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Abstract

Robots must plan and execute tasks in the presence of uncer-
tainty. Uncertainty arises from sensing errors, control errors,
and the geometry of the environment. By employing a com-
bined strategy of force and position control, a robot program-
mer can ofien guarantee reaching the desired final configura-
tion from all the likely initial configurations. Such motion
strategies permit robots to carry out tasks in the presence of
significant uncertainty. However, compliant motion strategies
are very difficult for humans to specify. For this reason we
have been working on the automatic synthesis of motion
strategies for robots. In previous work (Donald 1988b; 1989),
we presented a framework for computing one-step motion
strategies that are guaranteed to succeed in the presence of
all three kinds of uncertainty. The motion strategies comprise
sensor-based gross motions, compliant motions, and simple
pushing motions.

However, it is not always possible to find plans that are
guaranteed to succeed. For example, if tolerancing errors
render an assembly infeasible, the plan executor should stop
and signal failure. In such cases the insistence on guaranteed
success is too restrictive. For this reason we investigate error
detection and recovery (EDR) strategies. EDR plans will
succeed or fail recognizably: in these more general strategies,
there is no possibility that the plan will fail without the exec-
utor realizing it. The EDR framework fills a gap when guar-
anteed plans cannot be found or do not exist; it provides a
technology for constructing plans that might work, but fail in
a "reasonable’” way when they cannot.

We describe techniques for planning multi-step EDR strat-
egies in the presence of uncertainty. Multi-step strategies are
considerably more difficult to generate, and we introduce
three approaches for their synthesis: these are the Push-for-
ward Algorithm, Failure Mode Analysis, and the Weak EDR
Theory. We have implemented the theory in the form of a
planner, called LIMITED, in the domain of planar assemblies.
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Planning Multi-Step
Error Detection and
Recovery Strategies

1. Introduction

Robots must plan and execute tasks in the presence of
uncertainty. Uncertainty arises from sensing errors,
control errors, and the geometric models of the robot
and the environment. In this paper we describe a
theory of planning multi-step error detection and re-
covery (EDR) strategies for compliant motion assem-
blies. We have implemented the theory in the form of
a planner, called LIMITED, in the domain of planar
assemblies,

In previous work (Donald 1988b; 1989), we ad-
dressed two problems. The first is:

1. The use of active compliance enables robots to
accomplish tasks even in the presence of significant
sensing and control errors. How can compliant motion
strategies be synthesized in the presence of sensing,
control, and geometric model error, such that the
strategies are guaranteed to succeed so long as the
errors lie within the specified bounds? As an example,
consider a peg-in-hole assembly with sensing and con-
trol uncertainty, with toleranced parts. We wish to
synthesize a compliant motion strategy that is guaran-
teed to succeed as long as the parts lie within the spec-
ified tolerances, and the sensing and control errors lie
within the specified bounds.

We attacked this problem by introducing additional
dimensions to the configuration space; each dimen-
sion represented a way in which the parts could para-
metrically vary. We termed the product space of the
motion degrees of freedom and the geometric model
variational dimensions “generalized configuration
space” and showed how to compute “preimages” (Lo-
zano-Pérez, Mason, and Taylor 1984; Erdmann, 1984;
1986) of a geometrical goal in this generalized configu-
ration space. The preimage of a goal is the set of (gen-
eralized) configurations from which a particular com-
manded cempliant motion is guaranteed to succeed.
Following Erdmann (1984), in this paper we call the
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Fig. 1. The goal is to insert
the peg in the hole. No rota-
tion of the peg is allowed.
One can imagine a strategy
that attempts to move
straight down, but detects
contact on the top surfaces of
the hole if they occur. If the

peg sticks on the top surfaces,
the manipulator tries to
move to the left or right to
achieve the hole. Are these
contact conditions “errors’?
We maintain that they are
not, since they can be
planned for and verified.

Fig. 2. Geometric models of
two gear-like planar objects
A and B. A is grasped and
can translate but not rotate.
B can rotate about its center

if pushed. The orientation of
B is unknown. The task is to
generate a motion strategy to
mesh the gears.

general preimage approach the “LMT framework,”
after the authors.

2. However, it is not always possible to find plans
that are guaranteed to succeed. For example, if toler-
ancing errors render an assembly infeasible, the plan
executor should stop and signal failure. In such cases,
the insistence on guaranteed success is too restrictive.
For this reason we investigated Error Detection and
Recovery (EDR) strategies. EDR plans will succeed or
fail recognizably: in these more general plans, there is
no possibility that the plan will fail without the execu-
tor recognizing it. The EDR framework fills a gap
when guaranteed plans cannot be found or do not
exist: it provides a technology for constructing plans
that might work, but fail in a “reasonable” way when
they cannot. In Donald (1988b; 1989), we gave a con-
structive, geometric definition of EDR strategies and
showed how they.can be computed for one-step strate-
gies. [A one-step compliant motion strategy is a plan
in which a force is commanded in one nominal direc-
tion (subject to uncertainty), until certain force- and
position-sensing data indicate that the motion should
be terminated. In the case of an EDR strategy, the
run-time executor must also be able to disambiguate
the result of the motion as a success (achieving the
goal) or failure.]

1.1. Examples

Application: Planning Gear Meshing

We must stress that EDR is not limited to problems
with model error. There are many applications in
which the geometry of the environment is precisely
known, but guaranteed plans cannot be found or are
very difficult to generate. We now describe such a
situation.

An interesting application domain for EDR is gear
meshing, where EDR is applicable even though the
shape of the manipulated parts is precisely known. Let
us consider a simplified instance of this problem. In
Figure 2 there are two planar gear-like objects, A and
B. The task is to plan a manipulation strategy that will
mesh the gears. The state in which the gears are
meshed is called the goal.

We will consider two variants of this problem. In
the first, we assume that the manipulator has grasped
A, and that neither 4 nor B can rotate. However, 4
can slide along the surfaces of B. In the second, B is
free to rotate about its center, but this rotation can
only be effected by pushing it with 4. In both cases,
the initial orientation of B is unknown. We regard A
as the moving object and B as the environment; hence
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even though the shape of B is precisely known, we
choose to view the uncertainty in B’s orientation as a
Jorm of model error. In the first case, the system has
only two degrees of motion freedom. In the second,
there are three degrees of motion freedom, one of
which is rotational, since B can be pushed. We distin-
guish between the rotation and non-rotation variants
of the problem in order to highlight the additional
technigues our planner employs when rotations are
introduced.

In both variations, there is uncertainty in control, so
when a motion direction is commanded, the actual
trajectory followed is only approximately in that direc-
tion. There is also uncertainty in position sensing and
force sensing, so that the true position and reaction
forces are only known approximately. The magnitudes
of these uncertainties are represented by error balls.!

In general, a commanded motion of 4 may cause A
to move through free space and contact B, possibly
causing B to rotate. Our EDR theory is a technique for
analyzing these outcomes geometrically to generate
strategies that achieve the goal when it is recognizably
reachable, and signal failure when it is not.

In an experiment, the EDR theory in the gear do-
main was applied using the planner, LIMITED, as fol-
lows. Consider the problem of meshing two planar
gears under uncertainty as above. Suppose that gear B
can rotate passively but has unknown initial orienta-
tion, as above. Suppose that 4 has been gripped by a
robot. The initial position of 4 is uncertain. The robot
can impart either pure forces (translations) or pure
torques (rotations) to 4. The planner can choose the
direction of translation or rotation. Can a multi-step
strategy of commanded translations and rotations be
found to mesh the gears?

LiMITED was able to generate an EDR strategy for
this problem. The characteristics of the experiment are:

¢ There are three degrees of motion freedom (two
translational and one rotational) for 4.

® There is one degree of rotational model error
freedom (the orientation of B).

e It is possible to push B to change its orientation.

1. That is, a ball in configuration space represents the set of possible
sensed values corresponding to a particular actual value for position
or force.

¢ There is sensing and control uncertainty.

e The geometry of the gears is complicated — they
have many edges.

¢ Quasi-static analysis (Mason 1982; 1986) is used
to model the physics of interaction between the
gears.

Thus we have a kind of four-degree-of-freedom
planning problem with uncertainty and pushing. To
generate multi-step EDR strategies under pushing,
LimiTeD employed the EDR theory together with a
technique called failure mode analysis.

Now, there may exist a guaranteed strategy to mesh
the gears. For example, experimental evidence sug-
gests that for involute teeth gears, almost any meshing
strategy will succeed. For other gear shapes, perhaps
some complicated translation while spinning 4 will
always succeed. I don’t know if there is such a guaran-
teed strategy for this case. It seems difficult for a plan-
ner to synthesize such guaranteed strategies or even to
verify them, if they exist at all.

A person might try to solve this problem with the
following motion strategy:

e Ram the gears together. See if they mesh.
Or, somewhat more precisely,

e Ram A into B. If they mesh, stop. Of they jam,
signal failure and try again.

Probabilistically, this is a rather good strategy. It is
certainly very simple and probably easier to generate
than a guaranteed strategy. If vision can be used to
sense whether 4 and B are meshed, then it is an EDR
strategy with just one step.

Suppose, however, that vision is poor, or that the
gears are accessible to the robot gripper but not to the
camera. This means that position sensing will be very
inaccurate, and hence may be of no use in determin-
ing whether the gears are successfully meshed. This
will often be the case in practice. In this case, force
sensing must be used to disambiguate the success of
the motion (meshing) from failure (jamming in an
unmeshed state). If the robot has force sensing, then it
might use the following two-step EDR strategy:

e Ram the gears together. Spin them to see whether
they meshed.
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Or again, more precisely,

e Ram A into B. Next, spin A. If A and B break
contact, or if the gears stick (don’t rotate), then
signal failure. Otherwise, signal success.

This strategy is essentially the one that LIMITED
generates. The plan is

Motion 1: Command a pure translation of A into B2
Terminate the motion based on force-sens-
ing when sticking occurs (when there is no
motion).

Motion 2: Command a pure rotation of A.
If breaking contact or sticking occurs, signal
Jailure. Otherwise, signal success.

In this plan, Motion 1 does not terminate distin-
guishably in success (meshed) or failure (jammed).
That is, after Motion | terminates, the plan executive
cannot necessarily recognize whether or not the gears
are meshed. LIMITED predicts this, and generates Mo-
tion 2, which disambiguates the result of Motion 1.
The generation of the second, disambiguating motion
involves the use of failure mode analysis. Breaking
contact and sticking are examples of failure modes.
The second motion is generated so that from any un-
meshed state resulting from Motion 1, all possible
paths will terminate distinguishably in a failure mode.
Failure mode analysis is a robust subtheory of EDR by
which LIMITED generates multi-step strategies under
pushing.

The theory and implementation behind the genera-
tion of Motion 1 were discussed extensively in Donald
(1988b; 1989). While we will review these techniques
briefly, our concern in this paper is how to generate
the multi-step strategy above — or more precisely, how
to “extend” motion | into a two-step strategy.

Experiment: Peg-in-Hole with Model Error

This section describes a plan that was generated by
LiMITED for a peg-in-hole problem with model error.
It gives an idea of how EDR strategies work. Since

2. LIMITED generates the actual force vector.

Fig. 3. A peg-in-hole envi-
ronment with model error.
The width of the hole (o),
depth of chamfer (o), and
orientation of the hole (a:;)
are the model parameters.
The hole is allowed to close

up.

pushing motions are not involved here, LIMITED does
not use failure mode analysis to solve this problem.

Another peg-in-hole problem is depicted in Figure
3. Again, as in Figure 1, there is uncertainty in the
width of the hole; that is, the width is known to lie
within some given interval. In addition, there are
chamfers on the sides of the hole. The depth of the
chamfers is also unknown, but we are given bounds
on the depth. Finally, the exact orientation of the hole
is uncertain. The geometry of the hole is input to the
planner as a set of parametrically defined polygons.
They are defined by a three-parameter family, for
width of the hole, depth of the chamfers, and orienta-
tion of the hole. An associated bounding interval is
also input for each parameter. The geometry of the peg
is input as a polygon.

In this problem, the width of the hole may be
smaller than the width of the peg. Thus there can exist
no strategy that is guaranteed to succeed for all geo-
metric uncertainty values. However, assume that the
assembly —the hole geometry —is inaccessible to
robust vision or position-measuring devices. In partic-
ular, the measurement error will typically determine
the model error bounds, which in this example are
large for the purpose of illustration. Thus it is not a
priori possible to measure the dimensions ahead of
time to determine whether or not the assembly is feasi-
ble. Instead, the best we can hope for is an EDR strat-
egy: a strategy that takes some action in the world to
attempt the assembly, but whose outcome can be rec-
ognizably diagnosed as success or failure by the run-
time robot executor.
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Fig. 4. The configuration model error depicted in Fig.
space slices for many differ- 3. (A) A few slices taken at
ent parametric model error constant orientation. (B)
values. These configuration More slices shown at various
spaces were generated for the  orientations.
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The peg is allowed to translate in the plane. Its mo-  depending on the effective commanded velocity at a

tion is modeled using generalized damper dynamics given instant. (In this case, we say sliding is non-deter-
(Whitney 1982; Mason 1981). This permits sliding on  ministic.) The size of the control uncertainty cone of
surfaces about the hole. Friction is modeled using velocities is an input to the planner. Whether sticking

Coulomb’s law. With these dynamics and perfect con-  may occur on an edge may be computed by intersect-
trol, the peg would exhibit straight-line motions in free  ing the friction cone with the negative control uncer-

space, followed by sliding motions in contact, where tainty cone.

friction permits. Here, however, there is control uncer- It is possible to sense the position of the peg and the
tainty, which is represented by a cone of velocities. forces acting on it. This information is only approxi-
Motions in free space fan out in a kind of “spray.” mate. The error bound on the position sensor readings

Again, sliding is possible on surfaces, but so is sticking, is input to the planner as the radius of a disc.
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Fig. 5. Four configuration
space slices for the peg-in-
hole with model error prob-
lem. The goal region is
shaded black. In one slice,
the goal vanishes.

Fig. 6. The start region in
the four slices. The reference
point of the peg is known to
start within this region.
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LIMITED generates plans using a configuration space
representation of the constraints ( Lozano-Pérez,
1983a). In the plane, one imagines shrinking the mov-
ing object to a point and correspondingly “growing”
the obstacles. The point must be navigated through
free space, sliding on surfaces, and so forth, into the
hole. Figure 4 shows configuration spaces for different
parametric variations of model error. Notice that
when the “real™ hole is too small for the peg to fit,
then there is simply no hole at all in the corresponding
configuration space. Each frame in Figure 4 is called a

Yon.

tart region and propagated start rip

ardcopy? (¥ or H) Yes.

2R EeY
3

“slice™; a slice represents a cross section where the
model error parameters are constant. To synthesize an
EDR strategy, LIMITED must in some sense consider
all such slices. In practice LIMITED works by con-
structing a finite, although typically large, number of
slices. We will show how in many cases, only a low
polynomial number need to be considered. LIMITED
begins by considering a small number of slices and
generates a tentative motion strategy. This strategy
must pass a test— which we call the EDR test—to be
recognized as an EDR strategy. One of the chief goals
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Fig. 7. The forward projec-
tion of the first motion. This
region is the outer envelope
of all possible trajectories
evolving from the start re-
gions. It is the set of all

configurations that are reach-
able from the start regions,
given the commanded veloc-
ity and control uncertainty
cone.

6,

aruard projection

of our work is to derive this test and to make it formal
and algorithmic. Next, LIMITED attempts to “general-
ize” the strategy by considering successively more
slices. The strategy is modified so that it passes the
EDR test in all slices. The number of slices considered
is the resolution of the planning. This approach is
called multi-resolution planning.

Let’s consider an EDR plan that LIMITED computed
for this problem. Figures 5- 13 show the plan graphi-
cally. Qualitatively, the plan may be described as fol-

lows:

e (1) First, move left and slightly down. The motion
will terminate on the lefi side of the hole, on the
left chamfers, or overshoot the hole entirely. Where
the motion terminates depends both on the trajec-

Fig 8. The forward projec-
tion of the first motion,
shown without the obstacles.

orward projection
Hardcopy? (Y ar N) Yes.

"

tory evolution within the control uncertainty, and
on the actual geometry of the hole. The motion
may, however, slide down the left edge of the hole
all the way into the goal. However, this sliding is
non-deterministic, and the motion may stick any-
where along that edge. Since the first motion may
terminate arbitrarily close to the goal region, LiM-
ITED predicts that the run-time executive system
cannot necessarily distinguish whether or not the
Sirst motion failed to achieve the goal.

e (2) The termination regions from motion (1) are
taken as the start regions for a new motion. Next,

Donald 9
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Fig. 9. The termination
regions from the first motion.
These regions are configura-
tions where the motion fin-
ishes.

Fig. 10. The forward projec-
tion of the second motion.

TR TY 13

—
-‘tart region and progagated start region.

iardcopy? (Y or M) Yew.

try to recover by commanding a motion straight
down and slightly to the right. This motion may
achieve the goal, or may undershoot it, or may
overshoot it. The second motion terminates when
the peg sticks on a surface. If such a termination
surface is outside the goal, it is called a failure
region. LIMITED calculates that after the second
motion, the failure regions are distinguishable
Jrom the goal regions. Hence afier the second mo-
tion, the run-time executive can recognize whether
or not the plan has failed.

= —7—7 7 —  —

‘

\

i
4

aruard prajection
ardenpy? (¥ ar H) tes.

Finally, since LIMITED is a forward-chaining plan-
ner, it is possible to take the failure regions from Mo-
tion 2 and plan a third recovery motion. Thus,
roughly speaking, in the EDR framework, recovery
actions are planned by forward-chaining from the fail-
ure regions of the previous motion. When the failure
regions are potentially indistinguishable from the goal
(using sensors), then the recovery action must satisfy
the formal EDR test when executed from the union of
the goal and the previous failure regions. For example,
when we view motion strategies as “mappings” be-
tween subsets of configuration space, then typical ,
“robust” recovery actions are EDR plans in which the
goal is a “fixed point.” 3 Motion 2 is an example of
such a one-step EDR plan.

Figures 5- 13 show the plan in just four different
slices, to give a “flavor™ for the plan. The rest of the

3. That is, when Motion 2 originates in the goal, it also terminates
recognizably in the goal.
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Fig. 11. The forward projec-
tion of the second motion,
shown without the obstacles.

Fig. 12. The termination
regions for the second mo-
tion. These are edges in
configuration space where
sticking can occur.

Forward projection
Hardcopy? (Y aor W} Yes.

122,20 0 JF:

slices may be found in Donald (1989). Figure 5 shows
the configuration spaces of the four slices. The goal
region here is shaded black. Note that in one slice, the
goal disappears. The initial uncertainty in the position
of the peg is represented by constraining the reference
point (the point to which the peg has been shrunk) to
lie in one of the start regions in Figure 6.

Figures 7 and 8 represent the forward projection of
the first motion. This region is the outer envelope of all
possible trajectories evolving from the start regions. It

Goal
s
Goal

J E
> : 3
/"/’/__,_/{’ : 3
< b
[ rJ
Ty ()
,/ g

stick
t ]

o gu.

e [T __J JI:

|
B

is the set of all configurations that are reachable from
the start regions, given the commanded velocity and
control uncertainty cone.

Figure 9 shows the termination regions for Motion
1. The termination regions outside the goal are not
necessarily distinguishable from the goal. Figures 10
and 11 show the forward projection of the second
motion. Figure 12 shows the termination regions for
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Fig. 13. The failure regions
and the goal are distinguish-
able, even given the sensing
uncertainty. The disc indi-
cates the magnitude of the
position sensing uncertainty.
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the second motion. Figure 13 shows the size of the
position sensing uncertainty ball. The goal and the
failure regions in Figure 12 are distinguishable using
Sensors.

The Push-Forward: Introduction

LiMITED has two components: a strategy generator,
and a formal test for verifying whether a given strategy

12

is an EDR strategy. The generator is trivial; the heart
of this research lies in the verifier.

LimiTED verifies EDR plans using a construction
called the push-forward. The forward projection of a
motion is the outer envelope of all possible trajectories
evolving from the start regions (Fig. 7). The push-for-
ward is that subset of the forward projection where the
motion can terminate. Thus, to push-forward is, in a
sense, to simulate an action and record where it may
terminate. In general, prediction of termination may
be complicated; if we employ sticking termination,
however, this computation is easy. (Sticking termina-
tion is discussed in section 5.5.) Much of this paper is
devoted to making the notion of push-forward mathe-
matically precise.

2. A Review of the EDR Theory

In this section we review the EDR theory developed in
Donald (1988b; 1989). This review is necessarily
somewhat abbreviated. The reader is cautioned that
the account below is somewhat intuitive and informal;
we attempt to describe the key points of the EDR
theory in the plain style, and omit proofs and mention
of certain subtle complications. For a detailed devel-
opment, please refer to Donald (1986a,b; 1987b;
1988a,b; 1989).

