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ABSTRACT
In this paper we introduce a new and general privacy frame-
work called Pufferfish. The Pufferfish framework can be
used to create new privacy definitions that are customized
to the needs of a given application. The goal of Pufferfish
is to allow experts in an application domain, who frequently
do not have expertise in privacy, to develop rigorous privacy
definitions for their data sharing needs. In addition to this,
the Pufferfish framework can also be used to study existing
privacy definitions.

We illustrate the benefits with several applications of this
privacy framework: we use it to formalize and prove the
statement that differential privacy assumes independence
between records, we use it to define and study the notion
of composition in a broader context than before, we show
how to apply it to protect unbounded continuous attributes
and aggregate information, and we show how to use it to
rigorously account for prior data releases.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Statistical Databases; K.4.1
[Computers and Society]: Privacy

General Terms
Theory

Keywords
privacy, differential privacy

1. INTRODUCTION
With improvements in data collection technologies, in-

creased emphasis on data analytics, and the increasing need
for different parties to share datasets, the field of statis-
tical privacy is seeing an unprecedented growth in impor-
tance and diversity of applications. These applications in-
clude protecting privacy and confidentiality in (computer)
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network data collections [32], protecting privacy and iden-
tifiability in genome-wide association studies (GWAS) [19],
protecting confidentiality in Census data products [25, 15],
etc. In each case, the goal is to release useful information
(i.e. privacy-preserving query answers or a sanitized version
of the dataset) while protecting confidential information.

These applications have diverse characteristics: some data
sets are more sensitive in nature than others; some applica-
tions must protect aggregate secrets while others must pro-
tect secrets about individuals; in some cases, only certain
attributes (or attribute values) need to be protected, etc.

Furthermore, properties of the data-generating process,
such as correlations between records, play an important role.
Assumptionless privacy definitions are a myth: if one wants
to publish useful, privacy-preserving sanitized data then one
must make assumptions about the original data and data-
generating process [22, 14].

Thus application domain experts, who are frequently not
experts in privacy, cannot simply use a single generic pri-
vacy definition – they must develop a new privacy definition
or customize an existing one. Without guidance this has
resulted in ad-hoc solutions and endless cycles of attacks on
privacy, followed by proposed fixes, followed by new attacks.

At the same time, privacy experts need new methods for
analyzing new and existing privacy definitions in order to
evolve the state of the art. Many of the newer definitions
are based on “indistinguishability” – making it difficult for
attackers to distinguish between certain pairs of datasets; we
show how these approaches frequently obscure the semantics
of the privacy guarantees that are provided.

In this paper we present a new privacy framework, called
Pufferfish. This framework can be used to study existing
privacy definitions like differential privacy [12], to study im-
portant concepts like composition [17], and to generate pri-
vacy definitions that are customized for different application
domains. The Pufferfish framework follows modern design
guidelines such as adherence to privacy axioms [21, 20] and
making assumptions as explicit as possible.

The contributions of this paper are:

• A new privacy framework which provides rigorous statis-
tical semantic privacy guarantees.

• An application of the framework to differential privacy
which formalizes and then proves the statement that dif-
ferential privacy“assumes”independence between records.

• Another application to differential privacy showing how to
modify it in response to prior release of non-differentially
private information (naive applications of differential pri-
vacy can lead to a privacy breach [22]).



• An application of the framework that allows us to expand
the notion of composition between privacy definitions and
to provide conditions under which certain types of com-
position hold.

• A general application to datasets with unbounded con-
tinuous variables; in particular, we show how to prevent
an attacker from accurately inferring the value of an un-
bounded continuous attribute (both in terms of relative
and absolute error). We further show how this is related
to the protection of aggregate secrets.

The outline of the paper is as follows. In Section 2 we in-
troduce basic concepts and notation. In Section 3 we present
the Pufferfish framework. We discuss related work in Section
4. We show that Pufferfish satisfies fundamental privacy ax-
ioms in Section 5. Subsequent sections present a variety of
applications of this framework. We use Pufferfish to ana-
lyze differential privacy and prove its record-independence
assumption in Section 6. We show how to deal with contin-
uous attributes and aggregate secrets in Section 7. We use
Pufferfish to study composition in Section 8. We show how
to provide privacy while accounting for prior data releases
in Section 9.

2. NOTATION AND TERMINOLOGY
Let I be the set database instances that are possible for

a given application. For datasets that are collections of
records, we let T represent the domain of tuples, we use
the symbol t to represent a value in the domain T , and we
use the variable r to represent a record.1 For ease of expla-
nation and to simplify notation, we will assume each indi-
vidual is associated with at most one record; we note that
the Pufferfish framework does not need this assumption.

In the setting we consider, a data curator has a dataset
Data. Let records(Data) denote the set of records in
Data. To an attacker (who does not know what the dataset
is), Data represents a random variable. The data curator
will choose a privacy definition and an privacy mechanism
(algorithm) M that satisfies that privacy definition. The
data curator will then apply M to the data to obtain a san-
itized output ω ≡M(Data).

The attacker considers the true dataset Data to be a
random variable. We use the letter θ to represent a proba-
bility distribution and, for D ∈ I, we will use the notation
P (Data = D | θ) to represent the probability, under θ, that
the true dataset is D. For convenience, we summarize the
notation used in this paper in Table 1.

3. THE PUFFERFISH FRAMEWORK
The Pufferfish framework requires a domain expert to

specify three crucial components: a set of potential secrets
S, a set of discriminative pairs Spairs ⊆ S× S, and a collec-
tion of data evolution scenarios D. We now describe these
components in detail.

The set of potential secrets S, is an explicit specifica-
tion of what we would like to protect.2 Examples include
statements such as “the record for individual hi is in the
data”, “the record for individual hi is not in the data”, “the

1We treat records as random variables and tuples are the
values they can take.
2After all, we cannot provide semantic guarantees if we do
not know what the guarantees should be about.

I The set of possible database instances.
D A dataset belonging to I.

Data A random variable representing the true dataset
(which is unknown to the attacker).

T The domain of tuples.
t A value in T .

ri The ith record in a dataset.
H The set of all individuals. H = {h1, h2, . . . }
S Set of potential secrets. Revealing s or ¬s may

be harmful if s ∈ S.
σi ri ∈ records(Data): The statement that the

record ri belonging to individual hi is in the
data.

σ(i,t) ri ∈ records(Data)∧ri = t: The statement that
the record ri belonging to individual hi has value
t ∈ T and is in the data.

Spairs Discriminative pairs. Spairs ⊂ S× S.
D The set of evolution scenarios: a conservative

collection of plausible data generating distribu-
tions.

θ A probability distribution. The probability, un-
der θ, that the data equals Di is P (Data =
Di | θ).

M A privacy mechanism: a deterministic or ran-
domized algorithm (often used in the context of
a privacy definition)

Table 1: Table of Notation

query volume is 1−5 million queries”, etc. Additional exam-
ples can be found in Sections 3.2, 6, 7, and 9. A statement
s ∈ S need not be true for the actual dataset – an attacker
will form his own opinions about which statements are likely
to be true or not. In general, a domain expert should add
a statement s to the potential secrets S if either the claim
that s is true or the claim that s is false can be harmful.
The role of S is to provide a domain for the discriminative
pairs, a subset of S× S which we discuss next.

The set of discriminative pairs Spairs is a subset of
S× S. The role of Spairs is to tell us how to protect the
potential secrets S. The main intuition is that for any dis-
criminative pair (si, sj), where si ∈ S and sj ∈ S, we would
like to guarantee that attackers are unable to distinguish
between the case where si is true of the actual data and the
case where sj is true of the actual data.3 For this reason,
si and sj must be mutually exclusive but not necessarily
exhaustive (it could be the case that neither is true). One
example of a discriminative pair is (“Bob is in the table”,
“Bob is not in the table”).

The discriminative pairs allow highly customizable pri-
vacy guarantees. For example, we can specify discriminative
pairs such (“Bob has Cancer”, “Bob has AIDS”) to prevent
inference about what disease Bob has (assuming only one
disease is recorded). If, additionally we avoid specifying
(“Bob is not healthy”, “Bob is healthy”), then overall we are
allowing disclosure of whether Bob is sick or healthy, but if

3In general, this cannot be simulated by specifying all pairs
of databases (Dk, D`) where si is true of Dk and sj is true of
D` – the resulting privacy definition (instantiated by Defini-
tion 3.1) will often be too strong because such Dk, D` pairs
can differ almost arbitrarily.



he is sick we are not allowing inference about the disease.
For continuous attributes we can specify discriminative pairs
of the form (“Bob’s salary is x ± 10, 000”, “Bob’s salary is
[x + 20, 000] ± 10, 000”) for all x to say that it is not ok
to allow inference about Bob’s salary to within an absolute
error of 10, 000. We can similarly use this trick for aggre-
gates to specify that it is not ok to allow inference about
total number of sales to within 20, 000 units. Additional ex-
amples are given throughout the paper. We illustrate the
particular importance of using discriminative pairs when we
discuss continuous attributes in Section 7.

The evolution scenarios D can be viewed as a set of
conservative assumptions about how the data evolved (or
were generated) and about knowledge of potential attack-
ers. Note that assumptions are absolutely necessary – pri-
vacy definitions that can provide privacy guarantees without
making any assumptions provide little utility beyond the de-
fault approach of releasing nothing at all [22, 14]. Since the
data curator wants to release useful information, the role
of the domain expert will be to identify a reasonable set of
assumptions; in many cases, they already do this informally
[35]. More specifically, D is a set of probability distributions
over I (the possible database instances). Each probability
distribution θ ∈ D corresponds to an attacker that we want
to protect against and represents that attacker’s belief in
how the data were generated (incorporating any background
knowledge and side information). We illustrate the impor-
tance of specifying these distributions in Section 6 where we
analyze differential privacy. Below we give some examples
of possible choices of D and their interpretations.

Example 3.1 (No assumptions). D can consist of all
possible probability distributions over database instances (i.e.
including those with arbitrary correlations between records).
This corresponds to making no assumptions. We explore this
choice in Section 3.2.

Example 3.2 (I.I.D. Data). D can consist of all prob-
ability distributions over tables that generate records i.i.d.
That is, for every f that is a distribution over T (domain
of tuples), we have θf ∈ D where the distribution θf is de-
fined as: P (Data = {r1, . . . , rn} | θf ) = f(r1)×· · ·×f(rn).
Thus each attacker can have a widely different opinion about
the probability a random individual has cancer, etc. These
attackers, however, do not have knowledge about specific in-
dividuals (for this, see Example 3.3).

Example 3.3 (Independent but not I.I.D.). D can
consist of all probability distributions over tables where records
are independent but may have different distributions. That
is, D consists of all θ for which P (Data = {r1, . . . , rn} | θ)
equals f1(r1)×f2(r2)×· · ·×fn(rn) for arbitrary f1, f2, . . . , fn.
That is, an attacker may know that the first individual is a
smoker and so the corresponding record r1 will have a dif-
ferent distribution than record r2 which corresponds to an
individual who is known to be a non-smoker. This is an
extension of Example 3.2 where now attackers may have ad-
ditional information about all individuals. Many additional
variations are possible (i.e. attackers only have information
about k individuals, etc.). We shall see in Section 6 the
close connection between this example and differential pri-
vacy. Note that records here are still independent, so this
choice of D may not be appropriate to social networks where
correlations between records exist.

Role of the domain expert. The goal of our framework
is to make assumptions explicit. Thus the domain expert
needs to specify the potential secrets S and discriminative
pairs Spairs (i.e. what should be protected) and evolution
scenarios (data assumptions) D – are data records indepen-
dent, what correlation structures exist, are attributes inde-
pendent, etc. Thus to use the Pufferfish framework, the
domain expert simply does what he or she does best. Most
importantly, the domain expert is no longer required to be
a privacy expert.

Definition 3.1 (Pufferfish Privacy). Given set of
potential secrets S, a set of discriminative pairs Spairs, a
set of data evolution scenarios D, and a privacy parame-
ter ε > 0, a (potentially randomized) algorithm M satisfies
ε-PufferF ish(S, Spairs,D) privacy if

• for all possible outputs ω ∈ range(M),

• for all pairs (si, sj) ∈ Spairs of potential secrets,

• for all distributions θ ∈ D for which P (si | θ) 6= 0 and
P (sj | θ) 6= 0

the following holds4:

P (M(Data) = ω | si, θ)≤ eεP (M(Data) = ω | sj , θ) (1)

P (M(Data) = ω | sj , θ)≤ eεP (M(Data) = ω | si, θ) (2)

The probabilities in Equations 1 and 2 depend on possible
randomness in M and as well as the randomness in the data.
Note that P (si | θ) 6= 0 is a technical condition which en-
sures that the conditional probability P (· | si, θ) is defined.
Operationally, it means we should focus on attackers (and
their associated θ) who still have uncertainty about si and
sj (i.e. P (si | θ) 6= 0 and P (sj | θ) 6= 0)).

The Pufferfish framework differs from differential privacy
[12] and its variants [11, 30, 5, 3, 22, 21, 25, 27, 18, 41, 33] in
that it can provide precise guarantees about precisely what is
being protected and under what conditions the protections
hold. This enables a wide range of applications, such as
those described in Sections 6, 7, 8, and 9. Other distinctions
are discussed with related work in Section 4.1.

