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Figure 5. Quality control of ChIP-seq data sets in practice. EGRT ChlIP-seq was performed in K562 cells in two replicates. ChIP enriched regions were
identified using MACS. However, the cross-correlation plot profiles (A) indicated that both IPs were suboptimal, with one being unacceptable. In
agreement with this judgment, ChIP enrichment (C) and peak number (D) also indicated failure. The ChIP-seq assays were repeated (B), with all quality
control metrics improving significantly (B,D), and many additional EGR1 peaks were identified as a result. (E) Representative browser snapshot of the four
EGR1 ChlIP-seq experiments, showing the much stronger peaks obtained with the second set of replicates. (F) Distribution of EGRT motifs relative to the
bioinformatically defined peak position of EGR1-occupied regions derived from ChlP-seq data in K562 cells. Regions are ranked by their confidence scores
as called by SPP.
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Box 3: ChIP-seq quality assessment guidelines

Within ENCODE, a set of data quality thresholds has been established for submission of ChIP-seq data sets. These have been constructed based on the
historical experiences of ENCODE ChlIP-seq data production groups with the purpose of balancing data quality with practical attainability and are
routinely revised. The current standards are below and the performance of ENCODE data sets against these thresholds is shown in Figure 7.

Cross-correlation analysis

The current ENCODE practice is to calculate and report NSC and RSC for each experiment. For experiments with NSC values below 1.05 and RSC
values below 0.8, we currently recommend that an additional replicate be attempted or the experiment explained in the data submission as adequate
based on additional considerations.

Irreproducible discovery rate (IDR)

The following guidelines have been established for mammalian cells (optimal parameter may differ for other organisms). Biological replicates are
performed for each ChIP-seq data set and subjected to peak calling. IDR analysis is then performed with a 1% threshold. For submission to ENCODE,
we currently require that the number of bound regions identified in an IDR comparison between replicates to be at least 50% of the number of
regions identified in an IDR comparison between two “pseudoreplicates” generated by pooling and then randomly partitioning all available reads
from all replicates (Np/Nt < 2) (Fig. 7). To ensure similar weighting of individual replicates for identifying binding regions, we further recommend that
the number of significant peaks identified using IDR on each individual replicate (obtained by partitioning reads into two equal groups for the IDR
analysis) be within a factor of 2 of one another (N1/N2 < 2) (Fig. 7). Data sets which fail to meet these criteria may still be deposited by ENCODE
experimenters, provided that at least three experimental replicates have been attempted and a note accompanies these data sets explaining which
parameters fail to meet the standards and providing any technical information that may explain this failure. This guideline is for point source features;
metrics are still being determined for broad peak analyses.

Updated information about the performance of ENCODE data sets against these quality metrics and tools for determining these metrics will be
forthcoming through the ENCODE portal (http://encodeproject.org/ENCODE/).

Historical note

A simpler heuristic for establishing reproducibility was previously used as a standard for depositing ENCODE data and was in effect when much of the
currently available data was submitted. According to this standard, either 80% of the top 40% of the targets identified from one replicate using an
acceptable scoring method should overlap the list of targets from the other replicate, or target lists scored using all available reads from each replicate
should share more than 75% of targets in common. As with the current standards, this was developed based on experience with accumulated

ENCODE ChlP-seq data, albeit with a much smaller sample size.

icant and insignificant findings is plotted, a transition in consis-
tency is expected (Fig. 6C,F). This consistency transition provides an
internal indicator of the change from signal to noise and suggests
how many peaks have been reliably detected.

The IDR statistic quantifies the above expectations of con-
sistent and inconsistent groups by modeling all pairs of peaks
present in both replicates as belonging to one of two groups: a re-
producible group, and an irreproducible group (Li et al. 2011). In
general, the signals in the reproducible group are more consistent
(i.e., have a larger correlation coefficient) and are ranked higher
than the irreproducible group. The proportion of identifications
that belong to the “noise” component and the correlation of the
significant component are estimated adaptively from the data. The
IDR provides a score for each peak, which reflects the posterior
probability that the peak belongs to the irreproducible group.

A major advantage of IDR is that it can be used to establish
a stable threshold for called peaks that is more consistent across
laboratories, antibodies, and analysis protocols (e.g., peak callers)
than are FDR measures (A Kundaje, Q Li, B Brown, ] Rozowsky,
A Harmanci, S Wilder, S Batzoglou, I Dunham, M Gerstein, E Birney,
et al., in prep.). Increased consistency comes from the fact that IDR
uses information from replicates, whereas the FDR is computed on
each replicate independently. The application of IDR to real-life data
is shown in Figure 6. A pair of high-quality RAD21 ChlIP-seq repli-
cates display good consistency between IDR ranks for a large number
(~28,000) of highly reproducible peaks (Figs. 6A,B), with a clear in-
flection between the signal and noise populations near the 1% IDR
value (Fig. 6C). In contrast, a pair of SPT20 replicates, which had
already been flagged as low-quality based on the individual FRiP and
NSC/RSC metrics, display very low IDR reproducibility, with very few
significant peaks, and no visible inflection in the IDR curve (Fig. 6F).

