
100% (CNF)

B ase case  — x—  
Spin cycles = 8 - — 

Spin cycles = 16 -©
Spin cycles = 32 —a —

0.1
Packet Injection Rate (Packets/node/cycle)

10000

1000
&
C©
CO

©O)© 100
B ase case  — *—  

Spin cycles = 8
Spin cycles = 16  ©....
Spin cycles = 32 —^ —  
Eager misroutes

f

0.10.01
Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load (d) Average Latency vs. Offered Load

Figure 5.19: M -misroute, Adaptive Router with lazy Misroutes

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 .5 .5  V a r y in g  P a c k e t  S iz e  a n d  N e tw o r k  S ize

So far, I have presented results for 16-ary, 2-cubes with 16 flit packets. It is important 

to verify that the results we saw are representative for the design space of realistic 

distributed shared memory multiprocessors. Evaluating BLAM for every point in 

this huge design space3 is not feasible. In this section, I present results for some 

network sizes and packet sizes selected on the basis of technology trends.

Other packet sizes

In the context of cache-coherent, distributed shared memory multiprocessors, network 

packets carry blocks of data corresponding to the cache blocksize of the cache most 

distant from the processor. In current day systems, this typically means the level 

2 (L2) cache. The L2 cache block size in recent processors varies between 64 Bytes 

(UltraSPARC 2, Alpha 21164, Alpha 21264) and 128 bytes (Pentium 4). Using 

these as typical cache block sizes and using the Alpha 21364 flit size (4 Bytes) as 

the typical flit width, the packet sizes of interest range between 8 flits and 32 flits. 

Taking technology trends into account, I also consider larger 64 flit packets.

From my simulation results of a 16-ary, 2-cube network with workload using 32 

flit and 64 flit packets (Figures 5.20-5.23), we observe from that the base network 

saturates at a lower packet injection rate when packet size is increased to 32 flits and 

64 flits. This is expected because the load, as measured in flit injection rate, increases 

when the packet size increases. Apart from this difference, the relative performance of 

the base minimal adaptive router, 6VC BLAM and 3VC BLAM remain qualitatively 

similar.

3where, design space =  {(all packet sizes) X  (all network sizes)}

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Other network sizes

The 16-ary, 2-cube network I considered in earlier sections had 256 nodes. In this 

section, I evaluate BLAM with 512 node and 1024 node networks as well. For the 512 

node system, I consider an 8-ary, 3-cube topology to verify BLAM operation at higher 

dimensions as well. For the 1024 node system, I use a 32-ary, 2-cube. Figures 5.24, 

5.25, 5.26 and 5.27 show the performance of BLAM for an 8-ary, 3-cube (512 nodes) 

network ((a) and (b)) and a 32-ary, 2-cube (1024 nodes) network ((c) and (d)) with 

16 flit packets for uniform random, bit reversal, complement and perfect shuffle traffic 

patterns respectively. For these two network sizes, the BLAM misroute limit is set to 

32 for the 8-ary, 3-cube and to 64 for the 32-ary, 2-cube, because a limit 16 misroutes 

was insufficient to prevent the heavy use of deadlock-free paths resulting in poor 

performance.

5.6 Summary

High performance, deadlock-freedom, and livelock-freedom are all important for mul

tiprocessor interconnection networks. Unfortunately, existing routing algorithms 

trade off one property for others. Minimal, adaptive routing algorithms compro

mise performance at high loads to guarantee deadlock-freedom and livelock-freedom. 

In contrast, Chaotic routing algorithms accept weaker, probabilistic livelock-freedom 

guarantees to achieve high performance and deadlo ck-fr eedom. The challenge is to 

design a routing algorithm that combines the best of minimal adaptive routing and 

Chaotic routing to provide high performance without sacrificing deadlock- or livelock- 

freedom.