2.1. Motivation: Research Issues

The gross motion planning problem with no uncer-
tainty has received a great deal of attention recently. In
this problem, the state of the robot may be represented
as a point in a configuration space. Thus moving from
a start to a goal point may be viewed as finding an arc
in free space connecting the two points. Since the
robot is assumed to have perfect control and sensing,
any such arc may be reliably executed once it is
found. In particular, given a candidate arc, it may be
tested. That is, motion along the arc may be simulated
to see whether it is collision free. For example, an
algebraic curve may be intersected with semi-algebraic
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sets defining the configuration space obstacles. In the
presence of uncertainty, however, we cannot simply
simulate a motion strategy to verify it. Instead, we
need some technique for simulating a// possible orbits,
or evolutions of the robot system, under any possible
choice of the uncertain parameters.* With sensing and
control uncertainty, the state of the robot must be
viewed as a subset of the configuration space. Motions,
then, can be viewed as mappings between these sub-
sets. Of course there are many such subsets! From this
perspective, it is clear that a chief contribution of
LMT has been to identify and give a constructive
definition for a privileged class of subsets, called pre-
images, and show that it is necessary and sufficient to
search among this class. This framework appears very
promising for planning guaranteed motion strategies
under sensing and control uncertainty. The LMT
framework assumes no model error. In Donald
(1988b; 1989), we reduced the problem of planning
guaranteed strategies with sensing, control, and geo-
metric model uncertainty to the problem of computing
preimages in a (higher dimensional) generalized con-
figuration space.’

This result is useful in as much as there was really
no prior theory of planning in an environment whose
geometry is not precisely known. However, it is not
the main point of EDR theory, because there are cer-
tain inadequacies with the planning model. The insis-
tence that strategies be guaranteed to succeed is too
restrictive in practice. To see this, observe that guaran-
teed strategies do not always exist. In the peg-in-hole
problem with model error (Figs. 3~ 13), there is no
guaranteed strategy for achieving the goal, since the
hole may be too small for some model error values.
For these values the goal in configuration space does
not exist. Because tolerances may cause gross topologi-
cal changes in configuration space, this problem is
particularly prevalent in the presence of model error.
More generally, there may be model error values for
which the goal may still exist, but it may not be reach-
able. For example, in a variant of the problem in Fig-
ure 3, an obstacle could block the channel to the goal.

4. That is, we need some method that can bound all possible behav-
iors of the system.

5. We use the terms model error and model uncertainty inter-
changeably.

Then the goal is non-empty, but also not reachable.
Finally, and most generally, there may be model error
values for which the goal is reachable but not recog-
nizably reachable. In this case we still cannot guaran-
tee plans, since a planner cannot know when they
have succeeded.

These problems may occur even in the absence of
model error. However, without model error a guaran-
teed plan is often obtainable by back-chaining and
adding more steps to the plan. In the presence of
model error this technique frequently fails; in the peg-
in-hole problem with model error, this technique will
not work since no plan of any length can succeed when
the hole closes up.

This is why we investigate EDR strategies and, in
particular, attempt to formalize EDR planning. The
key theoretical issue is: how can we relax the restric-
tion that plans must be guaranteed to succeed, and
still retain a theory of planning that is not completely
ad hoc? We attempt to answer this by giving a con-
structive definition of EDR strategies. In particular,
this approach provides a formal test for verifying
whether a given strategy is an EDR strategy. The test
is formulated as a decision problem about projection
sets in a generalized configuration space that also en-
codes model error. Roughly speaking, the projection
sets represent all possible outcomes of a motion (the
Sforward projection), and weakest preconditions for
attaining a subgoal (the preimage).

Given the formal test for “recognizing” an EDR
strategy, we then tested the definition by building a
generate-and-test planner. The generator is trivial; the
recognizer is an algorithmic embodiment of the for-
mal test. It lies at the heart of this research. A second
key component of the planner is a set of techniques
for chaining together motions to synthesize multi-step
strategies. The planner is a forward-chaining, multi-
resolution planner, called LIMITED. LIMITED operates
in a restricted domain. Plans found by LIMITED in
experiments are described above.

A new framework —the EDR framework — for
planning with uncertainty may be justified not only by
the restrictiveness of the guaranteed-success model,
but also by the hardness of the problem. The gross
motion planning problem without uncertainty may be
viewed, under some very general assumptions, as a
decision problem within the theory of real closed

Donald 13

Downloaded from ijr.sagepub.com by Matthew Mason on October 3, 2012


http://ijr.sagepub.com/

Fig. 14. The goal is to bring
the robot into contact with

the right vertical surface of A.

(For example, the “robot”
could be a gripper finger).
There is position sensing un-
certainty, so in the start

position the robot is only
known to lie within some un-
certainty ball. There is also
control uncertainty in the
commanded velocity to the
robot. It is represented as a
cone.

Fig. 15. A problem equiva-
lent to that in Fig. 14 in
configuration space, with
blocks A and B, the distance
between the blocks o, and

the commanded velocity

v, = v¥with control error
cone B,(v®. The position of
A is fixed.

Control uncertalnty

Start Position lics in this circle

O

Robot

l A ' Gaul lies an this surface of A

B.(7)

i |
|

fields. This gives a theoretical decision procedure with
polynomial running time once the degrees of freedom
of the robot system are fixed (Schwartz and Sharir
1982). However, no such theoretical algorithm is
known for the general compliant motion planning
problem with uncertainty. Furthermore, the lower
bounds for computing guaranteed strategies even in
3D are dismal: the problem is known to be hard for
exponential time (Canny and Reif 1987). At this point
it 1s unknown whether EDR planning is more efficient
than guaranteed planning. However, there is some
experimental evidence leading to conjecture that cer-
tain problems requiring very complicated, exponen-
tial-sized guaranteed plans may admit very short EDR
plans.

However, the motivation for this work is not com-
plexity-theoretic. Instead, the chief thrust is to show
how to compute motion strategies under model error
(and sensing and control uncertainty), by using a for-
mal and constructive definition of EDR strategies.
The first goal was a precise geometric characterization
of EDR planning. The second goal was to test this
characterization by building a planner. Thus it was
necessary to devise implementable algorithms to con-
struct the geometric projection sets and decide ques-
tions about them. Therefore, this theory and LIMITED
contain a mixture of precise combinatorial algorithms
and approximation algorithms. In Donald (1988a;

14

Y _ — -

|
!

1989) we indicate which algorithms are exact and give
combinatorial bounds. We also identify the approxi-
mation algorithms and indicate the goodness of the
approximation and whether it is conservative. Much
work, of course, remains in developing better algo-
rithms for EDR planning and in testing the plans using
real robots.

2.2. Representing Model Error

We will review the EDR theory by examining some
very simple planning problems with model error. Of
course, this does not mean that EDR is limited to
situations with model error.

A Simple Example: The Variable-Width Peg-In-Hole

Consider Figure 14. There is position sensing uncer-
tainty, so that the start position of the robot is only
known to li¢ within some ball in the plane. The goal is
to bring the robot in contact with the right vertical
surface of A.

We will simplify the problem so that the computa-
tional task is in configuration space. This transforma-
tion reduces the planning task for a complicated mov-
ing object to navigating a point in configuration space.
Consider Figure 15. The configuration point starts out
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in the region R, which is the position sensing uncer-
tainty ball B,, about some initial sensed position. To
model sliding behavior, we will assume Coulomb fric-
tion and generalized damper dynamics, which allows
an identification of forces and velocities. Thus the
commanded velocity v, is related to the effective ve-
locity v by f= B(v — 1), where fis the effective force
on the robot and B is a scalar. Given a nominal com-
manded velocity vd, the control uncertainty is repre-
sented by a cone of velocities (B,, in the figure). The
actual commanded velocity vy must lie within this
cone.®

The goal in Figure 15 is to move to the region G.
Now, with Coulomb friction, sticking occurs on a
surface when the (actual) commanded velocity points
into the friction cone, We assume the friction cones
are such that sliding occurs (for all possible com-
manded velocities in B,.) on all surfaces save G, where
all velocities stick. We will assume that the planner
can monitor position and velocity sensors to determine
whether a motion has reached the goal. Velocity sens-
ing is also subject to uncertainty: for an actual velocity
v, the sensed velocity lies in some cone B,, of veloci-
ties about v.

Now we introduce simple model error. The shape of
A and B are known precisely, and the position of 4 is
fixed. However, the position of B relative to A4 is not
known. B’s position is characterized by the distance a.
If & > 0, the goal is reachable. But if o« = 0, then the
goal vanishes. No plan can be guaranteed to succeed if
o = 0 is possible. Suppose we allow « to be negative.
In this case the blocks meet and fuse. Eventually, for
sufficiently negative «, B will emerge on the other side
of A. In this case, the goal “reappears,” and may be
reachable again.” Let us assume that « is bounded, and
lies in the interval [—dy, d,].

Our task is to find a plan that can attain G in the
cases where it is recognizably reachable. Such a plan is
called a guaranteed strategy in the presence of model
error. But the plan cannot be guaranteed for the «
where the goal vanishes. In these cases we want the

6. See Mason (1981) for a detailed description of generalized
damper dynamics.

7. This model is adopted for the purposes of exposition, not for
physical plausibility. It is not hard to model the case where the
blocks meet but do not fuse.

plan to signal failure. Loosely speaking, a motion
strategy that achieves the goal when it is recognizably
reachable and signals failure when it is not is called an
Error Detection and Recovery (EDR) strategy. Such
strategies are more general than guaranteed strategies,
in that they allow plans to fail.

To represent model error, we will choose a parame-
terization of the possible variation in the environment.
The degrees of freedom of this parameterization are
considered as additional degrees of freedom in the
system. For example, in Figure 15, we have the x and
y degrees of freedom of the configuration space. In
addition, we have the model error parameter . A co-
ordinate in this space has the form (x, y, a). The space
itself is the Cartesian product R? X [—d,, d,]. Each
a-slice of the space for a particular « is a configuration
space with the obstacles 4 and B instantiated at dis-
tance « apart. Figure 15 is such a slice.

More generally, suppose we have a configuration
space C for the degrees of freedom of the moving ob-
ject. Let J be an arbitrary index set that parameterizes
the model error. (Above, J was [—d,, d,).) Then the
generalized configuration space with model error is
C X J. One way to think of this construction is to
imagine a collection of possible “universes” {C,} for a
in J. Each C, is a configuration space, containing
configuration space obstacles. The ambient space for
each C, is some canonical C. C X J is simply the nat-
ural product representing the ambient space of their
disjoint union. There is no constraint that J be finite or
even countable. In Figure 3, C is again the Cartesian
plane, and J is a three-dimensional product space.
One of the J dimensions is circular, to parameterize
the angular variation represented by a;.

In Figure 16 we show the generalized configuration
space for the gear meshing example. Note that the goal
in generalized configuration space becomes a two-di-
mensional surface, and the obstacles are three-dimen-
sional polyhedra. Note that the goal surface vanishes
where 4 and B meet.

Given a configuration space corresponding to a
physical situation, it is well known how to represent
motions, forces, velocities, etc. in it (Arnold 1978).
The representations for classical mechanics exploit the
geometry of differentiable manifolds. We must de-
velop a similar representation to plan motions, forces,
and velocities in generalized configuration space.
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Fig. 16. The generalized
configuration space obstacles
Jor example (1). The gener-
alized configuration space is
three dimensional, having x
and y degrees of motion

a ¢

Jreedom, and an « degree of
model error freedom. Legal
motions are parallel to the
x-y plane, and orthogonal to
the J axis.

Henceforth, we will denote the generalized configura-
tion space C X J by §. We develop the following
“axioms” for “physics” in §.

1. At execution time, the robot finds itself in a
particular slice of ¢ (although it may not know
which). Thus we say there is only one “r
universe, o in J.® This ay is fixed. However, a,
is not known a priori. Thus all motions are
confined to a particular (unknown) o, slice
(Fig. 15). This is because motions cannot move
between universes. In Figure 16, any legal
motion in § is everywhere orthogonal to the J
axis and parallel to the x-y plane.

2. Suppose in any « slice, the position sensing

uncertainty ball about a given sensed position
is some set B,,. The set R in Figure 15 is such
a ball. We cannot sense across .J: position sens-
ing uncertainty is infinite in the J dimensions.®

8. oy is a point in the multi-dimensional space J.

9. One generalization of the framework would permit and plan for
sensing in J. In this case one would employ a bounded sensing
uncertainty ball in the J dimensions.

16

a ¢

Thus the position sensing uncertainty in & is
the cylinder B,, X J. In Figures 15 and 16,
this simply says that x and y are known to
some precision, while « is unknown. The
initial position in Figure 15 is given by

R X [—d,, dy]. This cylinder is a three-dimen-
sional solid, orthogonal to the x-y plane and
parallel to the J axis in Figure 16.

. Suppose in the configuration space C, the ve-

locity control uncertainty about a given nomi-
nal commanded velocity is a cone of velocities
B,.. Such a cone is shown in Figure 15. This
cone lies in the phase space for C, denoted TC.
[Phase space is simply position-space X
velocity-space. A point in phase space has the
form (x, v) and denotes an instantaneous ve-
locity of v at configuration x.] Phase space
represents all possible velocities at all points in
C. The phase space for ¢ is obtained by index-
ing TC by J to obtain TC X J. All velocities in
generalized configuration space lie in 7C X J.
For Ex. (3) TC X J is R* X [—d, dy]. The
generalized velocity uncertainty cones are two-
dimensional, parallel to the x-y plane, and
orthogonal to the J axis.
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4. Generalized damper dynamics extend straight-
forwardly to &, so motions satisfy f= B(v — ;)
where f, v, and p, lie in TC X J. Thus friction
cones from configuration space (see Erdmann
1984; 1986) naturally embed like generalized
velocity cones in 7C X J.

These axioms give an intuitive description of the
physics of §. A formal axiomatization is given in Don-
ald (1989). We have captured the physics of € using a
set of generalized uncertainties, friction, and control
characteristics. These axioms completely characterize
the behavior of motions in §.

Pushing

By relaxing axiom (1), above, we can consider a gener-
alization of the model error framework in which push-
ing motions are permitted, as well as compliant and
gross motions. We relax the assumption that motion
between universes is impossible and permit certain
motions across .J. Consider example (3). Observe that
a displacement in J corresponds to a displacement in
the position of the block B. Thus a motion in J should
correspond to a motion of B. Suppose the robot can
change the position of B by pushing on it, that is, by
exerting a force on the surface of B. The key point is
that pushing operations may be modeled by observing
that commanded forces to the robot may result in
changes in the environment. That is, a commanded
force to the robot can result in motion in C (sliding) as
well as motion in J (pushing the block). Let us develop
this notion further.

Our previous discussion assumed that motion across
J was impossible. That is, all motion is confined to
one a-slice of generalized configuration space. In ex-
ample (3), this is equivalent to the axiom that B does
not move or deform under an applied force. Such an
axiom makes sense for applications where B is indeed
immovable (for example, if 4 and B are machined
tabs of a connected metal part). However, suppose that
B is a block that can slide on the table. Then an ap-
plied force on the surface of the block can cause the
block to slide. This corresponds to motion in J. In
general, the effect of an applied force will be a motion
that slides or sticks on the surface of B and causes B to
slide or stick on the table. This corresponds to a cou-
pled motion in both C and J (that is, a motion across

-
v

and the control uncertainty
is B.(v}). The preimage of G
with respect to 6 is the re-
gion P.

Fig. 17. The goal is the
region G. Sliding occurs on
vertical surfaces, and stick-
ing on horizontal ones. The
commanded velocity is v}

G

a-slices of generalized configuration space). Such a
motion is always tangent to a surface in generalized
configuration space.

In Donald (1988b; 1989), we generalize the descrip-
tion of the physics of € to permit a rigorous account
of such motions. This model can then be employed by
an automated planner. Such a planner can construct
motion strategies whose primitives are grass motions,
compliant motions, and pushing motions. This model
of pushing is used in the gear-meshing example, where
a model error parameter — the orientation of B—can
be changed as a result of pushing.

2.3. Guaranteed Plans

A motion strategy (Lozano-Pérez, Mason, and Taylor
1984} is a commanded velocity (such as vJin Figure
15) together with a termination predicate that monitors
the sensors and decides when the motion has achieved
the goal. Given a goal G in configuration space, we
can form its preimage (Lozano-Pérez, Mason, and
Taylor 1984). The preimage of G is the region in con-
figuration space from which all motions are guaran-
teed to move into G in such a way that the entry is
recognizable. That is, the preimage is the set of all po-
sitions from which all possible trajectories consistent
with the control uncertainty are guaranteed to reach &
recognizably (Fig. 17). The entry is recognized by
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Fig. 18. Here, the radius of
the position sensing uncer-
tainty ball is twice the width
of the hole. Sliding occurs on
all surfaces under the control
velocities shown. The pre-
image of the goal under
commanded velocity v¥ is
Py(G). The backprojection
By(G) strictly contains this

preimage: while all points in
the backprojection are guar-
anteed to reach G, the sens-
ing inaccuracy is so large
that the termination predi-
cate cannot tell whether the
goal or the left horizontal
surface has been reached.
Only from the preimage can
entry into G be recognized.

B (%)

monitoring the position and velocity sensors until the
goal is attained. Fig. 17 is a directional preimage: only
one commanded velocity v} is considered. Here all
preimage points reach the goal recognizably under this
particular v¥. The non-directional preimage is the
union of all directional preimages.

We envision a back-chaining planner that recur-
sively computes preimages of a goal region. Successive
subgoals are attained by motion strategies. Each mo-
tion terminates when all sensor interpretations indicate
that the robot must be within the subgoal. Lozano-
Pérez, Mason, and Taylor (1984) and Erdmann (1986)
provide a formal framework for computing preimages
where there is sensing and control uncertainty, but no
model error. In particular, Erdmann (1984; 1986)
shows how backprojections may be used to approxi-
mate preimages. The backprojection of a goal G (with
respect to a commanded velocity v¥) consists of those
positions guaranteed to enter the goal (under v¥). Rec-
ognizability of the entry plays no role. Figure 18 illus-
trates the difference between backprojections and pre-
tmages. Here the radius of position sensing
uncertainty is greater than twice the diameter of the
hole. Sliding occurs on all surfaces. Furthermore, we
assume that the robot has no sense of time (i.e., no
clock)—for example, it might be equipped with a
contact sensory that only fires once. The backprojec-
tion B,(G) strictly contains the preimage P,(G): while
all points in the backprojection are guaranteed to
reach G, the sensing inaccuracy is so large that the
termination predicate cannot tell whether the goal or

18

the left horizontal surface has been reached. Only
from the preimage can entry into G be recognized.

Preimages provide a way to construct guaranteed
plans for the situation with no model error. Can pre-
images and backprojections be generalized to situa-
tions with model error? The answer is yes. The gener-
alized control and sensing uncertainties in § are given
by the physics axioms above. These uncertainties
completely determine how motions in generalized
configuration space must behave. We form the back-
projection of G under these uncertainties. The trick
here is to view the motion planning problem with n
degrees of motion freedom and k degrees of model
error freedom as a planning problem in an (n + k)~
dimensional generalized configuration space, endowed
with the special physics described above. The physics
is characterized precisely by axioms defining certain
special sensing and control uncertainties in §. The
definitions and results for pre-images and backprojec-
tions (Lozano-Pérez, Mason, and Taylor 1984; Erd-
mann 1986) in configuration space generalize muiatis
mutandis to @ endowed with this physics; this is
proved in Donald (1988b; 1989). Thus our framework
reduces the problem of constructing guaranteed mo-
tion strategies with model error to computing preim-
ages in a somewhat more complicated, and higher-
dimensional configuration space. For details, see Don-
ald (1988b; 1989).

2.4. Error Detection and Recovery

If we were exclusively interested in constructing guar-
anteed motion strategies in the presence of model
error, we would be done defining the framework: hav-
ing reduced the problem to computing preimages in &,
we could now turn to the important and difficult
problems of computing and constructing § and further
extend the work of Lozano-Pérez, Mason, and Taylor
(1984) and Erdmann (1986) on computing preimages
in general configuration spaces.

However, guaranteed strategies do not always exist.
In example (3) (Figs. 14 - 16), there is no guaranteed
strategy for achieving the goal, since the goal may
vanish for some values of a. Because tolerances may
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cause gross topological changes in configuration space,
this problem is particularly prevalent in the presence
of model error. In the peg-in-hole problem with model
error (Figs. 3-13) the goal may also vanish (the hole
may close up) for certain regions in J. More generally,
there may be values of « for which the goal may still
exist, but it may not be reachable. For example, in a
variant of the problem in Figure 3, an obstacle could
block the channel to the goal. Then G is non-empty,
but also not reachable. Finally, and most generally,
there may be values of & for which the goal is reach-
able but not recognizably reachable. In this case we
still cannot guarantee plans, since a planner cannot
know when they have succeeded.

These problems may occur even in the absence of
model error. However, without model error a guaran-
teed plan is often obtainable by back-chaining and
adding more steps to the plan. In the presence of
model error this technique frequently fails: in example
(3), no chain of recursively computed preimages can
ever cover the start region R X J, The failure is due to
the peculiar sensing and control characteristics
(axioms 1-4) in generalized configuration space.

