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Abstract Biological systems by default involve complex
components with complex relationships. To decipher
how biological systems work, we assume that one needs
to integrate information over multiple levels of com-
plexity. The songbird vocal communication system is
ideal for such integration due to many years of etho-
logical investigation and a discreet dedicated brain net-
work. Here we announce the beginnings of a songbird
brain integrative project that involves high-throughput,

molecular, anatomical, electrophysiological and behav-
ioral levels of analysis. We first formed a rationale for
inclusion of specific biological levels of analysis, then
developed high-throughput molecular technologies on
songbird brains, developed technologies for combined
analysis of electrophysiological activity and gene regu-
lation in awake behaving animals, and developed bio-
informatic tools that predict causal interactions within
and between biological levels of organization. This in-
tegrative brain project is fitting for the interdisciplinary
approaches taken in the current songbird issue of the
Journal of Comparative Physiology A and is expected to
be conducive to deciphering how brains generate and
perceive complex behaviors.

Keywords Bayesian network Æ cDNA microarray
improvement Æ Multielectrode array Æ Neural network Æ
Zebra finch

Abbreviations area X area X of the avian striatum Æ
Av nucleus avalanche Æ CMHV caudal region of the
hyperstriatum ventrale Æ DLM medial subdivision of the
dorsal lateral nucleus of the anterior thalamus Æ DM
dorsomedial subdivision of nucleus intercollicularis
HVC high vocal center Æ lMAN lateral subdivision of the
magnocellular nucleus of the anterior neostriatum Æ
NCM caudal medial neostratum Æ NIf nucleus
interfacialis Æ RA robust nucleus of the archistriatum Æ
Uva nucleus uvaeformis (For a translation of thisold
terminology into its current form, see http://jarvis.
neuro.duke.edu/nomen/2002NomenclatureTable.html)

Introduction

This report is divided into three sections: (1) a rational and
background for the biological levels of analysis useful for
the integration of the songbird brain; (2) a description of
the technologies that we have used and developed for in-
tegration; and (3) the development of a bioinformatic
approach that we have used and developed to begin to
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bring all levels together. As such, this report is not only
results-driven, but also a conceptual framework study in
which to consider future systems approaches on inte-
grating the neurobiology of a vertebrate brain system.

Rational and background

In the late 19th and early 20th century, physicists be-
came adept at developing equations, called laws, which
described fundamental principles of nature and the ob-
servable universe. The driving force behind these dis-
coveries was to find the minimum set of features (i.e.,
particles and forces) necessary for describing nature.
This type of approach led to powerful explanations for
the workings of non-biological systems of the universe
(reviewed by Kaku 1994; Kaku and Thompson 1995).
However, when such approaches were applied to bio-
logical systems, the challenge became daunting, as bio-
logical systems appeared to have evolved rules that are
more complex. When applied to the brain, the task was
more daunting due to the high number and variability of
dendritic and axonal connections. Partly out of this ef-
fort, the fields of neural networks and artificial intelli-
gence (AI) grew (Zeidenberg 1987). However, neural
networks and AI instead had much more success at
enhancing computer technology than they did to help
understand how brains work (Minsky 1986). We believe
that part of the problem resides in having flawed bio-
logical data, insufficient biological data, and not well-
defined biological systems to model.

In recognition of such limitations we have modified
Philip Anderson’s (Anderson 1994; Jenkins 2000) pro-
posed hierarchy of complexity for biological systems
(Fig. 1) as a basis to consider biological levels of analysis
necessary for integrating a brain system. Here, science
higher in the hierarchy obeys the laws of science lower.
However, it is not the case that physiology is just applied
cell biology or molecular biology is applied particle
physics, several levels removed. Rather, as suggested by
Anderson (1994), at each level of complexity entirely
new properties appear. Hence, according to this view,
the level of complexity increases immensely in the hier-
archical structure of biological systems.

Studies on the brain have traditionally considered
levels of analysis from chemistry on up. Bringing these
levels or a subset of them together requires a well-de-
fined system. The songbird vocal communication system
provides one.

Why the songbird system

The songbird vocal communication system is ideal for
deciphering natural rules of how a subsystem of the brain
works at different biological levels of organization.
Songbird vocal learning behavior has been well charac-
terized with over 50 years of ethological research (Marler
1955; Thorpe 1961; Marler 1997). The anatomy of the

brain circuits responsible for vocal communications have
been well studied, and found to be discreetly localized
(Nottebohm et al. 1976; Brenowitz et al. 1997). The
molecular and electrophysiological workings of the
pathways, when studied from a neuroethological per-
spective, have yielded significant insight into how a brain
perceives species-specific sounds (Mello et al. 1992; Chew
et al. 1995; Ribeiro et al. 1998), generates them (Yu and
Margoliash 1996; Jarvis and Nottebohm 1997; Fee and
Leonardo 2001) and does so within different social con-
texts (Jarvis et al. 1998; Hessler and Doupe 1999b). These
levels of analysis encompass hierarchical biological
complexity from molecular to social behavior (Fig. 1), to
an extent not accomplished with any other system of
which we are aware. Moreover, songbirds have the rare
trait of vocal learning, the ability to imitate sounds that
are heard, and thus, are one of the few animal groups
with a similar behavioral substrate as that used for hu-
man language. Vocal learning systems in other avian
species, parrots and hummingbirds (Jarvis and Mello
2000; Jarvis et al. 2000), and probably in humans (Jarvis
2001), have evolved similar anatomy. Because of these
similarities, songbirds are currently the best-studied
neural model of vocal learning. Yet, songbird vocal
communication have many features in common with
other sensory and motor systems of vertebrates (Bottjer
and Johnson 1997; Jarvis et al. 1998; Perkel and Farries
2000; Jarvis 2001), making songbirds amenable to deci-
phering basic principles of brain function.

Levels of analysis for integration

To begin, we choose four levels of analysis, those that
are most salient for brain function and which have been

Fig. 1 Proposed hierarchy of complexity and organization for
biological systems, and in particular for social behavior and its
control by the brain, as modified from Anderson (1994). Some
levels of complexity are hyphenated with additional terms such as
behavior, neurophysiology and anatomy, to specifically consider
the brain. We changed Arrows have been changed to lines only to
indicate that these links are viewed as bi-directional
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best studied: molecular, anatomical, electrophysiologi-
cal, and behavioral. Within these levels, we choose the
following features: mRNA gene expression, regional
anatomical connectivity, action potentials, and vocal-
ization spectrographs. Justification and background for
these levels of analysis and features are as follows.

Anatomical

We believe anatomy to be the most critical level for
understanding basic rules of brain function, and there-
fore required for an integrative project. Whether in a
nematode, fruit fly, songbird, or human brain, neurons
consist of dendrites, cell body, and axons. They also
appear to express overlapping sets of homologous genes
(Cravchik et al. 2001). What appears to make the dif-
ference between a neural system that can automatically
move an appendage and one that can learn how to im-
itate sounds is anatomical connectivity. In support of
this conclusion, one major difference between vocal
learners and vocal non-learners is that only the former
have forebrain regions connected to brainstem vocal
regions (Striedter 1994; Durand et al. 1997; Gahr 2000;
Jarvis et al. 2000).