3.1 Semantic Guarantees
The semantic guarantees of the Pufferfish framework are

best interpreted in terms of odds and odds ratios. If E1

and E2 are mutually exclusive events, then the prior odds

of E1 and E2 is the fraction P (E1)
P (E2)

. When the odds are

equal to α, this simply means that E1 is α times as likely as
E2. If we are given a piece of information A, it may alter
the beliefs in the probabilities that E1 or E2 are true. For

this reason we call P (E1 | A)
P (E2 | A)

the posterior odds of E1 and

E2. If the prior odds and posterior odds are approximately

equal, P (E1 | A)
P (E2 | A)

/P (E1)
P (E2)

≈ 1, then the event A did not pro-

vide information that was useful in discriminating between
the case where E1 was true or E2 was true. The quantity
P (E1 | A)
P (E2 | A)

/P (E1)
P (E2)

is known as the odds ratio and reflects how

much more likely event E1 has become relative to E2 after
observing A.

4In the case of continuous outputs, these conditions are in-
terpreted in terms of the density function or the Radon-
Nikodym derivative and are required to hold almost every-
where - the ω for which the conditions are violated must
have probability 0.



In the Pufferfish framework, each probability distribu-
tion θ ∈ D corresponds to an attacker and reflects the at-
tacker’s probabilistic beliefs and background knowledge. For
all (si, sj) ∈ Spairs, all θ ∈ D for which P (si | θ) 6= 0 and
P (sj | θ) 6= 0, and all ω ∈ range(M), a simple calculation
shows that Equations 1 and 2 in Definition 3.1 are equivalent
to the condition:

e−ε ≤ P (si | M(Data) = ω, θ)

P (sj | M(Data) = ω, θ)

/P (si | θ)
P (sj | θ)

≤ eε

This is the odds ratio of si to sj and has the following inter-
pretation: if an attacker thinks si is α times as likely
as sj then after seeing the sanitized output the at-
tacker will believe si is at most eεα times and at least
e−εα times as likely as sj. In other words, for small val-
ues of ε, seeing the sanitized output ω provides nearly no
information gain to attackers who are trying to distinguish
between whether si or sj is true.

3.2 Example: Privacy with no Assumptions
As a warmup, we use Pufferfish to create a privacy def-

inition with no assumptions (a re-interpretation of no-free-
lunch privacy [22]). Let T be the domain of tuples and let
H = {h1, . . . , hN} be the set of all individuals. Define σi to
be the statement “the record belonging to individual hi is in
the data” and define σ(i,t) to be the statement “the record
belonging to individual hi is in the data and has value t”.
Define the set of potential secrets S and discriminative pairs
Spairs to be:

S = {σ1, . . . , σN} ∪ {σi,t : i = 1, . . . , N ∧ t ∈ T } (3)

Spairs =
{

(σ(i,ta), σ(i,tb)) : i = 1, . . . , N ∧ ta, tb ∈ T
}

∪ {(σi,¬σi) : i = 1, . . . , N} (4)

with the interpretation that for every individual hi we want
to avoid leaking information about whether or not the record
of hi is in the data (this is specified by the discriminative
pair (σi,¬σi)), and if an attacker already believes hi is in
the data, we want to avoid leaking information about the
value of the corresponding record (this is specified by the
discriminative pairs (σ(i,ta), σ(i,tb)) where ta and tb range
over all possible tuple values).

To get privacy with no assumptions, we must make the set
of distributional assumptions D as large as possible. That is,
we set D to be the collection of all probability distributions
over database instances (i.e. records in a database need not
be independent), as in Example 3.1.

Theorem 3.1. Let ε>0, let S and Spairs be specified as
in Equations 3 and 4 and let D be the set of all possible
distributions over database instances. Then an algorithm M
satisfies ε-PufferF ish(S, Spairs,D) if and only if for every
pair of databases D1 and D2 and every ω ∈ range(M),

e−εP (M(D2) = ω) ≤ P (M(D1) = ω) ≤ eεP (M(D2) = ω)

For proof see Appendix A. Note that the randomness here
only depends on M because each of the D1 and D2 are given
databases (and hence not random). From this warmup ex-
ample, we see that if we make no assumptions then the goal
is to prevent an attacker from distinguishing between any
possible input datasets; the result is a total lack of utility.
Note that this warmup shows a formal equivalence between
Pufferfish with no assumptions and a strawman privacy def-
inition called no-free-lunch privacy that was used in [22] as
an example of a privacy definition without utility.

4. RELATED WORK

4.1 Relation to Differential Privacy Variants
One can view the Pufferfish framework as a substantial

generalization of differential privacy. Thus we explain the
differences between Pufferfish and differential privacy [12]
and its variants [11, 30, 5, 3, 22, 21, 25, 27, 18, 41, 33].

A related framework, known as adversarial privacy [33]
allows domain experts to plug in various data generating
distributions. While there is no known equivalence between
adversarial privacy and differential privacy, Rastogi et al.
[33] have proved an equivalence between a certain instan-
tiation of adversarial privacy and a variant of differential
privacy known as ε-indistinguishability (the main difference
with differential privacy is the requirement that neighbor-
ing databases have the same size) [13]. Adversarial privacy
also only seeks to protect the presence/absence of a tuple in
the dataset. In contrast, Pufferfish is more flexible. We can
prove equivalences between instantiations of Pufferfish and
differential privacy as well as ε-indistinguishability. Puffer-
fish also allows more fine-grained protection of a tuple (such
as preventing inference of continuous attributes to within
a certain absolute error) and can handle aggregate secrets
as well. As a result, Pufferfish supports a wide variety of
applications such as those in Sections 6, 7, 8, and 9.

Zhou et al. [41] present two variants of differential pri-
vacy (δ-constrained and ZLW distributional) whose privacy
semantics are unclear. We show approximate equivalences
to instantiations of the Pufferfish framework in Section 7.3,
thereby providing approximate semantics for those defini-
tions as well.

In general, the difference between Pufferfish and related
work is the wide variety of applications it can support, such
as those discussed in this paper. This flexibility is the result
of a different philosophy about how to phrase privacy defi-
nitions. Differential privacy uses concepts like neighboring
databases (i.e. those that differ on only one tuple) and tries
to avoid making any statements about data probabilities. As
we show in Sections 6, 7.3, and 9, that approach can obscure
what semantic guarantees are provided and the conditions
under which they are provided. Pufferfish takes the opposite
approach by focusing directly on what an attacker can infer.

As with [11, 3, 41, 33], Pufferfish explicitly uses data-
generating probabilities. Furthermore, like adversarial pri-
vacy [33], Pufferfish allows more general probability distri-
butions (records do not have to be independent). This allows
us to compare Pufferfish to differential privacy and to show
that differential privacy is an instantiation of the Pufferfish
framework under an assumption of independence between
records (Section 6). The difference with those pieces of work
is the following.

The concept of neighboring databases arose in differential
privacy from the desire to protect individual records; thus
two databases are neighbors if they differ on one record.
In subsequent variations, the concept of neighbors (or some
generalization) plays a key role [11, 30, 5, 22, 21, 25, 27,
41, 18]. Of the remaining work, adversarial privacy [33]
only seeks to protect inference about the presence of a tuple,
while BLR distributional privacy [3] does not indicate what
secrets it protects. One of the distinguishing approaches
of the Pufferfish framework is that it does not search for
“the right notion of neighbors” (which can obscure what it is
we are trying to protect). Instead, it focuses on the actual



secrets to be protected S and how they are to be protected
via the discriminative pairs Spairs.

The combination of distributional assumptions and allow-
ing explicit (and arbitrary) choices of what to protect give
Pufferfish its flexibility and allow the applications described
in this paper.

4.2 Relationship to Other Work
Other privacy frameworks also exist. A large class, of

which k-anonymity [34] is perhaps the most well known, are
known as syntactic methods because they are mainly con-
cerned with the syntactic form of the outputs ω ∈ range(M)
rather than the probabilities that govern the relationship be-
tween inputs to outputs: P (M(Di) = ω). Because of this,
the resulting privacy definitions tend to be less secure and
are often subject to new kinds of attacks (see the surveys [6,
16, 1] for more details). It is also often not clear what data
assumptions those definitions are making.

The protection of aggregate information gets less atten-
tion than the problem of protecting individual records. The
protection of aggregates is most relevant to business data
where aggregates reflect different kinds of business secrets.
Much of the work in this area is called knowledge hiding
and focuses on hiding association rules, frequent itemsets,
and classification rules (e.g., [9, 7, 31, 38, 37, 28, 8, 2, 39,
10, 36, 29]) that are deemed to be sensitive. Work in this
area generally follows the syntactic paradigm and it is often
unclear what rigorous privacy guarantees can be provided
or what data assumptions are needed for ensuring privacy.

5. PUFFERFISH AND PRIVACY AXIOMS
Research in statistical privacy has been moving away from

ad-hoc privacy definitions and towards formal and rigorous
privacy definitions. The reason is that rigorous privacy def-
initions offer the promise of ending the endless cycle of dis-
covering a vulnerability in a privacy definition, proposing a
fix, finding a vulnerability in the “fixed” version, etc. (see
[6] for some examples).

To this end, recent research has started examining the
properties that privacy definitions need to have [21, 20].
Modern design guidelines for privacy definitions include 2
fundamental axioms known as transformation invariance and
convexity [20]. While the ideas contained in the axioms have
been accepted by the privacy community for a long time,
only recently has there been an insistence that privacy defi-
nitions actually satisfy them (in fact, many of the vulnera-
bilities associated with definitions such as k-anonymity are
a direct result of not satisfying those axioms [24]).

In this section we show that every privacy definition in
the Pufferfish framework satisfies both fundamental axioms,
thus ensuring that it satisfies modern design guidelines.

The axioms are:

Axiom 5.1. (Transformation Invariance [20]). If an algo-
rithm M satisfies a privacy definition and A is any algorithm
such that (1) its domain contains the range of M and (2) its
random bits (if any) are statistically independent from the
random bits (if any) of M, then the algorithm A◦M, which
first runs M on the data and then runs A on the output
should also satisfy the same privacy definition.

The justification for the transformation invariance axiom is
that A is an algorithm whose only input is the output of
M and so it simulates a data analyst who is performing a

statistical analysis using the output of M; thus it would be
strange if a privacy definition implied the output ω of M
was safe to release, but the results of the statistical analysis
on this output ω were not (many existing privacy definitions
fail to satisfy this property [20]).

Axiom 5.2 (Convexity [20]). If M1 and M2 satisfy
a privacy definition, and p ∈ [0, 1], then the algorithm Mp

which runs M1 with probability p and M2 with probability
1− p should also satisfy the privacy definition.

The convexity axiom says that a data curator is allowed to
choose any algorithm M that satisfies the curator’s chosen
privacy definition and that this choice can be randomized
(thus adding further uncertainty into the creation of sani-
tized data). Again, most proposed existing privacy defini-
tions fail to satisfy this property.

The following theorem confirms that the Pufferfish frame-
work satisfies modern privacy design guidelines.

Theorem 5.1. For every S, Spairs, D, and ε > 0, the pri-
vacy definition ε-PufferF ish(S, Spairs,D) satisfies the axioms
of convexity and transformation invariance.

For proof see Appendix B.

6. PUFFERFISH ANALYSIS OF DIFFEREN-
TIAL PRIVACY

Differential privacy [12] is a state of the art privacy def-
inition which has been very influential in modern privacy
research. It is formally defined as:

Definition 6.1 (Differential Privacy [12]). Given
a privacy parameter ε > 0, an algorithm M satisfies ε-
differential privacy if for all ω ∈ range(M) and all pairs
of datasets Di and Dj that differ on the presence of one
tuple (i.e. Di can be derived from Dj by either adding or
deleting exactly one tuple), the following holds:

P (M(Di) = ω) ≤ eεP (M(Dj) = ω)

where the probability only depends on the randomness in M.

This definition has several interpretations: (1) for small ε,
changing the value of any tuple is unlikely to change the
output of M; (2) an attacker who knows all but one tuples
will not learn much about the remaining tuple.

Because neither the definition of differential privacy nor
its interpretations mentioned any data-generating distribu-
tions, many believed that it was applicable to any setting
and that it made no assumptions about the data. These
misconceptions were challenged in recent work [18, 22].

With the Pufferfish framework, we can address these claims
in a more precise manner. We can answer questions such as:
for what data evolution scenarios D is ε-differential privacy
equal to the privacy definition ε-PufferF ish(S, Spairs,D)?. We
will see that the appropriate D requires independence be-
tween records5, thus formalizing the claim that differential
privacy assumes tuple independence.

We will do this by formulating a probabilistic model of
record independence to define the data evolution scenarios

5i.e. the assumption (depending on the application) of inde-
pendence between medical records, edges in a social network,
queries in a search log, etc.



D. With this choice of D we show that ε-differential pri-
vacy is an instantiation of the Pufferfish framework (The-
orem 6.1). We also show that if D contains distributions
with correlated records then the resulting Pufferfish instan-
tiation is strictly stronger than ε-differential privacy (Theo-
rem 6.2); alternatively, under correlations between records,
ε-differential privacy is not strong enough to guarantee that
the changes in attacker’s beliefs (viz. the semantic guar-
antees represented by the odds ratio in Section 3.1) are
bounded by a factor of eε (hence the bounds on an attacker’s
inference that result from uses of ε-differential privacy de-
grade under correlations).