In response, we will develop Error Detection and
Recovery (EDR) strategies. These are characterized as
follows:

* An EDR strategy should attain the goal when it is
recognizably reachable and signal failure when it
is not.

¢ It should also permit serendipitous achievement
of the goal.

® Furthermore, no motion guaranteed to terminate
recognizably in the goal should ever be prema-
turely terminated as a failure.

¢ Finally, no motion should be terminated as a
failure while there is any chance that it might ser-
endipitously achieve the goal due to fortuitous
sensing and control events.

These are called the “EDR axioms” and will be our
guiding principles. We now state how such EDR strat-
egies may be constructed; for proofs and more detail,
see Donald (1988b; 1989).

Suppose that a planning problem is given with two
disjoint geometrical goals, G, and G,. We may insist
that the run-time executor be able to terminate the
strategy and also be able to disambiguate which goal

slices. Points in H lie within
the forward projection (since
they are reachable), yet
outside the weak preimage
(since the goal is unachiev-
able).

Fig. 19. A typical a slice of
the EDR region H, for o
small and negative. The goal
vanishes in this slice, the
dashed line indicates where
the goal would be in other

~F —
(>./ A | B

yau
N N Dz
H

has been reached. In this case, we can construct the
preimage of the distinguishable union of G, and G,,
which we write as

FPo({G, Gr)).

If 8 is executed starting in this preimage, then the
motion can always be recognizably and distinguishably
terminated in either G, or G,.

We can characterize EDR strategies geometrically as
follows. Suppose the geometric goal is G. The implicit
“meaning” of G is: recognizably achieving G is equiv-
alent to “success.” We introduce an “additional” goal-
like set H, which is disjoint and distinguishable from
G, such that when H is recognizably achieved, then
failure of the motion may be signalled. That is, we
construct an H such that recognizably achieving H is
equivalent to “failure.” H is called the EDR region.
Remarkably, H may be selected such that the EDR
axioms are satisfied. In Donald (1988b; 1989), we
derive H as follows. Given a motion & and a start re-
gion R, first we define H using reachability constructs
only, Then we test whether A and G are distinguish-
able using sensors (this is the “formal test” alluded to
in the introduction). If so, then by the construction of
H, we have

R C P,({G, HY).

Furthermore, using H, @ is a one-step EDR strategy
satisfying the EDR axioms. Here is an idea of what H
is like: in Figure 19 the EDR region H is shown (in
position space only) for example (3). Consider H as a
two-dimensional region in §; just a slice of it is shown
in Figure 19. Note that in this example, H only exists
in the slices in which G vanishes. Here, given the sens-
ing uncertainty bounds of example (3), the termina-
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Fig. 20. The weak preimage
of the goal G under v}. Com-
pare Fig. 17.

)
~

G

tion predicate can distinguish between G and H based
on position sensing, velocity sensing, or elapsed time.
Clearly, H satisfies the EDR axioms: the motion is
guaranteed to terminate recognizably in G if the mo-
tion began in a universe in which G does not vanish.
Otherwise, the motion terminates recognizably in H.
In the first case, the termination predicate signals suc-
cess; in the latter, failure.

Here is how we construct H. The forward projection
of a set R under @ is all configurations'® that are possi-
bly reachable from R under v} (subject to control un-
certainty). It is denoted F,(R). Forward projections
only address reachability: the termination predicate is
ignored and only the control uncertainty bound and
commanded velocity v} are needed to specify the for-
ward projection (Figs. 8,9, 11, and 12).

So far the preimages we have considered are strong
preimages, in that a// possible motions are guaranteed
to terminate recognizably in the goal. The weak pre-
image (Lozano-Pérez, Mason, and Taylor 1984) (with
respect to a commanded velocity) is the set of points
that could possibly enter the goal recognizably, given
fortuitous sensing and control events (Fig. 20). We
will use the weak preimage to capture the notion of
serendipity in the EDR axioms. The idea is that a
motion may be terminated in failure as soon as egress

10. Actually, forward projections are in phase-space, so this is the
position component of the forward projection.

20

Fig. 21. H,in eq. (1) is not
the entire EDR region.
Sticking may occur within
the weak preimage in H,.
The EDR region must in-
clude H, for all possible
velocities, and H, for “‘stick-
ing velocities.”

from the weak preAimage is recognized. The weak pre-
image is denoted Py(G).

We define H, to be the set difference of the forward
projection minus the weak preimage:

Hy = Fo(R) — Py(G).

Clearly, the motion 8 can be terminated as a failure
whenever H; has been reached, since H, is outside the
weak preimage; hence the goal cannot be attained
under 8 from there.

We also define H, to be all regions where sticking is
possible in the weak minus strong preimage:

H, = {x € P,(G) — P,(G)|sticking is possible at x}

(see Fig. 21). The motion 6 should also be terminated
as a failure if sticking occurs in H,. We will decree
that the robot has stuck in H, if its velocity is zero for
some duration, or “time-out” period.!! More pre-
cisely, we define H to be a set in phase space. First,

11. That is, the termination predicate halts the motion when the
velocity is zero for some prespecified duration.
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note that H contains all phase-space points (x, v) where
X is in Hy. Second, H contains points of the form

(x, 0), where x is in H. Thus, viewing phase space as
the tangent bundle to generalized configuration space,
H contains the “cylinder” n~1(H,) of velocities over
H,, and the “zero section™ Z(H,) of zero velocities
over H,:

H=n"\(Hy) U Z(H,).

This definition of H almost satisfies the EDR axioms
—the only tricky point is that we cannot guarantee
that after sticking in H, for a long time, the robot can-
not eventually slide into the goal. This may be han-
dled in principle by introducing a time-out period by
which the goal must be reached. That is, our defini-
tion of H satisfies the EDR axioms if the goal is speci-
fied in phase-space time as the product of n~'(G) with
a compact time interval.

In Donald (1988b), we showed how to compute H
in the domain of planar assemblies with model error—
a domain that included both the gear-meshing exam-
ple (Fig. 2) and the peg-in-hole problem with model
error (Figs. 3—13). We also showed how to compute
whether G and H are distinguishable. This is sufficient
to generate one-step EDR strategies. These algorithms
have been implemented in LIMITED. At a high level,
the one-step algorithm is:

Algorithm 1EDR

1. Generate a commanded velocity v¥.

2. Compute the EDR region H for v}

3. Determine whether the EDR region H and the
goal G are distinguishable using sensors. If so,
then v} yields a one-step EDR strategy that
recognizably terminates in G or H by monitor-
ing position and force sensors.

4. Let pushy(G) and pushy(H) denote the sticking
push-forwards. They are the set of obstacle
edges within G and H, respectively, on which
sticking can occur under v¥. Determine whether
these regions are distinguishable using sensors.
If so, then v} yields a one-step EDR strategy
that recognizably terminates when sticking is
detected.

Here is how LIMITED decides the question, “Are G
and H distinguishable using sensors?”

H and G are distinguishable using position sensing
alone if their convolutions (Minkowski sums) by the
position sensing error ball B,, do not intersect.

Each obstacle edge of H and G has an associated
configuration space friction cone. Two edges are dis-
tinguishable using force sensing if the convolutions of
their friction cones by the force sensing uncertainty
B,, have a trivial intersection.'?

Similarly, the set of possible sensed reaction forces
at an obstacle vertex w of G or H may be found by
taking the direct sum of the friction cones of the edges
cobounding w, and convolving by B,,. Again, a vertex
of H and a vertex (or edge) of G are distinguishable
using force sensing if their associated cones of sensed
reaction forces have a trivial intersection.

The procedure also works for determining the dis-
tinguishability of the push-forwards. Note that the
procedure is correct for linear edges, where position-
and force-sensing are separable, because the set of
possible reaction forces is constant along an edge. For
the general case, see Donald (1989).

However, for both the gear-meshing and peg-in-hole
problem, one-step strategies cannot be generated for
the sensing and control error bounds we input. More
specifically: in these cases, H can be computed for any
hypothesized one-step motion @, but LIMITED cannot
find a @ for which H is distinguishable from the goal.
Intuitively, the reason that H and G are not distin-
guishable is that (a) since the control uncertainty is
“large,” therefore H is “large,” and (b) since the error
bounds on position and force sensing are large, there-
fore it is not always possible to distinguish between H
and G.

What is to be done in this case? In short: multi-step
strategies are required. This raises the central issue:
how can multi-step EDR strategies be generated? We
are interested both in an implementable (and, in LiMm-
ITED, implemented) practical approach, and also in
developing unifying theory for multi-step EDR plan-
ning.

In this paper, we will assume that H can be com-
puted given R and 6, and that we can test whether or

12. An intersection containing only the zero-vector.
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not it is distinguishable from G. The reader interested
in algorithms for these computations may find details
in Donald (1988a,b; 1989). We now turn our atten-
tion to the generation of multi-step EDR strategies,
given these tools.

2.5. The Preimage Structure of EDR Regions

Our notation for preimages must be made slightly
more formal for the sequel. The key point (Lozano-
Pérez, Mason, and Taylor 1984; Erdmann 1986;
Mason 1984) is that knowing where the motion began
(that is, knowing R) can be used by the termination
predicate to predict what configurations are reachabile,
and therefore, to effect recognizable termination. This
prediction may be accomplished via the forward pro-
jection; its use as such was termed history by Erd-
mann. Thus, the preimage map P depends not only
on # and G, but also on R. Our notation for preimages
must reflect this dependence.

We observed above that if the termination predicate
can distinguish between the goal G and the EDR re-
gion H, then H is a good EDR region, and an EDR
strategy was in hand. Formally, we write this recogniz-
ability constraint as

Por({(G, H)) = R. *)

We say that the preimage (*) is taken with respect to
R. (*) means that the (strong) preimage of the set of
goals {G, H}, with respect to commanded velocity vg,
is all of R. When we have a set of goals, the termina-
tion predicate must return which goal (G or H) has
been achieved. This is different from Py (G U H),
which means the termination predicate will halt saying
“we’ve terminated in G or H, but I don’t know
which.” The region R appears on both sides of (*)
because the preimage depends on knowing where the
motion started. This is a subtle point (see Lozano-
Pérez, Mason, and Taylor 1984; Erdmann 1986). Thus
solving preimage equations like (*) for R is like finding
the fixed point of a recursive equation. Here, however,
we know R, H, and G, so (*) is a constraint that must
be true, rather than an equation to solve. Presumably
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(*) is easier to check than to solve for R (Lozano-Pérez,
Mason, and Taylor 1984; Erdmann 1986; Donald
1988b; 1989).

The Most General Preimage Equation

We now introduce the most general form of the pre-
image equation. Suppose {Gz} denotes a collection of
goals, and (R, } is a collection of start regions. Recall #
denotes the direction of the commanded motion.
Most generally, the preimage equation is

P o,(R,)({Gﬁ}) ={R,}.

This says that if the run-time executor knows that the
robot is in some particular but arbitrary start region R
in the collection {R,}, then if velocity v¥is com-
manded, the termination predicate is guaranteed to
achieve some goal G in {G,}, and furthermore, it can
recognize which goal has been achieved.

3. Multi-Step Strategies

In sections 3-7 we explore multi-step strategy con-
struction. Now, in principle, having reduced both
model error and EDR to essentially “preimage-theo-
retic” equations, multistep strategies could be synthe-
sized by solving these preimage equations. While this
is proved or at least implicit in previous work (Lo-
zano-Pérez, Mason, and Taylor 1984; Erdmann 1986;
Mason 1984; Donald 1988b; 1989), it is far from obvi-
ous; furthermore, there are almost no published exam-
ples of such strategies. For this reason we begin by
presenting a worked-out example of a motion plan
using preimages. The motion problem is grasp-center-
ing for a robot gripper in the presence of model error.
Both guaranteed and EDR strategies are found by
solving the preimage equations.

Preimages are a key underlying tool for the geomet-
ric EDR theory, and the LMT framework is in some
sense a “universal” method for synthesizing multi-step
strategies. However, the technique of solving the pre-
image equations is not computational. For this reason,
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we have introduced a construction called the push-for-
ward. Roughly speaking, the push-forward is that sub-
set of the forward projection where the motion can
terminate. Since push-forwards address termination
whereas forward projections do not, we may regard
them as “dual” to preimages. That is, push-forwards
are to forward projections as preimages are to back-
projections. Second, the push-forward permits us to
develop rather simple algorithms for planning multi-
step strategies. These algorithms have been imple-
mented in LiMITED. While the push-forward method
for multi-step strategy synthesis is algorithmic, it is less
general than the full preimage method (solving the
preimage equations). We characterize the loss of power
in push-forward algorithms.

In section 1 we presented two EDR plans generated
by LimiTeD. These were the peg-in-hole insertion
strategy with model error, and the gear-meshing plan.
Both were two-step plans. We will go into more detail
in describing how these plans were generated. The
peg-in-hole plan used push-forward techniques. The
gear plan used a seemingly unrelated technique called
Jailure mode analysis. We describe failure mode anal-
ysis and algorithms for computing it.

Next, we will present a view of multi-step strategies
that essentially unifies all these techniques. This is
called the “weak™ EDR theory. The motivation behind
this theory is that when a motion terminates ambigu-
ously, a subsequent motion may be synthesized that
disambiguates the success or failure of the first. Oddly
enough, it is not necessary for either motion individu-
ally to satisfy the EDR axioms. However, when taken
together, the two-motion plan can often be considered
“equivalent’ to a one-step EDR strategy.

The weak EDR theory effectively defines some laws
of “composition™ that permit two single-step plans to
be concatenated into a two-step plan satisfying the
EDR axioms. Hence it is often possible to construct
multi-step plans that are EDR plans “globally” al-
though not “locally.” That is, considered as entire
plans, they satisfy the EDR axioms; this is the “global”
condition. However, “locally” they are not EDR
plans, in that no single step is an EDR strategy. The
key to pasting together non-EDR plans to make a
global EDR strategy lies in defining certain local
“niceness” conditions for how plans must mesh. These
are called the linking conditions.

4. Planning Using Preimages: A Detailed
Example

In this section we show how the LMT framework can
be used to synthesize multi-step strategies. Here are
the key points of this section:

» In principle, multi-step plans may be found by
solving a family of preimage equations.

e While this was proved by Lozano-Pérez, Mason,
and Taylor (1984), Mason (1984), and Erdmann
(1984; 1986), it is not obvious how to effect the
solution. This example intends to elucidate the
process.

¢ The technique is general enough to plan EDR
strategies under model error, once we have cast
both the problem of planning with model error
and the EDR problem in an essentially “preimage-
theoretic” form, as in Donald (1988b) and sec-
tion 2.

¢ However, the technique of solving the preimage
equations is not algorithmic.

Furthermore, preimages are a key underlying tool
for the geometric EDR theory. It is necessary to
make further acquaintance with preimages in order
to continue our development of the EDR frame-
work. To that end, this section presents a worked-
out example of a motion plan using preimages. The
motion problem is grasp-centering for a robot grip-
per in the presence of model error. The example
illustrates the use of the preimage framework to de-
rive a multi-step motion strategy in the presence of
model error. The strategy employs time-sensing and
force-sensing. This discussion is designed both as a
tutorial in solving preimage equations for a motion
plan and as an introduction to the planning of
multi-step strategies.

4.1. Example: Planning Grasp-Centering Using
Preimages

The remainder of this paper builds on the preimage
framework to develop the EDR theory. To make the
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Fig. 22. The grasp centering
problem. The width of the
block D on the table and the
position of the gripper are
only known approximately.

framework more accessible, we provide here a fairly
detailed description of a motion planning problem
using preimages.'3

We are now ready to work an example. We solve a
particular motion planning problem with model error
by solving the preimage equations. This example pro-
vides an illustration of planning using preimages. For
simplicity, we initially address only the problem of
finding a guaranteed strategy. Finding EDR strategies
in this domain is discussed afterwards.

Consider the grasp-centering problem shown in
Figure 22. The task is to center the robot gripper over
the block D. The gripper can translate but not rotate
in the plane. In its start position, the gripper is some-
where over D, such that the bottoms of the fingers FA
and FB are below the top of D. The width of D is
unknown, but must be less than the distance between
FA and FB, We assume D is fixed (it cannot be acci-
dentally pushed).

Hence we can regard this as a planning problem
with model error. C is taken to be the Cartesian plane,
and J is a bounded interval of the positive reals. Qur
first question is, what does the generalized configura-
tion space look like? This is easily answered by consid-
ering the motion planning problem in Figure 23. The
problem is to find a motion strategy for a point robot
so that it can achieve a goal exactly halfway between
the blocks 4 and B. The distance o between 4 and B is
unknown and positive. The point robot is known to
start between 4 and B. Again, the point can translate
in the plane. The distance « is the model error param-
eter. It is easy to see that the problems in Figures 22
and 23 are equivalent.

Fig. 23. An equivalent prob-
lem. A point robot must be
navigated halfway between
the blocks A and B. The
distance between A and B is
not known. The robot has
Jorce sensing and a clock.

sensing. We regard C as R?
and J as the bounded inter-
val (0, d] for d positive. The
generalized configuration
space for this problem is the
same as in Fig. 16, for the
positive values in J.

13. This problem arose in discussions with Tomas Lozano-Pérez,
John Canny, and Mike Erdmann.
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However, it has poor position

!
1
|
\

However, we already know what the generalized
configuration space for Figure 23 looks like. It was dis-
cussed in section 1 and is shown in Figure 16. Hence
our example is a planning problem in a familiar gener-
alized configuration space.

Next we assume that the robot has perfect control,
perfect velocity sensing, and a perfectly accurate sense
of time. However, it has infinite position sensing error.

Now, since the gripper starts over D with the bot-
toms of the fingers below the top of D, and since the
robot has perfect control, it suffices to consider the x
axis of C. Since the y axis can be ignored, we develop
our example in the plane, that is, in the generalized
configuration space where C and J are both one-
dimensional. This 2D generalized configuration space
is shown in Figure 24, which is essentially an x.J cross
section of Figure 16, holding y constant with « con-
strained to be positive. In Figure 24, L and R are left
and right obstacle edge boundaries generated by 4 and
B. The goal is the line in free space bisecting L and R.
The start region 7T is the triangular region in free space
between L and R. (T is the convex hull of L and R.)

Now, since motion across .J is not permitted, all
motions are parallel to the x axis, that is to say, hori-
zontal in Figure 24. There are only two kinds of mo-
tions the planner can command. Let + denote a mo-
tion to the right, and — a motion to the left. We
assume the robot has perfect control over the magni-
tude as well as the direction of the commanded velocity.

Consider Figure 24. Now, if a is a point on the J
axis, let E, be the point on the left obstacle edge L
with J coordinate . We will denote the collection of
all such points on L by {E,}. Let S, denote the maxi-
mal line segment within 7 containing F, and parallel
to G. Formally, if £, has coordinates (x, &), then S, is
the line segment extending from E,, to (x, d) where d

14. This example is easily generalized to non-zero control, time-
sensing, and force-sensing error, and finite position-sensing error.
However, this requires giving the goal a non-empty interior.
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are obstacle boundaries in
generalized configuration
space. The goal is the bisec-
tor G between L and R in
Jree space. The start region
T is the triangular region
between L and R. E_ is a

Fig. 24. Assuming that the
gripper fingers are initially
lower than the top of the
block D, the y dimension can
effectively be ignored. This
allows us to examine a cross
section of Fig. 16. We treat
C as the x axis of motion pointon L. S,isalineinT
Jfreedom, yielding a 2D C X parallel to G and containing
J planning space. L and R S,

N\

J

o

is an upper bound on the distance between 4 and B.
We denote the collection of all lines S, by {S, ).

At this point we are prepared to derive a motion
strategy for centering the grasp (that is, for attaining G
from T'). The strategy has three steps. The termination
conditions for the motions involve time- and force-

sensing. Here is the motion strategy in qualitative terms:

Strategy Guarantee-Center

I. Command a motion to the right. Terminate on
the right edge R based on force sensing.

Il. Command a velocity of known magnitude to
the lefi. Terminate when in contact with the left
edge L, using force sensing. Measure the
elapsed time of the motion. Compute the dis-
tance traversed. This gives exact knowledge of
where the motion terminated on L. The effect
of this step is to measure the distance o between
the blocks.

1. Move distance /2 to the right, terminating in
G based on time sensing.

We now derive this strategy by solving the preimage
equations for the motion planning problem.

