
Measurement and Analysis of
Private Key Sharing in the HTTPS Ecosystem

Frank Cangialosi∗ Taejoong Chung† David Choffnes† Dave Levin∗
Bruce M. Maggs‡ Alan Mislove† Christo Wilson†

∗University of Maryland †Northeastern University ‡Duke University and Akamai Technologies

ABSTRACT
The semantics of online authentication in the web are rather
straightforward: if Alice has a certificate binding Bob’s
name to a public key, and if a remote entity can prove knowl-
edge of Bob’s private key, then (barring key compromise)
that remote entity must be Bob. However, in reality, many
websites—and the majority of the most popular ones—are
hosted at least in part by third parties such as Content Deliv-
ery Networks (CDNs) or web hosting providers. Put simply:
administrators of websites who deal with (extremely) sensi-
tive user data are giving their private keys to third parties.
Importantly, this sharing of keys is undetectable by most
users, and widely unknown even among researchers.

In this paper, we perform a large-scale measurement study
of key sharing in today’s web. We analyze the prevalence
with which websites trust third-party hosting providers with
their secret keys, as well as the impact that this trust has on
responsible key management practices, such as revocation.
Our results reveal that key sharing is extremely common,
with a small handful of hosting providers having keys from
the majority of the most popular websites. We also find that
hosting providers often manage their customers’ keys, and
that they tend to react more slowly yet more thoroughly to
compromised or potentially compromised keys.

1. INTRODUCTION
Online, end-to-end authentication is a fundamental first

step to secure communication. On the web, Secure Sock-
ets Layer (SSL) and Transport Layer Security (TLS)1 are
responsible for authentication for HTTPS traffic. Coupled
with a Public Key Infrastructure (PKI), SSL/TLS provides
verifiable identities via certificate chains and private com-
munication via encryption. Owing to the pervasiveness and
success of SSL/TLS, users have developed a natural expec-
tation that, if their browser shows that they are connected to
a website with a “secure” lock icon, then they have a secure

1TLS is the successor of SSL, but both use the same certificates.
We refer to “SSL certificates,” but our findings apply equally to both.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 – 28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978301

end-to-end link with a server that is under that website’s
sole control.

However, the economics and performance demands of the
Internet complicate this simplified model. Web services ben-
efit from not only deploying content on servers they control,
but also employing third-party hosting providers like Aka-
mai, CloudFlare, and Amazon’s EC2 service to assist in de-
livering their content. Many of the world’s most popular
websites are hosted at least in part on Content Delivery Net-
works (CDNs) so as to benefit from worldwide deployment
and low-latency connectivity to users. Less popular web-
sites are also often served by third-party hosting providers,
in part to avoid having to set up and maintain a server and
the associated infrastructure on their own. These hosting
arrangements are often non-obvious to users, and yet, with
HTTPS, they can have profound security implications.

Consider what happens when a user visits an HTTPS web-
site, example.com, served by a third party such as a CDN:
the user’s TCP connection terminates at one of the CDN’s
servers, but the SSL/TLS handshake results in an authen-
ticated connection, convincing the user’s browser that it is
speaking directly to example.com. The only way the server
could have authenticated itself as example.com is if it had
one of example.com’s private keys. This is precisely what
happens today: website administrators share their private
keys with third-party hosting providers, even though this vi-
olates one of the fundamental assumptions underlying end-
to-end authentication and security—that all private keys
should be kept private.

Such sharing of keys with CDNs has been pointed out
by prior work, notably by Liang et al. [23]. However, the
prevalence of key sharing, and its implications on the se-
curity of the HTTPS ecosystem, have remained unstudied
and difficult to quantify. Moreover, websites share their pri-
vate keys with a much broader class of third-party host-
ing providers than just CDNs, including cloud providers
like Amazon AWS and web hosting services like Rackspace.
The extent to which hosting providers play an active role
in managing or accessing their customers’ keys varies across
provider and type of service—as we will see, for instance,
some CDNs go so far as to manage their customers’ cer-
tificates on their behalf. Whatever the role, merely having
physical access to a website’s private key can have severe se-
curity implications. We therefore consider a domain to have
“shared” its private key if we infer that the private key is
hosted at an IP address belonging to a different organiza-
tion than the one that owns the domain (see §2.3).

In this paper, we quantify private key sharing within the
HTTPS ecosystem at an Internet-wide scale, with two high-

http://dx.doi.org/10.1145/2976749.2978301

level questions in mind: (1) to what extent do websites trust
third parties with their private keys? and (2) what impli-
cations does key sharing have on the management of the
certificates?