To proceed, we must first specify the potential secrets S
and discriminative pairs Spairs. Let T be the domain of
tuples. Let H = {h1, h2, . . . , hN} be the set of all individ-
uals in a population of size N . Define σi to be the state-
ment ri ∈ records(Data) (i.e. “record ri belonging to in-
dividual hi is in the data”) and let σ(i,t) be the statement
ri ∈ records(Data) ∧ ri = t (i.e. “record ri belonging to
individual hi has value t and is in the data”). Let

S =
{
σ(i,t) : hi ∈ H, t ∈ T

}
∪ {¬σi : hi ∈ H} (5)

Spairs =
{

(σ(i,t),¬σi) : hi ∈ H, t ∈ T
}

(6)

Thus for any individual hi in the population H and any
possible tuple value t ∈ T , the goal is to prevent an attacker
from distinguishing whether the record ri belonging to hi
is in the data and has value t vs. the data has no record
about individual hi (this is our mathematical translation of
the goals in [12]).

For the probabilistic model, suppose each individual hi is
associated with distributions πi and fi in the following roles:

• The probability that record ri belonging to individual hi
is in the data is P (ri ∈ records(Data)) ≡ P (σi) = πi.

• P (ri = t | ri ∈ records(Data)) ≡ P (σ(i,t) | σi) = fi(t)

With this notation, the model is:

θ ≡ {π1, . . . , πN , f1, . . . , fN} (7)

P (Data | θ) =
∏

ri∈records(Data)

fi(ri)πi
∏

rj /∈records(Data)

(1− πj)

In other words, the presence/absence/record-value of each
individual is independent of the presence/absence/record-
values of other individuals. We set D to be the set of all
possible probability distributions of the form given in Equa-
tion 7 (i.e. for all possible choices of the πi and fi).

The following theorem says that under this probabilistic
model, ε-differential privacy becomes an instantiation of the
Pufferfish framework.

Theorem 6.1. Let S and Spairs be defined as in Equations
5 and 6. Let D∗ be the set of all distributions of the form
specified in Equation 7. With these choices, ε-differential
privacy is equivalent to ε-PufferF ish(S, Spairs,D∗).

See Appendix C for the proof.
The following theorem says that if we have any correla-

tions between records, then some differentially private algo-
rithms leak more information than is allowable (under the
odds ratio semantics in Section 3.1), in which case an at-
tacker’s posterior beliefs may differ significantly from the
prior beliefs depending on the strength of the correlation.

Theorem 6.2. Let S and Spairs be defined as in Equations
5 and 6. Let D∗ be the set of all distributions of the form
specified in Equation 7. If we choose the data evolution sce-
narios Dother such that Dother 6⊆ D∗ then ε-differential pri-
vacy is not equivalent to ε-PufferF ish(S, Spairs,Dother) (i.e.
with the same ε-parameter) and hence does not bound the
odds-ratio to the interval [e−ε, eε].

See Appendix D for the proof.
Similar results can be shown for ε-indistinguishability (de-

fined in [13]). The interested reader can consult Appendix
E for this result, which we contrast with [33].

7. CONTINUOUS ATTRIBUTES AND AG-
GREGATE SECRETS

One of the difficult problems in privacy-preserving data
publishing is protecting the values of continuous variables
that are not a priori bounded or which are bounded but can
take very large values (such as income). For example, many
algorithms for differential privacy do not work in the first
case (i.e. no a priori bound) [13] and provide poor utility in
the second case.

In this section we use the Pufferfish framework to pro-
vide a solution to this problem (Section 7.1). This applica-
tion shows the importance of specifying discriminative pairs
Spairs. We then show how this solution can be used to protect
aggregate secrets (Section 7.2). Finally, we use Pufferfish
to provide approximate privacy semantics for δ-constrained
α-differential privacy [41] and ZLW distributional privacy
[41] (Section 7.3); those two definitions were also designed
for continuous attributes but their semantic guarantees and
conditions under which those guarantees hold were not clear.

7.1 Protecting Continuous Attributes
As we saw in Section 6, differential privacy is designed

to make it difficult to distinguish between the case when
an individual’s record was included in the data with value
t or whether it was not in the data at all. This has to
be true whether t = 1 or t = 1, 000, 000 (e.g., in the case
where the tuple domain T = [0, 106]). To account for the
possibility that the record of one individual could dominate
an aggregate statistic such as SUM(t), an algorithm such as
the Laplace mechanism [12] needs to add noise with standard
deviation proportional to 106 in order to satisfy differential
privacy (thus potentially masking out the signal in the data).

If this loss of utility is unacceptable, the data curator may
want to relax privacy by stating requirements such as (1) an
attacker should not be able to infer any individual’s salary
to within an absolute error of less than 1, 000, or (2) an
attacker should not be able to infer any individual’s salary
to within a relative error of 10%. Both of these requirements
can be handled in the Pufferfish framework.

7.1.1 Privacy via Absolute Error
For ease of explanation, suppose that records belonging

to individuals h1, . . . , hn are known to be in the data and
suppose the data curator only collects an individual’s income
so that the domain of tuples is R+, the set of nonnegative
real numbers (hence the domain is an unbounded set). If we
are interested in preventing inference about income that is
within absolute error k, then we can proceed as follows. Let
σi,[x−k,x+k) be the statement “the income of individual hi is



in the range [x− k, x+ k)”. Define

S =
{
σi,[x−k,x+k) : i = 1, . . . , n, x ∈ [0,∞)

}
(8)

We set discriminative pairs to be neighboring intervals (note
that the intervals are half-open so that each discriminative
pair consists of mutually exclusive statements). With this
setting, we are requiring that the attackers should have diffi-
culty in distinguishing between whether someone’s income is
between y−k and y+k or a neighboring interval [y+k, y+3k)
or [y − 3k, y − k) thus ensuring that inference to within ±k
is not possible. Formally,

Spairs =
{

(σi,[x−k,x+k), σi,[x+k,x+3k)) : i=1,...,n
x∈[0,∞)

}
(9)

We can set the evolution scenarios D to be the set of all
probability distributions that assign incomes to individuals
h1, . . . , hn independently. Thus the model is:

θ ≡ [f1, . . . , fn] (10)

P (Data | θ) =
∏

ri∈records(Data)

fi(ri)

where the interpretation of the probability (as a probability
mass function or density function) depends on whether the
fi are continuous or not. We set D to be all probability
distributions of the form given in Equation 10 (i.e. for all
choices of f1, . . . , fn).

With the resulting instantiation ε-PufferF ish(S, Spairs,D),
the following lemma shows that we can answer the query
“what is the sum of the salaries” as follows. Let t1, . . . , tn
be the tuple values. Compute X +

∑n
i=1 ti where X is a

random variable drawn from the Laplace(4k/ε) distribution

with density function ε
8k
e−ε|x|/4k. Note that when the data

set size n is large, the true average salary
∑n
i=1 ti
n

and the
noisy average (i.e. this noisy sum divided by n) are very
close to each other with high probability. In contrast, satis-
fying differential privacy by adding noise to the sum would
require a distribution with infinite variance (i.e. not possi-
ble) since there is no upper bound on tuple values; thus the
relaxation created using Pufferfish allows more utility while
clearly describing the privacy lost (i.e. income is inferable
to an absolute error of ≥ k but to no smaller range).

Lemma 7.1. With S and Spairs defined in Equations 8 and
9 let D be the set of all probability distributions having the
form specified in Equation 10. The algorithm M which re-
turns X +

∑n
i=1 ti where X has density ε

8k
e−ε|x|/4k satisfies

ε-PufferF ish(S, Spairs,D).

For proof see Appendix F.

7.1.2 Privacy via Relative Error
We can extend these ideas to protect against inference

to within a prespecified relative error as well. One way to
approach this problem is to choose c ∈ (0, 1) and define
σi,[cy,y/c) to be the statement that “the income of individual
hi is in the range [cy, y/c)”. Thus, for example, to express
inference to within 10% we set c = 0.1. We define the set of
potential secrets to be:

S =
{
σi,[cy,y/c) : i = 1, . . . , n, y > 0

}
The discriminative pairs are again neighboring intervals. With
this setting, we are requiring that the attackers should have

difficulty in distinguishing between whether someone’s in-
come is in the interval [cy, y/c) – whose center in terms of
geometric mean is y – or a neighboring interval [y/c, y/c3)
or [cy, c3y), thus limiting the attacker’s ability to infer the
income to within a factor of c. Formally,

Spairs =
{

(σi,[cy,y/c), σi,[y/c,y/c3)) : i = 1, . . . , n, y > 0
}

As in the case of absolute error, we can set the evolution
scenarios D to be the set of all data-generating distribu-
tions that generate records independently (but not neces-
sarily i.i.d.):

θ ≡ [f1, . . . , fn] (11)

P (Data | θ) =
∏

ri∈records(Data)

fi(ri)

Now note that t ∈ [cy, y/c) if and only if log t ∈ [y +
log c, y− log c) and so protecting y for relative error becomes
the same as protecting log y for absolute error ± log c. Thus
this version of relative error is reduced to the case of abso-
lute error, and so we can protect tuples by applying additive
noise to the logarithm, or, equivalently by using multiplica-
tive noise.

7.2 Aggregate Secrets
In this section we discuss how Pufferfish can be used to

protect aggregate information (as in business data). The
discussion is brief because this is a simple extension of the
ideas in Sections 7.1.1 and 7.1.2; yet the discussion is neces-
sary because there is little focus in the literature on rigorous
and formal privacy guarantees for business data.6

In some cases a business may have a large dataset Data =
{r1, . . . , rn} that can be considered to be an i.i.d. sample
from some distribution. The business may decide that let-
ting the public learn about this distribution is acceptable.
The business may reason as follows: if an attacker had a
large dataset generated independently from that distribu-
tion, the attacker may learn that distribution and use it to
make inferences about the business’s own data. For exam-
ple, the attacker may use the gained knowledge about the
true distribution to infer

∑n
i=1 ri up to an additive error of

O(
√
n) with high probability (i.e. sampling error). Thus the

business may consider it acceptable to create a data release
as long as one cannot infer certain sums to within ±

√
n.

Let µ be a metric over datasets. We define σ[µ,D,δ] to be
the statement that µ(Data, D) ≤ δ and σ∗[µ,D,δ] to be the
statement that 2δ ≥ µ(Data, D) > δ. The set of potential
secrets and discriminative pairs could then be defined as:

Sδ =
{
σ[µ,D,δ] : D ∈ I

}
∪
{
σ∗[µ,D,δ] : D ∈ I

}
(12)

Spairsδ =
{

(σ[µ,D,δ], σ
∗
[µ,D,δ]) | D ∈ I

}
(13)

where δ could be set to
√
n and the data evolution scenarios

can be the set of all distributions over I in which records
are generated i.i.d. or just independently.

Note that one can union the potential secrets in Equations
12 and 8 and union the discriminative pairs in Equations
13 and 9 to protect both aggregate information and secrets
about individuals.

7.3 δ-Constrained and Distributional Privacy
Zhou et al. [41] also proposed two privacy definitions that

can be used with continuous variables. Those definitions
6Even nonrigorous approaches are rare for business data.



were introduced solely for the study of utility and their pre-
cise privacy semantics (i.e. what inferences do they protect
against) were not explained nor explored. As with differ-
ential privacy, they are phrased in terms of databases that
should be indistinguishable. As a result the privacy guaran-
tees and conditions under which they hold are not clear. We
show an approximate equivalence between those privacy def-
initions and instantiations of Pufferfish, so that the Puffer-
fish framework (approximately) subsumes those definitions
and gives them clearer privacy semantics. We start with
those definitions:

Definition 7.1. (Constrained and ZLW-Distributional Pri-
vacy [41]) Let µ be a metric and let δ > 0 and ε > 0 be
constants. Let M be an algorithm. For all ω ∈ range(M), if
the following constraints hold

e−εP (M(D2) = ω) ≤ P (M(D1) = ω) ≤ eεP (M(D2) = ω)

• whenever D1 and D2 differ on the value of 1 tuple and
µ(D1, D2) ≤ δ then algorithm M satisfies δ-constrained
ε-differential privacy.

• If those conditions hold when (1) D1 and D2 belong to a
prespecified countable subset S ⊂ I and (2) µ(D1, D2) < δ
and (3) D1 ∩ D2 6= 0 then algorithm M satisfies ZLW
(ε, δ)-distributional privacy7.

First, note that δ-constrained ε-differential privacy with met-
ric µ is equal to ZLW (ε, δ∗)-distributional privacy with a
properly chosen metric µ∗ that combines Hamming distance
with the metric µ, an appropriate choice of δ∗, and setting
S = I. Thus, we can focus only on ZLW distributional pri-
vacy. Second, the condition D1∩D2 = ∅ is also not necessary
since it can also be achieved by proper choice of metric (we
therefore drop this condition to increase generality). Third,
it is not clear what (if any) privacy semantics are produced
by the condition D1, D2 ∈ S. Thus we remove this condition
(i.e. set S = I) and use Pufferfish to provide approximate
semantics to the resulting definition:

Definition 7.2. (Modified ZLW-Privacy). Let µ be a
metric and let δ > 0 and ε > 0 be constants. An algo-
rithm M satisfies (ε, δ)-modified ZLW privacy if for every
ω ∈ range(M) and every pair of databases D1, D2 such that
µ(D1, D2) ≤ δ, the following conditions hold:

e−εP (M(D2) = ω) ≤ P (M(D1) = ω) ≤ eεP (M(D2) = ω)

The approximate equivalence (subject to a mild condition
on µ) to a Pufferfish instantiation is the following:

Theorem 7.1. Let µ be a metric over database instances
such that whenever µ(D1, D2) ≤ δ there exists8 a D∗ ∈ I
with µ(D1, D

∗) ≤ δ and µ(D2, D
∗) > δ. Let ε > 0 and

δ > 0. Set Sδ as in Equation 12 and Spairsδ as in Equation
13. Define D to be the set of distributions over dataset in-
stances with n records where record values are independent
(e.g., all distributions of the form given in Equation 11).
If M satisfies ε-PufferF ish(Sδ, Spairsδ,D) then it also satis-
fies (ε, δ)-modified ZLW privacy; conversely, if M satisfies
(ε, δ)-modified ZLW privacy then it satisfies the definition
4ε-PufferF ish(Sδ, Spairsδ,D) (i.e. up to a four-fold degrada-
tion of semantic guarantees in terms of odds-ratio).
7We use the prefix ZLW to distinguish it from the distribu-
tional privacy definition introduced in [3].
8This condition is achieved, for example, by the L1 norm,
L2 norm, etc. as long as δ is less than the radius of I.