This chapter proposes a new routing algorithm—called BLAM (Bypass buffers 

with Limited Adaptive lazy Misrouting)—which achieves that goal. Like minimal

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



adaptive routing algorithms, BLAM provides deadlock-freedom by the use of a deadlock- 

free escape paths. Like Chaos, it provides high performance via the use of lazy mis- 

routing and the packet exchange protocol. BLAM implements lazy misrouting via 

bypass buffers at the input ports. However, unlike Chaos, BLAM limits the number 

of misroutes, thereby, providing livelock-freedom.

Using simulation of a variety of configurations and communication patterns, I 

demonstrate that BLAM achieves very high network performance, which is compa

rable to what Chaos can achieve. Additionally, I demonstrate that components of 

BLAM-bypass buffers and lazy misrouting-may not necessarily improve performance 

individually. However, when combined in BLAM, these techniques can provide very 

high network throughput.

Unfortunately, inspite of their high performance, no commercial product (to the 

best of my knowledge) has adopted Chaotic routing algorithms, even though they 

have existed for more than a decade. The presence of livelocks-however, low the 

probability may be—causes network designers to shy away from such algorithms. 

BLAM removes this barrier by providing performance similar to Chaotic routing 

algorithms, but with guaranteed livelock- and deadlock-freedom.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



©

g.
I
T 3Oco3©

Packet Size =  32 Flits

(a)

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0
0.001

100% (CNF)

eT

. Base case —x—
BT gVC BLAMi -i6 misroutes —B ~- '

3VC BLAM 1 -~0...

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

100000

® 10000

<uo
CO

1000

100

10

r
Base case —x--

6VC BLAM, 16 misroutes
3VC BLAM, 16 misroutes --•G....

0.001 0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Packet Size =  64 Flits

§O

(c)

©*oo
■§

(dh-
T 3

I

0.008
100% (CNF)

0.007

0.006

0.005

0.004

0.003

0.002

0.001 6VCB
3VCB

Base case — x -  
misroutes —e ~  

isroutes ~-e--

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

100000

2 10000

o>c»
CO

1000

100

0.001

Base case — x—  
6VC BLAM, 16 misroutes —-a—  
3VC BLAM, 16 misroutes

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  5.20: Overall Performance For Other Packet Sizes (Uniform Random Traffic, 
16-ary, 2-cube Network)

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Packet Size =  32 Flits

(a)

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

100% (CNF)

r-r-T-
^ ^ ® o © o - e - o - G

' 6VC BLAM? —-&—
'  3VC BLAM 16 misroutes -e00.001 0.01 0.1 

Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

10000

a>o& Aiafr-e-d1000
>.o
cm
CD 100

Base case — x—  
6VC BLAM, 16 misroutes —
3VC BLAM, 16 misroutes  ■©....

0.01 0.10.001
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

Oc'tSo

o
Q .

Packet Size =  64 Flits

-e-e-B■GO ■» <:■

0.008
100% (CNF)

0.007

0.005

0.004

0.003

0.002

0.001 i misroutes — a — 
3VC BLAM 16 misroutes &

0.001 0.01
Packet Injection Rate (Packets/node/cycle)

10000

1000

100

/  r  ©cu0^fe^mQQO-&-Q-0
f J 0

B ase case  — *—
6VC BLAM, 16 misroutes
3VC BLAM, 16 misroutes ... -o....

100.001 0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load (d) Average Latency vs. Offered Load

F ig u re  5.21: Overall Performance For Other Packet Sizes (Bit-Reversal Traffic, 
16-ary, 2-cube Network)

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2®j*:o<0
o
H

Packet Size =  32 Flits

(a)

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

100% (CNF)

Base case 
, 16 misroutes —-h -

0.001 0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

10000

co
©

1 1000
&
c01a

100

Base case — x—  
6VC BLAM, 16 misroutes —■&-— 
3VC BLAM, 16 misroutes  ©....

0.10.010.001
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

©

£

(0Q.