Although the connectivity of songbird vocal com-
munication system has been described in various re-
ports, the manner in which we view the system for our
integrative project differs as briefly described below (a
more detailed explanation will be presented elsewhere by
Jarvis). The songbird vocal communication system
consists of three basic subsystems: (1) an auditory
pathway, (2) a posterior vocal pathway, and (3) an an-
terior vocal pathway (Fig. 2). The auditory pathway
follows a design seen in all amniote vertebrates studied.
Projections traverse from ear hair cells to the cochlear
nuclei of the brainstem, to lateral lemniscal nuclei also of
the brainstem, to a midbrain nucleus, a thalamic

nucleus, onto telencephalic primary receiving neurons,
and finally to secondary and tertiary telencephalic neu-
rons (Fig. 2; blue structures). As in mammals, a de-
scending auditory system exists, which begins from the
HVC shelf onto the robust nucleus of the archistriatum
(RA) cup back to thalamic and midbrain auditory areas
(Fig. 2). The posterior and anterior vocal pathways are
unique to vocal learners (Jarvis et al. 2000). The song-
bird posterior vocal pathway forms connections from
the pallial vocal nuclei HVC to RA to midbrain and
brainstem vocal motor and respiratory neurons that
synapse onto muscles of the vocal organ, the syrinx, as
well as the larynx and expiratory chest muscles (Fig. 2,
yellow structures and black arrows). In songbirds, this

Fig. 2 Diagram of auditory and vocal pathways in the songbird
brain (rational of connectivity view to be reported in detail
separately). The cerebrum is divided into its major subdivisions
(gray lines) using names of historical nomenclature that incorrectly
over-uses the term striatum. The exact names will be changed
without changing most abbreviations, and therefore all abbrevia-
tions are not spelled out in this report. For a translation from old
to new terminology see http://jarvis.neuro.duke.edu/nomen/
2002NomenclatureTable.html. Relevant to the current discussion,
all regions above the lmd lamina are considered pallial and in
mammals gives rise to cortex, claustrum, and parts of amygdala.
All regions below are considered basal ganglia in both birds and
mammals. Color-coding: blue auditory structures; yellow vocal
structures that are part of the vocal motor pathway (or posterior
vocal pathway); red vocal structures that are part of the vocal basal
ganglia pathway (or anterior vocal pathway), lateral half. Connec-
tions within the vocal basal ganglia pathway are shown by white
lines. Connections between the two vocal pathways are shown by
dashed lines. Some connections are not shown for clarity. These
include connections from nucleus uvaeformis (Uva) to nucleus
interfacialis (NIf) and to high vocal center (HVC), and from the
dorsomedial subdivision of nucleus intercollicularis (DM) to Uva,
the medial part of the vocal basal ganglia pathway, and the medial
part of the auditory pathway that includes the caudal medial
neostratum (NCM) and the medial subdivision of the caudal region
of the hyperstriatum ventrale (CMHV)
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pathway is responsible for production of learned vo-
calizations (Nottebohm et al. 1976). The anterior vocal
pathway forms a loop characteristic of non-vocal re-
gions of the mammalian brain, a pallial (lateral subdi-
vision of the magnocellular nucleus of the anterior
neostriatum; lMAN)fibasal ganglia (area X of the avian
striatum; area X)fithalamic (medial subdivision of the
dorsal lateralnucleus of the anterior thalamus;
DLM)fipallial (lMAN) loop (Fig. 2, red structures and
white arrows). This pathway is responsible for vocal
learning (Bottjer et al. 1984; Scharff and Nottebohm
1991) and may also have a role in adult song social
context, syntax and maintenance (Jarvis et al. 1998;
Hessler and Doupe 1999b; Williams and Mehta 1999;
Brainard and Doupe 2000; Kobayashi et al. 2001). In
songbirds, input to the loop comes from HVC, whereas
output leaves from lMAN (Fig. 2; dashed arrows). A
property specific to birds is that within the loop the
pallidal component may reside as a mixed population
within the striatal component in area X, whereas in
mammals it is separate (Luo and Perkel 1999).

Other features of anatomy include connectivity
within the same brain nucleus, differential synaptic or-
ganization, and cellular localization of individual
transmitter molecules and their receptors. Although
important features, for this project we begin modeling
connectivity between vocal communication structures of
different brain regions, and reserve the inclusion of other
features for the future. Our reason is that more infor-
mation is known about general connectivity between
brain regions than within.

Molecular

After the discovery the genetic code in DNA in the
1950s (Watson and Crick 1953), it became a common
belief that everything about biological systems, in-
cluding the brain, could be understood from molecular
principles alone. We do not adhere to this belief. We
assume, however, that molecular analysis is essential
for understanding and integrating brain function. DNA
instructed molecules (RNA, proteins and their prod-
ucts) are responsible for synaptic transmission, electri-
cal impulses and construction of brain networks. The
ideal feature to model would be proteins and their
products, as these perform most of the action for bi-
ological systems. However, high-throughput molecular
technology to date is more advanced for RNA detec-
tion. Much insight into biological processes has also
been gained by examining mRNA gene expression in
songbirds.

For example, when birds hear species-specific songs,
mRNA synthesis for several activity-responsive genes
(ZENK, c-jun, c-fos and BDNF) is rapidly increased in
subsets of structures of the auditory pathway (Mello
et al. 1992; Mello and Clayton 1994; Nastiuk et al.
1994; Bolhuis et al. 2000; Li and Jarvis 2001). When
birds sing, mRNA synthesis of some of these same

genes is increased in subsets of structures of the vocal
pathway (Jarvis and Nottebohm 1997; Kimbo and
Doupe 1997; Li et al. 2000; Li and Jarvis 2001). The
first three genes are transcription factors; they regulate
expression of specific target genes (Robertson 1992;
Herdegen and Leah 1998). The latter, BDNF, is a
trophic factor and is released from cells to bind to re-
ceptors that lead to changes in cell signaling, gene ex-
pression, and cell survival (Altar et al. 1997). For the
songbird vocal communication system, the ZENK gene
has been the most studied, and has the widest distri-
bution in the auditory and vocal pathways. Study of its
mRNA regulation led to the findings that the auditory
pathway is most active when a bird listens to species-
specific sounds (Mello et al. 1992) and that this acti-
vation habituates as the birds become familiar with a
song (Mello et al. 1995). Study of its mRNA regulation
in the vocal pathway led to the findings that all te-
lencephalic vocal nuclei are active during singing in
juvenile and adult animals (Jarvis and Nottebohm
1997) when it was once assumed that only a subset were
active in adults, and that this activation is social context
dependent (Fig. 3; Jarvis et al. 1998).

The translation into and thus regulation of ZENK
protein closely matches that of its mRNA (Mello and
Ribeiro 1998). However, in one song nucleus, RA, dis-
sociation is found between the amount of mRNA and
subsequent protein synthesized, where it is faithfully
translated in juvenile zebra finch RA but not in adult
RA (Whitney et al. 2000). Thus, as in most systems,
protein synthesis does not always reflect mRNA syn-
thesis. This dissociation, however, did not prevent the
use of mRNA as a feature to describe molecular prop-
erties of brain function. Rather it demonstrates the
complexity involved in biological systems and the need
to study many features. These include protein phos-
phorylation, glycosylation, and lipid and sugar synthe-
sis. However, for this integrative project we begin with
the molecular feature that can be studied with the most
currently advanced technology and that has yielded the
most useful information, RNA.

Electrophysiological

It is clear that all brains use electrical signaling to
communicate across and between cells, perceive stimuli,
and regulate actions. Consequently, many neuroscien-
tists believed that all that was necessary to understand
brain function was electrophysiological signaling and
connectivity. We also do not adhere to this belief and
argue that electrical signaling analysis is essential for
understanding and integrating brain function but in the
context of the molecules (RNA, proteins and their
products) and behaviors involved.

The most studied and robust feature of electrical
signaling is the action potential. In songbirds, behav-
iorally relevant action potentials have been found and
studied in the auditory and vocal pathways. In the sec-
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ondary and tertiary areas of the auditory forebrain,
neurons fire action potentials at a high rate when birds
hear species-specific songs and this firing rate decreases
(habituates) to a baseline level as the birds become fa-
miliar with hearing a song (Chew et al. 1995; Stripling et
al. 1997). The rate and presence of habituation differs in
different parts of the auditory system, being low or ab-
sent in some. These differences in electrical activity
parallel that seen with ZENK mRNA synthesis; here,
both the electrophysiology and gene expression heuris-
tically reflects neuronal memory. In the vocal system,
robust action potentials occur when birds produce
learned song (Yu and Margoliash 1996; Hessler and
Doupe 1999a). The rate and pattern of action potential
firing also differs in different vocal nuclei (Yu and
Margoliash 1996), and when singing in different social
contexts (Hessler and Doupe 1999b), again parallel to
ZENK mRNA synthesis changes.

There are other features at the electrophysiological
level such as changes in pre- and post-synaptic

subthreshold potentials, which have been studied in
songbirds. Technically, however, these are most feasibly
obtained in anesthetized animals or tissue slices as they
often require isolating single cells (Spiro et al. 1999;
Mooney 2000). Although important features, we chose
to begin with multiunit action potentials (combined
measured electrical activity from a small population of
cells – two to six) as these can be easily measured in
awake behaving animals.