For proof, see Appendix G. Thus although the precise pri-
vacy semantics of the ZLW privacy definitions [41] are un-
known, the ideas discussed in Sections 7.1.1, 7.1.2, and 7.2
combined with Theorem 7.1 show that the Pufferfish frame-
work can give the ZLW privacy definitions some approximate
semantics in terms of an odds-ratio bound of 4eε when pro-
tecting secrets about a database to within absolute error (as
defined by the metric µ) of ±δ.

8. COMPOSITION
Given a privacy definition, the notion of composition [17]

refers to the degradation of privacy due to two independent
data releases. For example, Alice may choose two algorithms
M1 and M2 (whose random bits are independent of each
other), run both on the same data and publish both results.
Alternatively, Alice and Bob may have overlapping datasets;
they can each run an algorithm MAlice and MBob (possibly
satisfying different privacy definitions) on their own dataset
and output the result. It is known that privacy can degrade
in those instances. For example, two independent releases
of k-anonymous tables can lead to a privacy breach [17].
Also, a differentially private release combined with a release
of deterministic statistics can also lead to a breach [22]. On
the other hand, differential privacy composes well with itself:
if Alice uses an ε1-differentially private algorithm and Bob
uses an ε2-differentially private algorithm, the result (from
an attacker’s perspective) is the same as if Alice and Bob
pooled their data and used an (ε1 + ε2)-differentially private
algorithm.

Properly handling multiple data releases requires a mix-
ture of policy and technological solutions. If Alice is plan-
ning multiple data releases, Alice needs to account for in-
formation leaked by her prior data releases. If Alice and
Bob are planning to release sanitized data, they need to co-
ordinate their efforts if their raw data are correlated. That
is, they need to agree on a technological solution that guar-
antees that the combination of their data releases will not
breach privacy.

8.1 Pufferfish View of Composition
Since the Pufferfish framework provides a wide variety of

privacy definitions, it allows us to study composition more
generally. The key point is that, as before, we need to specify
probabilistic assumptions about how datasets are related.

Suppose Alice has a dataset DataAlice and Bob has a
dataset DataBob. Alice announces that she will use a pri-
vacy definition PufferF ish(S, Spairs,D) to publish a sanitized
version of her data and Bob announces that he will use a pri-
vacy definition Priv (which need not belong to the Pufferfish
framework). Alice would like to examine the consequences
to privacy that can occur when they both release sanitized
data using their chosen privacy definitions.

In order for Alice to study how her privacy definition com-
poses with possible data releases from Bob, she needs to
consider all the different plausible relationships between her
dataset and Bob’s dataset. Thus she also needs to specify
a set Cond of conditional probability distributions of Bob’s
data given her own.9 Each φ ∈ Cond specifies a conditional
probability distribution P (DataBob = D′ | DataAlice =

9Thus we decompose the joint distribution of DataAlice and
DataBob into the marginal distribution of DataAlice and
the conditional distribution of DataBob given DataAlice.



D,φ). The distributions φ ∈ Cond and θ ∈ D combine to
form a joint distribution:

P (DataBob ∧DataAlice | φ, θ)
= P (DataBob | DataAlice, φ)P (DataAlice | θ)

Alice can then reason as follows. For the moment, sup-
pose Bob has already chosen to apply an algorithm A to his
data. Alice can study the effect of releasing the output of
M(DataAlice) by considering the distributions in θ ∈ D and
φ ∈ Cond. Simulating an adversary’s reasoning, for each
(si, sj) ∈ Spairs, ω ∈ range(M), ω∗ ∈ range(A), she derives:

P (A(DataBob) = ω∗ ∧M(DataAlice) = ω | si, φ, θ)

=

∫ (
P (M(D)=ω)P (DataAlice=D) | si,θ)

×E[P (A(DataBob)=ω∗) | DataAlice=D,φ]

)
dD (14)

where, E [P (A(DataBob) = ω∗) | DataAlice = D,φ]

=

∫
P
(
A(D′) = ω∗

)
P
(
DataBob = D′|DataAlice = D,φ

)
dD′

is the averaged conditional probability (using distribution
φ ∈ Cond) of seeing Bob’s sanitized output ω∗ given that
Alice’s dataset is D.

The significance of Equation 14 is that an attacker who
uses the distributions θ ∈ D and φ ∈ Cond to reason about
the joint data release would reason in the exact same way
in an alternate universe in which Bob releases nothing and
Alice releases information about her dataset using an algo-
rithm M?

φ,A,M with range(M)×range(A) and which outputs
the pair (ω, ω∗) with probability P [M?

φ,A,M(D) = (ω, ω∗)] =

P (M(D) = ω)E
[[[
P (A(DataBob) = ω∗)|DataAlice = D,φ

]]]
.

Thus to study the privacy properties of this joint data re-
lease, Alice only needs to study the algorithms of the form
M?
φ,A,M (for all choices of φ ∈ Cond, all M satisfying her

privacy definition, and all A satisfying Bob’s privacy def-
inition). In particular, she can ask when M?

φ,A,M (for all
choices of φ,M,A) satisfies ε′-PufferF ish(S, Spairs,D) (i.e.
her privacy definition with a different privacy parameter ε′).

8.2 Self-composition
In this section, we study a special case of the discus-

sion in the previous section. We call this special case self-
composition. This is a helpful property for privacy defini-
tions to have since it is useful in the design of algorithms.
In self-composition, Alice plans multiple independent re-
leases of her own data (i.e. the Alice and Bob from the
previous section are the same person, and Cond consists
of the trivial conditional probability where P (DataBob =
D | DataAlice = D) = 1).

Thus, Alice has a dataset Data, announces a privacy def-
inition ε-PufferF ish(S, Spairs,D) and chooses two algorithms
M1 and M2 (with independent sources of randomness) that
satisfy this definition. Alice computes ω1 = M1(Data) and
ω2 = M2(Data) and releases the sanitized output (ω1, ω2)
to the public.

From the previous section, we see that this is the same as
if Alice had used an algorithm M∗M1,M2

whose range equals
range(M1)× range(M2) and with the probabilistic behavior
P
[
M∗M1,M2

(D) = (ω1, ω2)
]

= P (M1(D) = ω1)P (M2(D) =
ω2). Ideally, M∗M1,M2

still satisfies Alice’s chosen instantia-
tion of the Pufferfish framework with some privacy parame-
ter ε′. This brings up the notion of linear self-composition:

Definition 8.1. (Linear Self-composition). We say that

PufferF ish(S, Spairs,D) self-composes linearly if ∀ε1, ε2 > 0,
all M1 satisfying ε1-PufferF ish(S, Spairs,D) and all M2 sat-
isfying ε2-PufferF ish(S, Spairs,D), the algorithm M∗M1,M2

sat-
isfies (ε1 +ε2)-PufferF ish(S, Spairs,D), where M∗M1,M2

is the
algorithm with range(M∗M1,M2

) = range(M1) × range(M2)

such that for all D ∈ I, P
[
M∗M1,M2

(D) = (ω1, ω2)
]

=
P [M1(D) = ω1]P [M2(D) = ω2]

Linear self-composition is useful for algorithm design be-
cause it allows Alice to split a complicated algorithm M into
a collection of simpler algorithms M1, . . . ,Mk and allocate
her overall privacy budget ε among them [26].

8.2.1 Sufficient conditions for self-composition
In general, not all instantiations of the Pufferfish frame-

work will self-compose linearly. Furthermore, it is not always
easy to tell if a particular instantiation will self-compose lin-
early. However, we provide an important class of sufficient
conditions called universally composable evolution scenarios.

When domain experts create instantiations of the Puffer-
fish framework, they add more and more probability distri-
butions θ into the evolution scenarios D to create a reason-
able (yet conservative) set of data-generating distributions.
Each evolution scenario θ adds an additional constraint that
an algorithm M must satisfy.

If we have a privacy definition PufferF ish(S, Spairs,D) that
self-composes linearly, it can happen that adding more evo-
lution scenarios (i.e. replacing D with a strict superset D′)
will break the composition property. However, there are
some θ that we can always add without worrying about
breaking composition. We refer to these special θ as uni-
versally composable evolution scenarios.

Definition 8.2. (Universally composable evolution sce-
narios). Given S and Spairs, we say that θ is a universally
composable evolution scenario for Spairs if the privacy defini-
tion PufferF ish(S, Spairs,D∪{θ}) self-composes linearly when-
ever PufferF ish(S, Spairs,D) self-composes linearly.

Universally composable evolution scenarios have a very
special form.

Theorem 8.1. Given S and Spairs, the probability distri-
bution θ is a universally composable evolution scenario for
Spairs if and only if for all (si, sj) ∈ Spairs having P (si | θ) 6=
0 and P (sj | θ) 6= 0 there exist datasets Di, Dj ∈ I such that
P (Data = Di | si, θ) = 1 and P (Data = Dj | sj , θ) = 1

See Appendix H for the proof.
The interesting aspect of Theorem 8.1 is that when the set

of evolution scenarios D consists solely of universally com-
posable evolution scenarios, then the resulting instantiation
of the Pufferfish framework is a neighbor-based definition
similar to differential privacy.

That is, let θ ∈ D be a universally composable evolution
scenario and let (si, sj) ∈ S be a discriminative pair with
nonzero probability under θ and Di, Dj ∈ I be the datasets
associated with θ by Theorem 8.1. Then Di and Dj can be
considered “neighbors” and the Pufferfish constraints (Equa-
tions 1 and 2 in Definition 3.1) become:

P (M(Di) = ω) ≤ eεP (M(Dj) = ω)

P (M(Dj) = ω) ≤ eεP (M(Di) = ω)

with randomness only depending on M.



In the case of differential privacy, those universally com-
posable evolution scenarios θ are those for which there exist
databases D1 and D2 that differ only on one tuple and have
P (Data = D1 | θ)+P (Data = D2 | θ) = 1. Note that The-
orem 6.1 says that we can further increase D to include all of
the other distributions that generate records independently
without change to the privacy guarantees, and Theorem 6.2
says that differentially private algorithms may leak too much
information if we include any other distributions (i.e. those
with correlated records).

9. DIFFERENTIAL PRIVACY WITH DETER-
MINISTIC CONSTRAINTS

It was shown in [22] that differential privacy does not
compose well with deterministic data constraints such as
those caused by previous deterministic releases of informa-
tion. That is, when a data curator provides exact query
answers about the data and subsequently publishes addi-
tional information using ε-differential privacy, the combined
data releases can leak much more information than each of
the 2 releases in isolation. Constraints caused by determin-
istic releases of information are often the result of legal or
contractual obligations (e.g., the U.S. Decennial Census).

Prior work [22] proposed a modification of differential pri-
vacy, called induced neighbors privacy [22] to account for
prior deterministic data releases. As with many variants
of differential privacy, it was a “neighbors-based” based def-
inition that tried to make certain pairs of databases (i.e.
neighbors) indistinguishable from each other. As we have
shown in Sections 6 and 7, this can obscure privacy guar-
antees and the conditions under which the guarantees hold.
Viewed through the Pufferfish lens, induced neighbors pri-
vacy does not properly bound the attacker’s odds ratio (the
main reason being that neighbor-based privacy definitions
often cannot explicitly mention what secrets to protect).

In this section we extend the discussion of composition
from Section 8 to show how to use Pufferfish to modify dif-
ferential privacy in a way that takes into account arbitrary
deterministic constraints (not just those caused by prior de-
terministic releases of data). The result is a privacy defini-
tion with precise semantic guarantees and clearly specified
assumptions under which they hold. We also show some
conditions under which induced neighbors privacy [22] is ac-
tually equivalent to an instantiation of the Pufferfish frame-
work, thus providing induced neighbors privacy with precise
semantic guarantees in those situations.

9.1 Preliminaries
Several types of constraints are common (some of them

result from deterministic releases of data):

• Counts: The number of tuples in the dataset or the num-
ber of AIDS patients with age less than 25 are pieces
of knowledge that impose count constraints. These con-
straints are often called marginal constraints, and can be
represented as a constraint like

∑
r∈records(Data) g(r) = C,

where g is a function from the tuple domain T to {0, 1},
and C is an integer. For instance, to encode a constraint
about the number of AIDS patients with age less than 25,
one can choose g such that g(t) = 1 only when t is a tuple
with AIDS and age less than 25, and g(t) = 0 otherwise.

• Univariate Histograms: These are a special kind of count
constraints

∑
r∈records(Data) gi(r) = Ci (for i = 1, . . . , k)

where the gi have disjoint supports (i.e. if for some t ∈ T
we have gi(t) = 1 then gj(t) = 0 for all other j). Such
constraints capture a variety of statistics that might be
known about a database, including the total number of
rows, number of tuples satisfying a set of mutually ex-
clusive properties, as well as the results of bucketization
algorithms that are common in the k-anonymization and
`-diversity literature.