It is important that the peak-calling threshold used prior to
IDR analysis not be so stringent that the noise component is entirely
unrepresented in the data, because the algorithm requires sampling
of both signal and noise distributions to separate the peaks into two
groups; thus relaxing the default stringency settings when running
a given peak caller is advised if IDR analysis will follow.

A caution in applying IDR is that it is dominated by the weakest
replicate (A Kundaje, Q Li, B Brown, ] Rozowsky, A Harmanci,
S Wilder, S Batzoglou, I Dunham, M Gerstein, E Birney, et al., in
prep.). That is, if one replicate is quite poor, many “good” peaks
from the higher quality replicate will be rejected by IDR analysis,
because they are not reproducible in the weak replicate. To ensure
similar weighting of individual replicates, the number of significant
binding regions identified using IDR on each individual replicate
(obtained by partitioning reads into two equal groups to allow the
IDR analysis) is recommended to be within a factor of 2 for data sets
to be submitted to UCSC by ENCODE (Box 3).

ENCODE has begun applying IDR analysis to all ChIP ex-
periments. For all submitted ENCODE ChIP-seq data sets, the
number of bound regions identified in an IDR comparison be-
tween replicates is at least 50% of the number of regions identified
in an IDR comparison between two “pseudoreplicates” generated
by randomly partitioning available reads from all replicates (Box 3).

Guidelines for reporting ChlP-seq data

To facilitate data sharing among laboratories, both within and
outside the Consortium, and to ensure that results can be repro-
duced, ENCODE has established guidelines for data sharing in
public repositories. Raw data can be submitted to the Short Read
Archive (SRA) and ChlIP results are submitted to GEO. Through
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Figure 6. The irreproducible discovery rate (IDR) framework for assessing reproducibility of ChIP-seq data sets. (A-C) Reproducibility analysis for a pair
of high-quality RAD21 ChlIP-seq replicates. (D, E) The same analysis for a pair of low quality SPT20 ChIP-seq replicates. (A, D) Scatter plots of signal scores
of peaks that overlap in each pair of replicates. (B,E) Scatter plots of ranks of peaks that overlap in each pair of replicates. Note that low ranks correspond
to high signal and vice versa. (C,F) The estimated IDR as a function of different rank thresholds. (4,B,D, E) Black data points represent pairs of peaks that pass
an IDR threshold of 1%, whereas the red data points represent pairs of peaks that do not pass the IDR threshold of 1%. The RAD21 replicates show high
reproducibility with ~30,000 peaks passing an IDR threshold of 1%, whereas the SPT20 replicates show poor reproducibility with only six peaks passing

the 1% IDR threshold.

April 2012, 478 ChIP-seq data sets had been submitted to GEO
at accession ID PRJNA63441, with submission of all current
ENCODE data to be completed by June 2012. UCSC houses the
ENCODE data (Rosenbloom et al. 2011) and modMine houses
the modENCODE data (Contrino et al. 2011).

Box 4 provides a detailed description of the data and experi-
mental and analytical details to be shared so that others can re-
produce both experiments and analyses. Shared information includes
the experimental procedures for performing the ChIP, antibody in-
formation and validation data, as well as relevant DNA sequencing,
peak calling, and analysis details. For ENCODE experiments that do
not meet the guidelines described above, data and results may be
reported, with a note indicating that the criteria have not been met
and explaining why the data are nevertheless released.

Discussion

The ENCODE and ModENCODE standards and practices presented
here will be further revised as the protocols, technologies, and our
understanding of the assays change. Updated versions will be re-
leased and made available at http://encodeproject.org/ENCODE/
experiment_guidelines.html. We have begun to address the central
but vexing issue of immune reagent specificity and performance
by establishing a menu of primary and secondary methods for
antibody characterization, including performance-reporting prac-
tices. We also developed and applied global metrics to assess the

quality of several aspects of an individual ChIP-seq experiment:
Library complexity can be measured by the nonredundant fraction
(NRF); immunoenrichment can be measured by the fraction of reads
in called peaks (FRiP) and by cross-correlation analysis (NSC/RSC);
and replicate significance can be measured by IDR. We related these
global quality measures to more traditional inspection of ChIP-seq
browser tracks (Fig. 5) and discuss below how different aspects of
data quality interact with specific uses of ChIP-seq data.