Packet Size =  64 Flits

CO
E
oz

(c)

0.008
100% (CNF)

0.005

0.004

0.003

0.002
Base case — *  

6VC BLAM. 16 misroutes —e -

0.001 0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

10000

1000
&
C©
to
© 100
I Base case — x—  

6VC BLAM, 16 misroutes -■~B~~ 
3VCBLAM, 16 misroutes ---■©

0.10.010.001
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F igure  5.22: Overall Performance For Other Packet Sizes (Complement Traffic, 
16-ary, 2-cube Network)

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0
1  © *c 
o c /̂S
o(0

CL

Packet Size =  32 Flits
0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

100% (CNF)

6VC BLAMfW fSsragteS 
3VC BLAM, 16 misroutes  0 -

(a)

0.001 0.01 0.1 
Packet injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

10000

CO
0 3

1 1000

S'cffl
13
aa>
2
a
3

100

Base case  — x—  
6VC BLAM, 16 misroutes ~ e — 
3VC BLAM, 16 misroutes  0 ...

0.01 0.10.001
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

a

i

Packet Size =  64 Flits
0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

100% (CNF)

0
0.001

#s-a-s

6VCBLAiVr,'46 miSrOUtes 
3VC BLAM, 16 misroutes 0

(c)

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

10000

1000

a
3

100

10 
0.001

0-0-0-0

Base case  — x—  
6VC BLAM, 16 misroutes — &— 
3VC BLAM, 16 misroutes  o ....

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  5.23: Overall Performance For Other Packet Sizes (Perfect Shuffle Traffic, 
16-ary, 2-cube Network)

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8-ary, 3-cube (512 node) Network

iqO%(CNF)

0.01

Base case  — * -  
6VC BLAM, 32 misroutes —-B-- 
3VC BLAM, 32 misroutes ©--•

0.1
Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

100000

cn©
g,
oc
©

10000

1000©
<DO)CC

I 100
B ase case  — *—  

6VC BLAM, 32 misroutes —e — 
3VC BLAM, 32 misroutes ----©

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

32-ary, 2-cube (1024 node) Network

©*0o

CO
CL

I

0.016
100% (CNF)

0.014
EH3--EHD
e -e -e -o0.012

0.008

0.006

0.004

0.002 6VC BLAM, 6
Base case 
■ misroutes —-B-— 

3VC BLAM, 64 misroutes  <3
' I H W X X X X X

(c)

0.001 0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

100000

coOo
&

10000

&cdi
EEHEie-B-e-Q
030ee©--®--o1000

<11
CD«

100
Base case — *—  

6VC BLAM, 64 misroutes -—■&— - - - - -  ■ .. .e .......3VC BLAM, 64 misroutes -

0.10.001 0.01
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  5.24: Overall Performance For Other Network Sizes (Uniform Random Traf
fic, 16 flit packets)

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8-ary, 3-cube (512 node) Network
0.07

100%(CNF)
0.06

0.05

0.04

0.03

0.02

B ase case  — x—  
*misrautes<

3VC BLAM, 32 misroutes o

0.01 6VC BLAMT

0 <— 
0.01 0.1

Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

10000

0
1 1000
>.o
co
Q>

0 -

100

Base case  — *—  
6VC BLAM, 32 misroutes 
3VC BLAM, 32 misroutes  ■©....

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

32-ary, 2-cube (1024 node) Network

I13O
C«!

£5!-

0.1

0.01

0.001

0.0001 
0.001

1GG%teNP)-

B a se c a s e  — x—  
6VC BLAM, 64 misroutes - — 
3VC BLAM, 64 misroutes o ....

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

10000

tn

I 1000
&
c

<D
<c
I

100

Base case  — x—  
6VC BLAM, 64 misroutes —-a--- 
3VC BLAM, 64 misroutes  ©....