Answering these questions has required us to develop a set
of new measurement techniques to determine which hosting
provider has access to a given certificate, and whether two
domains belong to the same organization (company, govern-
ment entity, etc.). We apply these techniques to Internet-
wide scans of SSL certificates, along with a confluence of
other datasets, to perform the first large-scale study of key
sharing within the HTTPS ecosystem.

Our results paint a grim, yet nuanced picture of the trust
relationships in the web’s PKI. We find for instance that over
76% of all organizations share at least one of their private
keys with a third-party hosting provider, and that as a re-
sult, compromising the most popular such hosting provider
could provide access to the private keys for 60% of the do-
mains in the Alexa top-1K. Moreover, we observe many in-
stances where hosting providers not only gain access to their
customers’ private keys, but they also take on the respon-
sibility of managing their certificates. Interestingly, we find
that this outsourcing of certificate management often leads
to better certificate management, as measured by more thor-
ough certificate revocation and reissuing behavior.

Our findings build upon a large body of work on measuring
the web’s HTTPS ecosystem [15, 16, 19, 25, 33]. These prior
studies focus primarily on the trust relationships between
websites, the certificate authorities (CAs) who issue certifi-
cates, and the browsers that verify certificates. We com-
plement these findings by exploring a heretofore overlooked
yet key player in the HTTPS ecosystem: CDNs and other
hosting providers. As we will show, trust relationships with
hosting providers can be difficult to ascertain; whereas the
relationship between between a CA and a website is made
explicit in the website’s SSL certificate, no formal relation-
ship need be stated for a third party to host a website. Our
techniques aim to shed light on these trust relationships.

In this paper, we make the following contributions:

• We present a set of novel techniques that apply a con-
fluence of datasets to obtain a clearer picture of who
owns, who serves, and who manages which certificates.

• We apply these techniques to perform the first ever
Internet-wide analysis of private key sharing between
websites and third-party hosting providers, and show
that sharing is prevalent, that it is driven by economic
factors, and that a small number of hosting providers
have aggregated a large stockpile of private keys.

• We show that many websites outsource management of
their certificates to third parties, and we present the
first empirical evidence that self-managed certificates
tend to be less secure than those managed by third
parties.

• We make all of our code and resulting datasets publicly
available at https://securepki.org.

The rest of this paper is organized as follows. We provide
a background on SSL/TLS and third-party hosting providers
in §2. We then describe in §3 the various datasets we use.
In §4, we present the measurement techniques that we apply
in our study of key sharing (§5) and key management (§6).
We present related work in §7 and conclude in §8.

2. BACKGROUND
Key sharing in the web’s PKI is facilitated by recent ad-

ditions to the SSL protocol and extensions to X.509 certifi-
cates. Here, we describe these mechanisms, and why using
them for key sharing violates the spirit behind their design.

2.1 SSL certificates
An SSL certificate is a signed attestation binding a subject

to a public key. Valid certificates are issued by Certificate
Authorities (CAs), who in turn have their own certificates,
and so on, terminating at a small set of self-signed root
certificates. Thus, there is a logical chain of certificates—
leading from a root certificate through zero or more interme-
diate certificates, to a leaf certificate—wherein the certifi-
cate at level i is signed with the private key corresponding to
the certificate at level i − 1 (with the exception of the self-
signed certificate at the root). On the Internet, X.509 [4]
is the most commonly used certificate management stan-
dard, and these certificates are commonly used as part of
the SSL/TLS protocol (e.g., in HTTPS, IMAPS, etc).

In SSL certificates, the subject is contained in the Common

Name field; for leaf certificates, the Common Name is a do-
main name (e.g., www.example.com). SSL certificates also
allow wildcard domains in the Common Name, so a certifi-
cate with a Common Name of *.example.com would cover
both foo.example.com and bar.example.com. Thus, when
a client contacts a server, it is necessary to verify that the
domain name the client intended to contact is in the Com-

mon Name of the certificate. If this is not the case, the client
should reject the connection, as it may have been intercepted
by a third party (i.e., a man-in-the-middle attack).

The original SSL protocol required that the server present
its certificate without knowing which domain name the client
was contacting. This effectively prevented servers from sup-
porting more than one domain per IP address, as a server
could only serve a single certificate per IP address, and each
certificate could contain only a single Common Name.2 As a
result, two extensions to the X.509 certificate specification
and TLS protocol were developed:

SAN list The Subject Alternate Names (SAN) exten-
sion allows a certificate to specify multiple alternate do-
main names to which the certificate should apply, ef-
fectively allowing a certificate to have multiple Com-

mon Names. For instance, a certificate with a SAN list
[*.google.com, *.youtube.com] would be accepted for both
www.google.com and m.youtube.com.