Behavioral

We define behavior here as perception (sensory pro-
cessing) and action (motor activity). For the songbird
vocal communication system, this involves the features
of hearing (sensory), vocalizing (motor), and sensori-
motor integration of the two. The specialized use of
these behavioral features in songbirds shares similari-
ties with the development of human speech. Song-
birds, like humans, undergo four general
developmental stages during which they learn how to
imitate sounds (Marler 1970; Doupe and Kuhl 1999).
These are called sensory acquisition (forming auditory
memories), subsong (akin to babbling), plastic song
(akin to child speech development), and crystallization
(akin to puberty) where the voice becomes adult-like
and breeding is possible. Unlike in primates, however,
there are many species of vocal learning songbirds
(over 4,000; Sibley and Ahlquist 1990) and many
variations upon this theme (Catchpole and Slater
1995). For this project, we begin with basic vocal
communication features of hearing song and vocaliz-
ing song in adults. We have not yet incorporated
learning song.

Fig. 3 ZENK gene regulation due to singing in different social
contexts. This finding links behavior, social context, brain
anatomy, and gene regulation. Top panels show parasagittal zebra
finch male brain sections stained with cresyl violet (red color) and a
35S-labeled ZENK riboprobe (white silver grains) by in-situ
hybridization detecting ZENK mRNA. The bottom panel shows
representative bird behaviors. At the bottom left, a male (orange
cheek patched, poker dot and zebra striped chest animal perched at
right) sang many times towards a female (relatively uniform animal
perched at left), called directed singing. At the bottom right, a male
(perched at left) sang many times in the presence of another male
(perched at right) but not facing him, called undirected singing. In
both cases, singing behavior drives ZENK mRNA synthesis in the
vocal motor nucleus HVC. However, only undirected singing drives
high ZENK synthesis in the lateral part of the vocal basal ganglia
pathway (lArea X and lMAN). Modified from Jarvis et al. (1998)
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Use and development of resources and technologies for
songbird brain integration

Models of how a system works are only as good as the
data used. If the data is flawed, then so is the model. In
addition, although technologies for individual levels of
biological organization are well developed, not all have
been applied to songbird brains, and many in the current
states do not lend themselves for integration. In this
section, we present criteria for accepting data for inte-
gration, and recent advances in technologies that we
have been developing for both within one level of
analysis and for integration between levels for the
songbird brain. All original results presented in this
section will be covered in more detail in separate future
reports.

Anatomical

Neural connectivity of the songbird vocal communica-
tion system (auditory and vocal), particularly of zebra
finches, has been extensively studied; multiple methods
have been used to detect this connectivity. However, not
all methods yield reliable results and not all studies are
rigorous. This is where neural network and AI studies
have their obstacles for explaining brain function. Many
have depended upon unreliable connectivity results.
Here we apply stringent criteria for inclusion of con-
nectivity data:

1. The connection must have been determined with a
tracer that does not heavily label fibers of passage.

2. The connection must have been verified in both the
anterograde (from cell bodies to terminals) and ret-
rograde (from terminals to cell bodies) directions.

3. Tracer injections must be restricted to the brain re-
gion studied, and/or connectivity determined by
subtraction of multiple injections in overlapping
brain regions.

Examples of the need for criterion 1 arise when using
the tracer DiI, where axons passing through a brain
region, but not connected with it, take-up the dye and
transport it (Hofmann and Bleckmann 1999), yielding a
false-positive result. A number of tracers (biocytin and
dextran amines, for example) have minimal axonal up-
take (Molecular Probes). However, it is not possible to
entirely prevent axonal uptake. Thus, anterograde and
retrograde verification (criterion 2) is a second means to
prevent false-positives. With such stringent criteria, it is
hoped that our network models will have a high level of
accuracy. Most connections shown in the diagrams of
Fig. 2 pass these criteria, and will be the starting point
for the basis of our modeling. As a great amount of
information has been published on connectivity (from
the laboratories of Nottebohm, Bottjer, Ball, Wild, and
Perkel, for example), there is no immediate need for
additional experiments. However, some connections, for

example HVC to nucleus avalanche (Av), need verifi-
cation, and others, such as the songbird HVo-like nu-
cleus, need to be entirely determined.

Molecular

Molecular characterization of the songbird vocal com-
munication system requires a great amount of additional
work. Technologies exist to concurrently assay mRNA
expression from thousands, if not from all genes, present
in an organism. The most economical and feasible ap-
proach is the high-throughput method called cDNA
microarrays, or gene chips. Here, thousands of cloned
cDNAs, generated by reverse transcription from the
mRNAs, are spotted onto replicate glass slides or other
substrates. These slides are then hybridized with labeled
control and experimental cDNA probes from tissues of
interests. A scanner linked to a computer is used to de-
tect differential binding of the probes to the compli-
mentary strands of the arrayed cDNAs (Brown and
Botstein 1999).

This approach has not yet been applied to songbirds,
resulting in a gap between songbird and mammalian,
fish, and insect molecular research (Soares 1997; Chur-
chill and Oliver 2001; Clark et al. 2001; Miki et al. 2001).
To narrow this molecular gap, we have formed a con-
sortium of investigators from Duke University in the
USA and RIKEN Institute in Japan, that has the fol-
lowing aims: (1) clone full-length cDNAs from normal-
ized zebra finch brain libraries that represent mRNAs
expressed during commonly studied vocal communica-
tion states, (2) characterize these cDNAs by sequencing,
and (3) use them to generate non-redundant cDNA
microarrays for asking biological questions. We report
here the initial results of these aims.

A normalized cDNA library is preferred as it con-
tains more equal representation of genes, whether orig-
inally low, medium, or high abundance (Bonaldo et al.
1996; Soares and de Fatima Bonaldo 1998). This reduces
labor and cost needed to obtain many unique cDNAs.
Full-length cDNAs are needed, not for the cDNA mi-
croarrays, but for translating them into proteins in ex-
periments designed to determine gene function.
However, the generation of normalized and full-length
cDNA libraries of any species has been limited by
technology. Dr. Carninci and colleagues within Dr.
Hayashizaki’s genomics group of RIKEN spent the past
7 years perfecting the generation of normalized and full-
length cDNA libraries with mouse tissue (Carninci et al.
1996, 2001; Carninci and Hayashizaki 1999). The li-
braries and clones they have obtained are the most non-
redundant and full-length to date (Kawai et al. 2001;
Sugahara et al. 2001).

At RIKEN, Dr. Wada and Dr. Rivas of our group
applied RIKEN’s most recent technology (Carninci et
al. 2001) to generate three normalized full-length cDNA
libraries from total brains (cerebrum, cerebellum, thal-
amus, midbrain, and brainstem) of five male zebra
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finches: killed after singing over 30 min of undirected
song in a cage alone in an aviary (n=3 pooled; Duke
University–Jarvis aviary); after 10 h overnight of sleep-
ing in a sound box followed by 20 min of silence with
lights on, then singing 40 min of 130 bouts of directed
song to an introduced female (n=1; Japan – Hiro-
nobuchi Sakaguchi aviary); and after the same overnight
condition followed by 1 h of silence with the lights on
(n=1; Sakaguchi aviary). The behavioral protocols for
singing were as described previously (Jarvis et al. 1998).
Our purpose was to maximize the differences between
the bird’s behaviors such that differentially expressed
genes would be present in the different cDNA libraries.
The bird brain mRNA was isolated, converted to
cDNAs, and the cDNAs then cloned into a multifunc-
tional bacterial vector pFLC-I (Fig. 4). This cloning
vector allows directional insertion of cDNAs, prevention
of chimeras (i.e. two or more cDNAs end-to-end),
cloning capacity from 0.2–15.4 Kb (well beyond the size
range of the average eukaryotic cDNA molecule,
1–3 Kb), and synthesis of RNA transcripts for expres-
sion analysis (Carninci et al. 2001). Our libraries had
titers of the order of 105 bacterial transformants, i.e.,
individually cloned cDNAs.

