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Reverse engineering gene 
regulatory networks
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An information theoretic algorithm that prunes away potentially indirect 
interactions allows for improved reconstruction of biological networks.
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NIR imaging has been used for many years 
to look at functional parameters in the human 
brain (for example, saturations of hemoglo-
bin)12,13. Although it is unlikely that NIR imag-
ing will permit imaging of the entire brain, it is 
possible to image several centimeters below the 
human skull, potentially enabling, for example, 
detection of amyloid in the cortex. If amyloid 
imaging were used to diagnose Alzheimer dis-
ease, it is likely that simply detecting plaques 
in areas of the brain known to be affected by 
Alzheimer disease would be good enough.

The development of amyloid probes that can 
be imaged in vivo is almost certain to expedite 
the preclinical and clinical evaluation of novel 
Alzheimer-disease therapeutics that target amy-
loid β. Such ligands may also be useful in the 
diagnosis of atypical Alzheimer-disease cases. 
But current clinical diagnosis of Alzheimer dis-
ease is reasonably accurate, so it is unlikely that 
amyloid imaging will become a routine diagnos-
tic modality unless it were relatively quick, safe 
and inexpensive. With further advances in the 
technology and ligands, NIR imaging of amy-
loid may fulfill these criteria14.

There is evidence to suggest that amy-
loid deposition predates the clinical signs of 
Alzheimer disease by years or even decades; 
however, the exact temporal relationship 
between amyloid deposition and cognitive dys-
function remains to be established. The utility of 

existing amyloid probes for detecting very early 
stages of amyloid deposition in the brain of 
humans has not yet been determined, although 
most believe that significant improvements in 
sensitivity will be needed. As it is almost certain 
that Alzheimer disease will be easier to prevent 
than treat, a refined version of current amyloid 
imaging methods may ultimately be the diag-
nostic tool used to determine both who needs 
prophylactic treatment and when that treatment 
should be initiated.
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Biological systems are wondrously and notori-
ously complex. Over the last fifty years, mole-
cular biology has helped to reveal the vast and 
stunning array of components in biological 
systems. Now, we face the even more daunt-
ing challenge of systems biology: determining 
how all these puzzle pieces come together to 
create living systems. A recent paper by Basso 
et al.1 published in Nature Genetics describes a 
statistical algorithm for more compactly and 

more accurately reverse engineering networks 
describing pair-wise interactions among genes 
and thin protein products. The network they 
recover from gene expression profiles of a variety 
of human B-cell populations suggests that the B-
cell regulatory network has both a scale-free and 
hierarchical architecture, implying the presence 
of a few ‘hubs’ that are highly connected and 
preferentially connected to one another.

Reverse engineering is the process of eluci-
dating the structure of a system by reasoning 
backwards from observations of its behavior. 
In reverse engineering biological networks, one 
of the first hurdles to overcome is semantic. 
The term ‘network’ has come to mean different 
things throughout biology, and the semantic 

overload is magnified when computational 
and statistical interpretations are added. Even 
in networks whose nodes are ostensibly the 
same objects (for examples, genes or their pro-
tein products), the network edges can mean 
vastly different things and should be inter-
preted with care. As just one example, edges 
can either be undirected (without an orienta-
tion) to capture relations that are symmetric 
or directed (with an orientation) to capture 
relations that are asymmetric.

An undirected edge between two genes 
may indicate that the genes are coexpressed or 
coregulated, participate in a common pathway 
or regulatory ‘module’ or share a common bio-
logical function, location or process; or that their 
protein products coprecipitate, directly bind one 
another, or assemble into the same complex (a 
problematic term in its own right). On the other 
hand, a directed edge between two genes may be 
used to represent a step in a metabolic pathway, 
signal transduction cascade, or stage of develop-
ment; or it may indicate a causal control or a 
regulatory relationship.

This semantic caveat is important in trying to 
understand the myriad methods that have been 
proposed in the last decade for reverse engi-
neering biological networks from system-wide 
data, especially gene expression data. Within 
this broader context, the ARACNe algorithm of 
Basso et al. is most closely related to an earlier 
method for producing ‘relevance networks’2,3. 
Both sets of authors use a pair-wise mutual 
information criterion across gene expression 
profiles to recover edges that are undirected, 
but ARACNe improves on this somewhat by 
using the data processing inequality to prune 
out interactions suspected to be indirect.