First, note that if the run-time executive knows that
the robot is inside a particular S, then G can be reli-
ably achieved by commanding a motion to the right.
Since the robot has perfect control and time sensing,
the motion can be terminated after moving distance
«/2, that is, exactly when the line G is achieved. Using
the preimage notation, we write this as

Py (5.)(G) = {Sa). 0]

Next, we take the collection {S,} as a set of subgoals
and try to find a motion that can recognizably attain
this collection, and furthermore, can distinguish which
S, the motion achieves. Consider a leftward motion
starting from anywhere on the right edge R. The robot
does not know where on R the motion starts, however.
To recognizably achieve some S, such a motion
should move leftward and terminate when force sens-
ing indicates that L has been reached. If the termina-
tion predicate measures the elapsed time of the mo-
tion, and knows the magnitude of the commanded
velocity, then it can recognize which point E, has been
reached, and hence which subgoal S, has been
achieved. Writing this down in preimage equations,

P_r({Se}) = P_r((E.}}=R. )

Finally, the right edge R may be achieved from
anywhere within the start region 7 by moving right-
ward and terminating when force sensing indicates
contact. This is simply

P, /(R)=T. 3)

It is instructive to examine the termination condi-
tions for motions (I)—(III) in the Strategy Guarantee-
Center, In developing the LMT framework for plan-
ning guaranteed strategies, Erdmann (1984; 1986)
developed an elegant formalization of the question,
“Using sensors and history, when can the termination
predicate decide that a motion has recognizably en-
tered a goal G»?” The answer was as follows. Assume
that G has been lifted into phase space. Let R be the
start region. The forward projection F,(R) captures
the notion of history: it is all positions and velocities
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that can be reached given that the motion started in R.
At a particular instant  in time, let B,,(f) and B,,(t) be
the sets of possible positions and velocities. These are
the sensing uncertainty balls about a sensed position
and velocity in phase space at time ¢, Thus sensing
provides the information that the actual position and
velocity must lie within the set B,(f) X B, (). The
forward projection further constrains the actual posi-
tion and velocity to lie within Fp(R). Thus the termi-
nation predicate can terminate the motion as having
recognizably reached G, when

Fo(R) N (B,(1) X B.(8)) C G- *)

Now, let Fy(R, t) denote the time-indexed or instan-
taneous forward projection of R under 8 at time .
Fy(R, t) denotes the set of positions and velocities that
are possibly achievable at elapsed time ¢, under mo-
tion 6, given that the motion started in R. The termi-
nation predicate in this case monitors a clock, in addi-
tion to position and velocity sensors. In motion (1),
only the time-indexed forward projection F.(S,, ?) is
relevant to deciding termination. The motion termi-
nates when F,(S,, f) C G. Motion (3) can be termi-
nated using pure force sensing. It could also be termi-
nated using time, since there exists some ¢ for which
F (T, t) = R. In motion (2), both force sensing and
time are required to terminate within a distinguishable
E,. The general form of the termination condition for
all three cases is as follows. The termination predicate
has the form

Fo(U, ) N (Bg(1) X B(1)) C G

for a goal G and a start region U. (Assume that all
subgoals have been lifted into phase space.) In our
case, position sensing error is infinite, so B,(f) is C X
J. Let us denote (C X J) X B_(¢) by the simpler ex-
pression B,(f). Then the termination conditions for
motions (I)-(III) are as follows. For the first motion
(ILI) to terminate, we must have

F(T, HNB{CR (4)
For the second motion (II) to terminate, we must have

F(R N B CS, (5)
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for some S,. We think of the termination predicate as
“returning” this S, . Finally, for termination of the last
motion (I), we must have

F(S)NB()CG, (6)

where the S, in eq. (6) is the same as the one returned
by the termination predicate after the second motion
as the satisfying assignment for eq. (5).

Finally, note that time is the source of some com-
plexity in this example. This complexity might be
removed by employing a distance sensor instead. The
output of such a sensor could be modeled as position
sensing in J. The sensing action in J would entail mea-
suring the distance between 4 and B. This relaxes the
assumption of no position sensing in the J dimen-
sions, but such modification to the generalized config-
uration space framework is trivial. With this modifica-
tion, B,, is simply regarded as a product of a
position-sensing ball in C and a position-sensing set in J.

This concludes the example. We have shown how to
derive a multi-step guaranteed motion strategy in the
presence of model error. The strategy was derived by
solving the preimage equations in generalized configu-
ration space for the motion plan. These preimage
equations made the roles of time sensing and force
sensing explicit in deriving conditions for distinguish-
able termination in a collection of subgoals.

EDR Strategy for Grasp-Centering

We now generalize the grasp-center example and show
how to develop an EDR strategy for this problem.
Assume that the radius of position sensing uncer-
tainty is larger than the diameter of T, but not infi-
nite.!> Furthermore, assume that ¢, the distance be-
tween A and B, can be zero (but not negative) in the
above example. That is, D can be too big to grasp.
Hence the hole between A and B can close up, as in
Figure 16. Assume that the gripper starts above the
height of the block D, in the circular region R in Figure
15. Generalize the discussion of preimages above to
describe an EDR strategy using preimages. We will
need to consider the y dimension of motion freedom

15. This assumption is not necessary, but it simplifies our discussion
somewhat.
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as well, in the 3D generalized configuration space
shown in Figure 16, but only the non-negative « in J.
Note that EDR is “required” here, since if & can be
zero, there exists no guaranteed strategy.

Let us rename the circular start region in Figure 15
to be U, and continue to use R for the right edge in
Figure 24. Assume that the x.J slice of generalized
configuration space in Figure 24 is taken at y =0 (i.e.,
at the level of the table) and that under the com-
manded motion v¥, shown in Figure 15, sliding occurs
on all horizontal and vertical surfaces. However,
clearly sticking will occur under v¥ on the concave left
edge L between A and the table.

Now, let H be as in Figure 19. Here is the EDR
strategy in qualitative terms:

Strategy EDR-Center

El. From U, command the motion v}. Terminate on
the left edge L based on sticking, or in H based
on time.

E2. If H is attained, signal failure. Otherwise, go to
step (1) of strategy Guarantee-Center.

Now, since H, = ), the preimage equation (*) for
step (E1) simply reduces to

Poy((L, HY) = U. (7

At this point, the remainder of the strategy may be
developed in the x.J slice shown in Figure 24. To finish
the preimage characterization of the EDR strategy, we
must replace eq. (3), which characterizes the first step
(1) of strategy Guarantee-Center, by

P (R)=1L. ®)

Note that eq. (8) is actually a logical consequence of
eq. (3), since L is a subset of 7. Analogously, eq. (4)
must be changed by replacing T by L. Preimage equa-
tions (1), (2), (5), and (6) remain unchanged.

4.2. Solving Preimage Equations Is General but Not
Computational

This example shows how multi-step EDR strategies
under model error can be generated by solving a family

of preimage equations. However, the technique is not
an algorithm. We do not claim that such an algorithm
could not be developed, but merely that as described
above and in Lozano-Pérez, Mason, and Taylor
(1984), Mason (1984), and Erdmann (1984; 1986), the
method is not ( yet) computationally effective.!®¢ The
first reason it is non-computational is that the number
of subgoals (E, } and {S,} is infinite. The second, and
more important, reason is that solving the preimage
equation is, as stated, a decision problem in second-
order set theory. Even if the sets are, say, algebraic,

this theory is undecidable. However, there exists a
reformulation of the problem rendering it decidable.
Below we describe one such reformulation, using
push-forwards, that can be used in effect to solve cer-
tain “simple” preimage equations and hence to gener-
ate a restricted class of EDR plans.

In a recent breakthrough, Canny (1989) has shown
that LMT plans can be synthesized without deciding a
general second-order set theoretic question. He shows
that LMT plans, in full generality [that is, with general
termination predicates as in Erdmann (1984; 1986)]
can be computed in doubly exponential time via a
reduction to the (first-order) theory of real-closed
fields. His method is currently only applicable to the
translation-only case, but shows that, in principle,
general multi-step plans are computable.

5. Push-Forwards: A Simple Generalization
to n-Step EDR Strategies

The generalized preimage framework gives a kind of
“universal” method for generating multi-step EDR
strategies. However, the technique of solving the pre-
image equations is not algorithmic — it is more like
doing a proof by hand. For this reason, we introduce
the push-forward technique for synthesizing multi-step
strategies. While considerably less general than solving
the full preimage equations, it leads to rather simple
multi-step strategy-generation algorithms, which were

16. However, note that Erdmann’s techniques of approximating
preimages by backprojections may lead toward a fully algorithmic
method.
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Fig. 25. There are two possi-
ble universes; the goal G
exists in the first but not the
second. The start region is
R, U R, Motion 8 is guar-
anteed to move from R, into
S;. Motion y is guaranteed

to move from S, into f. There
is an eight-step plan achiev-
ing G from R,. The forward
projections of R, and R, are
indistinguishable. There
exists no one-step EDR
strategy from the motion 0.
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implemented in LiMITED. The push-forward tech-
nique is powerful enough to generate an EDR plan for
the peg-in-hole insertion strategy with model error
described in section 1. However, it is not general
enough to solve all steps of the grasp-centering exam-
ple discussed above. This gives us a measure of the
relative power of push-forward vs. preimage equation
techniques.

We first introduce the Twin Universe example.

The Twin Universe Example

Consider Figure 25. Here there are two possible uni-
verses, both in the plane, so J is the two-element dis-
crete set {1, 2). The start region is the union of R, in
universe 1 and R, in universe 2. The goal exists in
universe | but not in universe 2. There is no one-step
EDR strategy that, from the start region, can guaran-
tee to achieve G or recognize that we are in universe 2.
In particular, there is no one-step EDR strategy that
can be derived from the motion vj.

However, there clearly exist multi-step EDR strate-
gies. We will construct one as follows. Recall that to
construct one-step EDR strategies, we took as data a
goal, a start region R, a commanded motion 8, and
the preimage of the goal under 8. Given this data we
constructed an EDR region. From the EDR region, we
attempted to construct an EDR strategy that achieved
the distinguishable union of the goal or the EDR re-
gion. Now, why does this fail in Figure 25?7 To answer
this question, let us consider what the motion & was
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supposed to achieve in universe 1. There is an eight-
step plan in universe 1 that recognizably achieves &
from start region R, . It is obtained by back-chaining
preimages in universe 1. The plan moves from R, to
the region S| under v¥. Then it slides along the top
surface to vertex /. Next it slides to vertex e. It slides to
the successive vertex subgoals d through g, and then a
horizontal sliding motion achieves the goal G.

The strategy 0 is guaranteed to achieve the surface
S, from start region R,. Suppose we try to extend it to
an EDR strategy with start region the union of R, and
R,. The EDR region is then simply the (cylinder over
the) forward projection of the “bad” region, Fy(R,)
(see Figure 25). There is no way that the termination
predicate can distinguish between the forward projec-
tion of R, and the forward projection of R,; hence no
EDR strategy from 6 exists.

We can easily construct a two-step EDR strategy,
however. First, we execute motion ¢ from the union of
R, and R,. This achieves a motion into S, in universe
1 or into S, in universe 2. The termination predicate
cannot distinguish which has been attained. Suppose
the second motion in the eight-step plan is v} (see
Figure 25), and is guaranteed to achieve the vertex
subgoal ffrom start region S,. We will try to construct
an EDR strategy out of this second motion. Take as
data: the subgoal F, the start region S, U S,, the
“southwest” motion , and the preimage of funder
w.!” The EDR region for these data is the forward
projection of S, under y (Fig. 26). Presumably this
EDR region is (eventually) distinguishable from f, and
so we have constructed an EDR strategy at the second
step. After executing the second step, we either termi-
nate the motion as a failure, or proceed to vertex e
and, eventually, to the goal.

5.1. Generalization: Push-Forwards

Now let us attempt to capture the salient aspects of
the n-step EDR strategy construction. We take as data

17. While §, is the preimage of funder  with respect to start
region S|, the preimage with respect to the entire forward projection
of §, U S, includes the top edge between S, and f. See secs. 2.5 and
2.4).
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Fig. 26. The forward projec-
tion under y of S,.

Universe 2

an n-step plan with start region R,. The actual start
region is some larger region, say, R. Above, we had R
as the union of R, and R,. The first motion in the
plan is guaranteed to achieve some subgoal S, from
R, . Using this first motion from start region R, we try
to construct an EDR region H,, and a one-step EDR
strategy that either achieves .S or signals failure by
achieving H, . If this succeeds, we are, of course, fin-
ished.

Suppose we cannot distinguish between H, and ;.
In this case, we want to execute the first motion any-
way and terminate somewhere in the union of S, and
H,. The termination predicate cannot be guaranteed
to distinguish which goal has been entered.

This “somewhere” is called the push-forward of the
first motion from R. The push-forward is a function of
the commanded motion 6, the actual start region R,
the region R, from which @ is guaranteed, and the
subgoal S, .!® A particular type of push-forward is de-
fined formally in Donald (1988b; 1989); we describe it
informally below. In the two universes example, the
push-forward (under @) of R, is S,. The push-forward
of Ry U R, is S| U S,. The push-forward is similar to a

forward projection, except that it addresses the issue of
termination. In the example, informally speaking, the
push-forward from the region R (under some com-
manded motion ) is the result of executing § from R
and seeing what happens. It is defined even when the
strategy 6 is only guaranteed from some subset (R, ) of R.

Having terminated in the push-forward of R (the
union of S, and §, above), we next try to construct a
one-step EDR strategy at the second motion of the
n-step plan. The data are: the next subgoal T after S,
in the plan, the actual start region S; U S;, the second
commanded motion in the plan, and the preimage of
T, under this motion.!® This defines a formal proce-
dure for constructing »-step EDR strategies. At each
stage we attempt to construct a one-step EDR strategy;
if this fails, we push-forward and try again.

Actually, this description of the procedure is not
quite complete. At each step we construct the EDR re-
gion as described. However, the one-step strategy we
seek must achieve the distinguishable union of the
EDR region and all unattained subgoals in the plan.
That is, the EDR motion must distinguishably termi-
nate in the EDR region, or the next subgoal, or any
subsequent subgoal. This allows serendipitous skipping
of steps in the plan.

By considering different data, that is, quantifying
over all motions at each branch point of the n-step
strategy, we can in principle consider all n-step strate-
gies and define non-directional EDR strategies. This is
at least as difficult as computing #-step nondirectional
preimages. If we wish to consider plans of different
lengths, we must also quantify over all n. Needless to
say, the branching factor in the back-chaining search
would be quite large.

5.2. More on the Push-Forward

The problem of defining the push-forward may be
stated informally as follows: “Where should the mo-
tion be terminated so that later, after some additional
number of push-forwards, a one-step EDR strategy
may be executed?”

18. Of course, it also depends on the termination predicate, sensing
and control characteristics, etc.

19. The preimage is with respect to the forward projection of the
actual start region S, U S,.
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Many different push-forwards can be defined. Using
the notation above, note the motion is not even guar-
anteed to terminate when executed from R: it is only
guaranteed from R,. This means that velocity thresh-
olding and time may be necessary in the termination
predicate. There are other difficulties: for example, a
priori it is not even necessary that entry into the union
of the subgoal S, and the EDR region H, be recogniz-
able. Thus defining the push-forward is equivalent to
defining where in .S; U H, the motion can and should
be terminated.

Depending on what push-forward is employed, we
may or may not obtain an n-step EDR strategy. It is
possible to define constraints on the push-forward that
must be satisfied to ensure that a strategy will be
found if one exists. These constraints are given in
Donald (1989), where we give equations that the push-
forward must satisfy. At this time a constructive defi-
nition is not known. This situation is similar to, and
possibly harder than, the problem of solving the gen-
eral preimage equation.

5.3. An Approximation to the Push-Forward

We may have to approximate the desired push-for-
ward. We give such an approximation to show what
the push-forwards alluded to above are like. Such
approximate push-forwards may prove useful in ap-
proximating the desired push-forward. The issue de-
serves more study. Since this approximate push-for-
ward is incomplete, the reader should consider its
description here as illustrative of the research problem
and not as an endorsement.

The push-forward employed in the two universes
example was formed by “executing the strategy any-
way, and seeing where it terminated.” How do we
formalize this idea? Consider the termination predicate
as a function of the starting region, the initial sensed
position, the commanded velocity, the goal(s), and the
sensor values. The sensor values are changing; the
predicate monitors them to determine when the goal
has been reached. Now, if the termination predicate
“knew” that in the example the start region was the
union of R, and R;, then the first motion strategy &
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could never be terminated: the predicate could never
ensure that the subgoal S, had been reached. This is
simply because S; and S, are indistinguishable. But if
we “lie”” to the termination predicate and tell it that
the motion really started in R,, then the predicate will
happily terminate the motion in S; U S;, thinking that
S, has been achieved. Viewing the termination predi-
cate as a function, this reduces to calling it with the
“wrong” arguments, that is, applying it to R, instead
of R, U R,. The push-forward we obtain is “where the
termination predicate will hait the motion from all of
R, U R,, thinking that the motion originated in R,.”
S, is obtained as the set of places outside of .S, where
the lied-to termination predicate can halt.

Even formalizing the construction of this simple
push-forward is subtle; details are given in Donald
(1988b; 1989). While this approximate push-forward
is incomplete, it does suffice for a wide variety of EDR
tasks. The approximate push-forward captures the
intuitive notion of “trying the strategy anyway, even if
we’re not guaranteed to be in the right initial region.”
It is incomplete because it fails to exploit sufficiently
the geometry of the forward projection of the “bad”
region. Better push-forwards must be found; this one is
merely illustrative of the problems.

5.4. Notation for Push-Forwards

For a motion @ from start region R, we denote the
general push-forward by F,,(R). That is, F,4(R) is that
subset of the forward projection F,(R) where the mo-
tion @ will terminate when executed from R.

LIMITED employs an approximate push-forward. It
is called the a priori push-forward based on sticking
termination, and is defined as that subset of the for-
ward projection where sticking is possible. This push-
forward is correct as long as all motions use sticking as
a termination condition. For a set U we define
push,(U/) as all points in U where sticking is possible.
Where possible, we will develop the EDR theory for
the general push-forward that employs the full power
of the termination predicate. In places, however, and
when describing LIMITED, we will specialize the push-
forward to use sticking termination alone, and thereby
set Foy(R) = pushy(Fy(R)).
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5.5. Sticking as a Robust Subtheory of EDR

In the abstract EDR theory, one envisions the run-time
termination predicate performing whatever computa-
tions are necessary to terminate a motion recognizably
in G or H. That is, in principle, the planner decides
what termination conditions are appropriate for a
successful EDR strategy and encodes them into the
motion strategy. Of course, it is also the responsibility
of the planner to verify that this encoding will always
result in a distinguishable termination. In short, the
abstract EDR theory can employ the full power of the
LMT preimage framework to generate motion strate-
gies.

However, LIMITED employs only certain restricted
termination conditions, as we saw above. In particular,
sticking is used in most experiments. This restricts the
class of strategies LIMITED can generate. The restric-
tion requires some justification, and that is the purpose
of this section.

First, recall that in polyhedral environments with a
bounding box, sticking termination is sufficient to
ensure that all pure translations eventually terminate
(Buckley 1987). In general, in this work we have made
the heuristic assumption that motions can eventually
be terminated via sticking. Failing this, we also enter-
tain the weaker assumption that if sticking is insuffi-
cient, then time can be employed to wait until G U H
has been achieved before termination.?®

To analyze the structure of sticking termination, let
us introduce the following notation. If the robot recog-
nizably achieves G U H, this means that the run-time
executor can determine that G or H has been achieved,
but cannot necessarily tell which of G or H has been
entered. If the robot recognizably achieves (G, H),
then it can further distinguish which of G or H it has
reached. G U H is called the urion while the set nota-
tion is called the distinguishable union.

Throughout this section we assume without loss of
generality that the goal G is contained within the for-
ward projection.?! If this is not the case, then intersect
them to obtain a new goal.

20. See sec. 8.3 of Donald (1989).

21. This is not a severe restriction; see sec. 7.3 of Donald (1989).

LIMITED tries to decompose this problem of ensur-
ing that all trajectories terminate recognizably in
{G, H) into two subproblems. The first is to ensure
that the motion in fact terminates in G U H, That is,
the problem is to determine that at least one of G or H
has been achieved, although the robot may not know
which. The second problem is to distinguish between
G and H, once G U H has been achieved.

Note that the first problem requires distinguishing
between G U H and its complement. Here is the key
point:

o The construction of H guarantees tautologously
that with sticking termination, & U H will be
recognizably achieved when the motion termi-
nates. That is, with sticking termination, no mo-
tion can terminate outside of G U H.

This resolves the first subproblem. Thus

With sticking termination, all candidate one-step
EDR strategies eventually terminate recognizably
in GU H (but not necessarily in (G, H)). Of these,
all valid EDR strategies can distinguish between
G and H after termination, and hence recognizably
terminate in {G, H}.