• General Deterministic Constraints: In general, de-
terministic constraints eliminate some of the databases
from the domain of database instances I. Such a gen-
eral constraint Q can be formally described as a function
Q : I → {0, 1} such that Q(D) = 0 means D is not pos-
sible (i.e. does not satisfy the constraint) and Q(D) = 1
means D is a possible.

Example 9.1. Let us give an example of a general con-
straint that will help illustrate the benefits of Pufferfish and
distinguish it from neighbor-based privacy definitions. Sup-
pose there are n students with ID numbers ranging from 1
to n. They are scheduled take an oral exam in the order
determined by their id numbers. The dataset Data tracks
whether or not a student has taken the exam. Initially Data
consists of n records with value 0. After student i takes the
exam, the ith record is set to 1. At any point in time, the
database Data can be in only one of the n+1 states defined
by the constraint Q: ∃k∀i ≤ k, ri = 1

∧
∀i > k, ri = 0, as

shown below.

D0 D1 D2 . . . Dn−2 Dn−1 Dn
0 1 1 . . . 1 1 1
0 0 1 . . . 1 1 1
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1 1
0 0 0 . . . 0 0 1

Suppose at some time point, the data curator wants to
release the current number of students who have taken the
exam without revealing who has or has not taken the test.
The Laplace mechanism, which satisfies ε-differential pri-
vacy, would add noise with density f(x) = 1

2ε
e−|x|/ε to the

current number of students who have taken the exam. When
n, the number of total students, is large, this strategy leaks
too much information. For example, if the noisy answer is
close to 0, the true value was probably not n and so the nth

student probably has not yet taken the exam. As we shall
see, it is not possible to release meaningful information in
this situation, but differential privacy does not warn us about
it (neither will induced-neighbors privacy, Definition 9.2).

Induced neighbors privacy [22] uses the following definitions:

Definition 9.1. (Move [22]). Given a database D, a move
m is a process that adds or deletes a tuple from D, resulting
in a database m(D).

Definition 9.2. (Induced Neighbors NQ [22]). Given a
general constraint Q, let IQ be the set of databases satisfying
those constraints. Let Da and Db be two databases. Let nab
be the smallest number of moves necessary to transform Da
into Db and let {m1, . . . ,mnab} be the set of those moves.
We say that Da and Db are neighbors induced byQ, denoted
as NQ(Da, Db) =true, if the following holds.

• Da ∈ IQ and Db ∈ IQ.

• No subset of {m1, . . . ,mnab} can transform Da into some
Dc ∈ IQ.



Definition 9.3. (Induced Neighbors Privacy). An algo-
rithm M satisfies induced neighbor privacy with constraint
Q, if for each output ω ∈ range(M) and for every pair
D1, D2 of neighbors induced by Q, the following holds:

P (M(D1) = ω) ≤ eεP (M(D2) = ω)

It is easy to see that the Laplace mechanism from Example
9.1 also satisfies induced neighbor privacy for this particular
scenario since all induced neighbors are pairs (Di, Di+1). We
compute the amount of information leakage (Example 9.2)
after considering the Pufferfish view.

9.2 Pufferfish with Deterministic Constraints
Following the notation from Section 6 (also see Table 1

containing our notation), define:

S =
{
σ(i,t)) : hi ∈ H, t ∈ T

}
∪ {¬σi : hi ∈ H} (15)

Spairs =
{

(σ(i,t),¬σi) : hi ∈ H, t ∈ T
}

(16)

∪
{

(σ(i,t), (σt,t′)) : hi ∈ H, t, t′ ∈ T
}

Thus, the goal is to prevent an attacker from (a) learn-
ing whether the record of individual hi is in the data, and
(b) distinguishing between two possible values of ri (in case
hi is known to be in the data). The data evolution scenarios
D∗Q is the set of all probability distributions with the fol-
lowing form (i.e., they generate records independently con-
ditioned on Q):

θ ≡ {π1, . . . , πN , f1, . . . , fN ,Q} (17)

P (Data | θ) = 0, if Q(Data) = 0

=
1

ZQ

∏
ri∈records(Data)

fi(ri)πi
∏

rj /∈records(Data)

(1− πj), otherwise

where the normalization constant ZQ = P (Q(Data) = 1).
We show that ε-induced neighbors privacy is a necessary

condition for guaranteeing ε-PufferF ish(S, Spairs,D∗Q), for
any general constraint Q.

Theorem 9.1. (Necessary Condition). Given a general
constraint Q, if M satisfies ε-PufferF ish(S, Spairs,D∗Q) then
M satisfies ε-induced neighbors privacy with respect to Q.

For proof see Appendix I. However, the next example shows
ε-induced neighbors privacy is not sufficient, hence does guar-
antee an attacker’s odds ratio is bounded within [e−ε, eε].

Example 9.2. Continuing Example 9.1, we show that the
Laplace mechanism, which satisfies both ε-differential pri-
vacy and ε-induced neighbors privacy, does not satisfy ε-
PufferF ish(S, Spairs,D∗Q).

Consider a θ of the form given in Equation 17 such that
for all i, fi(0) = fi(1) = 0.5, πi = 1. Thus all the allowable
datasets D0, . . . , Dn from Example 9.1 are equally likely un-
der θ. Consider the discriminative pair (σ(1,0), σ(1,1)) and
note that if record 1 has value 0 then, according to our con-
straints, so do all records r` for ` > 1, so D0 is the only
dataset for which σ(1,0) can be true.

P (M(Data) = n | σ(1,1), θ)

=

n∑
j=1

P (M(Dj) = n)

n
=

n∑
j=1

ε

2n
e−ε(n−j)

> eε · ε
2
e−εn = eε · P (M(Data) = n | σ(1,0), θ)

Therefore satisfying ε-differential privacy or induced neigh-
bors privacy in this situation does not bound an attacker’s
odds-ratio to the range [e−ε, eε].

In this situation, ε-PufferF ish(S, Spairs,D∗Q) requires

∀Di, Dj , P (M(Di) = ω) ≤ eε · P (M(Dj) = ω) (18)

The condition is clearly sufficient. Necessity can be shown
by considering the output ω = n, and different priors θi that
assign fj(1) = 1 − δ for j ≤ i, and fj(1) = δ otherwise,
where δ tends to zero. These priors capture different adver-
saries who believe strongly (with high prior probability) that
i students have taken the exam.

Pufferfish tells us (via Equation 18) that we cannot release
meaningful data in this situation because it reduces to the
condition that attackers should not be able to distinguish
between any pair of valid datasets. However, we next show
that it is possible to release meaningful data for a broad
class of typical constraints.

9.3 Pufferfish with Univariate Histograms
Univariate histograms, as defined in Section 9.1, form an

important subclass of constraints. For instance, the Cen-
sus Bureau is legally obliged to publish the exact number
of people living in each state [4]. A search engine is con-
tractually bound to report to an advertiser the number of
users who have clicked on ads using mutually exclusive pre-
defined ranges (e.g., 100 − 200 clicks). Another interesting
use case occurs when there has been a prior release of data
using a mechanism Muni based on statistical disclosure limi-
tation techniques like partitioning and microaggregation [1],
or bucketization algorithms based on syntactic privacy no-
tions like k-anonymity (with say k = 10, 000), `-diversity,
etc. [6, 23, 40]. The output of Muni in all the above cases
is a univariate histogram. In all these cases, we can provide
additional releases of information by using Pufferfish to limit
any further inference an attacker could make.

In fact, for those cases, ε-induced neighbor privacy be-
comes an instantiation of the Pufferfish framework (Theo-
rems 9.1 and 9.2).

Theorem 9.2. (Sufficient Condition for Univari-
ate Histograms). Given a univariate histogram constraint
Quni : {

∑
t∈Data gi(t) = C}, define S and Spairs as in

Equations 15 and 16 and let D∗Q be the set of all distribu-
tions with form specified in Equation 17. Then M satisfies
ε-PufferF ish(S, Spairs,D∗Quni) if M satisfies ε-induced neigh-
bors privacy with respect to Quni.

For proof see Appendix I. Thus the algorithms proposed in
[22] can be used in this case to bound an attacker’s inference.

An important question that was left open in [22] is whether
induced neighbor privacy is linear self composable. Theo-
rems 9.1 and 9.2 allow us to answer this question. Since
ε-PufferF ish(S, Spairs,D∗Quni) and induced neighbor privacy
(for univariate histograms) are equivalent definitions, it is
easy to see that the former can be written solely in terms
of universally composable evolution scenarios, proving that
ε-PufferF ish(S, Spairs,D∗Quni) composes with itself linearly.
This means that, for a database with a prior univariate his-
togram release Quni, and further releases using M1 and M2

that satisfy PufferF ish(S, Spairs,D∗Quni) with parameters ε1
and ε2, respectively, the combined mechanism MM1,M2 guar-
antees (ε1 + ε2)-PufferF ish(S, Spairs,D∗Quni).



10. CONCLUSIONS
We presented the Pufferfish framework, a new and gen-

eral framework that allows application domain experts to
develop rigorous privacy definitions for their data sharing
needs. The framework allows the domain experts to cus-
tomize privacy to the specific set of secrets and data evo-
lution scenarios that are typical in that domain. We used
our general framework to prove the statement that differ-
ential privacy assumed independence between records, and
define and study notions of composition in a broader con-
text than before. We also applied the framework to derive
rigorous definitions for handling unbounded continuous at-
tributes, protecting aggregate information, and prior deter-
ministic data releases.
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APPENDIX
A. PROOF OF THEOREM 3.1

Theorem A.1. (Restatement and proof of Theorem 3.1).
Given a privacy parameter ε, let S and Spairs be specified as
in Equations 3 and 4 and let D be the set of all possible
distributions over database instances. Then an algorithm M
satisfies ε-PufferF ish(S, Spairs,D) if and only if for every
pair of databases D1 and D2 and every ω ∈ range(M),

e−εP (M(D2) = ω) ≤ P (M(D1) = ω) ≤ eεP (M(D2) = ω)

Proof. Case 1: Let M be an algorithm that satisfies
ε-PufferF ish(S, Spairs,D).

Let D1 and D2 be any two distinct tables. Since they
are not equal, they either differ on (1) the individuals whose
records they contain, and/or (2) the value of some common
individual’s record. In any case, there exists a discriminative
pair (s, s∗) ∈ Spairs such that the potential secret s is true for
D1 and s∗ is true for D2. Define a probability distribution θ
so that P (D1 | θ) = 1/2 and P (D2 | θ) = 1/2. Clearly θ ∈ D
because D contains all probability distributions. Recalling
the notation that Data is a random variable governed by θ,
we have P (M(Data) = ω | s, θ) = P (M(D1) = ω) because
D1 is the only possible dataset (according to the distribution
θ) for which s is true. Note also that P (M(D1) = ω) is a
statement about the randomness in M1 only (for the θ that
we chose, conditioning on s made everything deterministic).
Similarly P (M(Data) = ω | s∗, θ) = P (M(D2) = ω). Thus
since M satisfies the instantiation of Pufferfish,

P (M(D1) = ω) = P (M(Data) = ω | s, θ)
≤ eεP (M(Data) = ω | s∗, θ)
= eεP (M(D2) = ω)

Similarly, P (M(D2) = ω) ≤ eεP (M(D1) = ω). Since D1

and D2 are arbitrary, this finishes the “only if” part of the
proof.

Case 2: Now we show the “if” direction (i.e. if M satisfies
the conditions listed in Theorem 3.1 it also satisfies this
instantiation of Pufferfish).

Pick any discriminative pair (s, s∗) ∈ Spairs.

P (M(Data) = r | s, θ)

=

∫
P (M(D) = ω)P (Data = D | s, θ) dD

=

∫ [
P (M(D)=ω)(

∫
P (Data=D′ | s∗,θ) dD′)

×P (Data=D | s,θ)

]
dD

=

∫ [
(
∫
P (M(D)=ω)P (Data=D′ | s∗,θ) dD′)

×P (Data=D | s,θ)

]
dD

≤ eε
∫ [

(
∫
P (M(D′)=ω)P (Data=D′ | s∗,θ) dD′)

×P (Data=D | s,θ)

]
dD

(because P (M(D) = ω) ≤ eεP (M(D′) = ω))

= eε
(∫

P (M(D′) = ω)P (Data = D′ | s∗, θ) dD′
)

×
∫
P (Data = D | s, θ) dD

= eε
∫
P (M(D′) = ω)P (Data = D′ | s∗, θ) dD′

= eεP (M(Data) = ω | s∗, θ)

A similar calculation shows that P (M(data) = ω | s∗, θ) ≤
eεP (M(data) = ω | s, θ) and so M also satisfies this instan-
tiation of Pufferfish.

B. PROOF OF THEOREM 5.1

Theorem B.1. (Restatement and proof of Theorem 5.1).
For every S, Spairs, D, and ε > 0, the privacy definition ε-
PufferF ish(S, Spairs,D) satisfies the axioms of convexity and
transformation invariance.

Proof. Note that we are using measure-theoretic nota-
tion that unifies sums and integrals.