0.10.001 0.01
Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load (d) Average Latency vs. Offered Load

F ig u re  5.25: Overall Performance For Other Network Sizes (Bit-Reversal Traffic,
16 flit packets)

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8-ary, 3-cube (512 node) Network

I

I

0.07
iqp% (CNF)

0.06

0.05

0.04

0.03

0.02

\  Base case  — x—
6VC BLAM, 32 misroutes —-B -- 
3yC BLAM 32 misroutes -o

0.01

0 L_ 
0.01 0.1

Packet Injection Rate (Packets/node/cycle)

(a) Delivered Throughput vs. Offered Load

10000

</)
CD

O 1000

ocS
J5oO)20
3

.-O'"
100

B ase case  — x—  
6VC BLAM, 32 misroutes - - B -~ 
3VC BLAM, 32 misroutes  ©---

0.10.01
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

32-ary, 2-cube (1024 node) Network

0 ‘O0
1
o

CL

5H*
x s

0.1

0.01

0.001

0.0001

1e-05 
0.001

100%-(eNF)..—-
•n-BSraMB-SSBe©— B-0

0 -0 -0

i f  B ase  case  — x—
6VC 3LAM, 64 misroute^ —-s-—
3VC rrfsroutes ...■©....

(c)

0.01 0.1 
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load

100000

V)

o
S'

10000

> .oc
0 1000
to
oS’Jo

100
Base case  — x—  

6VC BLAM, 64 misroutes —e ~  ~ 
3VC BLAM, 64 misroutes -e

0.01 0.10.001
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  5.26: Overall Performance For Other Network Sizes (Complement Traffic, 
16 flit packets)

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8-ary, 3-cube (512 node) Network
0.07

i§$

g

100% (CNF)

Base case 
AM, 32 misroutes — B 

SVC Bfc-AM. 32.misraL.ties/ -G

10000

<0o
s.t) 1000

100 Ce
Base case  — x—  

6VC BLAM, 32 misroutes —-a— 
3VC BLAM, 32 misroutes -~Q ....

0.10.01

(a)
Packet Injection Rate (Packets/node/cycle)

Delivered Throughput vs. Offered Load
Packet Injection Rate (Packets/node/cycle)

(b) Average Latency vs. Offered Load

32-ary, 2-cube (1024 node) Network

1■Oo

0.1

0.01

0.001

B ase case  — x —  
6VC BLAM, 64 misroutes — b —  
SVC BLAM, 64 misroutes a

0.0001 L—  
0.001 0.01 0.1

10000

CO©
o ,

&£
15

1000

<0a>cc 100

B ase case — x—  
6VC BLAM, 64 misroutes — a —  
3VC BLAM, 64 misroutes  -o....

0.01 0.10.001
Packet Injection Rate (Packets/node/cycle)

(c) Delivered Throughput vs. Offered Load
Packet Injection Rate (Packets/node/cycle)

(d) Average Latency vs. Offered Load

F ig u re  5.27: Overall Performance For Other Network Sizes (Perfect Shuffle Traffic, 
16 flit packets)

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6: 
Conclusion

Large-scale cache coherent shared memory machines constitute an important and 

growing portion of the server market. The trend towards more powerful processing 

power per node results in increased loads on the interconnection networks.

Interconnection network performance is an important component of overall system 

performance in such systems and demanding server applications expect the intercon

nection network to provide high-bandwidth, low latency communication. Unfortu

nately, interconnection networks suffer from known performance problems at high 

loads due to network saturation.

Previously studied techniques to solve this problem can be broadly classified into 

two approaches: (a) the congestion control approach and (b) the load balancing 

approach. The congestion control approach tries to control the offered load to keep 

the network below saturation. The load balancing approach tries to avoid creation of 

network “hot-spots” that can quickly propagate due to tree saturation. This thesis 

proposes and evaluates three techniques to overcome the performance problems at 

high loads. The first technique falls under the congestion control category and the 

next two fall under the load balancing category.

6.1 Summary

The first technique— Tune—relies on faster feedback and self-tuned source-throttling 

to keep the network operating. Using proactively propagated global congestion infor

mation, Tune limits the injection of new packets into the network when it determines 

that saturation is imminent. This keeps the network operating in its high-throughput, 

low-latency region of operation. Further, Tune also uses global throughput informa-

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tion to implement a robust self-tuning mechanism that enables two key features: (a) 

it is able to recover even if it goes into saturation and (b) it is able to adapt to 

changes communication patterns.

Tune uses an exclusive sideband signaling mechanism to gather global buffer occu

pancy and throughput information. The buffer occupancy information conveys faster 

congestion feedback and the throughput information is used to drive the self-tuning 

mechanism.

