




VRC07-G54W displayed circulating levels �2-fold lower than
that of wild-type VRC07.

To improve the plasma half-life of VRC07, we incorporated a
previously described set of two amino acid mutations (M428L/
N434S; referred to as LS) that increase half-life by increasing af-
finity for the neonatal Fc-receptor (FcRn), which results in the
recirculation of functional IgG (74, 78). The VRC07-LS mutant
displayed a 2- to 3-fold increase in plasma half-life compared to
wild-type VRC07 in rhesus macaques (Fig. 4B and D). Based on
these data, the four optimized VRC07 variants were constructed
with this LS mutation, and the pharmacokinetic properties of
these antibodies were assessed in vivo. Among the four variants,
VRC07-523-LS displayed a longer half-life (9.8 days) than the
other three variants, close to the half-life of VRC07-LS (11.6 days).
For all four optimized variants, the plasma MAb levels and half-
lives in rhesus macaques were intermediate between that of
VRC07 and VRC07-LS (Fig. 4C and D). When MAb levels in rectal
mucosal secretions were measured, antibody VRC07-523-LS was
detectable for at least 14 days (see Fig. S7b in the supplemental
material).

Optimized VRC07 protects against infection at lower plasma
concentrations.To determine if an antibody with increased neu-
tralization potency in vitro would confer greater in vivo protec-

tion, we compared the ability of VRC01-LS and VRC07-523-LS to
protect rhesus macaques from intrarectal challenge with SHIV
BaLP4. We assessed the neutralization sensitivity of the SHIV
BaLP4 challenge stock to both antibodies. VRC07-523-LS neutral-
ized SHIV BaLP4 at a 5.6-fold lower concentration than VRC01
(IC50s of 0.005 �g/ml and 0.028 �g/ml, respectively) (Fig. 5A and
B). Challenge experiments were designed using varied antibody
infusion doses to allow a calculation of the plasma MAb concen-
tration that provides 50% protection (plasma EC50). MAbs were
administered intravenously, and animals were challenged muco-
sally 5 days later. This approach allowed us to compare the effec-
tive plasma concentration of VRC07-523-LS and VRC01-LS at the
time of SHIV challenge irrespective of the infusion dose. When
VRC07-523-LS was administered at doses of 0.2 mg/kg and 0.05
mg/kg, 3 of 4 animals and 0 of 4 animals were protected, respec-
tively. For VRC01-LS, 5 of 12 animals were protected at a dose of
0.3 mg/kg (Fig. 5C; also see Fig. S8 in the supplemental material).
We measured plasma antibody levels at the time of SHIV chal-
lenge and used a binary (probit) regression model to calculate the
EC50s: the EC50 titers for VRC07-523-LS and VRC01-LS were 0.47
�g/ml and 2.5 �g/ml, respectively, and the 90% confidence inter-
vals for these values did not overlap (Fig. 5D). This difference in
the regression curves for VRC01-LS and VRC07-23-LS trended

FIG 3 Autoreactivity of optimized VRC07 MAbs. (A) The reactivity of VRC07 variants to HEp-2 human epithelial cells was analyzed with an immunofluores-
cence cell staining assay. The autoreactive antibody 2F5 also was included in the analysis. Antibodies were tested at 50 �g/ml and 25 �g/ml, and scores are
summarized in panel B. neg, negative. (C) MAb binding to cardiolipin, a mitochondrial membrane phospholipid, was assessed by ELISA. VRC07 variants and
2F5 were tested at 100 �g/ml and 3-fold serial dilutions. In both assays, the optimized VRC07 variants (VRC07-501, VRC07-508, VRC07-523, and VRC07-544)
were tested in an IgG1 format containing the FcRn binding site LS mutation (described in the legend to Fig. 4). The constant region LS mutation does not affect
autoreactivity results. OD, optical density.
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toward significance (P 	 0.07). Therefore, optimized antibody
showed a �5-fold increase in potency compared to the parental
antibody, consistent with its ability to better neutralize virus in
vitro. No significant difference in peak viral loads or time to
viremia was observed between any of the treatment groups.