SNI The Server Name Indication (SNI) extension to
the TLS protocol allows a client to specify which domain it
is trying to contact before the server presents its certificate.
If both the client and the server support SNI, this allows
the server to host SSL certificates for different domains on a
single IP address; the server simply examines the SNI field
to select which certificate it should send to the client.

2.2 Hosting providers
Many of our findings in the paper apply to web hosting

services and Content Delivery Networks (CDNs), which we
collectively refer to as hosting providers. Popular websites
now commonly use hosting providers for distributing con-

2Modulo wildcard Common Names, which allow the server to serve
multiple sub-domains from a single domain using only a single IP
address.

https://securepki.org

tent and, frequently, for providing security services such as
denial-of-service attack mitigation [17].

Websites are increasingly using third-party providers to
host HTTPS content, but unfortunately, limitations of
the TLS protocols have made this challenging for hosting
providers. TLS has historically assumed that a given IP ad-
dress would be used to host only a single website’s domains,
and that therefore it would suffice for any given IP address
to serve a single certificate. To support multiple customers’
HTTPS content, hosting providers generally use one or more
of the following approaches:

One customer per IP address The most straightfor-
ward approach involves having a single customer’s certificate
(possibly with multiple domains in a SAN list) allocated to
any given IP address. This has the benefit of not requiring
clients to support SNI, but comes at a high monetary cost,
as IPv4 addresses have grown more scarce.

Multiple certificates per IP address Alternatively,
hosting providers can host multiple certificates on any given
IP address by using SNI. This is less expensive than dedi-
cating an IP address to a single customer, but unfortunately
older clients like Internet Explorer on Windows XP and An-
droid 2.x devices do not support SNI. Hosting providers
are often hesitant to implement a solution that leaves these
clients unable to access customer websites.3

“Cruise-liner” certificates Finally, if a hosting
provider can obtain custom certificates on behalf of its cus-
tomers [23], it can craft certificates with SAN lists containing
domains from multiple distinct customers. One such SAN list
we observe contains monsanto.com (an agrochemical corpo-
ration), aaa.com (an automobile association), and jazzer-

cise.com (a workout program), along with dozens of other
companies.4 This approach lets the hosting provider use
a single certificate per IP address (therefore not requiring
clients to support SNI) and support multiple customers per
IP address (therefore not requiring purchase of many IP ad-
dresses). However, there are also downsides [23], such as not
being able to support Extended Validation certificates. We
refer to these as cruise-liner certificates, as multiple distinct
customers share a ride with one another.5

2.3 What we mean by “key sharing”
The overall goal of this paper is to quantify when one

party has made its certificate’s private key available to an-
other party. In general, it is difficult to ascertain when this
has occurred as an outsider, so we rely on the evidence we
do have available to us: the IP address(es) we observe ad-
vertising the certificate. Specifically, we say that key sharing
has taken place if any of the parties named in a certificate
(the Common Name or entries in the SAN list) are not the same
as the organization who owns the IP address from which it
is advertised.

This is a rather coarse-grained definition of key sharing,
and the true relationships between the owner of the key and
the owner of the IP address can be subtler. In particular, our
definition of key sharing captures three broad classes of be-
havior: First, a website may explicitly hand over its private

3https://community.akamai.com/thread/1314#2168
4https://censys.io/certificates/74f611c7a9524673df03801be9778

c96dcc31a6a807cb36e7a2d3b031cb805b2
5Note that cruise-liner certificates cannot be modified piecemeal;

adding or removing any customer’s domain requires generating an
entirely new certificate.

keys to a hosting provider. For example, a customer may
simply upload its certificate and private key, as is commonly
done when websites subscribe to CDN services.

Second, a website may give its hosting provider physical
access to its private keys, even though the website does not
explicitly hand over the keys themselves. There are many
different mechanisms by which this could be done. For ex-
ample, a website may use a cloud-based virtual machine
(where the provider has the ability to read the key from
the VM’s memory) or the website may use a co-location ser-
vice (where the provider has the ability to physically access
the website’s servers). Our definition of “key sharing” en-
compasses both of these because the IP address is owned by
the hosting provider but serves keys owned by its customers.

In all of these cases, the website is not only trusting the
hosting provider not to access the keys, but also trusting
the provider to prevent both external and internal attackers
from accessing the keys. While websites may raise the dif-
ficulty of such attacks through the use of tamper-resistant
hardware or software obfuscation, ultimately, they are trust-
ing the provider to some degree. We are therefore comfort-
able with its inclusion in our definition of “key sharing.”.