For initial clone characterizations, we randomly
picked 384 bacterial colonies, i.e., cDNA clones, from
the various libraries and isolated their plasmid DNAs. A
subset (36) was subjected to PvuII restriction digest to
release the inserts and checked on an agarose gel. Insert
sizes ranged from 1.4–8.0 Kb (�3.0 Kb average), which
is much larger than the usual �1.2 Kb average from
standard non full-length cDNA libraries. Sequencing of
�600 bp from both directions (5¢- and 3¢-ends) of the
clones was then performed at the Duke Center for
Genome Technology by Dr. Dietrich’s group. The
sequences were run through a processing and organizing
software called DNAprocess written in Perl by Lin and
McConnell, that (1) performs base calls for the sequence
and checks for sequence quality using phred (Ewing and
Green 1998; Ewing et al. 1998) obtained at http://
www.phrap.org; (2) if good quality, finds and clips off
vector and primer sequences using cross-match (also
obtained at http://www.phrap.org); (3) takes the re-
maining cDNA sequence and performs a Genbank blast
search to find identities; (4) a Gene Ontology (GO)
database search to infer gene function (Ashburner et al.
2000) (http://www.geneontology.org/); (5) a UniGene
database search to infer other information (http://
www.ncbi.nlm.nih.gov/UniGene/); and (6) deposits the
annotated songbird sequence into our songbird cDNA
database (http://www.dbsr.duke.edu/songbird). Steps 3–
5 are done by a sub-routine called UgoBLAST (S. Lin
and P. McConnel, unpublished).

Of the 384 clones, 296 (77%) had reasonable se-
quence quality with at least a good read in one direction.
Those that did not were hampered due very high GC
content in their 5’ ends, a typical feature also found in
mammalian genes, or at AT rich 3¢ ends. Matching the
296 clones to each other (>95% with over 150 bp or

more of DNA sequence), it was found that they formed
277 cDNA clusters, which presumably represent 277
transcriptional units, or genes. The clones were subclu-
stered based upon nearly exact matches (99% over the
entire sequence except overhangs), and we found that
nearly all (294) were unique. That is, of the 296 clones,
17 ([296–277])1) appear to be alternatively spliced or
modified. Therefore, our songbird cDNA libraries are

Fig. 4A–C Construction of full-length and normalized songbird
brain cDNA libraries. Over 20 major steps are necessary (Carninci
et al. 2001). Only key subsets are shown here. A We first isolated
intact single stranded mRNA from zebra finch brains (green).
PolyT-BamHI primer was used to synthesize first strand cDNA
(orange) from the 3¢-end. The mRNA:cDNA hybrid was captured
(with an anchor) by its 5¢-cap structure. After capture, the mRNA
strand was removed and a XhoI primer-adaptor ligated to the
5¢-end of the cDNA. The first strand cDNA was normalized by
subtractive hybridization against the original mRNA population.
The second strand cDNA was then synthesized, using a 5¢-primer-
adaptor. B In the second phase, the double stranded cDNA was
restricted with XhoI and BamHI, size selected and ligated into the
k-Full-Length Cloning vector I-E (k-FLC-I-E), which accepts 0.2–
15.4 Kb size cDNAs. Internal sites were protected by methylation.
C In the third phase, the Cre recombinase enzyme was used for in
vitro excision (at the loxP sites) of the plasmids containing songbird
cDNAs [plasmid is derived from pBluescript KS (+); Stratagene].
Songbird cDNA-plasmid bacterial transformants were selected by
the plasmid’s ampicillin resistance gene (Ampr). The arrows under
the cDNA in B and C show orientation of the songbird clones,
from 5’ to 3’. L and R, left and right; ori, origin of replication for
E. coli. Modified from Carninci et al. (2001)
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well normalized, with an absolute redundancy of 2 out
of 296 initial randomly picked clones.

UgoBLAST found that 70% (207 of the 296 clones;
or 193 of the 277 clusters) had significant homology to
mammalian sequences, with percent identity ranging
from 70% to 100% (<10–4 probability; search per-
formed January 2002). Most matches were to human
and rodent genes, as these are the most common mam-
malian sequences in Genbank. Thus, the large majority
of genes present and expressed in the songbird brain are
also present in mammals, and the molecular level anal-
ysis for our songbird integrative project will be partly
applicable to mammals. Of the 277 clusters, only 18%
matched already cloned avian cDNAs sequences in
Genbank. This shows that a great deal of new avian gene
discovery is being made with this project.

Of all the 207 Genbank matched clones, 76 (37%)
were found in the GO database, which we annotated
with GO terms. A list of the most frequent annotated
terms is in Table 1. Most represent nucleus, cell mem-
brane, and signal transduction proteins. The remaining
songbird brain cDNAs, whether homologous to another
species or not, are of unknown function, as in humans
and fruit flies (Venter et al. 2001). Thus, for our inte-
grative project, at least a subset of the clones will have
inferred function.

Of the clones for which we had size information (36
PvuII restricted ones) and that matched Genbank se-
quences (23 of the 36), the songbird clones were on av-
erage �1.25 Kb longer than their largest non-RIKEN
Genbank database homologs; only two songbird clones
were smaller. This demonstrates that as with the RIKEN
mouse clones (Sugahara et al. 2001), these songbird
clones are much more full-length than usual. This
method for isolating non-redundant clones is essential to
be able to quickly move onto generating non-redundant
cDNA microarrays.

One disadvantage of microarrays, however, is that
because signal detection is low, they often require con-
siderable amounts of tissue from which to make hy-
bridization probes (Bowtell 1999). Songbird brains are
relatively small (about the same size as mice) and the
vocal nuclei even smaller; thus, it is necessary to improve
detection. To attempt to do so, we generated songbird
cDNA microarrays with double stranded cDNAs and
single stranded antisense cRNAs from a test set of genes,
22 songbird glutamate receptors and activity dependent
genes. The cloning of these zebra finch cDNAs will be
reported separately (K. Wada et al., unpublished ob-
servations). The double-stranded cDNAs and single-
stranded cRNAs were then printed at high density on
glass slides with a GeneMachine’s microarrayer at the
Duke Center for Genome Technology. We then dis-
sected pallium (cortical-claustrum mammalian homo-
log) from subpallium (basal ganglia homolog; above and
below lmd shown in Fig. 2) of a single female zebra finch
brain hemisphere. RNA was isolated and sense strand
cDNA probes were labeled with Cy3 (pallium-red) and
Cy5 (subpallium-green), and hybridized to the cDNA
microarrays at different temperature stringencies. At a
standard stringency for microarrays (55�C), both the
double-stranded cDNA and single-stranded cRNA hy-
bridized (Fig. 5A). At high stringency (65�C), only the
cRNA spots hybridized and revealed better contrast in
known differences between pallial and subpallial gene
expression (Fig. 5B; exclusive BDNF mRNA expression
in the pallium, for example). The reason for the in-
creased signal detection is that when using double
stranded cDNA, the complementary strand competes
for hybridization to the probe. When using single
stranded cRNA, this does not occur. In addition,
DNA:RNA hybrids are also stronger than DNA:DNA
hybrids. Our improvement demonstrates that use of
single strand cRNAs on the microarrays slides will
benefit detection of gene expression from small amounts
of tissue. The full report of our libraries and improve-
ments is currently being prepared (K. Wada et al.).

Other means of detecting mRNA expression will also
be used in our integrative project. This includes in situ
hybridizations, which allow mRNA detection in a more
anatomically defined manner (Fig. 3) and in single cells.
However, it is not yet possible to perform and analyze
complex in-situ anatomical expression patterns of
thousands of genes in the songbird or many other brains
by high-throughput methods. Instead, we use in-situ

Table 1 Gene ontology (GO) terms applied to 76 songbird
cDNAs. GO terms form three large categories: molecular function,
biological process, and cellular component. Individual cDNA
products can have multiple functions and at least one cellular lo-
cation, and thus, each cDNA is often assigned more than one term.
For example, the 7 DNA binding proteins are a subset of the 16
songbird clones with presumed locations in the nucleus

Gene ontology term No. of clones

Nucleus 16
Membrane fraction 15
Cytoplasm 12
Signal transduction 11
Protein binding 10
ATP binding 9
DNA binding 7
Integral plasma membrane
protein

7

Calcium binding 7
RNA binding 6
Plasma membrane 6
Intracellular protein traffic 5
Endoplasmic reticulum 5
GTP binding 5
Cell cycle control 5
G-protein coupled receptor
protein signaling pathway

4

Golgi apparatus 4
Small molecule transport 4
Chaperone 4
Exocytosis 3
Mitochondrion 3
GTPase 3
Structural protein 3
Soluble fraction 3
Synaptic transmission 3
Cell cycle regulator 3
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hybridizations as a means of verifying differential regu-
lation of a subset of genes assayed in the cDNA mi-
croarrays, and for further definition of their anatomical
expression.

