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1 Bayesian marginalization over parameterλ

Bayesian marginalization leads to an edge probability distribution that tapers more
gradually than would have been the case without using marginalization as depicted
in Figure 1 (this distribution has thicker tails than the exponential distribution).

2 Results using simulated data

We use simulated data from a synthetic cell cycle model to evaluate the accuracy of
our algorithm and determine the relative utility of different quantities of available
gene expression data. The synthetic cell cycle is quite complex involving100 genes
operating in three phases of the cycle as shown in Figure 2. This synthetic cell cycle
consists of cell cycle transcription factors with/without location data, non cell cycle
transcription factors with location data, activated/repressed genes as well as genes
not involved at all in the cell cycle process. In all the network has54 true positives
and9846 true negatives that can be learnt. Scalability of learning a DBN with unin-
formative priors has been previously examined1 and so we do not examine issues of
scale as the computationally efficient prior ensures our method is no different from

Figure 1. The effect of Bayesian marginalization leads to a thicker tailed distribution.



regular DBN learning.

2.1 Generating synthetic expression data

The simulated gene expression data is generated using the (stochastic) Boolean Glass
gene model described elsewhere.2 In theBoolean Glass genemodel,2 gene expres-
sion values are governed by the following equation
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i are the expression values of geneGi at timest andt− 1 respec-
tively, 0 < rate1, rate2 ≤ 1 andε is an error term drawn from a normal distribution,
Fi is a Boolean function defined over the parents of geneGi at time t. All genes
were initialized by sampling from a normalN (0, 0.5) distribution, with the excep-
tion of transcription factors active in the first phase. These were given higher initial
expression values by sampling from a normalN (3, 0.5) distribution. After initial-
ization, all variables were updated according to the Boolean Glass gene equations
corresponding to the first phase for30 time points. Then the update equations were
changed to reflect the structure of the second phase, as shown in Figure 2, and an-
other30 time points were generated. The update equations changed once more for
the third phase, and another30 time points were generated. So each simulated cell
cycle had a total of90 time points in3 phases, during each of which a different set of
update equations prevailed. This process was repeated to generate more expression
data as needed; we experimented with various amounts of data, from1 to 15 cell
cycles worth.

2.2 Generating synthetic location data

To generate synthetic location data, we need to generate syntheticp-values for the
subset of genes that are transcription factors in the model. For the edges from each of
the transcription factors that do not exist in the regulatory network in Figure 2 (i.e.,
the non-targets of each transcription factor), we generatep-values from a uniform
distributionU [0, 1], since this is the definition of ap-value. For edges that exist (i.e.,
the targets of each transcription factor), we use an exponental distribution with scale
parameterλ over the interval[0, 1]. The greater the value ofλ, the more reliable
is the location data generated in the sense that thep-values for true edges are more
likely be close to zero. In our experiments we choseλ ∈ {1, 10, 20, 100}, resulting
in 4 completelocation data sets and for ease of understanding we named these sets
extremely nosiy location data, moderately noisy location data, fair location dataand
excellent location datarespectively.

2.3 Experimental validation

We conduct the following three experiments: score network structures with expres-
sion data alone, ignoring the log prior componentlogP(S) ; score network struc-



tures with location data alone, using the prior component of the score and ignoring
the log likelihood componentlogP(D|S) ; and score network structures with both
expression and location data. Figure 4 summarizes the results. The vertical axis
measures the total number of errors: the sum of false positives and false negatives in
the learned network; the total number of errors relative to the synthetic network can
range from0 to 10000. As expected, the total number of errors drops sharply as the
amount of available expression data increases. Together, the curves show that our
joint learning algorithm consistently reduces the total number of false positives and
false negatives learned when compared to the error rate obtained using either expres-
sion or location data alone. Also observe that the availability of location data means
that we require typically only half as much expression data to achieve the same error
rate as would be achieved with expression data in isolation, suggesting that the avail-
ability of location can be used to compensate for small quantities of expression data.
Figure 3 compares the effect of learning the network structure when using location
data having different noise characteristics. Observe that for less noisy location data,
joint learning with limited expression data can result in worse results as compared
to using no expression data. Finally in Figure 5 we show that by varying the prior
probability β we can control the sensitivity and specificity of the learned network
structure.

3 Results using experimental data

3.1 Assigning phase labels

We used publicly available cell cycle gene expression data3. The gene expression
data consists of69 time points collected over8 cell cycles. Since these belong to
different phases, the resultant number of time points in each phase is quite small. As
a consequence, we choose to use only three states for the phase variable, by splitting
the shortest phaseG2 in half and lumping the halves with the adjacent phases. Thus,
the three states of our phase variable correspond roughly toG1, S+G2, andG2+M .
To generate a phase label for each time point, we select characteristic genes known to
be regulated during specific cell cycle regulatory regions namelyM/G1,G1,S,S/G2

andG2/M .3 Guided by the expression of these characteristic genes, we can assign a
phase label to each time point. This is done separately for each of the four synchro-
nization protocols in the dataset (alpha, cdc15, cdc28, and elu). Table 1 shows the
phase label assignments for each synchronization protocol.