The second subproblem is how to distinguish be-
tween (G and H once G U H has been achieved. Using
sensors and history, the termination predicate can
decide that a motion has recognizably entered a
(phase-space) goal G, when

Fo(R) N (B,,(1) X B,,(1)) C Gy *)

(see sec. 4.1). Now, when is it the case that the termi-
nation predicate can distinguish which of G or H has
been reached? Exactly when (*) is true for G4 in

(G, H}. However, in our case, sticking termination
guarantees that the actual position and velocity lie
within G U H. Furthermore, G U H is a subset of the
forward projection, and G and H are disjoint by con-
struction. The forward projection provided no further
constraint in distinguishing between G and H. Thus
history plays no role in the run-time distinguishing
actions of the robot executive; history has been pre-en-
coded into the structure of H. Hence, we can predict
that the run-time executor can distinguish which of G
or H has been achieved when the planner can predict
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that G and # are distinguishable using sensors alone. A
procedure —albeit not completely general—for decid-
ing this question was described in 2.4,

Generalizations

There are several possible generalizations of these
termination techniques. First, it may be possible for
the run-time executor 10 use time to ensure that the
motion terminates in G U H. That is, forward projec-
tions may, in principle, be indexed by time. Hence in
(*), Fo(R) is replaced by Fy(R, ?), the instantaneous
forward projection of R under @ at time ¢, which is
typically much smaller (see sec. 4.1). The termination
predicate in this case monitors a clock in addition to
position and velocity sensors. However, in this case,
history [by which we mean F,(R, #)] could be em-
ployed to distinguish G from H, even though the mo-
tion had terminated recognizably in G U H. The rea-
son for this is that the time-indexed forward projection
has not been pre-encoded into the structure of H.
That is, H was constructed using the timeless forward
projection, which is the union of all time-indexed
forward projections. Hence we can summarize these
observations as follows:

s [f a termination predicate without time uses stick-
ing to terminate the motion, then distinguishing G
Jrom H is a history-free decision. However, for a
termination predicate with a sense of time, the
decision is not history-free.

Thus sticking subtheory does not preclude more
general termination techniques based on position,
force, and time sensing. However, two computational
issues become more difficult. First, sticking termina-
tion is a robust method for ensuring termination in
G U H. With time termination, or more general posi-
tion/force termination criteria, it is more difficult to
ensure termination in G U H—although admittedly
these criteria are more powerful. Second, after sticking
termination, deciding between G and H is history-free.
With more general termination predicates, history can
provide extra constraint in distinguishing between G
and H.

Finally, note that Buckley (1987) recognized the
value of sticking termination when implementing an
LMT planner for guaranteed strategies in %3, His
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planner used sticking termination; in particular, he
provided certain criteria for guaranteeing that a strat-
egy eventually terminates in sticking. Buckley’s cri-
teria amount to ensuring that the environment is finite
polyhedral, within a bounding polyhedral box.

5.6. Example: Multi-Step EDR Plan for Peg-in-Hole
with Model Error

The advantage of the push-forward technique is that it
can be made computational. We now give LIMITED’s
algorithm for generating multi-step strategies using
push-forwards, and describe an experiment that used
this method.

Recall section 1 (Figs. 6 - 16), which described a
two-step EDR plan for a peg-in-hole plan with 3-DOF
model error. Here is how this multi-step strategy was
generated:

Algorithm Multi

1. First, try to generate a one-step EDR strategy
using the algorithm 1EDR in sec. 2.4.

Suppose this fails. Then:

2. Generate a commanded velocity v¥, such that
the forward projection of the start region inter-
sects the goal in some slice.

3. Compute the EDR region H for v¥.

4. Compute the sticking push-forward of the mo-
tion, R; = pushy(G U H).

5. Using R; as the start region, generate a one-
step EDR strategy using algorithm 1EDR.

Of course, in LIMITED the computation is memoized
so that the projection and EDR regions computed in
step (1) are not recalculated in steps (2) and (3). Ob-
viously, we can extend this algorithm to generate
longer strategies that push-forward several times and
finally terminate in a single-step EDR strategy.

Now, LIMITED is a multi-resolution planner. (The
term “‘resolution” refers to the fineness of the discreti-
zation of a continuous problem). The algorithm out-
lined above generates a multi-step strategy at a single
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resolution. The resolution of planning is simply the set
of a values in which slices are taken. A resolution .S is
finer than S, if it contains more slices. The multi-reso-
Iution outer loop works like this:

M1. At a coarse resolution, generate a multi-step
EDR strategy 6,, . . . , 8, using the forward-
chaining single-resolution algorithm above.
Select a finer resolution. Use the directions

8,, . .., 0,asasuggested strategy and aitempt
to verify that it is an EDR strategy ai the finer
resolution.

If8,, . . ., 0,isnot an EDR strategy at the
finer resolution, try to modify it so that it is, by
using 0,, . . . , 0, as suggested directions and
searching nearby directions at all levels.

M2,

M3.

The process terminates when the resolution is finer
than some predetermined level.?? The critical slice
method described in Donald (1988a; 1989) may be one
way to obtain such an a priori bound and know that it
is sufficient. In LIMITED, however, the bound is a user
input, because otherwise the number of slices required
would be prohibitive.

In the peg-in-hole example there were three DOFs
of model error: the width of the hole, the depth of the
chamfers, and the orientation of the hole. The resolu-
tions used in planning the two-step strategy were as
follows:

R1. Holding orientation fixed, 4 slices of the
depth X width axes.

R2. Holding orientation fixed, 16 slices of the
depth X width axes.

R3. Holding orientation fixed, 72 slices of the
depth X width axes.

R4. 100 slices of the depth X width X orientation
axes.

For detailed output traces of LIMITED, please see
Donald (1989).

22. Or, when at some level, no EDR strategy can be found.

5.7. The Loss of Power with Push-Forward Techniques

While push-forwards permit us to develop simple algo-
rithms for generating multi-step strategies, clearly
these algorithms are theoretically less powerful than
solving the preimage equations in full generality. We
now attempt to give an intuitive characterization of
the loss of power. In particular, push-forwards are
general enough for the peg-in-hole EDR strategy with
model error. However, they are not general enough to
generate the grasp-centering plan. We now discuss
where in the grasp-centering example the push-forward
techniques are inadequate. The key point is this: if
each commanded motion and termination condition
could be non-deterministically “guessed,” and a push-
forward for each motion and termination condition
could be computed, then in the grasp-center example
this would suffice to generate a strategy. However, the
push-forward algorithms we have developed are not
powerful enough to do this.

First, let us derive the push-forwards of each motion
in strategies EDR-Center and Guarantee-Center. Re-
call that E1 is the first step of the EDR plan, and Mo-
tions 1, 2, and 3 are steps in the (subsequent) guaran-
teed plan. In the third column we note whether or not
the push-forward technique is computationally effec-
tive for this motion.

Motion Push-Forward Computational?
El {L, H} Yes
1 R Yes
2 () No
3 G Ne

The push-forwards for Motions E1 and 1 can be
computed using the algorithms of Donald (1988b;
1989) (see sec. 2.4) and algorithm Muiti above. In mo-
tion E1, L may be found using sticking termination.
H may be found using time, or position and force
sensing termination. In motion 1, R may be found
using contact or sticking termination. However, our
algorithms cannot compute the push-forward (£, },
which contains an infinite number of components.
Furthermore, we have not developed algorithms for
computing push-forwards based on time termination
(except for elapsed time termination, of the form “ter-
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minate anytime after 7 seconds”). Thus the push-for-
ward G for the last motion cannot be computed by
our algorithms either.

Discussion

We first described a fully general but non-computa-
tional technique for generating multi-step strategies.
This method — solving the preimage equations— was
applied to the grasp-centering example. Next the push-
forward techniques were introduced as a computa-
tional, although less powerful approach to the synthe-
sis of multi-step strategies. Push-forward algorithms
were described, and we saw how LIMITED used these
techniques to generate a two-step plan for the peg-in-
hole problem with model error. Finally, we discussed
the limitations of the push-forward techniques. We
saw that they were not powerful enough to solve the
grasp-center problem in its entirety. By describing an
experiment where push-forwards suffice, and showing
an example where they are insufficiently general, we
have tried to give an intuitive but fairly precise charac-
terization for the relative power of push-forwards.

6. Failure Mode Analysis

Push-forward techniques require a precise geometrical
characterization of forward projection, and algorithms
for computing it. The gear-meshing example of sec. 1
is a problem in a four-dimensional generalized config-
uration space with pushing, Two of the dimensions
are rotational: one of these can be commanded, and
the other cannot, but the position along this dimension
may be changed via pushing. It is difficult to develop
good forward-projection algorithms in this generalized
configuration space, although critical-slice methods
are a start. For this reason, a different technique was
developed for planning multi-step strategies in this
domain. It is applicable for any generalized configura-
tion space with the same degrees of freedom and push-
ing characteristics (that is, any polygonal shapes in
place of the gears). The new technique is called failure
mode analysis; we describe it in this section.
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Failure-mode analysis is a method for synthesizing
multi-step strategies using a kind of “approximate” or
a priori forward projection. At first glance, it may
appear unrelated to push-forward or preimage tech-
niques. However, in the next section, on the weak
EDR theory, we present a viewpoint that essentially
“unifies” the three approaches.

6.1. Introduction

Recall the gear-meshing plan LIMITED generated in
sec. | (Fig. 4). In particular, we suppose that vision is
poor, or that the gears are accessible to the robot grip-
per but not to the camera. This means that position
sensing will be very inaccurate, and hence may be of
no use to determine whether the gears are successfully
meshed. This will often be the case in practice. In this
case, force sensing must be used to disambiguate the
success of the first motion (meshing) from failure
(jamming in an unmeshed state). A multi-step strategy
is required. While pushing of B can change its orienta-
tion, and hence cause motion across J (sec. 2.2), our
focus here will be on the multi-step strategy generation
and not on the physics of pushing,

In the gear-meshing plan, motion 6, is used to dis-
ambiguate the result of motion 6,. The technique
used is failure mode analysis. LIMITED is given a rep-
ertory of qualitative failure modes, that comprise
sticking and breaking contact. Motion &, can end in a
“good” region (meshed) or a “bad” region (jam).
LiMITED tried to generate a disambiguating motion as
a second step. This motion is required to terminate in
a failure mode from all “bad” regions.

Here is how LIMITED generates motion &,. Let H be
the EDR region for motion 6,. The planner deter-
mines all configurations where motion 6, can termi-
nate outside of G. Call this region push, (H).

Push,, (H) then forms the start region for motion 6,.
LiMITED then uses quasi-static analysis to ““prove”
that when A is at any configuration in pushy,, (/) and
a pure rotation of A is commanded, all possible mo-
tions of A result in sticking or breaking contact. Stick-
ing and breaking contact are called failure modes;
there is a class of EDR plans that can be terminated in
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failure when sticking or breaking contact are detected.
EDR planning with failure modes constitutes a robust
subtheory of EDR. It is a subtheory, because assuming
this kind of failure mode is a restrictive assumption to
make planning tractable. It is robust because sticking
and breaking contact are easy to recognize, relatively
speaking, as failure modes by a run-time robot executor.

From the preimage point of view, failure modes are
implemented simply as different classes of termination
predicates.

6.2. Specifying the Goal: Functional Descriptions

Recall our discussion of sticking as a termination con-
dition in 5.5. Sticking had the advantage of ensuring
“good” behavior in the EDR region H. In particular, it
could be guaranteed that all motions would eventually
terminate in G U H, rendering the distinguishability of
G vs. H a history-free decision. However, in order for

a sticking termination predicate to generate good EDR
plans, it was in fact necessary to ensure that the mo-
tion strategy has “good” behavior at the goal as well. In
particular, the commanded motion should stick at the
goal.

In failure mode analysis, we have a similar situation.
The purpose of motion 8, is to force all motions start-
ing from push,, (H) to terminate in sticking or break-
ing contact. Clearly this is only useful if #no motion
from push, (G) can even possibly terminate in sticking
or breaking contact. This is the required “good” be-
havior at the goal. Thus, in an EDR plan generated by
failure mode analysis,

F1. Under motion 8,, all motions starting from
pushy, (H) must terminate in a failure mode.

F2.  No motion from push, (G) can possibly terminate
in a failure mode.
F3. The goal is a fixed-point under motion 6,.

LimiTED decides whether or not (F1) is true. How-
ever, (F2) is given as input to LIMITED. We will now
discuss how (F2) is specified. In the next section we
will describe algorithms for computing (F1). (F3) may
be decided using forward projections; the actual condi-

tion we require is
Fy,(push,, (G)) C G,
which is implied by the fixed-point equation

Fe,(G)=G, (F3)
since of course pushy, (G) is contained in G.

The goal state for gear meshing may be viewed
purely geometrically. That is, it may be viewed as a set
in generalized configuration space. This view is useful
for computing the EDR regions. Alternatively, the
goal may be specified through a functional description.
For example, we might specify the goal as a difference
equation (DE). The intuition behind this difference
equation formulation of the goal is, “In the goal, any
finite rotation of A results in an equal and opposite
rotation of B.” More precisely, the difference equation
specifies:

DE. Command any non-zero finite rotation Aoy to A.
In the goal, this results in a finite rotation of A
by Aa, and of B by — Ae; 2

This difference equation captures the functional
aspects of the gears in their meshed state. Now, it is
clear that this equation may be ‘“differentialized.”
That is, we consider it to be true for all non-zero dis-
placements, no matter how small. If this is the case,
then it is clear that breaking contact is in direct con-
tradiction to the truth of the difference equation. This
is because if contact is broken, then there exists some
finite rotation of 4 that will not affect the orientation
of B. Similarly, sticking contradicts the truth of the
difference equation, for if the gears stick, then they are
not properly meshed (i.e., we do not obtain equal and
opposite rotations).

In LiMITED failure mode analysis, we view the goal
state as a combined geometrical and functional speci-
fication. In Donald (1989), we considered three ways
of specifying the functional aspects of the goal. The
last, which decides questions about goal predicates via
the theory of real closed fields, is only of theoretical

23. A and B are the same size. Clearly, this may be generalized to
different pitch gears.
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interest. The second is a heuristic approximation to
such an inference engine. The first is a more robust,
engineering solution. It places on the user the burden
of ensuring well-behaved qualitative behavior at the
goal. We will confine ourselves to the first, and sim-
plest, method in this paper.

Specifying the Functional Aspects of the Goal

Method 1. User input. In this method, it is the respon-
sibility of the user to ensure that (F2) is true. That is,
the user must guarantee that failure modes cannot
occur at the goal. This, of course, is the easiest method.
If the user guarantees that (F2) holds, then it remains
only for LIMITED to show (F1).

Some of the greatest and most interesting unsolved
problems in geometrical robotics lie in the interaction
of functional and geometrical descriptions of goals. In
particular, we would like to devise algorithms for com-
puting a geometrical goal region given a functional
description — for example, a quantified difference
equation — for the desired behavior in the goal state.
Conversely, we would like to be able to infer a func-
tional description of the goal from its geometrical
aspects. The latter would be useful in automatically
generating termination predicates to recognize the goal.

6.3. Approximate Algorithms for Failure Mode
Analysis

We now describe algorithms for deciding whether:

F1. Under motion 0,, all motions starting from
pushy, (H) must terminate in a failure mode.

Let us denote push, (H) by H,. These algorithms
use time-indexed forward projections to prove that
under 6,, all paths starting in H, eventually stick or
break contact. The algorithms are approximate, al-
though conservative [that is, if they terminate, then
(F1) is true]. However, they may not terminate if (F1)
is false, and they may miss cases where (F1) is true.
The accuracy of the algorithm increases as the time
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steps for the time-indexed forward projections are
taken to be finer. In the 4D generalized configuration
space for the gears, which is )2 X §! X S, these time
steps correspond to the fineness of the slice resolution
across the rotational dimensions.

We will first describe a quite general algorithm for
deciding (F1). It is applicable wherever we can obtain
a computational characterization of time-indexed
forward projections. Later, we will give a specialized
algorithm in the generalized configuration space for
the gears, and show that it is in fact a special case of the
general algorithm.

A General Algorithm

The basic idea is to step along in time, simulating the
motion, and determine whether or not it breaks con-
tact or sticks. Of course, we must simulate all possible
motions, using forward projections.

First we must develop some notation. Recall that
for a planar set H,, dH, denotes its obstacle edges.
Here, we will use it more generally to denote the ob-
stacle surfaces (as opposed to the free-space surfaces)
bounding a set H, in generalized configuration space.
(In our case H,, the input to the algorithm, is the
push-forward of motion 6,.)

Let x be a point in generalized configuration space.
Then stick,(x) is true if sticking is necessary at x
under all control velocities B,,(v¥) consistent with the
nominal commanded velocity v}. Let sticky(H,) de-
note all points x in H, where sticky(x) holds.

Now, assume some positive minimum modulus
bound on the commanded velocity. We use Fg,,(*) as
the time-indexed forward projection operator [see
Erdmann (1984; 1986)]. So Fy4,(H;) denotes the set
of possible positions the robot can be at at time A¢,
having started in H, at time ¢ = 0.

Now, we are ready to give the general algorithm for
deciding (F1):

Algorithm Gen

1. Let F« Fy,,(H)).
2. Let H, < 9F — sticky, (0F).
3. When H, = {}, we have proven that all paths
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Fig. 27. Hlustration of the
general algorithm. The start
region H, is the edge e. Its
Jorward projection after At is
the region U U g. The obsta-

cle edges of the forward
projection are ¢’, f, and g.
Sticking must occur on f.
Hence, Hyise' U g.
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Jrom H, must eventually stick or break contact.
Halt.
4. Else, H, < H,. Goto (1).

Note that H, is permitted to be in free space, al-
though given the sticking push-forward it will, in fact,
always be on a generalized configuration space bound-
ary. Note that Gen is a semi-decision procedure.
Clearly, if the algorithm halts, then all paths originat-
ing in H, eventually break contact or stick. Figure 27
illustrates the algorithm. Suppose the H, region is the
edge e. Its forward projection after At is the region
U U g. The obstacle edges of the forward projection
are ¢’, f, and g. Sticking must occur on /. Hence, H, is
euUg

We now mention a basic property of forward pro-
jections that this algorithm exploits. It is the property
that forward projection commutes with union. In
particular, if we have

boundary  free space
e

H= H, + H;
then
Fo(H)) = Fp(Hg U Hp) = Fy(Hg)U Fy(Hp).

This key property permits the algorithm to decom-
pose the failure mode analysis into essentially inde-
pendent decision problems about the forward projec-
tions of the free-space, sliding, and sticking regions in
the push-forward.

A Specialized Algorithm

For failure-mode analysis, LIMITED employs an algo-
rithm that is a special case of the general algorithm
above, The idea is that when commanding a pure ro-
tation of A, the time-indexed forward projection across
slices can be well approximated by the differential
Jorward projection. The differential forward projection
is a technique for propagating the forward projection
across slices when rotations of 4 and B are permitted.
Recall our notation for motions 6, and 6,. 8, is a
commanded pure translation of 4 and may be viewed
as unit vector v§ in the plane. ¢, is a commanded
pure rotation of 4 and may be viewed as a member of
{(+da, , —do, ), for positive and negative commanded
rotations.

Differential and Propagated Forward Projections

Pure Translations. Forward projections must be
propagated between slices even when a pure transla-
tion is commanded, since a pure translation 8, can
alter the orientation of B, and hence the slice-value,
through pushing. Here is how the differential forward
projection is constructed for a pure translation 6,. Let
(x, ¥, o, @&,) denote a configuration in the generalized
configuration space for the gears, 2 X §' X S'.

(x, y, a;) denotes a configuration of 4. a, denotes the
configuration of B. Hence, we regard the orientation
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of B (the “last” S! in the product) as J. Now, H, isa
set in generalized configuration space. Let H |y, o,
denote a particular x-y slice of H, for orientation «; of
A and o, of B.

Motion 8, commands a pure translation of 4. Now,
for each edge in H,|,, 4,, LIMITED performs a quasi-
static analysis to determine the possible impending
motions of 4 and B. That is, it determines which
way(s) A and B can rotate. These directions may be
viewed as tangent vectors to the pure rotational di-
mensions of generalized configuration space. The set
of possible directions may be identified with a set of
pairs

{—da, 0, +d,,} X {(—day, 0, +day} ®

in the tangent space to (S' X S!). By performing this
analysis for all edges, we obtain a set of directions,

dFO, (Hl'oq,az)’

‘which is called the differential forward projection of
H\|a, o, nder 8,. It is assumed that commanding 8,
from region H,|,, ,, can result in any motion direction
in this set.

Suppose (¢, ) is a slice taken in the direction of
some tangent vector v in the differential forward pro-
jection. For example, if v = (+do,, —da,), then o) =
a, t+ €, and o = o, — €, for some small positive sca-
lars €, and ¢,.

Now, the forward projection may be propagated to
the adjacent slice (ef, o) as follows. An edge ¢, in
H,|q, .o, corresponds to the intersection of an algebraic
surface V'in generalized configuration space with the
“plane” h? X {(ay, a,)}. Vis followed into (o, o),
and the forward projection of ¢; is taken to be the
intersection of ¥ with the “plane” %2 X {(¢«}, o%)}. In
this manner, we obtain a set of edges {¢!} in the new
slice. The pure translational forward projection of
these edges under 6, is then computed within this slice
so the propagated forward projection is Fy, ({¢{}). This
propagated forward projection is computed at a fixed
orientation of 4 and B. Ideally, the planner should
decide whether the sliding characteristics change along
V while moving through rotation space. The rotational
values which are sliding-critical are discussed in sec-
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tion 6.3 of Donald (1989).2* The propagated forward
projection increases in accuracy as the slices are taken
closer together.