How good can a ChIP-seq experiment be?

Thus far, the most successful point-source factor experiments
for ENCODE have FRiP values of 0.2-0.5 (factors such as REST,
GABP, and CTCF) (Fig. 4C) and NSC/RSC values of 5-12. Al-
though these quality scores and characteristics were routinely
obtained for the best-performing factor/antibody combinations,
they are not the rule; for most transcription factors, the ChIP
quality metrics were substantially lower and more variable (Fig. 7).
We believe that multiple issues contribute to the variability; the
quality of antibody (affinity and specificity) is surely important, but
epitope availability within fixed chromatin, sensitivity of the anti-
body to post-translational modifications of the antigen, how long and
how often the protein is bound to DNA, and other physical charac-
teristics of the protein—-DNA interaction likely also contribute. Further
work with epitope-tagged factors, for which the antibody is not
a variable, should begin to sort among the possibilities.
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Box 4. Data reporting guidelines

repositories.

Metadata

identified by mass spec, etc.).

Experimental validation results (e.g., qPCR).
Link to the control track that was used.
An explanation if the experiment fails to meet any of the standards.

High-throughput sequencing data

® Image files from sequencing experiments do not need to be stored.
® Raw data (FASTQ files) should be submitted to both GEO and SRA.
® Each replicate should be submitted independently.

® Target region and peak calling results.

Point source peaks

researchers include:

Peak position, defined as a single base pair.
Start and end positions, defined as specific base pairs.

Significance/accuracy measures:

[ P-value determined using a method chosen by the submitter.

and Q-values, as applicable.

Broad regions
® Start and end positions, defined as specific base pairs.

® Significance/accuracy measures:

O P-value determined using a method chosen by the submitter.

and Q-values, as applicable.

Data should be submitted to public repositories. The following information is currently used by ENCODE/modENCODE to submit data to public

For submission of basic experimental data by ENCODE, the following information is minimally included:

Investigator, organism, or cell line, experimental protocol (or reference to a known protocol).

Indication as to whether an experiment is a technical or biological replicate.

Catalog and lot number for any antibody used. If not a commercial antibody, indicate the precise source of the antibody.

Information used to characterize the antibody, including summary of results (images of immunoblots, immunofluorescence, list of proteins

Peak calling algorithm?? and parameters used, including threshold and reference genome used to map peaks.

.

® A summary of the number of reads and number of targets for each replicate and for the merged data set.
® Criteria that were used to validate the quality of the resultant ChIP-seq data (i.e., overlap results or IDR*%).
°
.
°

For point source peaks (e.g. experiments with antibodies to sequence-specific transcription factors), common features that are reported by ENCODE

Signal value (e.g., fold enrichment) using an algorithm chosen by the submitter.

[ Q-value (false discovery rate correction) determined using a method chosen by the submitter.

® Metadata, including peak caller approach and genome reference used, plus methods for determining signal values, P-values,

® Signal value (e.g., fold enrichment) using an algorithm chosen by the submitter.

(J Q-value (false discovery rate correction) determined using a method chosen by the submitter.

® Metadata, including peak caller approach and genome reference used, plus methods for determining signal values, P-values,

® Point-source peaks can be called in addition to broad regions (i.e., one can have “peaks” and potentially “valleys” within “regions’).

The investigator should determine whether their data best fits the broad region/point source peak data or both.

When measurements differ in quality, the higher-quality
replicate often identifies thousands more sites than the lower. Do
sites present only in the superior ChIP experiment reflect true
occupancy? Motif analysis suggests that many do. In Figure SF, the
position of EGR1 motifs relative to EGR1 ChIP-seq peaks is shown.

2%For uniform peak calling within ENCODE, the MACS peak caller, version 1.4.2
was used. Scripts used for IDR analysis are at https://sites.google.com/site/
anshulkundaje/projects/idr.

The known binding motif is prominent and concentrated centrally
under the ChIP peaks, as expected if the motif mediates occu-
pancy; importantly, the central location of the motif is observed,
even in the low-ranking peaks. The trend continues below the
peak-calling cut-offs, suggesting additional true occupancy sites.
Depending on the goals of an analysis, users may want to be more
or less conservative in defining the threshold for inclusion. Motif
presence could be used as one criterion for “rescuing” candidate
sites identified in only one experiment.
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Figure 7. Analysis of ENCODE data sets using the quality control guidelines. (A-C) Thresholds and distribution of quality control metric values in human
ENCODE transcription-factor ChlP-seq data sets. (A) NSC, (B) RSC, (C) NRF. (D) IDR pipeline for assessing ChlP-seq quality using replicate data sets. (E,F) Thresholds
and distribution of IDR pipeline quality control metrics in human ENCODE transcription factor ChIP-seq data sets. (Dashed lines) Current ENCODE thresholds
for the given metric, which are NSC > 1.05 (A); RSC > 0.8 (B); NRF > 0.8, N1/N2 = 2 (where N1 refers to the replicate with higher N) (E); Np/Nt = 2 (F).