Exhaustive simulations with various communications patterns, steady loads and 

bursty loads show that Tune is able to effectively prevent the performance degra

dation at saturation. Comparing Tune to a previously proposed source-throttling 

mechanism—ALO [4]—that uses local congestion information and fixed thresholds 

shows that Tune is better at preventing performance degradation at saturation. Eval

uation of meta packets as an information distribution mechanism shows that the 

delays in gathering information make it unsuitable for Tune.

The second technique— congestion aware via-routing—attempts to improve per

formance by achieving better load balancing in the minimum rectangle by using global 

congestion aware routing. The evaluation of various flavors of the via-routing scheme 

shows that via-routing in the minimum rectangle offers no significant advantage over 

the load balancing inherent in fully adaptive (minimal) routing. Experiments which 

assume perfect knowledge of the least congested paths in the minimum rectangle still 

show significant performance degradation in performance at saturation.

Finally, the third technique is a non-minimal routing algorithm—BLAM—that 

uses limited, lazy misrouting and bypassing to achieve near-chaos performance with 

deterministic guarantees of deadlock- and livelock-freedom for virtual cut-through 

networks.

Experiments show that each component of BLAM (limited misrouting with escape

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



paths, distributed bypass buffers and lazy misrouting), when used individually, offers 

little improvement at best and can actually hurt performance in some cases. But 

the three components acting in concert (as in the BLAM routing algorithm), not 

only sustain high-bandwidth, low latency network operation but also extend the 

load at which saturation occurs. The limit on misroutes guarantees livelock-freedom 

inspite of non-minimal routing and the escape paths guarantee deadlock freedom 

when the misroutes are exhausted. Lazy misrouting prevents premature misrouting 

and distributed bypass buffers enables stalling packets to make way for other packets 

that follow.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. The case for 
resilient overlay networks. In Proceedings of the 8th Annual Workshop on Hot 
Topics in Operating Systems, May 2001.

[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Resilient 
overlay networks. In Proceedings of the 18th ACM  Symposium on Operating 
Systems Principles, October 2001.

[3] D. Basak and D.K. Panda. Alleviating Consumption Channel Bottleneck in 
Wormhole-Routed k-ary n-cube Systems. I E E E  Transactions on Parallel and 
Distributed Systems, 9(5):481—496, May 1998.

[4] E. Baydal, P. Lopez, and J. Duato. A Simple and Efficient Mechanism to Prevent 
Saturation in Wormhole Networks. In Proceedings, l f t h  International Parallel 
and Distributed Processing Symposium, pages 617-622, 2000.

[5] K. Bolding and L. Snyder. Mesh and torus chaotic routing. Technical Report 
TR-91-04-04, Department of Computer Science, University of Washington, Seat
tle, 1991.

[6] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to End Congestion Avoidance 
on a Global Internet. Journal of Selected Areas in Communications, 13(8):1465- 
1480, October 1995.

[7] The Chaotic Routing Project, Computer Science and Engineer
ing Department, University of Washington. Standard for Pre
sentation of Results: Chaos Normal Form and Burton Normal
Form. http: / / www.cs.washington.edu /  research /  projects/lis/chaos /
www/presentation.html.

[8] The Chaotic Routing Project, Computer Science and Engineering De
partment, University of Washington, Seattle. The Chaos Router 
Simulator. h ttp://w w w . cs. Washington .edu /  research /  proj ects/lis /  chaos /  
www/simulator .html.

[9] A. Charlesworth. The Sun Fireplane Interconnect. IEEE Micro, 22(1):36—45, 
January/February 2002.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.washington.edu
http://www


[10] A. A. Chien and M. Konstantinidou. Workloads and Performance Metrics for 
Evaluating Parallel Interconnects. IEEE Computer Architecture Technical Com
mittee Newsletter, pages 23-27, Summer-Fall 1994.

[11] B. Coates, A. Davis, and K. Stevens. The Post Office Experience: Designing a 
Large Asynchronous Chip. In Proceedings of the HICSS, 1993.