Step 1: First we prove it satisfies the axiom of transfor-
mation invariance. Let M be an algorithm that satisfies
ε-PufferF ish(S, Spairs,D) and let A be any algorithm whose
domain contains the range of M and whose random bits
are independent from those of M. For any (si, sj) ∈ S,
ω∗ ∈ range(A), and θ ∈ D such that P (si | θ) 6= 0 and
P (sj | θ) 6= 0,

P (A(M(Data)) = ω∗ | si, θ)

=

∫
P (A(M(D)) = ω∗)P (Data = D | si, θ) dD

=

∫∫
P (A(ω) = ω∗)P (M(D) = ω)P (Data = D|si, θ) dω dD

=

∫
P (A(ω) = ω∗)

∫
P (M(D) = ω)P (Data = D|si, θ) dD dω

=

∫
P (A(ω) = ω∗)P (M(Data) = ω | si, θ) dω

≤ eε
∫
P (A(ω) = ω∗)P (M(Data) = ω | sj , θ) dω

(Switching from si to sj with a multiplier of eε since M

satisfies this instantiation of Pufferfish)

= eεP (A(M(Data)) = ω∗ | sj , θ)

Similarly, P (A(M(Data)) = ω∗ | sj , θ) ≤ eεP (A(M(Data)) =
ω∗ | si, θ). Thus A◦M also satisfies the privacy definition.
Step 2: Now we prove that it satisfies the axiom of convex-
ity. Let M1 and M2 be algorithms that satisfy the privacy
definition ε-PufferF ish(S, Spairs,D), let p ∈ [0, 1] and let Mp

be the algorithm that runs M1 with probability p and M2

with probability 1− p. For any ω ∈ range(Mp),

P (Mp(Data) = ω | si, θ)
= pP (M1(Data) = ω | si, θ)

+(1− p)P (M2(Data) = ω | si, θ)
≤ eεpP (M1(Data) = ω | sj , θ)

+eε(1− p)P (M2(Data) = ω | sj , θ)
= eεP (Mp(Data) = ω | sj , θ)

and similarly P (Mp(Data) = ω | sj , θ) ≤ eεP (Mp(Data) =
ω | si, θ). Thus Mp also satisfies the privacy definition.

C. PROOF OF THEOREM 6.1

Theorem C.1. (Restatement and proof of Theorem 6.1).
Let S and Spairs be defined as in Equations 5 and 6. Let D∗ be
the set of all distributions of the form specified in Equation
7. With these choices, ε-differential privacy is equivalent to
the privacy definition ε-PufferF ish(S, Spairs,D∗).



Proof. Case 1: We first show that a mechanism sat-
isfying ε-PufferF ish(S, Spairs,D∗) also satisfies ε differential
privacy.

Let D1 and D2 be two databases such that D2 is obtained
from D1 by deleting one tuple. Let {rj1 , . . . , rjn} be the
records in D1 (corresponding to individuals {hji , . . . , hjn})
with values rj1 = tj1 , . . . , rjn = tjn . Let j1 be used to de-
note the index of the individual whose record was dropped,
so that D2 is obtained from D1 by dropping record rj1 . De-
fine πj1 = 1/2. Then define πj2 = . . . πjn = 1 and π` = 0 for
all individuals h` whose records do not appear in D1. Define
fj1(tj1) = · · · = fjn(tjn) = 1 (and 0 for all other tuple val-
ues). Define f` arbitrarily for all individuals h` who do not
appear in D1. Set θ = {π1, . . . , πN , f1, . . . , fN}. With this
setting, D1 and D2 are the only two datasets with nonzero
probability, D1 is the only dataset with nonzero probability
for which σ(j1,tj1 ) is true, and D2 is the only dataset with

nonzero probability for which ¬σj1 is true. Now, since M
satisfies ε-PufferF ish(S, Spairs,D∗), we have:

P (M(Data) = ω | σ(j1,tj1 ), θ) ≤ eεP (M(Data) = ω | ¬σj1 , θ)

⇔ P (M(D1) = ω | σ(j1,tj1 ), θ) ≤ eεP (M(D2) = ω | ¬σj1 , θ)

⇔ P (M(D1) = ω) ≤ eεP (M(D2) = ω)

Which is one of the differential privacy constraints. A simi-
lar calculation shows that M must satisfy P (M(D2) = ω) ≤
eεP (M(D1) = ω). Repeating this calculation for all choices
of D1 and D2 that differ in the presence of one tuple shows
that M satisfies ε-differential privacy.

Case 2: We now show that a mechanism satisfying ε
differential privacy also satisfies ε-PufferF ish(S, Spairs,D∗).
Choose an individual hj1 , an arbitrary tj1 ∈ T and an arbi-
trary θ = {π1, . . . , πN , f1, . . . , fN} of record-generating dis-
tributions. We use the notation D ∪ {rj1 = tj1} to denote
a dataset formed from D by adding the record rj1 (belong-
ing to individual hj1) with value tj1 and D \ {rj1 = tj1} to
denote the dataset formed by the removal from D of this
record (this notation is only defined if D contains the record
for hj1 and the value of the record is tj1). Since M satisfies
ε-differential privacy, we have:

P (M(Data) = ω) | σ(j1,tj1 ), θ)

=

∫
P (Data = D,M(D) = ω | σ(j1,tj1 ), θ) dD

≤ eε
∫
P
(

Data=D
M(D\{rj1=tj1})=ω

∣∣∣ σ(j1,tj1 ), θ
)
dD

by definition of differential privacy

= eε
∫
P

(
Data=D\{rj1=tj1}
M(D\{rj1=tj1})=ω

∣∣∣ ¬σj1 , θ) dD

because under the probabilistic model (Equation 7),

we have equality between P (Data = D | σ(j1,tj1 ), θ)

and P (Data = D \ {rj1 = tj1} | ¬σj , θ)

= eε
∫
P (Data = D,M(D) = ω | ¬σj1 , θ) dD

= eεP (M(Data) = ω) | ¬σj1 , θ)

Similarly, P (M(Data) = ω) | ¬σj1 , θ) ≤ eεP (M(Data) =
ω) | σ(j1,tj1 ), θ) also holds. Since j1, tj1 , and the distribution

θ = {π1, . . . , πN , f1, . . . , fN} were arbitrary the same must
hold for all (σi,t, ¬σi) ∈ Spairs and so M must also satisfy
ε-PufferF ish(S, Spairs,D∗).

D. PROOF OF THEOREM 6.2

We first need a technical lemma. We use the notation
D∪{rj = tj} to denote a dataset formed from D by adding
the record rj (belonging to individual hj) with value tj

Lemma D.1. Let D∗ be the the set of all probability dis-
tributions having the form given in Equation 7. Then D∗ is
precisely the set of distributions for which the conditional
probabilities P (Data = D | ¬σi) and P (Data = D ∪
{rj = tj} | σ(i,t)) are equal for all D ∈ I, i = 1, . . . , N
and t ∈ T .

Proof.
Step 1:
Clearly every θ ∈ D∗ has this property. All that is left is to
prove the other direction (Steps 2,3,4).
Step 2:
Now suppose there exists a θ with this property. We must
prove that θ ∈ D∗. First, a preliminary calculation.

P (Data = D ∪ {rji = tji} | θ)
= P (Data = D ∪ {rji = tji} | σ(rji ,tji )

θ)P (σ(rji ,tji )
| θ)

= P (Data = D | ¬σji , θ)P (σ(rji ,tji )
| θ)

by equivalence of the conditional probabilities

= P (Data = D ∧ ¬σj1 | θ)
P (σ(rji ,tji )

| θ)
P (¬σji | θ)

whenever P (¬σji | θ) > 0

= P (Data = D | θ)
P (σ(rji ,tji )

| θ)
P (¬σji | θ)

whenever D contains no record about hj1 and P (¬σji | θ) > 0

Step 3:
Now suppose that P (¬σj | θ) > 0 for all j = 1 . . . N (recall,
N is the size of the population and n is a random variable de-
noting dataset size). We will later get rid of this assumption
with a limiting argument. Then if j1, . . . , jn are distinct we
have from Step 2:

P

(
Data =

n⋃
i=1

{rji = tji}
∣∣∣ θ)

= P (Data = ∅ | θ)
n∏
i=1

P (σ(rji ,tji )
| θ)

P (¬σji | θ)

= P (Data = ∅ | θ)

n∏
i=1

P (σ(rji ,tji )
| θ)

∏
i/∈{j1,...,jn}

P (¬σji | θ)

N∏
i=1

P (¬σji | θ)

Integrating over all datasets (i.e. adding over all choices of n,
records to place in the dataset, and values of those records)
and solving for P (Data = ∅ | θ), we get

P (Data = ∅ | θ) =

N∏
i=1

P (¬σji | θ)



and so we have

P

(
Data =

n⋃
i=1

{rji = tji}
∣∣∣ θ)

=

n∏
i=1

P (σ(rji ,tji )
| θ)

∏
i/∈{j1,...,jn}

P (¬σji | θ)

=

n∏
i=1

P (σ(rji ,tji )
| σji)P (σji | θ)

∏
i/∈{j1,...,jn}

P (¬σji | θ)

Setting πi = σi and fi(t) = P (σri,t) for all i = 1, . . . , N
and t ∈ T we see that P (Data | θ) has the form given in
Equation 7 and so θ ∈ D∗.
Step 4:
In the case where some of the P (¬σj) = 0, we simply apply
the previous result and take the limit as P (¬σj)→ 0. Thus
again we see that θ ∈ D∗.

Theorem D.1. (Restatement and proof of Theorem 6.2).
Let S and Spairs be defined as in Equations 5 and 6. Let D∗ be
the set of all distributions of the form specified in Equation
7. If we choose the data evolution scenarios Dother such
that Dother 6⊆ D∗ then ε-differential privacy is not equiv-
alent to ε-PufferF ish(S, Spairs,Dother) (i.e. with the same
ε-parameter) and hence does not bound the odds-ratio to the
interval [e−ε, eε].

Proof. We will use the notation ri ∈ D to denote the
statement that the record ri belonging to individual hi is in
dataset D. We will also use the notation {ri = t} ∈ D to
mean that the record ri has value t in the dataset D. Hence
we also use the notation D∪{ri = t} to be the dataset that
results from adding record ri with value t to D.

Since D 6⊆ D∗, by Lemma D.1 there exists a probabil-
ity distribution θ ∈ D, an individual hi and a tuple value
t such that for some D′ ∈ I, the probabilities P (Data =
D′ | ¬σi, θ) and P (Data = D′ ∪ {ri = t} | σ(i,t), θ) are dif-
ferent (i.e. the probability of the“rest”of the data is affected
by whether or not the record belonging to hi was collected
by the data publisher) – in contrast, those conditional dis-
tributions are the same precisely for those θ∗ ∈ D∗.

Thus there exists a collection A ⊂ I of datasets containing
no record for hi such that10:

P (Data ∈ A | ¬σi, θ)

> P
(
Data ∈

{
D ∪ {ri = t} : D ∈ A

} ∣∣∣ σ(i,t), θ
)

≥ 0

Thus define:

• C =
{
D ∪ {ri = t} : D ∈ A

}
• B =

{
D ∪ {ri = t∗} : D ∈ A, t∗ ∈ T

}
Note that by construction

C ⊆ B

P (Data ∈ A | ¬σi, θ) > P (Data ∈ C | σ(i,t), θ) ≥ 0

10One choice for A is D′ or the collection all datasets (except
for D′) not containing a record for hi – the specific choice
depends on whether P (Data = D′ | ¬σi, θ) > P (Data =
D′ ∪ {ri = t} | σ(i,t), θ) or P (Data = D′ | ¬σi, θ) <
P (Data = D′ ∪ {ri = t} | σ(i,t), θ).

Define the mechanism M as follows:

P (M(D) = 1) =


eε

1+eε
if D ∈ A

1
1+eε

if D /∈ A ∧ ri /∈ records(D)
1

1+eε
if D ∈ B

1
eε(1+eε)

if D /∈ B ∧ ri ∈ records(D)

P (M(D) = 2) =


1

1+eε
if D ∈ A

eε

1+eε
if D /∈ A ∧ ri /∈ records(D)

eε

1+eε
if D ∈ B

eε(1+eε)−1
eε(1+eε)

if D /∈ B ∧ ri ∈ records(D)

Note that ri ∈ records(D) means the record for individual
hi is in D but does not specify a value for that record. Also
note that all 4 conditions onD used to define M are mutually
exclusive and exhaustive (the first two cover datasets with
no information on hi and the last two cover datasets with
information about hi).
Step 1: Prove that M satisfies ε-differential privacy. First
note that if D1 and D2 are datasets such that D1 ∈ A and
D2 /∈ B ∧ ri ∈ records(D2) then D1 and D2 cannot differ
by the addition or deletion of exactly one tuple. The reason
is that ri ∈ records(D2) but ri /∈ records(D1) (because A
is a set of datasets with no information about individual
hi) and so D2 must be formed from D1 by adding a record
about individual hi plus possibly some additional/deletion
operations. By construction, B is precisely the collection of
datasets that we can obtain by adding a record about hi to
a dataset in A with no further addition/deletion operations.
Therefore constructing D2 from D1 involves adding a record
about hi and at least one other addition/deletion operation
and so D1 and D2 cannot be neighbors.

The fact that M satisfies ε-differential privacy follows from:
eε

1+eε
/ 1

1+eε
∈ [e−ε, eε] and eε

1+eε
/ 1

1+eε
∈ [e−ε, eε] and

(
eε(1 + eε)− 1

eε(1 + eε)

)
/

(
eε

1 + eε

)
=

eε(eε + 1)− 1

e2ε

=
e2ε + eε − 1

e2ε

= 1 +
eε − 1

e2ε

∈ [e−ε, ε]

Since

e−ε < 1 ≤ 1 +
eε − 1

e2ε
< 1 +

e2ε(eε − 1)

e2ε
= eε

Step 2: show that M does not satisfy PufferF ish(S, Spairs,D).
Recall that we chose a θ such that P (Data ∈ A | ¬σi, θ) >
P (Data ∈ C | σ(i,t) | θ). Also recall that datasets in A do



not contain records about individual hi.