How good does a ChIP-seq experiment need to be?

We have observed that some biologically important sites can have
modest ChIP-seq signals (Fig. 4B), while some sites with very high
enrichment fail to give positive functional readouts in follow-up

experiments. Given this, the best practical guidance for setting
thresholds of sensitivity, specificity, and reproducibility will depend
on how the data are to be used. Below, we outline four different
common ChIP uses, ranging from more relaxed to stringent in
their requirements toward data quality and site-calling sensitivity.
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Motif analysis

Deriving DNA sequence motifs for a ChlIP-assayed factor is rel-
atively simple and has been performed successfully for most
ENCODE ChIP-seq data sets (Fig. 2E). Experiments that pass the
thresholds we use for NRF, FRiP, and NSC/RSC typically produce
thousands to tens of thousands of regions, a sub-sample of which
can be readily used to deduce the recognition motif, although
more than one motif subfamily is sometimes found by additional
analysis (Johnson et al. 2007). Causal motifs are typically cen-
trally positioned and this can be used as a confirming diagnostic
(Fig. 6F). Notably, motif derivation can also be successful from
marginal quality data that fall below recommended quality
metric thresholds (especially if only the top-ranked peaks are used).
However, the risk of artifacts increases, and results from such anal-
yses should be cautiously interpreted and stringently validated.

Discovering regions to test for biological function such as transcriptional
enhancement, silencing, or insulation

Biologists often use ChIP-seq data to identify candidate regulatory
regions at loci of interest. When the goal is to find a few examples
of regulatory domains bound by a factor, data of modest quality
can still be useful if combined with close inspection of ChIP signals
and the corresponding controls before investing in functional
and/or mutagenesis studies. However, if the aspiration is to iden-
tify a comprehensive collection of all candidate regulatory regions
bound by a factor, very high-quality and deeply sequenced data
sets are required.

Deducing and mapping combinatoric occupancy

Typical cis-acting regulatory modules (CRM) are occupied by
multiple factors (Ghisletti et al. 2010; Lin et al. 2010; Wilson et al.
2010; A He et al. 2011; Q He et al. 2011; Tijssen et al. 2011) and
associated with multiple histone modifications (Barski et al. 2007;
Mikkelsen et al. 2007; Wang et al. 2008). A frequent goal of ChIP-
seq studies is to deduce a combination of factors that mediate
a common regulatory action at multiple sites in the genome. This
is a very quality-sensitive use of ChIP data since the presence of
one or more weak data sets that fail to identify significant frac-
tions of the true occupancy sites can seriously confound the
analysis; therefore we recommend only the highest quality data
sets be used for such analyses.

Integrative analysis

A new frontier of whole-genome analysis is the integration of
data from many (hundreds or thousands) experiments with the
goal of uncovering complex relationships. These endeavors typi-
cally use sophisticated machine learning methods (Ernst and Kellis
2010; Ernst et al. 2011; A Mortazavi, S Pepke, G Marinov, and
B Wold, in prep.) with complex and varying sensitivity to ChIP
strength; and such efforts can be very sensitive to data quality.

Conclusion

Our goal in developing these current working guidelines for
ChIP-seq experiments, now applied over a large number of factors,
was to provide information about experimental quality for users of
modENCODE and ENCODE data. The strongest ChIP-seq data-sets
that readily meet all quality specifications should be especially
useful for regulatory network inference and for diverse integrative

analyses, including the effects of genetic variation on human traits
and disease. The metrics, methods, and thresholds might also be
useful to the wider community, although our intention in out-
lining our approaches was not to imply that ENCODE criteria must
be applied rigidly to all studies. As discussed above, some ChIP data
and antibodies can and do fall outside these guidelines for varied
reasons, yet are highly valuable. In such cases it is critical to try
to understand why a data set looks unusual, and to assess the
implications for specific uses of those data or reagents. Similar
guidelines exist in ENCODE for RNA-seq, DNase-seq, FAIRE-seq,
ChIA-PET, and other related assays; the working standards and
protocols for these techniques can be found at the ENCODE
and modENCODE websites (http://encodeproject.org/ENCODE/
experiment_guidelines.html).

Data access

All data sets used in the analysis have been deposited for public
viewing and download at the ENCODE (http://encodeproject.org/
ENCODE/) and modENCODE (http://www.modencode.org/)
portals.
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