Electrophysiological

To integrate electrophysiology with gene expression,
anatomy, and behavior, it is important to record elec-
trophysiological activity in awake birds that are behav-
ing: under the same conditions in which behaviorally
driven gene regulation has been best characterized
(Mello et al. 1992; Jarvis and Nottebohm 1997; Jarvis et
al. 1998). Multi-unit, and to a lesser degree single-unit,
recordings have been accomplished in the auditory and
vocal pathways of awake songbirds since the 1980s
(McCasland and Konishi 1981; McCasland 1987; Chew
et al. 1995; Yu and Margoliash 1996; Fee and Leonardo
2001). However, to integrate a brain system, it is best to
study the features of different levels of analysis, includ-
ing electrophysiology, within the same animal, during
and after it has performed its natural behaviors. This has

not yet been done. In addition, to integrate gene ex-
pression and anatomy with electrophysiology, it would
be necessary to record from multiple regions within the
vocal communication system of the same animal.

Towards this aim, Dr. Smulders of our group de-
signed and built a multi-electrode array recording set up
for awake behaving songbirds, following prototypes
used by Dr. Miguel Nicolelis at Duke (Nicolelis et al.
1999) and Robert Hampson at Wake Forest (Hampson
et al. 2001) on rats and primates. The set up consists of
16 electrodes, giving us the ability to record in 16 dif-
ferent brain sites. As there are 7 known cerebral vocal
nuclei and a comparable number of cerebral auditory
regions (Jarvis et al. 2000), 16 electrodes is sufficient to
record from multiple vocal and/or auditory nuclei at the
same time, or multiple sites within one structure.

Before surgery, the electrodes are attached to a
lightweight surface mount nano-connector (Omnetics,
Minneapolis, Minn., USA) in the appropriate configu-
ration for the brain areas to be recorded. The tips of the
electrodes are then stained with fluorescent dyes (diI and
diO) to identify electrode location after the birds are
killed. The dyes did not interfere with electrophysio-
logical recordings when compared to non-dyed electrode
tips. During surgery, the electrodes with the connector

Fig. 5A,B Microarrays of double-stranded and single-stranded
targets on glass slides. Small test arrays were created with double-
stranded cDNA and single-stranded antisense cRNA of zebra finch
genes representing individual glutamate receptor subunits (Wada
et al. 2001) and two immediate early genes (ZENK and BDNF).
The gene fragments (0.5–2 Kb) were cloned by using degenerate
PCR primers and a PCR vector that contains SP6 and T3 RNA
polymerase sites used to synthesize the antisense cRNAs. The
cDNA targets were made by standard PCR reactions using SP6
and T7 primers complementary to vector sequences that flank the
cloned inserts. The cRNAs antisense targets were made using either
SP6 and T7 RNA polymerase, depending on clone orientation,
following a described procedure (Mello et al. 1997). All proteins in
the reactions were degraded with 1 ll of proteinase K (Qiagen,
20 mg ml–1 stock) for 10 min at 37�C, and the samples heated to
65�C to inactivate the proteinase. The targets were electrophoresed
on agarose gels to check for their presence and concentration and
adjusted to �500 ng ll–1. The targets were then spotted onto
polysine coated slides (slide made by Dr. DeRisy protocol,
www.microarrays.org), using a GeneMachine’s Microarrayer, and
the slide air dried. To generate hybridization probes, a female zebra
finch brain was dissected and the subpallium separated from the
pallium near the lmd border (Fig. 2; thick gray line). mRNA was
extracted, converted to single strand sense cDNA and then labeled
with fluorescent Cy dyes: Cy3 (green) for the subpallium and Cy5
(red) for the pallium using the Clontech labeling kit. The labeled
cDNAs were then hybridized to the microarrays using the Clontech
microarray hybridization kit, cover slipped in individual hybrid-
ization chambers, and incubated overnight (12–16 h), under two
different conditions: A at 55�C and B at 65�C. The slides were then
rinsed briefly in water, air blown dry, and scanned into an Axon’s
Instrument scanner within 10 min of drying. Blue boxed areas:
same target genes under different conditions. Similar to in-situ
hybridizations at 65�C, BDNF was exclusively expressed in the
pallium (all red; Li and Jarvis 2001), ZENK was expressed in both
pallial and subpallial regions, but higher in the pallium (red-yellow;
Mello and Clayton 1994), mGluR4 was expressed higher in the
subpallium (green – yellow; Wada et al. 2001), mGluR3 was low in
both (Wada et al. 2001)

b
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are lowered into the brain, and permanently fixed with
dental cement to the bird’s head. Before an experiment,
the surface mount nano-connector is connected to a light
head stage (Plexon, Dallas, Tex., USA) containing
miniature op amps for amplifying the electrophysiolog-
ical activity. The op amps are connected by light, thin
wires to a motorized 36-channel commutator (Dragon-
fly, Ridgeley, W.Va., USA). The motorization senses the
bird’s movements and moves the commutator accord-
ingly, thus allowing the bird to move freely in its
17‘‘·24’’ cage, the largest used for songbirds in an awake
set up. Further amplification and primary filtering is
obtained with a 16-channel amplifying board (Plexon)
from which signals are fed into an A-D converter board
(National Instruments, Austin, Tex., USA), together
with signals from a microphone recording the bird’s
vocalizations or sound playbacks. A digital video cam-
era is also linked with the set up to record behavior. The
acquisition, monitoring, regulating, and analysis soft-
ware were all custom written in LabView (National In-
struments) starting from templates designed in Dr.
Mooney’s laboratory at Duke (Mooney 2000).

Using eight electrodes, we have performed experi-
ments with a male bird implanted in multiple sites within
one vocal structure, HVC, and in female birds within
different telencephalic auditory structures. After several
days with the nano-connector, without attachment to
the commutator, the male bird began to sing. After at-
tachment to the commutator for several hours the bird
would sing directed song to females. After 24 h, he also
began to sing undirected song. Robust premotor vocal
activity was found on 5 (1, 2, 3, 5, 6) of the 8 channels
and weak activity on two others (7, 8; Fig. 6A); activity
was similar for directed and undirected singing (not
shown), consistent with ZENK gene expression in HVC
(Jarvis et al. 1998). Activity in the two weak channels,
appeared to peak after the onset of song, and these
electrodes were located at the boundary of HVC-HVC
shelf. It appears that these could be auditory responses
coming from the HVC shelf. The premotor multiunit
activity in HVC is thought to mainly reflect interneuron
activity (Fee and Leonardo 2001).

In the females, auditory responses often occurred on
eight of eight channels, located in different parts of the
auditory pathway, in response to hearing playbacks of
species-specific songs (Fig. 6B). Many of these responses
habituated with familiarity to the song (Fig. 6C),
showing that habituation can also occur when the bird is
not restrained (Chew et al. 1995; Stripling et al. 1997).
No habituation was found in L2 as previously found in
restrained birds (Chew et al. 1995). In addition, we
found that certain areas not previously recorded from
also have auditory electrophysiological responses and
habituation, in PC for example (Fig. 6D).

After singing or playing song for a 30-min session,
the birds were killed, their brains sectioned and location
of electrode sites confirmed and determined by examin-
ing dye tracer and electrode tracks. The brains were also
processed for in-situ hybridization of ZENK gene ex-

pression. The dyes and long-term presence of electrodes
did not interfere with ZENK mRNA expression when
compared with the unimplanted side of the brain. As
shown in Fig. 6E, it was possible to measure ZENK
expression directly in cells from serially processed sec-
tions at the electrode tips. Because multi-unit recordings
sum activity from �70 lm around the electrode tips, it is
not possible to determine which cells were recorded.