[12] R. Cutler and S. Atkins. IBM  e-server pSeries 680 Handbook. IBM, Armonk, 
N.Y., December 2000. h ttp : / / www.redbooks.ibm.com/pubs/pdfs/redbooks/  
sg246023.pdf.

[13] W. J. Dally. Virtual-Channel Flow Control. IEEE Transactions on Parallel and 
Distributed Systems, 3(2):194-205, March 1992.

[14] W. J. Dally and C. L. Seitz. The TORUS routing chip. Journal of Distributed 
Computing, 1 (3) :187—196, October 1986.

[15] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor 
interconnection networks. IEEE Transactions on Computers, C-36(5):547-553, 
May 1987.

[16] K. Diefendorff. Power4 Focuses on Memory Bandwidth. Microprocessor Report, 
13(13), October 1999.

[17] E. W. Dijkstra. A Note on Two Problems in Connecion with Graphs. Nu- 
merische Mathematik, 1:269-271, 1959.

[18] J. Duato. A New Theory of Deadlock-Free Adaptive Routing in Wormhole 
Networks. IEEE Transactions on Parallel and Distributed Systems, 4(12): 1320- 
1331, December 1993.

[19] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: An Engineering 
Approach, page 116. IEEE Computer Society Press, 1997.

[20] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: An Engineering 
Approach, page 405. IEEE Computer Society Press, 1997.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.redbooks.ibm.com/pubs/pdfs/redbooks/


[21] J. S. Emer. Simultaneous Multithreading: Multiplying Alpha Performance. Mi
croprocessor Forum, October 1999.

[22] J. M. Tendler et al. IBM  e-server POWER4 System Microar
chitecture. IBM, Armonk, N.Y., October 2001. http: / /www- 
1 .ibm.com/servers/eserver/ pseries/hardware/whitepapers/  power4.pdf.

[23] C. Fang and T. Szymanski. An Analysis of Deflection Routing in Multi
dimensional Regular Mesh Networks. In Proceedings of IEEE INFO COM ’91, 
pages 859-868, April 1991.

[24] J. Flich, M. P. Malumbres, P. Lopez, and J. Duato. Performance Evaluation 
of a New Routing Strategy for Irregular Networks with Source Routing. In 
Proceedings of the I f t h international conference on Supercomputing, pages 34- 
43, 2000.

[25] S. Floyd. TCP and Explicit Congestion Notification. ACM  Computer Commu
nications Review, 24(5):10-23, October 1994.

[26] S. Floyd and V. Jacobson. Random Early Detection gateways for Conges
tion Avoidance. IEEE/AC M  Transactions on Networking, 1(4):397-413, August 
1993.

[27] M. Fulgham and A. Snyder. A Study of Chaotic Routing with Nonuniform 
Traffic. Technical Report UW-CSE-93-06-01, University of Washington, June 
1993.

[28] P. T. Gaughan and S. Yalamanchili. Adaptive Routing Protocols for hypercube 
Interconnection Networks. IEEE Computer, 46(2): 12-22, 1997.

[29] K. Gharachorloo, M. Sharma, S. Steely, and S. Van Doren. Architecture and 
Design of the AlphaServer GS320. In Proceedings of the 9th International Con
ference on Architectural Support for Programming Languages and Operating Sys
tems (ASPLOS), pages 13-24, November 2000.

[30] C. J. Glass and L. M. Ni. The Turn Model for Adaptive Routing. In Proceedings 
of the 19th Annual International Symposium on Computer Architecture, pages 
278-287, May 1992.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[31] A. G. Greenberg and B. Hajek. Deflection routing in hypercube networks. IEEE
Transactions on Communications, COM-40(6): 1070-1081, June 1992.

[32] Hewlett-Packard. Meet the HP Superdome Servers.
http: /  /  www.hp.com/productsl /  servers /  scalableservers /  superdome /  infoli-
brary /  whitepapers /  technical_wp.pdf.