Third, a website may run its own servers within a third-
party network, where the network operator has no physical
access to the website’s servers. For example, such a website
could operate its own datacenter—with restricted physical
access—all within another’s network. This is arguably not
“key sharing” since the network operator has no access to
the website’s key material; unfortunately, we are unaware of
any way to determine at-scale and in an automated manner
who has physical access to a given IP address. Thus, in
the remainder of the paper, we identify cases of potential
key sharing, though we believe that in the vast majority of
cases, the owner of an IP address does have physical access
to the machine using that address.

2.4 Why study private key sharing?
The security of any public key encryption system rests

on keeping private keys private; sharing private keys across
entities violates these assumptions. To quote the RFC for
SSL certificates [4]:

The protection afforded private keys is a critical
security factor. On a small scale, failure of users
to protect their private keys will permit an at-
tacker to masquerade as them or decrypt their
personal information. On a larger scale, compro-
mise of a CA’s private signing key may have a
catastrophic effect.

Similarly, a single website choosing to share its private key
with a hosting provider may seem relatively innocuous, but
large numbers of websites sharing with a small number of
hosting providers may lead to even greater centralization of
trust than was previously realized. Prior work [23] showed
that websites share keys with their CDNs, but the commu-
nity at large has lacked the tools to measure the extent of
key sharing and the implications it has had on the adminis-
tration of private keys. This paper develops novel techniques
and applies them to perform the first large-scale study of key
sharing in the web’s PKI. Our results expose trust relation-
ships in the HTTPS ecosystem, complementing a large body
of work (see §7) that has studied similar trust relationships
between websites and CAs.

https://community.akamai.com/thread/1314#2168
https://censys.io/certificates/74f611c7a9524673df03801be9778c96dcc31a6a807cb36e7a2d3b031cb805b2
https://censys.io/certificates/74f611c7a9524673df03801be9778c96dcc31a6a807cb36e7a2d3b031cb805b2

3. DATASETS
Our Internet-wide study of key sharing in the HTTPS

ecosystem is driven by four datasets:

SSL certificates We use SSL certificates from full IPv4
scans as the basis of our measurements. We obtain our col-
lection of SSL certificates from (roughly) weekly scans of
port 443 over the entire IPv4 address space, made available
by Rapid7 [30]. In this paper, we use 74 scans conducted
between October 30, 2013 and March 30, 2015. Overall, we
observe 38,514,130 unique SSL certificates.

It is worth noting that these scans cover all SSL certifi-
cates except those served solely using SNI, since the scans
only obtain the default certificate from each IP address [32].
However, SNI is not yet used on a wide scale by major CDNs,
and Akamai did not even offer SNI support for its customers
until late 2015 [22] (months after the end of our scans).
Thus, we believe the lack of SNI domains in our dataset
is likely to not have a significant effect on our results.

We use a similar process as prior work [25] to separate
valid and invalid certificates. In brief, starting with the root
store from OS X 10.9.2 [27], we first use openssl to identify
1,946 valid intermediate (CA) certificates. We then identify
5,067,476 valid leaf certificates using these root and inter-
mediate certificates, covering 2,552,936 unique domains (in-
cluding domains in SAN lists).6 We ignore invalid certificates
in this paper [6].

Reverse DNS The Domain Name System (DNS) al-
lows the owners of IP addresses to publish reverse DNS
entries for each IP address. Many organizations publish
reverse DNS information that provides clues as to the
owner of the IP address.7 For example, the DNS en-
try for www.nest.com (a home devices company owned by
Google) points to 50.16.224.42. The reverse DNS entry
for that IP address maps to ec2-50-16-224-42.compute-

1.amazonaws.com, telling us that Nest uses Amazon’s EC2
service to serve their website.

Our SSL scans [30] also contain information on the IP
address(es) that advertised each certificate. To obtain in-
formation about the entity that controls this IP address, we
use full IPv4 reverse DNS scans [29] that are also conducted
by Rapid7. Unfortunately, the DNS standard does not re-
quire address owners to provide reverse DNS entries—let
alone informative ones—and is only a recommended (though
common) practice.