P (M(Data) = 1 | ¬σi)

=

∫
P (M(D) = 1)P (Data = D | ¬σi, θ) dD

=

∫
{
D : D/∈A

ri /∈records(D)

} P (M(D) = 1)P (Data = D | ¬σi, θ) dD

+

∫
A

P (M(D) = 1)P (Data = D | ¬σi, θ) dD

(since those integrals cover the datasets without a record ri)

=
1

1 + eε
(1− P (A | ¬σi, θ)) +

eε

1 + eε
P (A | ¬σi, θ)

= eε
[

1

eε(1 + eε)
(1− P (A | ¬σi, θ)) +

1

1 + eε
P (A | ¬σi, θ)

]
= eε

[
1

eε(1 + eε)
+

eε − 1

eε(1 + eε)
P (A | ¬σi, θ)

]
Similarly,

P (M(Data) = 1 | σ(i,t) | θ)

=

∫
P (M1(D) = 1)P (Data = D | σ(i,t), θ) dD

=

∫
{
D : D/∈C
{ri,t}∈D

} P (M(D) = 1)P (Data = D | σ(i,t), θ) dD

+

∫
C

P (M(D) = 1)P (Data = D | σ(i,t), θ) dD

(since those integrals cover the datasets containing

record ri and where ri = t)

=
1

eε(1 + eε)
(1− P (C | σ(i,t), θ)) +

1

1 + eε
P (C | σ(i,t), θ)

(Since C ⊆ B
and [D /∈ C ∧ {ri, t} ∈ D]⇒ [D /∈ B ∧ ri ∈ records(D)])

=
1

eε(1 + eε)
+

eε − 1

eε(1 + eε)
P (C | σ(i,t), θ)

Since we had chosenA and C such that P (Data ∈ A | ¬σi, θ) >
P (Data ∈ C | σ(i,t), θ) then these calculations show that
P (M(Data) = 1 | ¬σi, θ) > eεP (M(Data) = 1 | σ(i,t), θ)
and therefore the ε-differentially private algorithm M does
not satisfy ε-PufferF ish(S, Spairs,D).

E. ANALYZING ε-INDISTINGUISHABILITY
We can also prove an equivalence between ε-indistinguishability

[13] and an instantiation of the Pufferfish framework.

Definition E.1 (ε-indistinguishability [13]). Given
a privacy parameter ε > 0, an algorithm M satisfies ε-
differential privacy if for all ω ∈ range(M) and all pairs
of datasets Di and Dj that differ on the value of one tuple
(i.e. Di can be derived from Dj by modifying one tuple), the
following holds:

P (M(Di) = ω) ≤ eεP (M(Dj) = ω)

where the probability only depends on the randomness in M.

We note that Rastogi et al. [33] proved an equivalence be-
tween ε-indistinguishability and ε-adversarial privacy when
using a set of probability distributions called PTLM [33].
There is no known equivalence between ε-differential privacy

and ε-adversarial privacy. However, as we show, there are
connections between instantiations of the Pufferfish frame-
work and both ε-indistinguishability and ε-differential pri-
vacy (the latter was shown in Section 6). The reason for
this is the extra flexibility offered by Pufferfish in specifying
what to protect. As we shall see, ε-indistinguishability pro-
tects something slightly different from ε-differential privacy.

As before, we specify the potential secrets S and discrimi-
native pairs Spairs. Let T be the domain of tuples. Let H =
{h1, h2, . . . , hN} be the set of all individuals in a population
of size N . Define σi to be the statement ri ∈ records(Data)
(i.e. “record ri belonging to individual hi is in the data”) and
let σ(i,t) be the statement ri ∈ records(Data) ∧ ri = t (i.e.
“record ri belonging to individual hi has value t and is in the
data”). Let

S =
{
σ(i,t)) : hi ∈ H, t ∈ T

}⋃
{¬σi : hi ∈ H}(19)

Spairs =
{

(σ(i,ta), σ(i,tb)) : i=1,...,N
ta∈T ∧tb∈T

}
∪
{

(σ(i,t),¬σj) : i=1,...,N∧j=1,...,N
i6=j∧t∈T

}
(20)

Notice that here the goal, as specified by the choice of S
is different from ε-differential privacy. This follows the rea-
soning in [13] where the goal is to prevent an attacker from
guessing whether an individual’s record has been changed or
even swapped with the record of another individual not in
the data.

The probabilistic model is almost the same as with ε-
differential privacy. The only difference is that ε-indistinguishability
only considers datasets of the same size n. Thus we simply
condition on n being the size of the data.

More concretely,

θ ≡ {π1, . . . , πN , f1, . . . , fN} (21)

P (Data | θ) =


0 if |Data | 6= n

otherwise:∏
i∈records(Data)

fi(ri)πi
∏

j /∈records(Data)
(1−πj)

Zn

where Zn is the proportionality constant that guarantees
this is a probability distribution. We set D to be all proba-
bility distributions of the form given in Equation 21.

The proof that ε-indistinguishability is equivalent to this
instantiation ε-PufferF ish(S, Spairs,D) is straightforward and
tedious yet almost identical to the proof about differential
privacy (Theorem 6.1, with proof in Appendix C) except
with the obvious modifications caused by replacing the defi-
nition of Spairs and conditioning on n, the size of the dataset.
For this reason, we omit it.

F. PROOF OF LEMMA 7.1

Lemma F.1. (Proof and restatement of Lemma 7.1). With
S and Spairs defined in Equations 8 and 9 let D be the set
of all probability distributions having the form specified in
Equation 10. The algorithm M which returns X +

∑n
i=1 ti

where X has density ε
8k
e−ε|x|/4k satisfies ε-PufferF ish(S, Spairs,D).

Proof. We use the notation fi(t) to represent the proba-
bility (or density, as appropriate) that the record for individ-
ual hi has value t and fi(t ∈ A) to represent the probability
that t is in the set A. We also use the notation fi(t | A)
to represent the conditional probability/density of t given



that t ∈ A. When the fi are not continuous, replace the
corresponding integrals with summations. First consider in-
dividual h1, real value y, and θ = [f1, . . . , fn] such that
f1(t1 ∈ [y − k, y + k)) 6= 0 and f1(t1 ∈ [y − k, y + 3k)) 6= 0,

P
(
M(Data) = ω | t1 ∈ [y − k, y + k), θ

)
=

∫
· · ·
∫ (

ε
8k

exp(− ε
4k |ω−

∑n
i=1 ti|)

×f1(t1 | t1∈[y−k,y+k))f2(t2)f3(t3)···fn(tn)

)
dt1 · · · dtn

≥
∫
· · ·
∫ (

ε
8k

exp(− ε
4k |ω−y−

∑n
i=2 ti|− ε

4k
|y−t1|)

×f1(t1 | t1∈[y−k,y+k))f2(t2)f3(t3)···fn(tn)

)
dt1 · · · dtn

(because: −|A− t1| = −|A− y + y − t1| ≥ −|A− y| − |y − t1|)

≥
∫
· · ·
∫ (

ε
8k

exp(− ε
4k |ω−y−

∑n
i=2 ti|− ε

4k
k)

×f1(t1 | t1∈[y−k,y+k))f2(t2)f3(t3)···fn(tn)

)
dt1 · · · dtn

(because we conditioned on t1 ∈ [y − k, y + k) so |y − t1| ≤ k)

=

∫
· · ·
∫ (

ε
8k

exp(− ε
4k |ω−y−

∑n
i=2 ti|− ε4 )

×f2(t2)f3(t3)···fn(tn)

)
dt2 · · · dtn

(we cancel k and the integrand no longer depends on t1)

= e−
ε
4

∫
· · ·
∫ (

ε
8k

exp(− ε
4k |ω−y−

∑n
i=2 ti|)

×f2(t2)f3(t3)···fn(tn)

)
dt2 · · · dtn (22)

Meanwhile

P
(
M(Data) = ω | ti ∈ [y + k, y + 3k), θ

)
=

∫
· · ·
∫ (

ε
8k

exp(− ε
4k |ω−

∑n
i=1 ti|)

×f1(t1 | t1∈[y+k,y+3k))f2(t2)f3(t3)···fn(tn)

)
dt1 · · · dtn

≤
∫
· · ·
∫ (

ε
8k

exp(− ε
4k |ω−y−

∑n
i=2 ti|+ ε

4k
|y−t1|)

×f1(t1 | t1∈[y+k,y+3k))f2(t2)f3(t3)···fn(tn)

)
dt1 · · · dtn

(because |A− t1| = |A− y + y − t1| ≥ |A− y| − |y − t1|
and so −|A− t1| ≤ −|A− y|+ |y − t1|)

≤
∫
· · ·
∫ (

ε
8k

exp(− ε
4k |ω−y−

∑n
i=2 ti|+ ε

4k
3k)

×f1(t1 | t1∈[y+k,y+3k))f2(t2)f3(t3)···fn(tn)

)
dt1 · · · dtn

(because we conditioned on t1 ∈ [y + k, y + 3k) so |y − t1| ≤ 3k)

=

∫
· · ·
∫ (

ε
8k

exp(− ε
4k |ω−y−

∑n
i=2 ti|+ 3ε

4 )
×f2(t2)f3(t3)···fn(tn)

)
dt2 · · · dtn

(we cancel k and the integrand no longer depends on t1)

= e
3ε
4

∫
· · ·
∫ (

ε
8k

exp(− ε
4k |ω−y−

∑n
i=2 ti|)

×f2(t2)f3(t3)···fn(tn)

)
dt2 · · · dtn (23)

Comparing equations 22 and 23 we see that the only dif-
ference between them is the constant multiplier outside the
integral. Thus dividing we get:

P
(
M(Data) = ω | t1 ∈ [y + k, y + 3k), θ

)
≤ eεP

(
M(Data) = ω | t1 ∈ [y − k, y + k), θ

)
A similar calculation results in

P
(
M(Data) = ω | t1 ∈ [y − k, y + k), θ

)
≤ eεP

(
M(Data) = ω | t1 ∈ [y + k, y + 3k), θ

)
We can repeat this calculation for other individuals (not just
h1), for other choices of f1, . . . , fn and for other y and so M
satisfies ε-PufferF ish(S, Spairs,D).

G. PROOF OF THEOREM 7.1

Theorem G.1. (Proof and restatement of Theorem 7.1).
Let µ be a metric over database instances such that when-
ever µ(D1, D2) ≤ δ there is a D∗ with µ(D1, D

∗) ≤ δ

and µ(D2, D
∗) > δ. Let ε > 0 and δ > 0. Set Sδ as

in Equation 12 and Spairsδ as in Equation 13. Define D
to be the set of distributions over dataset instances with n
records where record values are independent (e.g., all distri-
butions of the form given in Equation 11). If M satisfies ε-
PufferF ish(Sδ, Spairsδ,D) then it also satisfies (ε, δ)-modified
ZLW privacy; conversely, if M satisfies (ε, δ)-modified ZLW
privacy then it satisfies 4ε-PufferF ish(Sδ, Spairsδ,D) (i.e. a
four-fold degradation of semantic guarantees in terms of odds-
ratio).

Proof.
Step 1:
First suppose that M satisfies ε-PufferF ish(Sδ, Spairsδ,D).
Let D1 and D2 be any two databases such that µ(D1, D2) ≤
δ. The conditions in the theorem imply that there exists a
D∗ such that µ(D∗, D1) ≤ δ and µ(D∗, D2) > δ. Choose
the discriminative pair (σ[µ,D∗,≤δ], σ[µ,D∗,>δ]) ∈ Spairsδ and
choose a θ ∈ D such that P (D1 | σ[µ,D∗,≤δ], θ) = 1 and
P (D2 | σ[µ,D∗,>δ], θ) = 1. The conditions imposed by Puffer-
fish (Equations 1 and 2) then imply that

e−εP (M(D2) = ω) ≤ P (M(D1) = ω) ≤ eεP (M(D2) = ω)

Thus M satisfies (ε, δ)-modified ZLW privacy.
Step 2: Now suppose that M satisfies (ε, δ)-modified ZLW
privacy.

P (M(Data) = ω | σ[µ,D∗,≤δ], θ)

=

∫
P (M(D) = ω)P (Data = D | σ[µ,D∗,≤δ], θ) dD

=

∫ (
P (M(D)=ω)P (Data=D | σ[µ,D∗,≤δ],θ)
×

∫
P (Data=D′ | σ[µ,D∗,>δ],θ) dD

′

)
dD

≤ e4ε

∫ (
P (M(D′)=ω)P (Data=D | σ[µ,D∗,≤δ],θ)
×

∫
P (Data=D′ | σ[µ,D∗,>δ],θ) dD

′

)
dD

(using the definition of modified ZLW privacy and

because µ(D,D′) ≤ 4δ)

= e4ε

∫
P (Data = D | σ[µ,D∗,≤δ], θ) dD

×
∫
P (M(D′) = ω)P (Data = D′ | σ[µ,D∗,>δ], θ) dD

′

= e4ε

∫
P (M(D′) = ω)P (Data = D′ | σ[µ,D∗,>δ], θ) dD

′

= e4εP (M(Data) = ω | σ[µ,D∗,>δ], θ)

and similarly, P (M(Data) = ω | σ[µ,D∗,>δ], θ) ≤ e4εP (M(Data) =
ω | σ[µ,D∗,≤δ], θ).