3.2 Variable selection and analysis

Table 2 shows the list of cell cycle transcription factors used. These transcription
factors have location data available for them. Table 3 shows the list of regulated
genes used for our experimental analysis. In all we used a total of25 genes including
the cell cycle transcription factors. Before we ran our method on the data for these



Table 1. Phase label assignments

Synchronization Protocol Timepoints and their corresponding phase labels

alpha G1 : alpha7, alpha14, alpha21, alpha70, alpha77, alpha84

S + G2 : alpha28, alpha35, alpha42, alpha 49, alpha84, alpha91

G2 + M : alpha0, alpha56, alpha63, alpha105, alpha112, alpha115

cdc15 G1 : cdc1530, cdc1550, cdc15130, cdc15140, cdc15150,

cdc15230, cdc15270

S + G2 : cdc1570, cdc1580, cdc15160, cdc15170, cdc15180,

cdc15190, cdc15200, cdc15290

G2 + M : cdc1510, cdc1590, cdc15100, cdc15110, cdc15120,

cdc15210, cdc15220, cdc15230, cdc15240

cdc28 G1 : cdc2810, cdc2820, cdc28100, cdc28110, cdc28120

S + G2 : cdc2830, cdc2840, cdc2850, cdc2860, cdc28130, cdc28140

G2 + M : cdc280, cdc2870, cdc2880, cdc2890, cdc28150, cdc28160

elu G1 : elu30, elu60, elu90, elu120

S + G2 : elu150, elu180, elu210, elu240, elu270

G2 + M : elu0, elu300, elu330, elu360, elu390

25 selected genes the following steps were carried out

• Precompute the marginalization integral for thep-values of the selected location
data

• Discretize the selected expression data into three states using interval discretiza-
tion

Using simulated annealing as our heuristic search method we then identified net-
work structures with high scores. Figure 7 depicts the complete regulatory network
obtained after running our algorithm on the expression and location data for the25
selected genes.
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Table 2. List of cell cycle transcription factors with location data

Transcription Factor – Standard Name GO Biological Process

ACE2 G1-specific transcription in mitotic cell cycle

ASH1 Pseudohyphal growth,

regulation of transcription,

mating-type specific

FKH1 chromatin silencing at silent mating-type cassette,

pseudohyphal growth ,

regulation of cell cycle

MBP1 DNA replication ,

regulation of cell cycle

MCM1 DNA replication initiation ,

regulation of transcription from Pol II promoter

NDD1 G2/M-specific transcription in mitotic cell cycle

STB1 G1/S transition of mitotic cell cycle

SWI4 G1/S transition of mitotic cell cycle,

cell cycle,

transcription

SWI5 G1-specific transcription in mitotic cell cycle

SWI6 G1/S-specific transcription in mitotic cell cycle,

meiosis,

transcription



Figure 2. The figure shows the true structure of the simulated network of 100 nodes. Each column rep-
resents a particular instance in time. Each column should have 100 nodes but for clarity we only depict
nodes in a column if they have an outdegree greater than zero. Blue nodes are cell cycle transcription
factors for which location data is available, red nodes are cell cycle transciption factors for which no
location data is available, grey nodes are non cell cycle transcription factors for which location data is
available. All black nodes are either activated or repressed by one or more of these transcription factors.
Blue edges represent activation of cell cycle transcription factors by other transcription factors and for
which we have location data. Black edges represent activation/repression of black nodes by cell cycle
transcription factors and for which we have location data. Red edges represent activation/repression of
black nodes by cell cycle transcription factors and for which we have no location data. Dotted edges rep-
resent activation/repression of black nodes by non cell cycle transcription factors and for which we have
location data.



Table 3. List of regulated genes

Gene – Standard Name GO Biological Process

ALG7 N-linked glycosylation

CDC20 cyclin catabolism,

mitotic metaphase/anaphase transition,

mitotic sister chromatid segregation,

mitotic spindle elongation,

ubiquitin-dependent protein catabolism

CDC21 DNA-dependent DNA replication,

dTMP biosynthesis

CDC5 DNA-dependent DNA replication,

protein amino acid phosphorylation

CDC6 pre-replicative complex formation and maintenance

CLB2 G2/M transition of mitotic cell cycle ,

regulation of cyclin dependent protein kinase activity

CLB5 G1/S transition of mitotic cell cycle,

G2/M transition of mitotic cell cycle,

premeiotic DNA synthesis,

regulation of cyclin dependent protein kinase activity

CLN1 regulation of cyclin dependent protein kinase activity

CLN2 re-entry into mitotic cell cycle after pheromone arrest,

regulation of cyclin dependent protein kinase activity

CTS1 cytokinesis, completion of separation

EGT2 cytokinesis

FAR1 cell cycle arrest,

signal transduction during conjugation with cellular fusion

HTA1 chromatin assembly or disassembly

PCL2 cell cycle

SIC1 G1/S transition of mitotic cell cycle,

regulation of cyclin dependent protein kinase activity



Figure 3. Total number of errors while learning a synthetic cell cycle network using (noisy simulated)
expression and location data together. The graph shows the effect of using location data having different
noise characteristics.

Figure 4. Total number of errors while learning a synthetic cell cycle network using (noisy simulated)
expression and location data, separately and with both types of data together. The graph shows the effect
of increasing the number of cell cycles worth of expression data, both with and without location data. The
dashed horizontal line represents learning using location data alone.



Figure 5. The graph shows how varyingβ effects the sensitivity and specificity of the learned network
structure
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Figure 6. Partial regulatory network recovered using expression data from Spellman et al. and location
data from Lee et al. Shaded elliptical nodes are transcription factors for which location data is available.
Unshaded circular nodes are genes for which no location data is available. Solid edges represent inter-
actions that have been verified in the literature. Dashed edges represent interactions that have not been
verified; either the edge is incorrect or the evidence from the literature is inconclusive. Observe the cyclic
regulation of transcription factors across phases of the cell cycle.



Figure 7. Complete regulatory network recovered using expression data from Spellman et al. and location
data from Lee et al.