[33] V. Jacobson. Congestion Avoidance and Control. In Proceedings of ACM SIG- 
COMM ’88 Symposium, pages 314-329, August 1988.

[34] R. Jain. Congestion Control and Traffic Management in ATM networks: Recent 
Advances and a Survey. Computer Networks and ISDN Systems, October 1996.

[35] P. Kermani and L. Kleinrock. Virtual Cut-Through : A New Computer Com
munication Switching technique. Computer Networks, 3:267-286, 1979.

[36] J. H. Kim, Z. Liu, and A. A. Chien. Compressionless Routing: A Framework for 
Adaptive and Fault-Tolerant Routing. In Proceedings of the 21st International 
Symposium on Computer Architecture, April 1994.

[37] S. Konstantinidou and L. Snyder. The Chaos Router. IEEE Transactions on 
Computers, 43(12):1386-1397, December 1994.

[38] Anjan K.V. and T.M. Pinkston. An Efficient, Fully Adaptive Deadlock Recovery 
Scheme : Disha. In Proceedings of the 22nd Annual International Symposium 
on Computer Architecture, pages 201-210, June 1995.

[39] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. 
In Proceedings of the 24th International Symposium on Computer Architecture, 
pages 241-251, June 1997.

[40] P. Lopez, J. M. Martinez, and J. Duato. DRIL : Dynamically Reduced Mes
sage Injection Limitation Mechanism for Wormhole Networks. In International 
Conference on Parallel Processing, pages 535-542, August 1998.

[41] P. Lopez, J. M. Martinez, J. Duato, and F. Petrini. On the Reduction of 
Deadlock Frequency by Limiting Message Injection in Wormhole Networks. In 
Proceedings of Parallel Computer Routing and Communication Workshop, June 
1997.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.hp.com/productsl


[42] N. F. Maxemchuk. Comparison of Deflection and Store-and-Forward Techniques 
in the M anhattan Street and Shuffle-Exchange Networks. In Proceedings of IEEE  
INFOCOM ’89, pages 800-809, 1989.

[43] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The 21364 
Network Architecture. IEEE Micro, 22(1):26—35, January/February 2002.

[44] Ted Nesson and S. Lennart Johnsson. ROMM routing on mesh and torus net
works. In Proc. 7th Annual ACM  Symposium on Parallel Algorithms and Ar
chitectures SPAA ’95, pages 275-287, Santa Barbara, California, 1995.

[45] J. Y. Ngai and C. L. Seitz. A Framework for Adaptive Routing in Multicom
puter Networks. In Proceedings of the 1st Annual ACM  Symposium on Parallel 
Algorithms and Architectures, pages 1-9, June 1989.

[46] A. G. Nowatzyk, M. C. Browne, E. J. Kelly, and M. Parkin. S-Connect: from 
Networks of Workstations to Supercomputer Performance. In Proceedings of the 
22nd Annual International Symposium on Computer Architecture, pages 71-82, 
June 1995.

[47] L.-S. Peh and W.J. Dally. Flit-Reservation Flow Control. In Proceedings of 
the Sixth Internation Symposium on High Performance Computer Architecture, 
pages 73-84, January 2000.

[48] G. F. Pfister and V. A. Norton. Hot-Spot Contention and Combining in 
Multistage Interconnection Networks. IEEE Transactions on Computers, C- 
34(10):943-948, October 1985.

[49] V. Puente, R. Beivide, J. Gregorio, J. Prellezo, J. Duato, and C. Izu. Adap
tive Bubble Router: A Design to Improve Performance in Torus Networks. In 
Proceedings of the International Conference on Parallel Processing, pages 58-67, 
1999.

[50] K.K. Ramakrishnan and R. Jain. A Binary Feedback Scheme for Congestion 
Avoidance in Computer Networks. ACM  Transactions on Computer Systems, 
8(2) :158—181, 1990.

[51] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso. Performance 
of Database Workloads on Shared Memory Systems with Out-of-Order Proces-

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sors. In Proceedings of the 8th International Conference on Architectural Support 
for Programming Languages and Operating Systems (ASPLOS), pages 307-318, 
October 1998.