DISCUSSION

Growing evidence in animal model studies suggests that potent
HIV-1 MAbs can prevent infection (11, 42–44) or reduce viremia
during chronic infection (45, 46, 81). These successes have re-
newed interest in testing MAbs in clinical trials (13, 82, 83). The
overall efficacy of an HIV-1 MAb likely depends on several char-
acteristics, including the breadth of reactivity (i.e., the fraction of
circulating virus strains neutralized), the neutralization potency
(i.e., the concentration of antibody needed to prevent infection),
and the pharmacokinetic properties (e.g., circulating half-life and
tissue localization). Here, we sought to improve the potency and
breadth of antibody VRC01 and used the resulting antibody to
demonstrate a relationship between in vitro neutralization po-
tency and in vivo efficacy. Additionally, we improved the half-life
both by minimizing autoreactivity and by adding Fc-region mu-
tations that increase circulating plasma MAb levels. Thus, our lead
candidate, VRC07-523-LS, was engineered to have in vitro and in
vivo characteristics likely to increase clinical protective efficacy.

Our studies started with the well-characterized MAb VRC01,
which has high in vitro potency and breadth and currently is being
evaluated in phase I clinical trials. Using deep sequencing and
bioinformatics, we identified a heavy-chain VRC01 clonal variant
from donor 45 with moderately improved potency and breadth.
Structure-based analyses were used to design variants with im-
proved neutralization activity. Numerous mutations were ex-
plored, and mutations focused on the heavy-chain G54 residue
and the N terminus of the light chain were found to have the most
favorable in vitro characteristics. In combination, a G54H point
mutation on the heavy chain, a deletion of the two N-terminal
light-chain amino acids (E1 and I2), and a V3S point mutation on
the light chain led to a 5- to 8-fold increase in neutralization po-
tency (based on geometric mean IC50 and IC80 values) and im-
proved breadth (93% for VRC07 to 96% for VRC07-523).

Notably, these mutations improved potency without causing
substantial autoreactivity. This feature was particularly important
because autoreactivity and off-target binding may decrease
plasma MAb levels and promote unwanted immunopathology.
For example, in human clinical trials, the infusion of a combina-
tion of the gp41 MAbs 4E10 and 2F5, which are both autoreactive
(73), and 2G12, which is not autoreactive, was associated with a
prolonged in vitro blood-clotting time (partial thromboplastin
time) (84). In the same studies, MAbs 4E10 and 2F5 both had
shorter half-lives than the nonautoreactive MAb 2G12 (73, 84–
86). Additionally, during the development of motavizumab, a sec-
ond-generation anti-RSV MAb, autoreactivity (broad tissue bind-
ing and cross-reactivity) also was associated with lower circulating
plasma levels (87).

To compare pharmacokinetic properties, including circulating
plasma half-life, VRC07 variants were analyzed in rhesus ma-

FIG 4 Optimized VRC07 MAbs with the LS mutation have extended plasma
half-lives. Pharmacokinetic studies were performed in male rhesus macaques.
All MAbs were administered at 10 mg/kg intravenously, and plasma levels were
monitored by a gp120 core (RSC3) ELISA. The number of NHPs is indicated,
and means � standard deviations are plotted. (A) The pharmacokinetics of
VRC07 and VRC07-G54W are shown. (B) An FcRn binding site mutation (LS)
was added to VRC07 and improved plasma half-life by �2-fold. (C) VRC07-
508-LS and VRC07-523-LS also had increased plasma levels and extended
half-lives compared to wild-type VRC07, while VRC07-501-LS and VRC07-
544-LS had pharmacokinetics similar to those of VRC07. (D) Terminal (�)

phase half-life was calculated through day 21 using a noncompartmental
model. Mean areas under the curve and clearance rates also are shown for each
MAb. All calculations were performed with WinNonlin software (Pharsight).
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caques. These experiments confirmed that the autoreactive MAb
VRC07-G54W had a shorter half-life than VRC07. These in vivo
data suggested an association between antibody autoreactivity and
shorter half-life and provided further rationale for pursuing
VRC07 variants with the heavy-chain G54H mutation that
showed low levels of autoreactivity. We constructed the optimized
VRC07 variants (VRC07-501, VRC07-508, VRC07-523, and
VRC07-544) with a two-amino-acid LS mutation in the IgG Fc
region that has been shown to increase affinity for FcRn and to
increase antibody half-life in vivo (78). We recently demonstrated
that MAb VRC01-LS, with enhanced FcRn binding, displayed in-
creased gut mucosal tissue localization, which improved protec-
tion against SHIV infection in the NHP model (74). Our preferred
variant, VRC07-523-LS, displayed a �2-fold improved half-life
compared to that of the wild-type VRC07 without the LS muta-
tion.