This represents the first set up that will allow us to
integrate electrophysiological activity, behavior, and
gene regulation within the same animal. One limitation
is that our recordings are multi-unit. Single-units often
reveal specific information not seen at the population
level. Moreover, behaviorally regulated gene regulation
can be studied at the single cell level (Jarvis et al. 1998).
Future work will focus on developing the technology to
record from single units at multiple locations in song-
birds as has been accomplished with microdrivable
electrodes in three sites within RA of the same bird (Fee

Fig. 6A–E Electrophysiological recordings at multiple synaptically
connected sites within the songbird vocal communication system. A
Eight electrodes organized in an evenly spaced square array bundle
(200 lm inter-electrode distances) implanted within the vocal
nucleus HVC of a male zebra finch. Left panel: raw voltage traces
of multi-unit activity. Right panel: root mean square (RMS) traces
for the different electrodes, shown in various scales to accommo-
date visualization of the different magnitude responses. Vocaliza-
tions are shown at the bottom left as a power spectrum and bottom
right as a sonogram (generated with Sound Analysis). In the
sonogram, red indicates the sound frequencies with highest
volumes. There was pre-motor multi-unit activity (before the red
line) at all electrodes except 4, 7 and 8, and for all vocalizations
produced (calls, introductory notes and song). The activity at 7 and
8 were best revealed by RMS histograms (50 ms bin size; right
panel), and appeared to be post singing, i.e., auditory, and these
were located in the HVC shelf. The multi-unit pattern of activity at
multiple sites in HVC (1 2, 3, 5, and 6) were very similar, consistent
with independent findings from pairs of electrodes in HVC (M.F.
Schmidt, personal communication). B Eight electrodes implanted
within the auditory forebrain of a female zebra finch that spanned a
rostrocaudal plane from PC, CMHV, L1, L2, L3 to NCM at sites
medial to the level shown in D. A playback of conspecific male song
consisting of introductory notes and two repeated song motifs was
presented (power spectrum and sonogram shown at the bottom).
Increased robust activity was seen at electrodes 2–5 (CMHV to
rostral NCM). RMS histograms of the same playback session show
that these and all other electrode sites (except 8, which was located
at the ventricle surface) had increased activity as a result of hearing
the song. In all cases, the increased activity occurred after onset of
the playback (after the red line). C Auditory evoked activity (RMS
of voltages during song playback) at electrode 6 (caudal NCM), in
response to multiple-consecutive playbacks of the same songs (50
playbacks each with a 10-s inter-stimulus interval). As shown
previously in restrained animals (Chew et al. 1995; Stripling et al.
1997), in this freely moving animal, repeated presentation of novel
songs led to habituation of the multiunit responses. All activity is
normalized against the first response to song A (set at 100%).
Arrows show start of each novel song playback session. D Camera
lucida drawing showing electrode locations of the bird in B,
determined after the bird was killed, by presence of fluorescent dye
label in the brain left from stained electrode tips. E ZENK gene
expression (black silver grains pointed to by arrows) in cells (Nissl
stain) at and around the tip of an electrode. In some birds,
electrode tracks with glial cells were present (dashed lined region)
allowing further identification of electrode site

c
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and Leonardo 2001), in conjunction with assaying gene
regulation. However, multi-unit activity in freely moving
songbirds has been useful for generating significant in-
sight into how the songbird vocal communication sys-
tem works (Dave et al. 1998; Hessler and Doupe 1999b).
A full report of our combined electrode array and gene
expression approach, and the biological findings will be
published by T.V. Smulders.

Behavioral

Vocal communication behavior, hearing and vocalizing
can be measured graphically, called sonographs, a
measurement of frequency (vertical, y-axis) against time
(horizontal, x-axis) with darkness or coloration of the
images representing amplitude (loudness) in a third di-
mension (Fig. 6A, B). Other measurements have also
been invented and most recently made accessible to the
songbird community through a program called Sound
Analysis by Tchernichovski and Mitra (http://
www.talkbank.org/animal/sa.html).

For this integrative project, we will use Sound
Analysis, and in particular, five behavioral features that
have proven useful for measuring zebra finch vocal be-
havior (Tchernichovski et al. 2000). These are: (1) du-
ration, the time it takes to produce a particular
vocalization; (2) pitch, the measure of the fundamental
frequency or the lowest frequency that has the most
energy in a sound; (3) entropy, a measure of the amount
of order in a sound; a pure tone has high order and thus
low entropy; noise with many frequencies has low order
and thus high entropy; (4) frequency modulation, the
amount that a sound’s frequency changes in time (up
sweeps, down sweeps, u-shapes, etc.); and (5) continuity,
the measure of how linearly connected frequencies in a
sound occur with each other in time; abrupt transitions
in a sound’s frequencies are less continuous than gradual
transitions. These behavioral features are described in
more detail by Tchernichovski and Mitra (2002). We
add a sixth feature, the bird’s body movements per-
formed during vocalizing and listening, that will be re-
corded by digital video. Such movements include beak
wipes, side-to-side hopping, and feather fluffing. Some of
these movements, called a dance when produced during
singing, have been shown to be learned along with song
imitation (Williams 2001). As this technology has been
well developed, we add no additional features here.

Bringing levels together: inference bioinformatics

The most challenging aspect of our project is bringing
together these different levels of analysis particularly
when the amount of data obtained even at one level can
be overwhelming. High-throughput molecular biology
has led to the field of molecular bioinformatics. When
applied to analyzing microarray gene expression pro-
files, most investigators have concentrated on clustering

methods to draw out groups of genes which are co-
regulated, or which define certain biological or disease
states. These methods, however, are limited in their
ability to draw out new knowledge about genes, such as
causal interactions and to handle interactions between
levels of analysis.

When statisticians and computer scientists became
aware of the large amount of data obtained from gene
microarrays, they realized the potential power of com-
mon inference algorithms, used in other fields such as
engineering, for statistically predicting causal molecular
pathways from this correlational data. The experimental
data is not functional, but the statistically predicted
networks are. Some inference algorithms can also handle
multiple scales and units, i.e., data from multiple levels
of analysis. When developed and applied to such bio-
logical data, we name this approach here as inference
bioinformatics.

Four general types of inference algorithms have been
applied to gene expression microarray or similar type of
data: linear (D’haeseleer et al. 1999), non-linear (Weaver
et al. 1999), target regulator pair (Arkin et al. 1997),
Boolean (Liang et al. 1998; Akutsu et al. 2000), and
Bayesian (Friedman et al. 2000; Hartemink et al. 2001;
Yoo et al. 2002). The improbability that genes and other
biological processes are all linear makes those algo-
rithms subject to error, and this has been a criticism.
Nonlinear algorithms are more realistic. A target-regu-
lator pair algorithm has been successful in reconstruct-
ing many interactions in the glycolysis pathway from
time series concentration measurement of metabolic re-
actions (Arkin et al. 1997). However, this method is
constrained to interactions that involve one or two other
elements, making it difficult to elucidate relationships
that are more complex, such as one gene regulated by
five others. Boolean networks assume that a gene is ei-
ther on or off, and the entire network transitions be-
tween these states. Because gene expression and other
features have continuous values and are not simply a 1,0
type, this has been a criticism of Boolean algorithms.
Bayesian algorithms generate graphical networks of
probability connections, and have been applied to gene
expression (Friedman et al. 2000; Yoo et al. 2002), and
gene expression combined with genomic data (Hartem-
ink et al. 2002).

The major limitation that all inference bioinformatic
algorithm approaches have is that, except in yeast
(Giaever et al. 2002), there are no high-throughput in-
tervention methods (such as gene blocking) for complex
organisms to test accuracy of the generated networks.
The networks often predict hundreds if not thousands
of gene interactions; these can take several lifetimes
to verify. Moreover, even with potential future
high-throughput intervention methods, the predicted
networks serve as a useful guide for intervention
experiments. To circumvent this limitation, Dr. V.A.
Smith of our group developed a novel approach where
instead of using a real system at first, we created an
artificial brain simulation on a computer where we make
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and know all the rules. We then sample data from this
simulated system as one would sample data from a real
biological system, plug the sampled data into inference
bioinformatic algorithms and test their ability to recover
our simulated system (Table 2). This approach has re-
ciprocal insight on how to design inference bioinfor-
matic algorithms and biological experiments for them.