Pure Rotations. Consider the problem of computing
forward projections across slices for a commanded
pure rotation 6, € {+da,, —da, }. For simplicity, we
first consider the case where H, consists of a single
point. Let x be a point in the plane, and (x, ¢, ;) be
a configuration where 4 and B are in contact. Then
the differential forward projection of x under 6, will
consist of vectors in the set of eq. (9). The differential
forward projection has the same structure as in the
pure translational case. It may be computed using
quasi-static analysis (see the next subsection below).

Suppose for the sake of development that the differ-
ential forward projection consists of exactly one direc-
tion v, and that (¢}, a4 ) is an adjacent slice in that
direction, as above. Now we ask, what is the propa-
gated forward projection of x into the adjacent slice,
(o), o5)? Well, it can be one of two things: either it is
x, or it is empty. The reason is that x-y position is
invariant®® under 6,. Thus, an upper bound on the
propagated forward projection of H,|,, o, into an adja-
cent slice (¢, a3) is found by simply “copying” 26
H\|,,  into slice (¢, a3).

Now, consider the propagated forward projection of
(x, o, , &), under motion 8,, into slice o, aj. It is
simply the point (x, af, ). There are three possible
qualitative outcomes:

1. x is inside a generalized configuration space
obstacle in slice (o, a3).

2. x is in free space in slice (o, o5).

3. x is on the boundary of a generalized configu-
ration space obstacle in slice (o], &3).

Obviously, (2) implies that contact has been broken.
(1) corresponds to a physically impossible situation.
Since the configuration (x, &}, o4) is physically unat-

24. Detecting sliding critical orientation parameters along the
algebraic surface ¥ has not been implemented in LIMITED. Thus the
propagated forward projection may be larger than it need be.

25. See below for more on this assumption.

26. We use the awkward term “copying” instead of “translating”
since, while the latter is precise mathematically, it is confusing
robotically.
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tainable, this means that the commanded motion 6,
must result in sticking (no actual motion) before

(af, a5) can be reached. Now, if we have either out-
come (1) or (2), then we have proven that, under 6,,
any path for the robot starting at (x, «,, &, ) must stick
(1) or break contact (2).

Suppose, however, we have outcome (3). This out-
come is not inconsistent with the negation of (F1).
That is, it has not yet been shown that any path from
(x, o, o, ) will stick or break contact. In this case, in
the new slice (af, a55) we again perform the quasistatic
analysis and forward project again into yet another
slice. This process continues until either outcome (1)
or (2) is obtained.

More generally, the differential forward projection
of (x, &, @, ) could consist of more than one vector. In
this case, each must be taken as a forward projection
direction, and in each direction we must show that
outcome (1) or (2) eventually occurs. That is, the com-
putation above must be performed for each direction
predicted by the quasi-static analysis, and a/l directions
must terminate in sticking or breaking contact.

We have described how the failure mode analysis
proceeds when the push-forward H, of the first motion
6, is simply a point. It remains to generalize the dis-
cussion to the case where H, is a region in generalized
configuration space represented by slices. We first
introduce some notation. If CO denotes the general-
ized configuration space obstacle for 4 due to B, then
let CO|,, ., denote the x-y slice of CO at orientations
(o), ). As defined previously, let @ denote the obsta-
cle edges of a set. € is the slice resolution parameter.
The input to this procedure is a stack 2 of x-y slices of
H,. An entry in 2 is a triple, consisting of an x-y slice
H|,, o> and (a;, ay), the orientations at which the
slice was computed.

Algorithm Spec

Do until 2 = ¢§:
Pop the triple (H\|y, o, 01, 02) off 2. Let
HZ - Hlla.,a;'
Let dF — dF, (H,).
For each v in dF do:
Let (o}, a5) < ev + (o, o).
Compute CO\y; o,
Let Hy < Hy N 3CO g 5

N =

MO kW

8. IfH, # @, push the triple (H,, o, o)
onto 2.

Note that this is a semi-decision procedure. This is
the algorithm that is actually implemented in Lim-
ITED. The key step is of course the iteration step (7),
which we think of as

“Hy <= Hy N 0CO| o4 035"

which is repeated “until H, is null.” CO|,,  is com-
puted using the plane sweep union algorithm, as is the
intersection.

The Invariance Assumption

We have assumed that x-y position of 4 is invariant
under a commanded pure rotation #,. That is, com-
manding a pure rotation cannot result in an induced
translation. On the other hand, we allow a com-
manded pure translation of 4 to induce a rotation of
B (but not of 4). These assumptions are realistic if, for
example, the robot has gripped A by its center shaft,
and the manipulator is very stiff in the x-y directions
when commanding a pure rotation. In future work,
relaxing this asymmetry should be explored.

Quasi-Static Analysis

We now show how the quasi-static analysis is com-
puted. It is quite simple. We view the commanded ve-
locity to 4 as w = (0, 0, £1). When the gears are in
contact, this defines a moving constraint in the config-
uration space of B, which is a one-dimensional space.
Given a contact configuration, we compute the mo-
ment arm in order to determine the direction of the
constraint. The moment arm on B (respectively, A) is
simply the vector from B’s (respectively, 4°s) center of
mass to the contact point in real space. The contact
point in real space can be recovered from the contact
point in configuration space.

Let r, and r, denote the moment arms on 4 and B,
respectively. Then the instantaneous velocity », of the
contact point on A, given w, is @ X r,. B’s direction
of impending motion is given by the sign of the
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expression
ry X v, = ry X my(w X 1),

where 7, denotes the projection of R3 onto R2,

We now discuss recovery of the moment arms from
the contact configuration. Let COM, and COM, de-
note the centers of mass of 4 and B. In these experi-
ments, they are simply the centers of the gears. Sup-
pose (X, ;, &, ) is a contact configuration. Then it lies
on an algebraic surface in the generalized configura-
tion space %2 X §! X S, This surface is one of two
types (Lozano-Pérez 1983). Let — A denote the reflec-
tion of A4 about its reference point. A type (A) surface
is generated by an edge ¢, of —4 and a vertex b, of B. A
type (B) surface is generated by a vertex a; of — A4 and
an edge e, of B. Each edge-vertex or vertex-edge pair is
called the generator pair of the constraint surface
(Donald 1984). The edges and vertices of — A (respec-
tively, B) rotate with ¢, (respectively, «,). An (o, &)
slice of the surface is found by rotating its generators
by (o, a;), and taking their Minkowski sum. Hence
the surface may be viewed as a parameterized line
equation, by («;, &, ). The table below gives the details
for recovering the moment arms from the contact
configuration, contact surface in generalized configu-
ration space, and centers of mass. We employ the
following notation: for an edge e or a vertex v, e(«)
and v(a), respectively, denote ¢ and v rotated to orien-
tation «. @ denotes convolution (sometimes known as
the Minkowski sum). Fortwosets Uand V, U® V
={vtuuecUvel).

Moment Armon B Moment Arm on A

Type Surface r, r.

A4 elag}® bilay)
B afa) D ela,)

bya) — COM,
x — a;(o,) — COM,

b)) —x— COM,
—a;(o,) — COM,

Stiction

What the Spec algorithm does is this: it tries to show
that from any slice of H,, all paths that could possibly
evolve from commanding a rotation of A either (1)
remain in the first slice, or (2) in some subsequent
slice, stick or break contact. We have described how
(2) is detected. (1) is a form of stiction; the gears do
not turn. Note that (1) is a form of sticking behavior,
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since no motion occurs. Staying in the same slice
means that (o, «,) are fixed, and x and y are fixed a
priori. Hence events (1) and (2) satisfy (F1). That is, (1)
is also a form of sticking and can be detected at run-
time by the termination predicate.

Now, suppose B sticks but 4 continues to turn. This
type of stiction is also no problem, since it corre-
sponds to a differential motion (* de;, 0) that can be
predicted by the diffcrential forward projection.

Failures Outside the EDR Framework

We will momentarily digress to a practical question. It
would appear that for failure mode analysis to work,
non-uniform stiction would be required in our physi-
cal model of the gears. That is, it would seem that
stiction would have to be impossible in the goal, but
possible in H,. This is not the assumption made in the
geometrical EDR analysis and implementation. We
now show that uniform stiction is in fact not an im-
pediment to failure mode analysis, either.

It is the responsibility of the user, or of some exter-
nal inference system, to ensure that (F2) holds. Sup-
pose, however, that this inference is incorrect, and that
at run-time stiction does, in fact, occur in the goal,
and the gears jam. In this case the run-time executive
will signal failure, even though the geometrical goal
has been achieved. At first glance it appears that this is
incorrect. However, when we regard the goal as a
combined geometrical and functional specification, it
is clear that this is actually the correct termination
diagnosis. That is, even though the geometrical goal
has been achieved, stiction prevents the quantified
difference equation on paths, goal (-), from being sat-
isfied. Since something (specifically, stiction) has pre-
vented achievement of the functional goal, it is com-
pletely correct for the run-time executive to signal
failure in this case. However, note that we regard this
as serendipitous failure detection and not as inherent
in the EDR framework.

Generalizations

The specialized algorithm Spec may be generalized.
The properties it exploits are (1) certain degrees of
freedom in C and J can be held fixed, while others may
be commanded; (2) “slices” of CO can be computed;
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(3) set intersections can be computed; and (4) differen-
tial motion across the non-fixed degrees of freedom
can be predicted using quasi-static analysis.

More precisely, the specialized algorithm generalizes
to cases where we fix certain degrees of freedom C;
and J;, command C,, and permit J_ to vary (through
pushing). Hence ¢ is decomposed into

CX C X T, X Jy,

B, (v%,) lies in the tangent space to C,, and all motion
lies in the subspace C, X J,. Using quasi-static analy-
sis, we predict the impending motion direction, v,
which lies in the tangent space to C, X J.. If a is in
C. X J,, let H)|, denote a slice of H, at (). Thus C, X
J; are the dimensions of the slice (like x, y in the gear
example). Then we let & < a + ev. Finally, the itera-
tion step is

Hy < H,|,N3CO|,.

The rest of the algorithm goes through mutatis mu-
tandis. This generalization is somewhat theoretical, in
that in practice the CO slices, set intersections, and
quasi-static analysis may be difficult to compute for
higher-dimensional problems.

Discussion: General vs. Specialized Algorithm for
Failure Mode Analysis*

The problem with implementing algorithm Gen di-
rectly is that arbitrary time-indexed forward projec-
tions are difficult to compute. For this reason we in-

troduced a specialized algorithm for the gear planning.

While algorithms Spec and Gen appear quite different,
in fact, Spec is simply a special case of Gen. The moti-
vation behind this viewpoint is to find a uniform
framework for characterizing algorithms for failure
mode analysis. That is, algorithm Gen can be viewed
as a high-level computational approach to failure
mode analysis, while Spec is an implementation of
Gen in a restricted domain. We now discuss this view
of the algorithms.

Recall the definition of stick,,(*). We now define
stick, (R) to be all points x in R such that any feasible
path from x consistent with the control uncertainty
B,.(v}), eventually sticks. _

We employ the following topological notions. U
denoted the closure of a set U, U* denotes its comple-
ment, i(U) denotes its interior, and U* denotes the
complement of the closure.

Now, consider the following step (7) of the Spec
algorithm,

H3 « H2 N aCOla’l,a’za
where Hy, = H,|,, ,- This step is equivalent to

Hy — H, ~ i(COlg; 03) = COlag s (10)

where the set difference operator — associates to the
left. Now, the set

Hy (1 {COlag 1)

corresponds to all configurations (x, ¢ , ;) in the
planar slice (¢ , &, ) such that under 6,, any path from
(x, o, o) will stick before reaching (af, a3) if x is
kept fixed [that is, configurations such that sticking
will occur from (x, &, &) between (o, &) and
(af, 3. _
Below, we argue that the set H, N i(CO|y; o3) 1IN
algorithm Spec corresponds in a quite precise fashion
to stick, (9F) in algorithm Gen. We see this as follows:

Step (2) of the Gen algorithm,”’
H, < 9F — sticky, (9F)
is equivalent to
H, < F — CO° — stick, (3F). {n
Now, it is possible to modify Gen as follows. Let

Fy = Fo, i (Hy — stickly (H))).

* Sections denoted with an asterisk are supplemental and may be
skipped at first reading.

27. We have lexicographically substituted H, for H, throughout
algorithm Gen to facilitate the comparison with Spec.
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Then we can replace the assignment (11) by eq. (12)
and still have Gen be correct:

H; < F,— CO¢, (12)

We wish to compare the step (12) of the thus modi-
fied Gen with the step of Spec given in eq. (10). In
essence, we wish to show that eq. (10) is in some sense
a ““conservative” approximation to eq. (12), and hence
conclude that algorithm Spec is simply a special case
of algorithm Gen.

We must introduce some notation to compare egs.
(10) and (12). For a set V in R2, we denote the set

VX {(ay, @;))
by
VX (ay, ).

Now, H, is a subset of §. A slice of it H|,, o, lies in
the “plane” R? X (¢, «,). Let us denote its projection
into R2 by m, H,l,, o, Finally, for an arbitrary set U in
generalized configuration space, let Ul,, ., denote an
(o, o) slice of it, that is,

Ula, Jaly = U N (SR2 X (ala a2 ))

CLaIM: Eq. (10) is a conservative approximation to eq.
(12) in each slice.

ProoF: First, we obviously have

COl,; o, C CO. (13)

Next, we need only show that
(Fo,.0(Hilay 0, Mot a3 C T Hilay o) X (@], @5) (14)
and

Hllal , 0z N ﬂz(i(C0|a1,a5)) X (al H az)

C sticky (Hila, ;). (15)

Egs. (14) and (15) are definitional. Now, suppose
that configuration z € i(CO|y, o). Then clearly z ¢
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F|y - Hence we have

. — ¢
H3.Gerz|a{ W0 = SFBZ,M(HI - Sangl(Hl )))la,’.ail - CO'“; 0
N N I

r A N y - ¢
H; g0 = (,H, X (0],05)) — {CO| gy o5) — COla e
O

Note that as a consequence, we may expect that
Spec is less likely than Gen to terminate.

7. Weak EDR Theory, Strategy Equivalence,
and the Linking Condition

7.1. Reachability and Recognizability Diagrams

We now introduce a type of diagram that permits
notation of reachability and recognizability. These dia-
grams are a powerful tool for compactly expressing
motion strategies. They greatly aid the development of
concise and readable proofs.

Suppose we are given a start region R, a goal G, and
a motion 8. We construct the EDR region H. Then
under sticking termination, all motions from R will
terminate in & or H. That is, the push-forward of the
motion 6 from R is contained in G U H:

pushy(Fs(R) C GU H. (16)

Whenever (16) is true, we write this by the following

reachability diagram,

G
a7

Q/ \Q

H.

Suppose that G and H are distinguishable using
sensors. Then 6 is an EDR strategy from R, and we have

R =Py z({(G, H)). (18)
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Whenever (18) holds, we write this by the following

recognizability diagram,
G
[
A
R \ (19)

“H

The reachability diagram (17) is an equivalent nota-
tion for the reachability termination condition (16).
The recognizability diagram (19) is equivalent notation
for the recognizability termination condition (18).
Single arrows (—) denote reachability whereas double
arrows (=) denote recognizability. If and only if (16)
is true, we say that the corresponding reachability
diagram (17) holds. If and only if (18) is true, we say
that the corresponding recognizability diagram (19)
holds. A diagram is said to hold tautologously when it
is true without additional conditions or suppositions.

The nice thing about sticking termination, as dis-
cussed in sections 2.4 and 7.2 (and in Donald, 1988b),
is the following property:

THEOREM: Let R be a start region, 6 a motion, and G
a goal. Construct the EDR region H for R, 0, and G.
Then with sticking termination the reachability dia-
gram (17) holds tautologously.

Now, in diagrams (17) and (19) we have labeled all
the arrows. In the future, when this would clutter the
diagrams, we will label only the top arrow and adopt
the convention that all arrows aligned below it have
the same label.

7.2. More General Push-Forwards

Hence the chief advantage with sticking termination is
that (17) is always true. In this section, we will gener-
ally assume that either sticking termination is em-
ployed, or, if more general termination predicates are
allowed, then the truth of the reachability diagram
(17) can be determined through restrictions on time
and history, as previously described. We now digress

briefly, however, to describe how this discussion gen-
eralizes for more general termination predicates.

In an appendix, we define a more general push-for-
ward, F,,(R), that denotes all configurations at which
the motion ¢ can terminate given more general termi-
nation predicates. When more general termination
predicates than sticking are considered, then the con-
dition (16) must be replaced by

Fo R CGUH. 20)
When (20) holds, we may then write the equivalent
reachability diagram (17).

However, with more general termination conditions,
{17) does not hold tautologously. For example, with
time termination and the approximate push-forward
described in sec. 5.3, a motion could (a priori) termi-
nate without sticking yet within the weak preimage. In
such cases, it must be the responsibility of the planner
to verify that all motions terminate in G U H.

The first difference between the sticking push-for-
ward push(-) and the general push-forward F.(-) is
that F,(+) depends on the start region for the motion,
while push(-) does not. That is, F,(-) depends on his-
tory (and possibly time) whereas push(-) does not.

Now, a motion sequence is a reachability or recog-
nizability diagram of the form:

R, 2R, 2= B R SR =G (1)

The second chief difference between the a priori
sticking push-forward push(-) and the general push-
forward F,(-) is that the action of push(-) on a motion
sequence (21) is functorial, while F,(-) is not. The
non-functoriality of F,(-) is a consequence of its his-
tory dependence.

7.3. Weak EDR Theory

We now make the following natural refinement of our
termination predicate. Suppose the termination predi-
cate is given some finite collection of goals {G,) in a
distinguishable union. Then the goals {G,} are of
course partially ordered by containment, We assume
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that the termination predicate returns the smallest
goal (with respect to containment) if at termination
time the actual configuration of the robot is known to
lie within two or more goals. (A technical point: if two
or more goals overlap, we augment the collection with
a new goal that is their intersection.)

Now, whenever the reachability diagram (17) holds
(which it always does with sticking termination), then
we have the following:

R =Py (G, H, G UH)}). (22)
This is trivial to show; on termination, the termination
predicate will return G or H if it can, otherwise it will
return G U H. In particular, it will return G or H in
preference to G U H.

Thus we can write the following recognizability
diagram, which is equivalent to (22):

) G
A
R H (23)
p
GUH.

(23) is called the Weak EDR Recognizability Dia-
gram for G, H, and 8. (19) is called the Strong EDR
Recognizability Diagram. (17) is called the Reachabil-
ity Diagram.

THEOREM: Let R be a start region, § a motion, and G
a goal. Construct the EDR region H for R, 0, and G.
Then with sticking termination the weak EDR diagram
(23) holds tautologously.

Previously we have described the strong EDR theory.
This section has introduced the weak EDR theory. It
may not appear useful at first glance. However, in the
next section we will see that these one-step weak EDR
strategies— which are, in effect, always available —
may under certain conditions be chained together to
make a multi-step plan very like a strong EDR strategy.

The key idea behind the weak EDR theory is: given
a collection of goals {G) (possibly including H), we
consider all unions of the subcollections to get some
measure of weakest recognizability.
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7.4. Strategy Equivalence

A one-step weak EDR strategy is not very interesting.
However, it is possible to define a way of coupling two
weak, one-step EDR strategies together to make a
two-step strategy that has many of the characteristics
of a strong EDR. In particular, we will develop a way
of making precise the idea that the two weak EDR
steps can be combined to make a two-step strategy that
is “equivalent™ to a one-step strong EDR strategy.

Suppose the commanded motions of the two weak
EDR steps are 4, and 8,. The essence of this “equiva-
lence™ lies in disambiguating a previous motion’s
(6,’s) result without destroying the goal state.

Let R be the start region, and G the goal as usual.
Assume without loss of generality that G is contained
within the forward projection of R under 8,. Let

Rl = R ﬂ Pgl:FBl(R)(G)' (24)
Now we have the recognizability diagrams
6, ,
R = G : G
A 7
R—R = H pushy(GUH)= H (25)
3
. HUG, HUG
rec:g 0, recog 8,

where H’ is the EDR region for motion 6,.

The question is, how can we link together motions
#, and 6, into a two-step EDR strategy? The first con-
dition we require of such a two-step strategy is as fol-
lows: once 6, has reached G, 6, should preserve this
state and “‘add” recognizability. That is, G is a “ fixed-
point” under 8,. This is given by the following diagram:

DEFINITION: The fixed-point diagram is
pushg (G) = G. 26)

When the fixed-point diagram (26) holds, (25)
admits the following reachability and recognizability
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diagram:

_ push,(G) Ny

R 27
N i,
pUShe,(H)-

It remains to ensure that good EDR behavior occurs
when 6, is executed from pushg (H). Now, think of
6, * 6, as the composite strategy formed by executing
motion 8, followed by 8,. We wish to find additional
conditions that, together with (25), will admit both the
fixed-point diagram (26) and a strong EDR diagram,

Oys0, G
i
R (28)

0,.6?

H’I,
for some H” (see below). Together with the weak EDR
diagram (25) (which is tautologously true for sticking
termination), the additional conditions below, which
we will call the linking conditions, are necessary and
sufficient for defining an equivalence between two
“linked” weak EDR strategies and a single-step strong
EDR strategy, whose recognizability diagram is given
by (19) (substituting 6, for 8). Henceforth, let 8 = 9,.