[52] S. Scott and G. Sohi. The Use of Feedback in Multiprocessors and its Application 
to Tree Saturation Control. IEEE Transactions on Parallel and Distributed 
Systems, 1(4):385—398, October 1990.

[53] S. L. Scott. Synchronization and Communication in the T3E Multiprocessor. In 
Proceedings of the Seventh Internation Conference on Architectural Support for 
Programming Languages and Operating Systems, pages 26-36, October 1996.

[54] Silicon Graphics. SG I 3000 Family Reference Guide. 
http: / / www.sgi.com/orig in/3000/3000_ref.pdf.

[55] A. Singh, W. J. Dally amd B. Towles, and A. K. Gupta. Locality-preserving ran
domized oblivious routing on torus networks. In Proceedings of the 12th Annual 
ACM  Symposium on Parallel Algorithms and Architectures, August 2002.

[56] A. Smai and L. Thorelli. Global Reactive Congestion Control in Multicomputer 
Networks. In 5th International Conference on High Performance Computing, 
pages 179-186, 1998.

[57] B. J. Smith. Architecture and Applications of the HEP Multiprocessor Com
puter System. In Proceedings of SPIE, pages 241-248, 1981.

[58] D. Smitley. Design Tradeoffs for a High Speed Network Node. Technical Report 
SRC-TR-89-007, Supercomputing Research Center Institute for Defense Analy
sis, Bowie, Maryland, July 1989.

[59] C. B. Stunkel, D. G. Shea, and B. Abali et al. The SP2 High Performance 
Switch. IBM  Systems Journal, 34(2):185-204, 1995.

[60] The Superior Multiprocessor ARchiTecture (SMART) Interconnects Group, 
Electrical Engineering - Systems Department, University of Southern Califor
nia. FlexSim. h ttp://w w w .usc.edu/dept/ceng/pinkston/tools.html.

[61] M. Thottethodi, A. R. Lebeck, and S. S. Mukherjee. Self-Tuned Congestion 
Control for Multiprocessor Networks. In Proceedings of the Seventh International

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sgi.com/origin/3000/3000_ref.pdf
http://www.usc.edu/dept/ceng/pinkston/tools.html


Symposium on High Performance Computer Architecture (HPCA-7), pages 107- 
118, January 2001.

[62] B. Towles and W. J. Dally. Worst-case Traffic for Oblivious Routing Functions. 
Computer Architecture Letters, 1, February 2002.

[63] J. Upadhyay, V. Varavithya, and P. Mohapatra. A Traffic Balanced Adaptive 
wormhole routing scheme for Two-Dimensional Meshes. IEEE Transactions on 
Computers, pages 190-197, May 1997.

[64] L. G. Valiant. A scheme for fast parallel communication. SIAM  Journal on 
Computing, 11 (2):350—361, May 1982.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Biography

Mithuna Thottethodi was bom in Bangalore, India on June 13, 1974. He received his 

Bachelor of Technology (Honours) degree in June 1996 in the field of Computer Sci

ence and Engineering from the Indian Institute of Technology (IIT), Kharagpur, In

dia. He entered the graduate program at Duke University in August 1996 and received 

his Ph.D. degree in Computer Science in December, 2002. He is the primary author 

of “ Self-Tuned Congestion Control for Multiprocessor Networks” which appeared in 

the proceedings of the Seventh International Symposium on High Performance Com

puter Architecture (HPCA-7, 2001) and “Tuning Strassen’s Matrix Multiplication 

For Memory Efficiency” which appeared in the proceedings of the Supercomputing 

’98 conference. He is also a co-author of “Nonlinear Array Layouts for Hierarchical 

Memory Systems” (ICS ’99), “Recursive Array Layouts and Fast Matrix Multipli

cation” (SPAA ’99), “Annotated Memory References: A Mechanism for Informed 

Cache Management” (Europar ’99) and ” Recursive Array Layouts and Fast Matrix 

Multiplication” (IEEE Transactions on Parallel and Distributed Systems, November 

2002).

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