Generation of simulated artificial systems

We created a simulation based upon known features of
the songbird brain, that we called BrainSim. We at-
tempted to keep the simulation relatively simple, as we
first wanted to test whether an inference bioinformatic
algorithm can find pre-specified simple simulated rela-
tionships. We simulated two behaviors that can be ar-
bitrary but for the sake of clarity we call behavior 1
(singing) and behavior 0 (silence). Electrophysiological
activity was simulated in rates of multi-unit action po-
tentials from 0 to 400 Hz, which is within the observed
range in songbirds (Chew et al. 1995; Hessler and Doupe
1999b; and this study). For anatomy, five brain regions
were included named 1–5, which is within the range of
the number of vocal nuclei present in the songbird brain
(Fig. 2). In four of the five brain regions, hereafter called
regulated brain regions, activity was correlated with
behavior with either behavior 1 or 0 for high activity
(300–400 Hz) and vice versa for low activity (0–100 Hz).
Activity in the fifth region was chosen randomly. Gene
mRNA expression levels were simulated as values of 0–
50, which is within the range of fold changes seen for
expression per cell (Jarvis and Nottebohm 1997). In-
cluded were 100 genes, named 1–100; gene names were
arbitrary, as our first simulation does not take into ac-
count gene function. Two (1 and 4) of the 100 genes were
specified to be dependent upon activity and 8 others (2, 3
and 5–10) were specified to be dependent upon these two
and/or each other (Fig. 7); both activating and sup-
pressing interactions were included. Expression levels of
the remaining 90 genes were chosen randomly.

We wrote BrainSim in C++ using the development
environment CodeWarrior Pro 3 (code available upon
request). The program generates a series of discrete time
points that are modeled to be 1 min apart. Initial values

for all features are seeded. Behavior begins with 0 (si-
lence); activity in regulated regions begins as either high
(random number between 300 and 400 Hz) or low (0–
100 Hz) to correlate with behavior 0; activity in unreg-
ulated regions begins as a random value between 0 and
400 Hz; expression of regulated genes begins with prior
randomly assigned values between 40 and 50 (for down-
regulated genes) or 0–10 (for up-regulated genes);
expression of all other genes begins with randomly
assigned values between 0 and 50. BrainSim reads these
beginning gene expression levels from a Microsoft Excel
file, generated by Excel’s RAND function; for this
report, we have not changed these seeded values from
run to run.

BrainSim then generates its own values at all subse-
quent time steps, with the rule that these values are de-
pendent on their previous value and any regulatory
influence. At these subsequent time steps, behavior was
dependent upon activity in regulated brain regions.
Activity was chosen to be a random value within the
high or low range for a pre-specified number of time
steps, until switching to the other range to change be-
havior. Activity in the unregulated region was equal to
its previous value plus or minus a random change. Ex-
pression levels of the 10 regulated genes were adjusted
according to their regulator’s value in the previous time
step (activity for genes 1 and 4, and other genes for genes
2–3 and 5–10; Fig. 7). For up-regulation (+), the more a
regulator increased, the more its target increased; for
down-regulation (–), the opposite relationship occurred.
This was achieved by adding (for up-regulation) or
subtracting (for down-regulation) a proportion (chosen
to be 0.2) of the regulator’s level to that of the target.
Those genes regulated by activity were multiplied by
firing frequency so that 400 Hz, the maximum activity,
was equivalent to 50, the maximum expression level. A
returning function was placed on each gene such that
once a regulator’s presence was gone, the expression
values would return over time to their stable pre-regu-
lated levels. Finally, at each time point, BrainSim added
or subtracted a random amount to the expression of all
genes to simulate stochasticity in gene expression and
measurement error.

To test BrainSim, we ran it for 320 time points, six
times to simulate n=6 animals, and switched behaviors

Table 2 Explanation of approach used to test accuracy of inference algorithm. Number 4 is the same in both the Real World and in
BrainSim. However, number 5 allows us to develop useful inference bioinformatic algorithms at a much faster rate with BrainSim than
with the Real World

Real World BrainSim

(1) Nature’s view (the way things really work). (1) Graph created with dependencies (the way BrainSim works).
(2) A bird behaving (continuous changes in

electrical activity, gene expression, etc.).
(2) BrainSim running (uses computer to generate simulated

activity and gene expression values every time step).
(3) Data collected in a biological experiment

(time points in a series).
(3) Data collected from BrainSim (time points in a series).

(4) Analysis of number 3 using inference algorithms
(output graph created to infer mechanisms).

(4) Analysis of number 3 using inference algorithms
(output graph created to infer mechanisms).

(5) Check accuracy of analysis by performing many
biological experiments, but never have access to number 1.

(5) Check accuracy of analysis by comparing graph
created in number 4 with known truth graph in number 1.
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every 80 time points. We then averaged and graphed the
output of the six runs for behavior, activity, the 10
regulated genes, and 2 non-regulated genes (Fig. 8). The
output shows that the values change consistent with the
structure of the simulation (Fig. 7). After the first
change in activity and behavior to 1 (singing at time
point 80), there was a slow rise in expression of gene 1
and a decrease in gene 4 (first vertical line in Fig. 8),
followed by increases and decreases of the other regu-
lated genes (highlighted by next four vertical lines in
Fig. 8). It takes approximately 5 min (five time points)
before an effect of gene regulation can be seen as a result
of activity (Fig. 8). After behavior 1 stops (time point
160), the genes return back to their original levels, but
with a longer time-lag. The two non-regulated gene ex-
amples (62 and 84) show stochasticity but do not cor-
relate with changes in the other features.

We also created another simulator, called GeneSi-
mulator that models current knowledge of genetic
pathways only. The details of this simulator will be re-
portedly separately (J. Yu et al., unpublished observa-
tions), but the use of its data is included here.

Recovery of simulated systems

We decided to test Bayesian network (BN) inference
algorithms for their ability to recover the underlying
structures of BrainSim and generated from GeneSimu-
lator using sampled data from each. We chose BN, be-
cause, compared to the other algorithms (D’haeseleer et
al. 1999; Weaver et al. 1999), BN can model non-linear
combinatorial relationships, robustly handle noisy data
sets, and handle stochastic processes as is known for
gene expression (McAdams and Arkin 1997; D’haeseleer
et al. 1999). However, BN cannot handle networks with
cyclic structures, such as regulatory feedback loops, and
time series data. Dynamic Bayesian networks (DBN)

can handle cyclic structures and time. DBN are also
capable of coping with hidden variables that are not
observed in the data, such as protein levels or protein
interactions that affect the measured gene expression, or
genes not present on a microarray chip.

BN or DBN cannot handle continuous data compu-
tationally. That is, the calculations can take forever to
complete, a problem in computer technology called non-
polynomial-complete (NP-complete). As such, before
passing the data to the BN or DBN algorithms, it needs
to be discretized, divided into bins, which dramatically
decreases computational time. BN and DBN programs
are also iterative and thus can be run indefinitely and
stopped at any time; the longer the run, the more ac-
curate the network generated. A threshold is found
empirically, where longer running does not reveal sig-
nificant changes in the network. The data can be run
through the software multiple times to generate multiple
networks, and the most common connections and fea-
tures used to find the most plausible network.

To have a BN algorithm that can handle our sampled
time series data, Dr. A.J. Hartemink of our group de-

Fig. 7 Simulation framework
of BrainSim graphically shown.
A bird generates behavior (left).
It does so from the concurrent
activity of four (1–4) of five
brain regions (middle). The fifth
brain region has activity, but its
activity is not linked to behav-
ior. Activity in all five regions
concurrently initiates a similar
genetic regulatory pathway in
each region with positive (+)
and negative (–) interactions for
10 genes (right). Genes 11 to
100 are not regulated by activity
or other simulated genes. Be-
havior is modeled to occur
immediately after activity,
whereas gene synthesis is mod-
eled to occur on the order of
minutes

Fig. 8 BrainSim output. The average values for n=6 runs of
BrainSim are shown for behavior, electrophysiological activity, and
expression levels for the 10 regulated genes (1–10) and two example
unregulated genes (62 and 84) across 320 time steps. Vertical lines
reveal the time lags for response to regulation in the simulation. At
the left-most line, behavior and activity change simultaneously,
while there is no change yet in any of the genes. At the second line,
genes 1 and 4 have begun to respond to the change in activity, but
there is yet no change in any of the genes further downstream. The
next two lines highlight the responses of the remaining genes.
The last two vertical lines indicate the offset of the behavior and the
corresponding lag for genes to return to their unregulated levels.
This output of the simulation is consistent with its causal design
(Figure 7). This output is not considered data, but rather
continuous changing elements of the system. The samples taken
at certain time ponts, are considered data

c
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veloped a DBN inference algorithm we called Networ-
kInference (Smith et al. 2002). NetworkInference differs
from the traditional BN by disallowing links between
elements (i.e., genes, activity, etc.) backwards in time,
from t+1 to t.