After using synthetic data to assess the 
accuracy of their ARACNe algorithm, Basso 
et al. apply it to a rather sizable set of gene 
expression array data, collected from human 
B-cell populations with a variety of pheno-
types, including both normal and malignantly 
transformed cells at different stages in the ger-
minal center reaction process, from naive cells 
in the mantle zone to differentiated memory 
or plasma cells. This results in a network 
with about 129,000 undirected interactions 
between pairs of genes. Owing to the obvi-
ous complexity of such a network, the authors 
choose to focus on two simpler aspects: a sta-
tistical summary of the (global) connectiv-
ity distribution among all the nodes in the 
network, an approach that is quite in vogue; 
and a more detailed look at a specific (local) 
portion of the network centered around the 
proto-oncogene MYC, chosen both because 
of its clinical importance and because of the 
wealth of information available for corrobo-
ratory purposes.
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Figure 1  Comparison of the performance of ARACNe and a Bayesian network inference algorithm in reverse engineering a synthetic gene regulatory network. 
(a) The synthetic gene regulatory network used for assessing the reconstruction accuracy of network inference algorithms7. The network has 8 disconnected 
nodes serving as a negative control (not shown) and 12 interconnected nodes, including a cyclic loop formed by nodes 0, 2, 3 and 7 (regulatory interactions 
between two genes (nodes) are shown as arrows (edges); black and green arrows represent up- and downregulation, respectively). Reverse engineering using 
a Bayesian network inference algorithm to recover a dynamic Bayesian network (DBN) on the full data set results in a reconstructed network with 100% 
accuracy, as reported earlier7 (blue arrows indicate correct edges with correct orientation; no incorrect edges were recovered). Reverse engineering using 
ARACNe on the full data set results in a reconstructed network with the same 13 correct edges as the DBN reconstruction, but without orientations; it includes 
two incorrect edges, between nodes 3 and 4 and nodes 7 and 8 (correct and incorrect edges are represented by blue and red, respectively; the ARACNe 
network is reproduced from Basso et al.). (b) Performance of ARACNe and a Bayesian network inference algorithm on subsets of the full data set. Sensitivity 
and precision are plotted as a function of the number of samples used for the analysis. At roughly the same sensitivity, the Bayesian network inference 
algorithm appears to exhibit better precision over a wide range of sample sizes (the ARACNe plots are reproduced from Basso et al.). 
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Analyzing the connectivity distribution of a 
network is currently popular for two reasons. 
First, it is a sensible first step in reasoning about 
networks so large that they are difficult to under-
stand otherwise; for all intents and purposes, the 
interactions recovered by a tool like ARACNe 
are impossible to visualize directly in a way that 
facilitates insight. Second, articles and books4 
suggesting that many kinds of networks—bio-
logical, social, and engineered—are scale-free 
have recently been published in a flurry. Indeed, 
the network recovered by ARACNe from B-cell 
expression profiles has a connectivity distribu-
tion that suggests that it, too, is scale-free. Basso 
et al. appropriately caution that the reported 
connectivity distribution is not conclusive 
because an explainable saturation occurs in the 
‘low interaction count’ portion of the curve, 
resulting in a distribution that is scale-free over 
only one order of magnitude. Nevertheless, the 
results are consistent with a hypothesis that this 
network is scale-free.

As for the subnetwork centered around MYC, 
it contains 56 genes adjacent to MYC, termed 
‘first neighbors,’ along with 2,007 genes adjacent 
to these first neighbors, termed ‘second neigh-
bors.’ Even a comparatively small subnetwork of 
this size is still a challenge to visualize insight-
fully, so the authors assess its quality in two 
ways. First, they determine whether the genes 
of the subnetwork are enriched for specific cel-
lular process categories in the Gene Ontology 
database5, which they are. Second—and this is 
a wonderful strength of the paper—the authors 
experimentally validate some of the first neigh-
bors of MYC.

The list of MYC first neighbors was pruned to 
exclude those with lowest mutual information 
scores, those that do not contain MYC binding 
sites near the transcription initiation site, and 
those already known to be bound directly by 
MYC. The remaining 12 genes were tested for 
direct MYC binding using a standard chromatin 
immunoprecipitation assay, and 11 predictions 
were positive. Although the authors’ resultant 
claim of over 90% specificity for ARACNe is 
perhaps optimistic as they excluded predic-
tions with lowest mutual information scores 
and, more important, predictions not known 
to contain a MYC binding site, the results are 
still extremely encouraging. The success of this 
kind of experimental validation lends credence 
both to ARACNe and also to computational 
approaches more generally.

In closing, two further points should be made. 
First, this paper provides evidence confirming 
a simple intuition that many in this field have 
had, namely that gene expression data need 
not necessarily be collected from perturbation 
experiments for reverse engineering to be suc-
cessful. Although perturbation experiments 
are certainly useful for network inference, they 
are also costly, and in some cases infeasible for 
either technical or ethical reasons. Basso et al. 
demonstrate that as long as the available data 
explore a wide range in the ‘expression space’ of 
the system, biologically meaningful interactions 
can be recovered by computational algorithms.

Second, the authors of this paper should be 
commended for evaluating the performance 
of ARACNe on synthetic data6, and indeed, it 
performs nobly. However, they seem to misrep-

resent the performance of Bayesian networks 
on the same synthetic data. They report that 
ARACNe offers “substantially higher precision” 
in comparison with Bayesian networks, whereas 
we have observed exactly the opposite (Fig. 1). 
The discrepancy is most likely due to the fact 
that Basso et al. used a static Bayesian net-
work in place of a more appropriate dynamic 
Bayesian network. This is only a minor quibble 
because the B-cell expression profiles examined 
in the remainder of the study are of quite a dif-
ferent character from the synthetic expression 
data in many regards, and it is not clear which 
method would be best suited to network infer-
ence in the B-cell context. Indeed, given the 
earlier caveat that the networks recovered by 
these and other methods typically have differ-
ent semantics, it is likely that multiple methods 
will be needed to completely understand the 
regulation and dysregulation of B-cell differ-
entiation, as well as other similar problems in 
systems biology.
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