DeFINITION: If the fixed-point diagram (26) holds and

if (25) admits a strong EDR diagram (28) in which
H” ={H"}, (29)

then the motion strategy 6, * 0, is said to be strongly

equivalent to a strong EDR strategy with recognizabil-
ity diagram (19).

An example of such a strategy is the two-step peg-
in-hole insertion plan with model error (Figs. 4-13).

DEFINITION: If the fixed-point diagram (26) holds and
if (25) admits a strong EDR diagram (28) in which

H” =(H',H'UG), 30)

then the motion strategy 6, * 0, is said to be weakly
equivalent to a strong EDR strategy with recognizabil-
ity diagram (19).

Note that we define (strong or weak) equivalence
using (19) with 6 = 8,, not with 8 = 8, * 6,. The rea-
son for this is as follows. If 8, * 8, satisfies the weak
equivalence condition (30) and the fixed-point dia-
gram (26), then after termination, we are assured that
the outcome of 6, has been completely diagnosed.
That is, the run-time executor knows whether or not
#, terminated in success or failure. However, it is not
necessarily true that the outcome of 8, is completely
diagnosed. This occurs in the worst case, if H' U G is
recognizably attained. We discuss this point in some
detail below.

The following gives an implicit definition of linking
conditions;

DEeriNITION: Let H” be chosen for either strong or
weak equivalence, as in (29) or (30). The linking con-
ditions are necessary and sufficient conditions for (25)
to admit a fixed-point diagram (26) and a strong EDR
diagram (28).

It remains to show, of course, that linking conditions
exist for strong or weak equivalence. We will momen-
tarily postpone the derivation of the linking conditions
in order to describe what the linking should effect.

Once “linked,” two one-step weak EDR plans
should admit the strong EDR diagram (28). The claim
is that (28) is in some sense “equivalent” to the strong
EDR diagram (19). How is this possible?

(19) indicates that the run-time executor can disam-
biguate the success or failure of motion 8, . The same
is true of strategy 6, * 0, in (28). Here are the possible
results of executing &, * 6, when the steps 8, and 6,
are properly “linked”:

1. G is achieved and recognized at termination.
In this case, either (i) 8, achieved G and the
run-time executive may not have recognized it,
but 8, disambiguated the result while still ter-
minating within G; or (ii) 6, failed, reaching
H, and 6, subsequently achieved G from H.

2. H' is achieved and recognized at termination.
In this case, 6, is known to have failed, and the
robot is known to be outside G.
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(1) and (2) are the only outcomes given strong equiva-
lence. With weak equivalence, a third outcome is also
possible:

3. G U H'is achieved and recognized at termina-
tion. In this case, 8, is known to have failed.

Thus the key is that 8, does not corrupt the goal
state; that is, G is a fixed point under 6,. The desir-
ability of outcomes (1) and (2) is clear. One might ask,
what good is weak equivalence? Why would anyone
want outcome (3)? The answer is: in one-step strong
EDR (19), the run-time executor can (a) disambiguate
the result of motion @,, and (b) in case of failure,
know that the robot is not in the goal. In weak equiva-
lence, we have (a) but not (b). That is, in outcome (3),
we have completely diagnosed the result of motion 6, ,
although in the process, we may have accidentally
moved into the goal. That is, we may indicate failure
when we have, in fact, succeeded. However, we will
never indicate success unless it is certain. In short,
when linked, &, * 6, is “conservative” about declaring
success.

7.5. The Linking Conditions

We now derive the linking conditions. Let

Fo, = Fy(R)

R,=R0O Py £, (G)
push,, = push, (G U H)

Fez = Fez(PUSha, )

R, = pushg, N Py, £,(G).

The overloading notation for push,, is symmetric
with that for preimages and forward projections; both
the map and its image are denoted by the same sym-
bol. The discussion of linking conditions assumes
sticking termination. However, the derivation goes
through mutatis mutandis for more general termina-
tion conditions, if we let

pushgl = F.gl(R).

It remains, however, to extend the linking-conditions
for time-indexed forward projections.

«
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We now demonstrate our claim that linking condi-
tions exist.

DEerFINITION: The condition (LO) is

G N push,y, C R,. (LO)
Here is the motivation behind (L0). (LO) says that
whenever motion 8, terminates in the goal G, then the

state is inside the preimage of G under the next mo-
tion 8,. The intent of (L0) is to admit the fixed-point
diagram (26).

CLaiM: (LO) implies the fixed-point diagram (26).
Proor: The preimage equation for (26) is

P, pusny, 6)(G) = pushy,(G).

This preimage is taken with respect to a smaller start
region than R,. d

Note, however, that the converse is false. (LO) is
stronger than the fixed-point diagram (26), since the
preimage R, is taken with respect to the entire forward
projection under 6,.

CLAM: Linking conditions exist, and, in particular,
(L0) is a linking condition.

ProoF: Suppose (L0) holds. This yields the following
reachability and recognizability diagram:

linking condition (LO)

——
R, %G6-Gnpush, c R, = R = G
Ve Vel
R— R, — H D Hnpush, Cpushy Dpush,— R, = H (31)

X

\ HUG

—

reachability recognizability

To see that diagram (31) demonstrates weak equiva-
lence, we use a technique like “diagram chasing”
(Hungerford 1974). Assume (LO) holds. Starting from
R,, 6, effects a motion reaching G. This motion in
fact terminates in G N push,, . Since by (L0) G N
push,, is within R;, 6, then effects recognizable termi-
nation in G.
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On the other hand, if the motion begins in R — R,,
then 8, effects a motion reaching either G or H. If G is
reached, then 8, will eventually effect recognizable
termination in G, by the argument immediately above.
If H has been reached, then the motion 8, will in fact
terminate at some point z in H N push,, . Then there
are two cases:

Case (i) z € R,. Since the preimage R, is con-
structed with respect to the entire forward projection
of pushy, , motion 6, will next effect recognizable ter-
mination in G.

Case (ii): z & R,. In this case, motion 8, will effect
recognizable termination in one of (G, H, H' U G).

We conclude the process by “forgetting™ all the
intermediate steps and renaming them to 6, * 6,. First,
observe that the fixed-point diagram (26) holds. Next,
to see that (31) admits an EDR diagram (28) in which
(30) holds, we remember only the start region R and
the “results” G, H’, and H' U G. Diagram chasing
shows that these may be joined with recognizability
arrows as in (28).

Thus diagram (31) demonstrates weak equivalence.
For strong equivalence, we remove H’ U G as an out-
come of £,. Note that the linking condition is not a
tautology. However, note that all the other subset
relations and the equality in (31) are tautologous. [

In the future, we will leave similar diagram-chasing
arguments to the reader. We may thus conclude that:

THEOREM: The linking condition (L0) is a necessary
and sufficient condition for weak equivalence of 6, * 0,
to a one-step strong EDR strategy.

ProoF: The claims above have demonstrated suffi-
ciency. It remains to show (L0) is necessary. Suppose
(LO) is false, but (26) still holds. (This is the interesting
case, for if (26) does not hold, then equivalence can-
not possibly follow.) (26) says that when the motion is
known to start within push, (G), then it can be guar-
anteed to terminate recognizably in G. The antecedent
is a precondition for success of the motion. After 8,,
however, this precondition may be false: even if 6,
reaches G, it is only known to have reached pushy,. In
particular, (26) says nothing about what happens
when 8, is executed from H. (LO), on the other hand,

says that termination in G can be recognized no mat-
ter where 0, originates in pushy, . O

Now, we can derive some equivalent linking condi-
tions that are somewhat simpler in form. Let

R¥=R,NG.
DEFINITION: The linking conditions (L) and (L2) are

(L1)
(L2)

G N pushy, = R}
H N push,, = push, — R}

These linking conditions admit the reachability and
recognizability diagram

linking conditions (L1), (L2)
"

~ ~ 02
R, %GoGnpuh, = R = G
” 4
R—R,—HDHnNpushy, =pushy —R}= H (32)

X

HULUG

NI
reachability recognizability

Comments: Let

Py, = Py, Fopushy, @)(O);

so R, = push, N P,,. Note that (L2) is not tautolo-
gous, for we can have x € G, x & P, if (L1) is false.
Therefore x € pushy, — R¥and x ¢ pushy, N H.

LEMMA. The linking conditions (L1) and (L2) are
equivalent.

ProorF. (L1) implies (L2). Suppose (L1). Let x€ HN
push,, . x € R¥ implies x € G. Therefore x ¢gHisa
contradiction. Therefore x € pushy, — RY.

Now let x € pushyg, — R¥. Therefore x & G N
push,, N P,,. Therefore x & G 0r X ¢ Py,. In the former
case, x € H. In the latter, suppose that x € push, ,
x € G, and x ¢ P,,. But by (L1), x € G N pushg, im-
plies x € P,,, a contradiction.

(L) if (L2). Let x € G N pushy,, . Show x € R}. We
need only show that x € P,,. Now, x & P,, implies
x € H N pushy, , a contradiction. Now let x € R3.
Therefore, x € G N pushy,. O
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LeMMA: The linking conditions (L0) and (L1) are
equivalent.

ProoF: (LO) implies (L1). Suppose (L0O) (i.e., GN
pushg, C R,). Show G N pushy, = RF=GNR,.

Let x € G N push,, . Now, (L0O) implies that x € R,.
Therefore x € G and x € R,. Hence x € R%.

Let x € R}. Therefore xE GNR,. Hence x€ G N

pushy N Py, (i.e., x € G N pushy ). (LO) if (L1} is trivial.

a

THEOREM: The following linking conditions are equiv-
alent:

G N pushy, C R,
G N pushy = R
H N pushy = push, — R

(LO)
(L1)
(L2)

7.6. Beyond the Fixed-Point Restriction*

In the discussion above, we have required that the goal
was a fixed point under motion 6,. We now discuss
how to relax this restriction. In particular, it is possible
to extend the notions of strategy equivalence and the
linking conditions to the case where a subgoal G, is in
fact the preimage of the actual, or final goal, G,
under &,. Thus G, is no longer the fixed point of 6,,
but rather the preimage of G,. We regard relaxing the
fixed-point restriction as a digression. The subsequent
material may be understood even if this section is
omitted; however, the reader may wish to bear in mind
that such a generalization does, in fact, exist.

We consider the situation where from R, 8; may
attain G, or Gy, where “G, = Py (G,).” However, G,
may not be distinguishable from G, under 6, . Thus the
three reachability results of 8, are G, G, or H,, where
H, is the EDR region for 8, when we view the goal as
GoU G,

To define strategy equivalence in the non-fixed-
point case, we first generalize the fixed-point diagram
(26) as follows.

DerFINITION: The generalized fixed-point diagram is

pushg, (G, U G,) 2 G,. (33)
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Next, we modify the definitions of strategy equiva-
lence and the linking conditions to require that the
generalized fixed-point diagram (33) hold in place of
the old fixed-point diagram (26). To avoid confusion,
we will call (26) the simple fixed-point condition.

Now, we let

Rl =RnN PH],Fel(GO U Gl)
pushg = F,q(R)

F, o0 F, ez(PUSha,)

Py, = Paz,Fh(GO)

R, = push, N Py,.

Next, define

RL=GNR, (j=0,1)

It is possible to generalize the definition of R and
the linking conditions to more than two subgoals {G;}.
We would do this by writing (V) in place of (=0, 1).

We already know one linking condition:

Py, DGy U G (L3)

In addition, we can derive the following linking
conditions. Recall H, is the EDR region for motion
8,, viewing the goal of §, as G, U G;.

pushy, N G;= R} v)
push, N H, = push, — U;R}.

(L1")
(L2%)

Comments: Clearly we have (L1’) implies (L2’).
However I have not been able to prove the converse
true. I suspect it is false, since G, may intersect G,
and H,, the EDR region for 6,, may intersect G, etc.

Finally, note that all three linking conditions
(L1’, L2’, L3) are required for the composition 8, * 8,
to admit an equivalent strong EDR diagram. This
points out the chief theoretical advantage of strategy
equivalence with the simple fixed-point condition
(26). With the simple fixed-point condition, the linking
conditions (L0), (L1), and (L2) were found to be
equivalent. With the generalized fixed point condition
(33), not only do the corresponding linking conditions
(L.1’) and (L2’) appear to be inequivalent, but we also
require the additional independent condition (L3).
While it is gratifying that our key concept—com-

The International Journal of Robotics Research

Downloaded from ijr.sagepub.com by Matthew Mason on October 3, 2012


http://ijr.sagepub.com/

posing two weak EDR strategies via linking conditions
to admit strategy equivalence —in fact generalized to
the non-fixed-point case, the generalization, unfortu-
nately, is correspondingly more complicated.

7.7. What Good is Weak Equivalence?

We now pose the following question. Why is

8,+8,

A

R—R, = H (34)

GUH

any better than
(35)

(35) is simply the weak EDR diagram for motion &,.
It always holds (given the reachability diagram). (34) is
the equivalent recognizability diagram for 8, * 6, when
a linking condition is satisfied. That is, (34) is obtained
through weak equivalence. Why is (34) stronger than
(35), and would one prefer (34) to (35)?

Here is our answer. Push, (G) is a fixed-point of 6,.
Therefore, nothing is “lost” by 6,. 6, serves to disam-
biguate the result of §, without polluting the state.
Second, note that 6, * 6, is “conservative™ about de-
claring success. It is as if we used 6, to convert the
reachability diagram

R 56
” (36)
R—R S H

into the recognizability diagram

0,48, .
R, = G*“Win”
7 . 37
R—R,= “Lose, but knowing 6, did not
achieve G.”

More precisely, the “lose” states are

H’ = 0, did not achieve G, and now the robot is
outside of G.

G U H’ = 6, did not achieve G, and now we might
be in H’, but can’t guarantee that we’re outside of
G.

On the other hand (35), achieving ¢ U H after 0,
only tells us that we started in R — R, and does not
tell us the result of motion 6, .

7.8. Application: Failure Mode Analysis in the Gear
Experiment

We now discuss how the failure mode analysis used to
generate motion 8, in the gear domain may be viewed
using the weak EDR theory.

In the gear meshing plan, 8, is a pure translation,
and 6, is a pure rotation. The goal is a fixed point
under #,. Consider (32). In the gear plan, the reacha-
bility arc

O (38)

is present, but the arc

G

&,
A (39
push, —R?}

is not. That is, it is possible to serendipitously achieve
the goal under translation but not under rotation. The
linking conditions are satisfied. Now, is the outcome
G U H’ possible? Failure mode analysis yields the
answer: no. In this case, 8, * 0, is strongly equivalent

Donald 49

Downloaded from ijr.sagepub.com by Matthew Mason on October 3, 2012


http://ijr.sagepub.com/

to a one-step strong EDR strategy

6,20,

A

R—R = H.

R,

The full reachability and recognizability diagram for
the gear plan is given by

linking conditions (L1), (L2)
A

B r
R, =G >OGNpush, = R}
Ve

\BZ
= G
(40)
R—R —H D HNpush, =push, —Rf= H'
— h h ——

reachability recognizability

7.9. Discussion and Review

We now discuss the relationship between push-forward
algorithms, failure-mode analysis, and the weak EDR
theory. Recall the diagram (32):

linking conditioas (L1), (L2)
A

aY

6, I
R, »GoGnpuwh, = R 2 G

’ Z

R—R,—H D Hnpush, =push, —R}= H  (41)
X
d
HI
UG

reachability recognizability 6,

(41) is the full reachability and recognizability dia-
gram for weak equivalence. The arrows a-d all corre-
spond to motion 8,; we have labeled them so as to be
able to refer to them in the discussion.

Failure Mode Analysis The reachability and recog-
nizability diagram for failure mode analysis (40) is
found by deleting arcs (b) and (d) from (41). In Lim-
ITED, arc (a) is essentially a user input.?® The failure

28. Although we have discussed methods for inferring (@) computa-
tionally, this is really a direction for future work rather than a focus
of this research.

50

mode analysis algorithms Spec and Gen decide arc (c).
Thus, in sec. 6.2, (¢) corresponds to (F1). Failure
mode analysis links a weak EDR strategy 6, followed
by a strong EDR strategy 8,. (@) warrants that Gis a
fixed point under 8,. {c) ensures that failure is pre-
served under 6,: no serendipitous goal achievement
from H is possible. Thus such plans are pure disambig-
uation strategies.

Push-Forward Algorithms Plans found by push-for-
ward algorithms such as Multi admit a diagram from
(41) containing arcs (a), (b), and (¢), but not containing
(d). The arc {b) [which is shown in detail in eq. (39)]
permits serendipitous goal achievement from H under
0,. The absence of arc (d) yields strong equivalence.
Again, push-forward algorithms link a weak EDR
strategy followed by a strong one. They differ from
failure mode analysis plans in that the arc (b) is per-
missible, and (a) is not a user input. The peg-in-hole
plan with model error (Figs. 4—-13) is an example of
such a plan.

Two-Step Weak EDR A plan admitting the diagram
(41) with all four arcs (a)-(d) demonstrates weak
equivalence. It is formed by linking together two weak
EDR strategies into a two-step plan. We have dis-
cussed the semantics of such plans above. The key dif-
ferences between two-step weak EDR plans and push-
forward or failure-mode plans are (1) the existence of
arc (d), and (2) the linking of two weak (as opposed to
a weak and a strong) EDR strategies.

In all cases, note that the linking conditions are
required. Thus the linking conditions have somewhat
surprisingly turned out to be the underlying character-
ization for multistep EDR strategies. That is, since
they are necessary and sufficient conditions for con-
structing multi-step EDR plans, the linking conditions
may, in fact, be taken as the definition of multi-step
EDR strategies.

Hence in considering LIMITED’s techniques for
multi-step strategy generation, we find that both failure
mode analysis and push-forward algorithms are essen-
tially special cases of the weak EDR theory. This is

The International Journal of Robotics Research

Downloaded from ijr.sagepub.com by Matthew Mason on October 3, 2012


http://ijr.sagepub.com/

summarized in the table below:

Method Arcsin(41) Strategy Type  Comments

Failure Mode Analysis ac weak * strong  Pure disambiguation; (a) is user input, (¢) is computed.
Push-Forwards abc weak * strong  (b) permits serendipitous goal achievement

Weak EDR abcd weak * weak Two-step weak EDR

Algebraic Considerations

Let us pause and review the key points in this devel-
opment. Weak EDR theory, strategy equivalence, and
the linking conditions were introduced as a unifying
framework for planning multi-step strategies.

1. The linking conditions are necessary and suffi-
cient criteria for admitting the composition of
two weak EDR strategies 87 and 8% into a
two-step strategy that is weakly equivalent to a
one-step strong EDR strategy from 6,. We
may write this as

o0y * 0y = 63 (42)

2. The linking conditions are necessary and suffi-
cient criteria for admitting the composition of
a weak EDR strategy 8V and a strong EDR
strategy 63 into a two-step strategy that is
strongly equivalent to a one-step strong EDR
strategy from 6,. We may write this as

o * 63= 63, (43)

3. The gear plan is a special case of number 2,
preceding. In particular:

4. Failure mode analysis is a special case of satis-
fying the linking conditions to render a two-
step EDR strategy strongly equivalent to a
one-step strong EDR strategy.

5. Multi-step strategies may also be planned by
repeatedly pushing forward. This was the gist of
algorithm Multi. Multi may be viewed as
chaining together weak EDR strategies fol-
lowed by a strong EDR strategy. Mulli is also
essentially a special case of number 2, with the
goal fixed-point condition relaxed.?

29. Relaxing this restriction was discussed in section 7.6.

8. Experimental Results

This paper describes two plans generated by an auto-
mated compliant motion planner based on a geometric
theory of error detection and recovery. We have im-
plemented these plans on a physical, force-controlled
robot and run experiments to see how the plans
worked. Our experimental results indicate that the peg
insertion plan (Figs. 3 - 13) was quite robust. The gear
meshing plan also performed well, but was less robust
because it was subject to a greater variety of unmod-
eled effects. This paper concentrates on the theoretical
framework for constructing multi-step strategies, and
on the architecure of the planner, LiMiTED. However,
see Jennings, Donald and Campbell (1989) for a de-
scription and analysis of our experimental results.
While there is much to be said about these experimen-
tal results, here we will content ourselves with the
following observations from Jennings, Donald, and
Campbell:

¢ In our experiments, the gears occasionally broke
contact because the position of the rotation center
varied as the torque was applied, or because the
grasped rotation center did not coincide with the
geometric gear center. If the planner had a model
of possible translation taking place while pure
rotations were performed, then it might (in princi-
ple) have anticipated this difficulty and mandated
a constant bias force pointed toward the axis of
the fixed gear; this bias force would have main-
tained contact, just as generalized damper sliding
motions maintain contact despite position errors.
Of course, this would be very sensitive to errors in
the direction of the applied force.

¢ Recognizability of success was impeded to a cer-
tain degree by unmodeled dynamic and inertial
effects. Perhaps in the gear experiment we should
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employ different failure modes such as gears
breaking contact, and torques varying from the
nominal values. It would be interesting to explore
whether these failure modes are most robust.