H. PROOF OF THEOREM 8.1

Theorem H.1. (Restatement and proof of Theorem 8.1).
Given S and Spairs, the probability distribution θ is a univer-
sally composable evolution scenario for Spairs if and only if
for all (si, sj) ∈ Spairs having P (si | θ) 6= 0 and P (sj | θ) 6= 0
there exist Di, Dj ∈ I such that P (Data = Di | si, θ) = 1
and P (Data = D′j | sj , θ) = 1

Proof. Step 1: First we show that if (1) D is arbitrary,
(2) the definition PufferF ish(S, Spairs,D) self-composes lin-
early, and (3) θ∗ /∈ D has the property that for every (sI , sJ) ∈
Spairs with nonzero probability under θ∗ there exist Di, Dj ∈
I with P (Data = Di | si, θ∗) = 1 and P (Data = Dj | sj , θ∗) =



1 then the privacy definition PufferF ish(S, Spairs,D∪{θ∗})
self-composes linearly.

Choose any ε1, ε2 > 0. Choose any M1 that satisfies ε1-
PufferF ish(S, Spairs,D∪{θ∗}) and any M2 that satisfies ε2-
PufferF ish(S, Spairs,D∪{θ∗}) (with M1 and M2 having in-
dependent sources of randomness). Note that this means
M1 also satisfies ε1-PufferF ish(S, Spairs,D) while M2 also
satisfies ε2-PufferF ish(S, Spairs,D).

Now, for any (si, sj) ∈ S and any θ ∈ D for which P (· | si, θ)
and P (· | sj , θ) are defined, we must have (due to the linear
self-composition property of PufferF ish(S, Spairs,D)):

P (M1(Data) = ω1 ∧M2(Data) = ω2 | si, θ)
≤ eε1+ε2P (M1(Data) = ω1 ∧M2(Data) = ω2 | sj , θ)

and

P (M1(Data) = ω1 ∧M2(Data) = ω2 | sj , θ)
≤ eε1+ε2P (M1(Data) = ω1 ∧M2(Data) = ω2 | si, θ)

Thus we need to show the same holds for θ∗. Let (si, sj) ∈ S
be any discriminative pair for which P (si | θ∗) 6= 0 and
P (sj | θ∗) 6= 0. Let Di and Dj be the corresponding datasets
for which P (Di | si, θ) = 1 and P (Dj | sj , θ) = 1. Then since
we chose M1 to satisfy ε1-PufferF ish(S, Spairs,D∪{θ∗}) and
M2 to satisfy ε2-PufferF ish(S, Spairs,D∪{θ∗}) then by con-
struction we have for all ω1 ∈ range(M1) and ω2 ∈ range(M2):

P (M1(Di) = ω1) = P (M1(Data) = ω1 | si, θ∗)
≤ eε1P (M1(Data) = ω1 | sj , θ∗)
= eε1P (M1(Dj) = ω1)

similarly

P (M1(Dj) = ω1) ≤ eε1P (M1(Di) = ω1)

P (M2(Dj) = ω2) ≤ eε2P (M2(Di) = ω2)

P (M2(Di) = ω2) ≤ eε2P (M2(Dj) = ω2)

and thus

P (M1(Data) = ω1 ∧M2(Data) = ω2) | si, θ∗)
= P (M1(Di) = ω1 ∧M2(Di) = ω2)

= P (M1(Di) = ω1)P (M2(Di) = ω2)

≤ eε1+ε2P (M1(Dj) = ω1)P (M2(Dj) = ω2)

= eε1+ε2P (M1(Dj) = ω1 ∧M2(Dj) = ω2)

= eε1+ε2P (M1(Data) = ω1 ∧M2(Data) = ω2) | sj , θ∗)

and similarly

P (M1(Data) = ω1 ∧M2(Data) = ω2) | sj , θ∗)
≤ eε1+ε2P (M1(Data) = ω1 ∧M2(Data) = ω2) | si, θ∗)

Thus the algorithm M∗M1,M2
whose range is range(M1)×

range(M2) and output probabilities are P
[
M∗M1,M2

(D) =

(ω1, ω2)
]

= P [M1(D) = ω1]P [M2(D) = ω2] for all D ∈
I satisfies all of the conditions imposed by the definition
(ε1 + ε2)-PufferF ish(S, Spairs,D∪{θ∗}) and so this privacy
definition self-composes linearly and therefore θ∗ is a uni-
versally composable evolution scenario for Spairs.

Step 2: To show the other direction, let θ be a universally
composable evolution scenario that does not satisfy the hy-
pothesis of the theorem. To simplify the proof, we as-
sume θ is a discrete distribution rather than a den-

sity. For the general case, simply take an appropri-
ate neighborhood of the dataset D? that will be used.
Thus we assume that θ is a universally composable evolution
scenario that does not satisfy the hypothesis of the theorem.
That is, there exists a discriminative pair (si, sj) ∈ Spairs

such that P (si | θ) > 0 and P (sj | θ) > 0 yet there also
exists a dataset D? such that 0 < P (Data = D? | si, θ) < 1
or 0 < P (Data = D? | sj , θ) < 1. Without loss of gen-
erality, since the roles of si and sj are symmetric, we shall
assume that 0 < P (Data = D? | si, θ) < 1, in which case
P (Data = D? | sj , θ) = 0 since si must be true for D? (be-
cause the conditional probability is nonzero) and because si
and sJ are mutually exclusive (by definition of discrimina-
tive pair).

Now consider the definition ε-PufferF ish({si, sj} , {(si, sj)} , ∅)
(i.e. there are only two potential secrets S = {si, sj}, one
discriminative pair Spairs = {(si, sj)} and vacuous distribu-
tional assumptions: D = ∅). Then every algorithm satisfies
this definition for every ε and thus it trivially composes. We
show that by adding the evolution scenario θ we no longer
have linear self-composition (this would show that θ is not
a universally composable evolution scenario after all, and
would complete the proof).

Consider the following algorithm M1 that has only two
possible outputs ω1 and ω2.

P (M1(D) = ω1) =


1 if D = D?

0 if D 6= D? but si is true for D

1/2 if sj is true for D

P (M1(D) = ω2) =


0 if D = D?

1 if D 6= D? but si is true for D

1/2 if sj is true for D

Now set

eε
?

> max



2P (Data = D? | si, θ),

2P (Data 6= D? | si, θ),
1

2P (Data=D? | si,θ)
,

1
2P (Data 6=D? | si,θ)


Using the definition of M and ε∗ and recalling that si is true
for D? but sj is not, and 0 < P (D? | si, θ) < 1:

P (M1(Data) = ω1 | si, θ) = P (Data = D? | si, θ)
P (M1(Data) = ω1 | sj , θ) = 1/2

so that

P (M1(Data) = ω1 | si, θ) ≤ eε
∗
P (M1(Data) = ω1 | sj , θ)

P (M1(Data) = ω1 | sj , θ) ≤ eε
∗
P (M1(Data) = ω1 | si, θ)

Similarly,

P (M1(Data) = ω2 | si, θ) = P (Data 6= D? | si, θ)
P (M1(Data) = ω2 | sj , θ) = 1/2

so that

P (M1(Data) = ω2 | si, θ) ≤ eε
∗
P (M1(Data) = ω2 | sj , θ)

P (M1(Data) = ω2 | sj , θ) ≤ eε
∗
P (M1(Data) = ω2 | si, θ)



Therefore M1 satisfies the privacy definition
ε?-PufferF ish({si, sj} , {(si, sj)} , {θ}).

Now consider an algorithm M2 that has the same proba-
bilistic behavior as M1 but its random bits are independent
from M1. Hence M2 also satisfies the privacy definition ε?-
PufferF ish({si, sj} , {(si, sj)} , {θ}). However, when we run
both algorithms independently over the same data,

P (M1(Data) = ω1 ∧ M2(Data) = ω2 | si, θ) = 0

because M1 and M2 behave deterministically and in the
same way whenever si is true for the input dataset and so
either both return ω1 or both return omega2. However,

P (M1(Data) = ω1 ∧ M2(Data) = ω2 | sj , θ) = 1/4

because whenever sj is true, M1 and M2 return either out-
put with probability 1/2.

Thus in order for ε?-PufferF ish({si, sj} , {(si, sj)} , {θ})
to self-compose linearly, we would need 1/4 ≤ e2ε?×0 (which
cannot happen). This means that θ was not a universally
composable evolution scenario after all.

I. PROOFS OF THEOREMS 9.1 AND 9.2
Proof of Theorem 9.1

Theorem I.1 (Necessary Condition). Given any gen-
eral constraint Q, ε-PufferF ish(S, Spairs,D∗Q) is satisfied only
if ε-induced neighbors privacy with respect to Q is satisfied.

Proof. Consider any pair of contingency tables D1 and
D2 that (a) differ in the value of record ri (t and r, resp.),
and (b) are induced neighbors with respect to Q. The set
of moves that change D1 to D2 is a permutation of adding
tuples in T2\1 = D2 \ D1, and removing tuples in T1\2 =
D1 \D2.

Consider θ such that:

• f(s) = 0 for all s 6∈ D1 ∪D2

• f(s) = 1 for all s ∈ D∩ = D1 ∩D2

• f(s) = 1
2

for all s ∈ D∆ = T2\1 ∪ T1\2

That is, the set of possible databases is given by

Dθ = {D∩ ∪D|D ⊆ D∆}

The following statements about Dθ are true:

• D1 is the only database in Dθ such that (a) ri = t ∈ D1

and (b) D1 `Q.

• D2 is the only database in Dθ such that (a) ri = r ∈ D1

and (b) D2 `Q.

We will prove the first statement (and second follows analo-
gously). Suppose there exists a D3 that satisfies Q and has
ri = t. Since D3 6= D1, we have that D3 = D∩ ∪Dx ∪Dy,
where Dx ⊆ T1\2 and Dy ⊆ T2\1; and one of these is a strict
subset relationship. Therefore, the set of moves needed to
go from D3 to D2 would be – delete tuples in Dx, and add
tuples in T2\1 \Dy. But this is a strict subset of the moves
needed to move from D1 to D2; thus contradicting our as-
sumption that D1 and D2 are induced neighbors.

Therefore, ε-independence marginal privacy with respect
to Q guarantees ε-induced neighbors privacy with respect to
Q.

Proof of Theorem 9.2 We first prove Theorem 9.2 for a
single count constraint.

Lemma I.1. (Sufficient Condition for Single Count
Constraint). Given a single count constraint Q :

∑
t∈Data g(t) =

C, ε-independence privacy with respect to the constraint Q
is satisfied if ε-induced neighbors privacy with respect to Q
is satisfied.

Proof. We consider two cases – (i) when the pair of se-
crets (σi,s, σi,s′) are such that g(s) = g(s′), and (ii) when
g(s) 6= g(s′).

Case (i): Pair of secrets (σi,s, σi,s′) are such that g(s) =
g(s′):
Consider a dataset D such that σi,s. We can show that for
every such D, there is a D′ that is identical to D in every
tuple other than ti which takes the value s′, and D′ is and in-
duced neighbor of D with respect to the count constraint Q.
Since the only change is in tuple ti, P (Data = D|σi,s, θ) =
P (Data = D′|σi,s′ , θ). Therefore, we get

P (M(Data) = ω|σi,s, θ)

=

∫
P (M(D) = ω)P (Data = D|σi,s, θ)dD

=

∫
P (M(D) = ω)P (Data = D′|σi,s′ , θ)dD′

≤
∫
eεP (M(D′) = ω)P (Data = D′|σi,s′ , θ)dD′

≤ eεP (M(Data) = ω|σi,s′ , θ)

Case (ii): Pair of secrets (σi,s, σi,s′) are such that g(s) 6=
g(s′):
Consider any dataset D such that σi,s, and D′ such that
σi,s′ . Without loss of generality, assume that g(s) = 1, and
g(s′) = 0. Therefore, in every D, there must exist at least
one j such that g(tj) = 0. Similarly, in every D′, there
must exist at least one j such that g(tj) = 1. Let n1 be
the number of values x such that g(x) = 1, and n0 be the
number of values y such that g(y) = 0. We call the former
1− values and the latter 0− values.

Denote by Data−ij the datasets without tuples ti and
tj . Each table in Data−ij satisfies the constraint

∑
t g(t) =

C − 1. For every T ∈ Data−ij , there are n0 datasets Dij
with a 0− value in tj and σi,s, and n1 datasets D′ij with a
1− value in tj and σi,s′ . Clearly,∑
D inDij

P (Data = D|σi,s, θ) =
∑

D′ inD′ij

P (Data = D′|σi,s′ , θ)

Moreover, each such pair is an induced neighbor with respect
to the single count constraint. Therefore,∑

D inDij

P (M(D) = ω)P (Data = D|σi,s, θ)

≤
∑

D′ inD′ij

eεP (M(D′) = ω)P (Data = D′|σi,s′ , θ)

Integrating over all j, and over all possible datasets in Data−ij ,



we get the required result.

P (M(Data) = ω|σi,s, θ)

=
∑
j 6=i

∑
x:g(x)=0

∫
T∈Data−ij

P (M(Data) = ω|σi,s, σj,x, θ)dT

≤
∑
j 6=i

∑
y:g(y)=1

∫
T∈Data−ij

eεP (M(Data) = ω|σi,s′ , σj,y, θ)dT

≤ eεP (M(Data) = ω|σi,s′ , θ)

Theorem I.2. (Sufficient Condition for Univariate
Histograms). Given a univariate histogram constraint Q :
{
∑
t∈Data gi(t) = C}, ε-PufferF ish(S, Spairs,D∗Q) is satis-

fied if ε-induced neighbors privacy with respect to Q is satis-
fied.

Proof. Follows from case (ii) of the proof of Lemma I.1.
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