In vitro neutralization often is assumed to be the most impor-
tant predictive factor in protection against in vivo lentiviral infec-
tion; however, some studies have suggested a role of Fc-mediated
effector functions, such as antibody-dependent cellular cytotoxic-
ity (ADCC), in protection (88, 89). Of note, the LS mutations
introduced into the CH3 domain do not affect ADCC activity (74,
78). While we did not address the role of ADCC here, we were able
to directly address the relationship of in vitro neutralization po-
tency and in vivo efficacy. Thus, we compared the ability of
VRC01-LS and the optimized VRC07-523-LS to protect NHPs
from mucosal SHIV challenge. VRC01-LS and VRC07-523-LS
were administered at low doses to monkeys that then were chal-
lenged with SHIV BaLP4. VRC07-523-LS was able to protect at
levels 5 times lower than that of VRC01-LS. Although the differ-
ences in protection were slightly above the threshold for statistical
significance, we believe our results strongly suggest a relationship
between in vitro and in vivo potency. Notably, the �5-fold differ-
ence in protection was comparable to that seen in neutralization
assays in vitro.

In summary, we show that a process of iterative structure-
based design and in vitro analyses improved the neutralization
activity of VRC01, a MAb that targets the CD4bs of the HIV-1
envelope glycoprotein gp120. VRC01 is able to neutralize 89% of
HIV-1 strains with a geometric mean IC50 of 0.22 �g/ml. The
optimized VRC07-523 neutralized 96% of HIV-1 strains and was
5- to 8-fold more potent than VRC01. This improvement in po-
tency in vitro correlated with increased protective efficacy against
SHIV challenge in vivo. Importantly, VRC07-523 displayed min-
imal autoreactivity, and its half-life was further extended with the
addition of the LS mutations in the FcRn binding site. These in
vitro and preclinical data suggest that it is possible to improve the
efficacy of naturally occurring broadly neutralizing HIV-1 anti-
bodies and that this approach could be applied to other anti-
HIV-1 antibodies. Therefore, these modifications optimize bio-

FIG 5 Improved protective efficacy of VRC07-523-LS compared to VRC01-
LS. (A) Neutralization assays were performed with the SHIV-BaLP4 challenge
stock and antibody VRC01-LS or VRC07-523-LS using TZM-bl target cells.
(B) VRC07-523-LS is about 5-fold more potent than VRC01-LS against the
SHIV-BaLP4 stock in vitro. (C) Rhesus macaques were administered either 0.2
mg/kg or 0.05 mg/kg of VRC07-523-LS (n 	 4 each) or 0.3 mg/kg of
VRC01-LS (n 	 12) and challenged intrarectally with SHIV-BaLP4 5 days
later. Plasma concentrations of VRC07-523-LS and VRC01-LS at the time of
challenge were determined by RSC3 ELISA. Plasma MAb levels of animals that
became infected are graphed with closed icons, and plasma levels of animals

that were protected are graphed with open icons. (D) The probability of pro-
tection from SHIV challenge can be predicted using a probit regression model
based on the plasma MAb concentration at the time of challenge. Curves for
VRC01-LS (green) and VRC07-523-LS (blue) graph the calculated probability
of protection (y axis) at increasing plasma MAb levels (x axis). The EC50 for
VRC07-523-LS was 0.47 �g/ml (90% confidence interval [CI], 0.31 to 0.96
�g/ml), and the VRC01-LS EC50 was 2.54 �g/ml (90% CI, 1.86 to 2.96 �g/ml).
Ninety percent confidence intervals are shown for each curve with horizontal
lines, and these do not overlap.
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logical properties of such anti-HIV-1 broadly neutralizing
antibodies that will increase the likelihood for protection against
HIV-1 infection in humans.
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