The failure-mode analysis module was imple-
mented using torque thresholding, Using the
torque threshold method, we found that the
torques varied for various reasons, but essentially
we faced a sensitivity problem. If the planner
modeled the possible variations in resistance
torques, then it might in principle have deter-
mined that the resistance torques of the three pos-
sible outcomes (unmeshed, meshed, and jammed)
were indistinguishable, and it would have rejected
torque sensing alone as an action to disambiguate
the possible outcomes. The reason that the plan-
ner did not model the possible variations in resist-
ance torques was that the physics was too compli-
cated (except for commanded pure torques) for
our algorithmic techniques. This is an important
area for future research. '

Currently, the gear-meshing experiment is the
computational limit of EDR/LMT technology
[see Donald (1988b; 1989)]. Whatever success can
be claimed for this experiment may, in part, be
attributed to relativization: that is, the definition
of the computational problem relative to some
oracle. In Jennings, Donald, and Campbell (1989),
we tried to implement this oracle. What is needed
next is a systematic theory of such oracles, which
are essentially specialized termination predicates
that report on gualitative outcomes. Next, a cata-
fogue of such oracles might be suggested, their
implementability explored, and strategies and
plans defined relative to these oracles. In effect,
instead of an encyclopedic approach to classifying
assembly tasks, we suggest an encyclopedic ap-
proach to recognizability.

The difficulties in executing the gear plan’s second
step reflect our algorithmic difficulties in model-
ing and predicting the motion of objects in con-
tact, with rotational degrees of freedom, under
uncertainty. As yet, there exist no exact algorithms
for this problem. LIMITED resorts to numerical
(slice approximation) techniques to approximate
preimages — this is still the state of the art in terms
of implementable algorithms. Perhaps the greatest

unsolved problem in algorithmic motion planning
is the development of analogous exact algorithms.
In executing both plans, some experimentation
was necessary to produce an executable Lisp func-
tion. Typically this involved determining useful
damping values for sliding on different types of
surfaces. It is clear that automatic generation of
these values is not trivial (Kazerooni, Houpt, and
Sheridan 1986). If, as appears likely, suitable
damping matrices must be chosen based on the
orientation of the obstacle surfaces, this would in-
dicate that a corresponding revision of the LMT
theory might yield a more accurate planner.
Extensions of this work could lead to a theory
that, given the execution speeds, could predict the
correct sized velocity uncertainty cones to bound
undesirable dynamic behavior. Indeed, we would
like to explore further the extent to which unde-
sirable dynamic behaviors (e.g., bouncing) could
be modeled using velocity uncertainty cones.
LiMITED employs a set of algorithms for plan gen-
eration that perform reachability and recogniz-
ability analysis (Lozano-Pérez, Mason, and Taylor
1984; Erdmann 1986; Donald 1988b; 1989). To
deal with rotations (e.g., to predict motions and
reaction torques under rotational commands),
LiMITED makes use of approximation techniques
— particularly linearizations and “slice-approxi-
mations” (Donald 1989). Not all of these tech-
niques are provably correct (except in the limit),
and it is not a priori clear that this model is ade-
quate for such phenomena as friction and stiction,
which depend on the small-scale geometry of the
objects in contact. We believe that our experi-
mental work indicates that these approximation
techniques may indeed be viable. In particular, it
appears that the reachability analysis conducted
by the planner was largely correct, whereas the
recognizability analysis is rougher, more fragile,
and should include more of the as-yet-unmodeled
effects. In essence, the unmodeled dynamic, iner-
tial, damping, and other phenomena appear to
have a much greater impact on recognizability
than on reachability. Reachability computations
seem more robust in that it is possible to bound
reachability consequences geometrically and con-
servatively to encompass unmodeled deviations.

The International Journal of Robotics Research

Downloaded from ijr.sagepub.com by Matthew Mason on October 3, 2012


http://ijr.sagepub.com/

This is because reachability consequences have
geometric structure and are “isomorphic” to sets
in generalized configuration space; these sets grow
“piecewise-continuously” as control and sensing
uncertainty increase. On the other hand, analysis
of recognizability consequences appears more
fragile, perhaps because there is no “metric” on
these consequences and no way to conservatively
compute an upper bound for them.

9. Conclusions

The focus of this paper lies in the synthesis of multi-
step fine-motion strategies in the presence of uncer-
tainty. We began by reviewing a basic theory of plan-
ning. This theory, called the EDR theory, has two
chief components. The first is a technique for planning
compliant motion strategies in the presence of model
error. The second is a precise, geometrical character-
ization of error detection and recovery (EDR). These
led to a constructive definition of EDR plans in the
presence of sensing, control, and model error. These
more general strategies are applicable in assembly
planning where guaranteed plans do not exist or are
difficult to find.

A number of mathematical tools were developed for
the EDR theory. First, we considered compliant mo-
tion planning problems with n degrees of motion free-
dom, and k dimensions of variational geometric
model uncertainty. We reduced this planning problem
to the problem of computing preimages in an (n + k)-
dimensional generalized configuration space, which
encompasses both the motion and the model degrees
of freedom and encodes the control uncertainty as a
kind of non-holonomic constraint.

Next we characterized EDR strategies geometrically
via the EDR region H. Determining whether a strategy
satisfied the EDR axioms was reduced to a decision
problem about forward projections and preimages in
generalized configuration space.

The weak EDR theory introduced new mathemati-
cal tools for studying multi-step strategies: reachability
and recognizability diagrams, strong and weak strategy
equivalence, linking conditions, and strategy composi-

tion. A variety of techniques for planning multi-step
EDR strategies were investigated and unveiled as spe-
cial cases of the weak EDR theory. In particular, we
discussed the design and implementation of push-for-
ward algorithms, and failure-mode analysis. We tested
the EDR theory by implementing a planner, LIMITED,
and running experiments to have LIMITED automati-
cally synthesize EDR strategies in the domain of
planar assemblies.

Much work remains to be done in developing the
theory and practice of EDR. Future research can ex-
tend the EDR framework — for example, by more
sophisticated dynamic models, or by considering prob-
abilistic strategies. In addition, further analysis of the
existing framework is required. Donald (1988a) ex-
plored the complexity of EDR planning. We derived
bounds both for the implemented planner, LIMITED,
and for theoretical extensions. While in general it is
known that compliant motion planning with uncer-
tainty is intractable, we were able to demonstrate a
number of special cases where there exist efficient
theoretical algorithms. In particular, we showed a case
where n =2, k = 1 and containment in the backpro-
jection could be computed in polynomial time [note
for n = 3, k=0, this is false (Canny and Reif 1987)].
We also investigated the structure of the non-direc-
tional backprojection in the plane. By applying results
from computational algebra, it led to a polynomial
time algorithm for computing one-step (guaranteed)
strategies, and a roughly singly exponential algorithm*
for multistep strategies.

In addition to structural and algorithmic extensions,
a number of other research directions deserve further
attention:

o The weak EDR theory, while still in its infancy,
has already yielded some interesting results and a
fairly clean mathematical framework for studying
multi-step strategies. The key idea behind the
weak EDR theory is: given a collection of goals
{Gp) (possibly including H), we consider all
unions of the subcollections to get some measure
of weakest recognizability. This is perhaps the
most exciting theoretical area for future work.

30. For an environment of n edges, the existence of an r-step strat-
egy can be decided in time 7",
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® When rotations and compliant motion are al-

lowed, we do not know of exact algorithms, even
in principle, for computing projection sets. For
example, the computation of forward projections
is not immediately decidable within the theory of
real closed fields. This is because the physics of
motion are essentially specified “differentially,”
that is, by a mapping that sends a configuration
X € ¢ and a commanded motion 8 € §” (where
r+ 1 is the dimension of C) to a cone B.(x, §) in
the tangent space3!:

g X S"—conesin 79
(x,80) — B(x, 0).

Thus we have a differential specification of the
possible motions B,(x, #) at each point x. The
cones at each point specify a parametric family of
vector fields-—a field of cones, to be precise. The
integral curves for this family, however, may not
be algebraic in general. Good approximate algo-
rithms are needed to construct bounding algebraic
envelopes about the image of this family of
curves. For example, assuming that an integral
curve has a power series, it is possible to construct
a recurrence relation for the coefficients of the
series. They can be generated deterministically to
the accuracy desired. Randy Brost has investi-
gated other numerical techniques for constructing
integral curves corresponsing to trajectories in the
forward projection.? This is an interesting area
for future research. In particular, it could be ap-
plied to the “full” four-dimensional gear-meshing
problem where a commanded pure rotation of the
gripped gear could induce translations or rota-
tions of either gear. Such algorithms might also be
applied to compute projection sets under different
dynamics.

10. Review of Previous Work

This paper is based on Donald (1987b). Broadly
speaking, previous work falls in the following catego-

31. The space of “cones in 79" can be formalized as an appropriate
tensor bundle over 8.

32. Personal communication.
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ries: algorithmic motion planning, compliant motion
planning with uncertainty, model error, and error
detection and recovery.

10.1. Algorithmic Motion Planning

In algorithmic motion planning (also called the piano
movers’ problem, or the find-path problem), the prob-
lem is to find a continuous, collision-free path for a
moving object (the robot) amid completely known
polyhedral or semi-algebraic obstacles. It is assumed
than once such a path is found, it can be reliably exe-
cuted by a robot with perfect control and sensing.
Many algorithms employ configuration space (Lo-
zano-Pérez 1983; Arnold 1978; Abraham and Marsden
1978; Udupa 1977). Lozano-Pérez and Wesley (1979)
proposed the first algorithms for polygonal and poly-
hedral robots and obstacles without rotations. These
results were later extended by Lozano-Pérez (1981,
1983) to polyhedral robots that could translate and ro-
tate. Brooks (1983) designed a find-path algorithm
based on a generalized-cone representation of free
space. Brooks later extended this method for a revo-
lute-joint robot. Donald (1984; 1985; 1987a) devel-
oped a motion-planning algorithm for a rigid body that
could translate and rotate with six degrees of freedom
amid polyhedral obstacles (the so-called “classical”
movers’ problem). Lozano-Pérez (1985) reported an-
other six-DOF algorithm for six-link revolute manipu-
lators. Canny (1986) developed an algebraic formula-
tion of the configuration-space constraints, which led
to a very clean collision-detection algorithm. All of
these algorithms have been implemented.

There are many theoretical results on upper and
lower bounds for the find-path problem; see Yap
(1986) for a good survey article. These results begin
with Lozano-Pérez and Wesley (1979), who give the
first upper bounds: they give efficient algorithms for
planning in 2D and 3D in the absence of rotations.
Reif (1979) obtained the first lower bounds, demon-
strating the problem to be PSPACE-hard when the
number of degrees of freedom are encoded in the input
specification of the problem. Hopcroft, Schwartz, and
Sharir (1984) have also given interesting lower bounds
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for motion planning. Schwartz and Sharir (1982) gave
a very general theoretical algorithm for motion plan-
ning via a reduction to the theory of real closed fields.
The algorithm is doubly exponential in the degrees of
freedom, but polynomial in the algebraic and geomet-
ric complexity of the input. Over the next five years,
there were many papers reporting more efficient spe-
cial-purpose motion planning algorithms for certain
specific cases; see Yap (1986) for a survey. To date the
fastest general algorithm is due to Canny (1987a,b),
who gives a generic motion planning algorithm that is
merely singly exponential in the degrees of freedom.
For a motion planning problem of algebraic complex-
ity d, geometric complexity », and with r degrees of
freedom, Canny’s algorithm runs in time

(d% " log n) that is within a log factor of optimai.
While none of these theoretical algorithms have been
implemented, Canny’s is conjectured to be efficient in
practice as well.

One might ask whether exact algorithms for motion
planning can ever by utilized after uncertainty in sens-
ing and control are introduced. The answer is a quali-
fied “yes.” In particular, the Voronoi diagram has
proved to be useful for motion planning among a set
of obstacles in configuration space [see O’Dinlaing
and Yap (1985); O’'Diinlaing, Sharir, and Yap (1984);
Yap (1984); and the textbook of Schwartz and Yap
(1986) for an introduction and review of the use of
Voronoi diagrams in motion planning). The Voronoi
diagram, as usually defined, is a strong deformation
retract of free space so that free space can be contin-
uously deformed onto the diagram. This means that
the diagram is complete for path planning (i.e., search-
ing the original space for paths can be reduced to a
search on the diagram). Reducing the dimension of the
set to be searched usually reduces the time complexity
of the search. Secondly, the diagram leads to robust
paths (i.e., paths that are maximally clear of obstacles).
Hence Voronoi-based motion planning algorithms are
relevant to motion planning with uncertainty. Canny
and Donald (1987; 1988) define a simplified Voronoi
diagram that is still complete for motion planning yet
has lower algebraic complexity than the usual Voronoi
diagram, a considerable advantage in motion planning
problems with many degrees of freedom. Further-
more, the simplified diagram is defined for the 6D
configuration space of the “classical” movers’ prob-

lem. For the six-DOF “classical” polyhedral case,
Canny and Donald (1987; 1988) show that motion
planning using the simplified diagram can be done in
time O(n’ log n).

10.2. Compliant Motion Planning with Uncertainty

This section reviews previous work on planning com-
pliant motions that are guaranteed to succeed even
when the robot system is subject to sensing and control
uncertainty. All of this work assumes perfect geometric
models of the robot and obstacles.

Work on compliant motion can be traced to Inoue
(1974), Raibert and Craig (1981), and Salisbury (1980).
This work in force control attempted to use the geo-
metric constraints to guide the motion. By cleverly
exploiting the task geometry, placements far exceeding
the accuracy of pure position control can be achieved.
Mason (1982) develops spring and damper compli-
ance models and gives an extensive review of research
in compliant motion, Simunovic (1975; 1979), Whit-
ney (1982), and Ohwovoriole and Roth (1981) have
all considered frictional constraints, as well as jam-
ming and wedging conditions. Erdmann (1984) and
Burridge, Rajan, and Schwartz (1983) have considered
algorithmic techniques for predicting reaction forces
in the presence of friction. Caine (1985) has considered
manual techniques for synthesizing compliant motion
strategies, generalizing the methods of Whitney
(1982). Mason (1982) has developed a way to model
pushing and grasping operations in the presence of
frictional contact. Peshkin (1986) has extended this
work. Brost (1985) has further developed techniques
for predicting pushing and sliding of manipulated
objects to plan squeeze-grasp operations. In addition,
Brost is currently investigating the application of EDR
techniques to the squeeze-grasp domain.

Early work on planning in the presence of uncer-
tainty investigated using skeleton strategies. Lozano-
Pérez (1976) proposed a task-level planner called
LAMA that used geometric simulation to predict the
outcomes of plans, and is one of the earliest systems to
address EDR planning. Taylor (1976) used symbolic
reasoning to restrict the values of variables in skeleton
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plans to guarantee success. Brooks (1982) later ex-
tended this technique using a symbolic algebra system.
Dufay and Latombe (1984) implemented a system
that addresses learning in the domain of robot motion
planning with uncertainty.

Lozano-Pérez, Mason, and Taylor (1984) proposed
a formal framework for automatically synthesizing
fine-motion strategies in the presence of sensing and
control uncertainty. Their method is called the pre-
image framework. Mason (1982) further developed the
preimage termination predicates, addressing complete-
ness and correctness of the resulting plans. Erdmann
(1984; 1986) continued work on the preimage frame-
work, and demonstrated how to separate the problem
into questions of reachability and recognizability. He
also showed how to compute preimages using back-
projections, which address reachability alone, and
designed and implemented the first algorithms for
computing backprojections. Erdmann and Mason
(1986) developed a planner that could perform sensor-
less manipulation of polygonal objects in a tray. Their
planner makes extensive use of a representation of
friction in configuration space (Erdmann 1984; 1986).
Buckley (1987) implemented a multi-step planner for
planning compliant motions with uncertainty in 3D
without rotations. He also developed a variety of new
theoretical tools, including a combined spring-damper
dynamic model, 3D backprojection and forward pro-
jection algorithms, and a finitization technique that
makes searching the space of commanded motions
more tractable.

Hopcroft and Wilfong (1986) addressed the problem
of planning motions in contact, and proved important
structural theorems about the connectivity of the one-
edges of configuration space obstacle manifolds. Kout-
sou (1985) has suggested a planning algorithm which
plans along one-edges. Other planning systems for
compliant motion have been developed by Turk
(19835), who used backprojections, Laugier (1981),
who used an expert system for geometric reasoning
about compliant motion, and Valade (1984).

Recently, there has been some theoretical work on
the complexity of robot motion planning with uncer-
tainty. Erdmann (1984; 1986) showed the problem to
be undecidable when the obstacles are encoded as a
recursive function on the plane. Natarajan (1986) has
shown the problem to be PSPACE-hard in 3D for
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finite polyhedral obstacles. Canny and Reif (1987)
have demonstrated that in 3D the problem of synthe-
sizing a multi-step strategy is hard for non-determinis-
tic exponential time; in addition, they proved that
verifying a one-step strategy is NP-hard.

10.3. Model Error

There is relatively little previous work on planning in
the presence of model uncertainty. Requicha (1984),
Shapiro (1985), and Fleming (1988) address represen-
tational questions of how to model part tolerances,
and mathematical models for variational families of
parts. Buckley (1987) considers some extensions of his
planner to domains with model uncertainty. Brooks
(1982) developed a symbolic algebra system that can
constrain the variable values in skeleton plans and
introduce sensing and motion steps to reduce these
values until the error ranges are small enough for the
plan to be guaranteed. Some of the variables in these
plans can represent model error— particularly, the
position of objects in the work space—and hence his
planner can reason about motion planning in the pres-
ence of model uncertainty.

Work on manipulator pushing and sliding (Mason
1982; 1985; 1986; Peshkin 1986) and squeeze-grasping
Brost (1986) may be viewed as addressing model error
where the error parameters are the position and orien-
tation of the manipulated part. The operation space of
Brost (1986) is a clever example how to model actions
with uncertain effects, and objects with uncertain ori-
entation, in the same space. Durrant-Whyte (1986)
considers how to model geometric uncertainty proba-
bilistically, and how to propagate such information in
applications related to motion planning.

Lumelsky (1986) considers the following problem:
suppose that a robot has a 2D configuration space,
perfect control and sensing, the obstacles are finite in
number, and each obstacle boundary is a homeomor-
phic image of the circle. Then a collision-free path
may be found by tracing around the boundary of any
obstacles encountered when moving in a straight line
from the start to the goal. At each obstacle boundary
encountered, there is a binary choice of which way to
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go, and the move may be executed with perfect accu-
racy. Lumelsky also demonstrates complexity bounds
under these assumptions and has considered configu-
ration spaces such as the plane, the sphere, the cylin-
der, and the 2-torus. While it is not clear how this
technique can extend to higher-dimensional configura-
tion spaces, it is useful to compare Lumelsky’s ap-
proach as an example of how to exploit a useful geo-
metric primitive (wall-following). The potential-field
approach to collision avoidance, as formulated by
Khatib (1986), also can deal with uncertain obstacles,
and gross motions around these obstacles can often be
synthesized in real time. See also Koditschek (1987)
for extensions to this approach using results from dif-
ferential topology to show global convergence. Brooks
(1985) has described a map-making approach for a
mobile robot in a highly unstructured environment —
i.e., amid unknown obstacles. His approach allows the
robot to acquire information about the position and
shape of these obstacles as the robot explores the envi-
ronment. Davis and McDermott (1982) have ad-
dressed the mobile robot navigation problem amid
partially unknown obstacles using an approximate map.
There is almost no work on planning compliant
motions or assemblies in the presence of model error.

10.4. Error Detection and Recovery

There has been almost no formal analysis of the EDR
problem. STriPs (Fikes and Nilsson 1971) has a run-
time executive (PLANEX) that embodied one of the
first systems addressing EDR. STRIPS’ triangle tables
may be viewed as a kind of forward projection. Ward
and McCalla (1983) and Hayes (1976) have presented
research agendas for error diagnosis and recovery in
domain-independent planning. McDermott (1982) has
stressed the importance of EDR in plan execution and
sketched an approach based on possible worlds. Srin-
ivas (1977) described a robot planning system for a
Mars rover that could detect certain manipulation
errors and recover. Gini and Gini (1983) have de-
scribed a view of EDR based on a predetermined list

of high-level error types. The domain-independent
planning literature (Chapman 1985) is relevant to the
history of EDR; for example, the planner of Wilkins
(1984) has an error recovery module in which the
executor can detect inconsistencies in the set of logical
propositions representing the world state. At this
point, an operator can intervene and type in new
propositions to disambiguate the state and aid recov-
ery. The robots described by Brooks (1985) have an
EDR flavor —they are not required to achieve a par-
ticular goal, but merely to attempt it until some other
goal takes a higher priority.

The EDR theory in this paper has been presented in
Donald (1986a,b; 1987). In Donald (1988b), we de-
scribe details of the geometrical characterization of
EDR and of one-step EDR planning. Brost (1985) is
employing some of these EDR techniques in his re-
search on planning squeeze-grasp operations.
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