In order to model a biological situation, where time
series data would be collected at intervals of �10 min
across behavioral transitions, we ran BrainSim for 200
time steps, sampled data from each of the five brain
regions, as one would in a real biological experiment, at
21 time steps (0–20) spanning a full period of silence to
singing to silence. Information loss occurs when sam-
pling from a system. From the 21 sampled time points,
we discretized the data into 4 bins (for example, gene
expression levels between 0–25 were converted to 1, from
26–50 to 2, from 51–75 to 3, and from 76–100 to 4,).
This results in more information loss.

First, we ran the sampled data through a traditional
BN algorithm called B-Course (Bayesian-Course),
available on the web at http://b-course.cs.helsinki.fi/,
and run by the Complex Systems Computation Group,
Department of Computer Science, University of Hel-
sinki. Here, unless pre-specified by the user, B-Course
automatically discretizes the data to two categories. We
then re-graphed the BN networks generated onto our
BrainSim diagrams (Fig. 9). For biological standards,
B-Course performed remarkably well, recovering the
regulated underlying elements activity and genes of

BrainSim. However, as expected B-course did not find
the causal links between the elements. It also found
many incorrect links and some incorrect genes. We
tested descretizing the data into different category
amounts before passing it through B-Course, and found
that a 4-category discretization yielded significant im-
provement of B-Course’s ability to recover more accu-
rate structure (Fig. 9). This time, it was also able to
recover behavior with brain regions, but only if behavior
and activity data were ran separately.

When we passed the 4-category discretized sampled
data through NetworkInference, we were able to recover
behavior and nearly the entire simulation (Fig. 9). For
the recovery to work, we also had to pass the data
through the algorithm in two stages, first with activity
and gene expression data from the five brain regions
(time series data, which is handled as a DBN), and

Fig. 9 Ability of Bayesian networks to recover BrainSim underly-
ing structure. The known truth as we designed the simulation is
shown to the right. Bayesian recovered networks from sampled and
discretized data mapped onto the graphical diagram of the known
truth are shown to the left. These networks were from 2- and 4-
category discretized data using B-Course and 4-category discretized
data using NetworkInference. White lines and white ovals designate
incorrect links (also called edges) and elements (also called nodes),
respectively. Lines with arrows indicate causality. ‘‘+’’ up-
regulation; ‘‘–’’ down-regulation
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second with activity in five regions and behavior (treated
as an instant in time on the time scale used in the sim-
ulation, which is handled as a BN), and then bringing
the two generated networks together at activity. All
causal links were correctly identified, and none of the 90

unregulated genes were included in the network. The
only missing causal link was between gene 3 and gene 6.
Gene 6 is the only element of our network where there
are multiple causal regulators (also called multiple par-
ents) converging to one, genes 3 and 5 to 6 (Fig. 9).

Using GeneSimulator we found that multiple parents
of a node can only be found with a DBN when the
amount of data sampled is very high, greater than 5,000
data points total from a simulated genetic pathway (J.
Yu et al., unpublished observations). This is biologically
unreasonable. Even with BrainSim, sampling from five
brain regions at 21 time points, 650 total, may be beyond
biological experimentation in some laboratories. With
GeneSimulator, we attempted to determine the limit of
sampling for accurate recovery. Simulating a 12-gene
network out of 20 genes (Fig. 10A) and sampling data
from it similar to microarray sampling, we found that at
25–50 sampled time points run through a DBN algo-
rithm we programmed and called RegulationRecover
yielded a mess (Fig. 10B). However, when we linearly
interpolated data between time points (add unmeasured
data based upon the measured data), we found that the
DBN algorithm was able to recover much of the genes
and their interactions in the simulated genetic network
(Fig. 10C). Multiple parents were still not recovered.

Fig. 10A–F Testing of RegulationRecover DBN algorithm on a
simulated genetic pathway generated by GeneSimulator. A The
known truth of a genetic system generated from GeneSimulator.
The system shown contains 20 genes of which 12 are in a regulated
genetic pathway. B A recovered network from RegulationRecover
using 50 data points (sampled time points), one animal each data
point, sampled at an interval of every 5 time points. C. The network
recovered after interpolating data. This was done by interpolating 5
data points between each two sampled time points. For the
interpolation to be more meaningful, it was done on a sampling of
interval size of 20 to allow for values between intervals to be
interpolated. D Same as C, except links with influence scores of 0
were removed. E Same as C, except 25 data points were used. F
Same as E, except links with influence scores of 0 were removed.
Arrowheads indicate up-regulation and flatheads indicate down-
regulation. Shown are the average recovered results from 10
datasets each. Black dashed line: only found once in 10 recovery
results; black solid line: found more than once but less than 5 times
in 10 recovery results; red solid line: found more than or equal to 5
times in 10 recovery results. Numbers beside lines – occurrence (left
of slash) and average influence score (right of slash); these numbers
only appear beside the lines found in more than one recovered
search
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In the DBN algorithm RegulationRecover we devel-
oped to recover genetic networks we added a new fea-
ture, an influence score that determines from the
sampled data whether an interaction is excitatory (up-
regulation, +), inhibitory (down-regulation, –), or can
not be determined (0), and the magnitude of the inter-
action (scaled between –1 and 1). The influence score
calculation is also based upon correlations in the data.
We found that the influence scores of RegulationRe-
cover correctly predicted the sign of regulation (up or
down) (Fig. 10C; numbers to the left of the slash next to
the lines). In addition, many of the incorrect links gen-
erated with the biologically reasonable sampled data had
influence scores of 0 and this can be used to select
against them (Fig. 10C cf. D, and E cf. F).

In general, the DBN inference algorithms we devel-
oped can recover from biologically reasonable simulated
data, interactions that involve cascades but not conver-
gence, and interactions with feedback. The detailed re-
port of the invention of this approach is presented in
Smith et al. (2002), and the further characterizations and
improvements using GeneSimulator and RegulationRe-
cover will be by J. Yu et al. (unpublished observations)
and BrainSim and NetworkInference is in Smith et al.
(2003).

Limitations and future directions

The inability to find multiple parents, i.e., convergence,
from biologically simulated data at the gene expression
level of analysis is a limitation of this approach. Further
development of existing mathematics, or invention of
new mathematical tools may be needed. It is possible
that other inference algorithms can recover these inter-
actions and then combined with DBN, recover the entire
network.

Another limitation is the simulation designs, as they
are relatively simple compared to our current biological
knowledge. We will continue to improve BrainSim and
GeneSimulator, and use them to guide experimentation
and analysis with real systems. After further determining
which biologically reasonable sampling method has the
best accuracy on the inference recovery, we will use that
sampling method on real animals. We will also develop a
more complex BrainSim version that incorporates ana-
tomical connectivity, cellular localization, gene function,
detailed behavior, and finer time scales to include dif-
ferences between activity (milliseconds) and behavior
with gene expression (minutes). By improving simula-
tions and then using them to guide future biological data
collection, we can ensure that the most pertinent bio-
logical data are gathered that allow predictions of causal
links using inference bioinformatic algorithms.

Another limitation is biologically testing the accuracy
of the networks generated. This will require use of gene
blocking and other techniques. These are not in common
use with songbirds. However, we do not view our

approach as a substitute for intervention experiments,
but as a guide for such experiments.

Conclusion

In this study, we attempted to unify disparate levels of
brain research for one system, songbird vocal commu-
nication. The levels of analysis we included were anat-
omy, microarray and in-situ gene expression profiles,
electrode array recordings, and behavior. We have be-
gun to develop inference bioinformatics tools to unify
levels computationally with simulations. Future progress
will require testing with real data and further enhance-
ment of technologies.
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