AS Number and Organization Because reverse DNS
entries are not always available, we use additional informa-
tion to fill in these gaps. Ownership of IP address space
is divided up at the highest level across autonomous sys-
tems (ASes), each representing a network under the con-
trol of a single entity. Each AS is assigned an AS Number
(ASN): for example, MIT is AS 3 and the Chicago Public
Schools are AS 1416 [26]. CAIDA collects and publishes
mappings between IP addresses and ASNs via their Route-
Views datasets [7]. We download daily snapshots of these
mappings to determine the ASNs an IP address is in, if it
has no reverse DNS entry. Accurate IP-to-AS mapping re-
mains an open problem [5]; we use RouteViews because it

6When referring to a domain in this paper, we mean one level
beyond the Top Level Domain. For example, www.example.com, exam-
ple.com, and foo.bar.example.com are all in the example.com domain.

7The reverse DNS record for IP address a.b.c.d is stored under a
special PTR record at d.c.b.a.in-addr.arpa.

provides historical data and likely works well for end-hosts.
Additionally, a given organization may have multiple

ASNs under its control. For example, AT&T owns 160
unique ASNs. To aggregate these, we use CAIDA’s AS-
to-Organization dataset [8] to group together ASes owned
by the same organization. By combining these datasets, we
obtain a mapping from an IP address to the organization
that advertises a route to that IP address.

WHOIS The datasets described thus far reveal informa-
tion about the IP addresses that are advertising SSL certifi-
cates, but not about the domains present in the certificates.
For that, we rely on WHOIS [12], a protocol for querying
domain registrars to obtain data on the domain owner. In
practice, WHOIS data often contains fields such as the con-
tact information for the owner of the domain, the contact
for technical issues, where to send abuse complaints, and so
on. These often take the form of email addresses, and any
given WHOIS record can have multiple points of contact.

Unfortunately, the WHOIS infrastructure is distributed
across registrars and resellers, and there is no standard for-
mat [24]. Additionally, obtaining WHOIS data at scale is
challenging, as most registrars rate-limit queries. Thus, we
obtain our WHOIS data on the 2.5M domains from two
sources:

1. Liu et al. [24] In prior work [24], Liu et al. built
a parser for WHOIS records. We obtained a copy of
their .com dataset, covering 985,517 WHOIS domain
records that appeared in our certificates.

2. Bulk WHOIS services We used two bulk WHOIS
data sources8 to obtain WHOIS information on the
remaining domains. Through these two, we were able
to obtain WHOIS information for 1,779,308 domains.

In the end, we were able to obtain WHOIS information for
2,197,292 (86.0%) of our domains. The domains where we
were unable to find WHOIS information were typically do-
mains that have either expired or whose registrars did not
publish WHOIS information.

4. METHODOLOGY
The central goal of this paper is to empirically study the

prevalence and ramifications of key sharing in the HTTPS
ecosystem. We would like to answer questions such as:

• How many website organizations share their private
keys with third-party hosting providers?

• How many distinct organizations appear in a given cer-
tificate’s SAN list?

• Which third-party hosting providers manage their cus-
tomers’ certificates?

To answer these questions and others, we must have a way to
determine: (§4.1) whether two domains belong to the same
organization, (§4.2) which hosting provider serves a given
certificate, and (§4.3) whether a given hosting provider is
a third-party provider or the website itself (a “first-party”
provider).

8http://bulkwhoisapi.com and http://whoisxmlapi.com, both of
which charge for their data.

http://bulkwhoisapi.com
http://whoisxmlapi.com

Domain
names WHOIS

2,197,292

Email
addresses

1,402,733

Regex
Non-anonymizing
email addresses

1,361,551

Graph

Domain names Email addresses

Louvain

Organizations (1,213,996)

Valid
certificates

5,067,476

Figure 1: To determine which domains belong to the same organization, we construct a bipartite graph between all domain names and
the (non-anonymizing) email addresses from their WHOIS records. We remove spurious edges (such as those from some registrars) by
iteratively applying Louvain community detection. The resulting clusters of domain names correspond to distinct organizations.

Organization #Domains Examples
Nestlé 788 nestle.com, nestle.com.sg, dogchow.ca, purinaone.co.nz, polandspring.com, ...
Google 338 google.com, google.hk, golang.org, blogspot.com, zagat.com, madewithcode.com ...
Reuters 258 reuters.com, thomsonscientific.com, manuscriptcentral.com, trust.org, techstreet.com...
Disney 228 disney.com, babyzone.com, abcdmedia.com, disneyunitedway.com disneycareers.com, ...
Univ. of Maine System 9 uma.edu, umaine.edu, lewiston.k12.me.us, machias.edu, umfk.edu, ...

Table 1: Examples of domains owned by the same organization that are linked by our methodology. (These are not the top five groups.)

It is surprisingly difficult to determine if two domains have
the same owner, and whether a domain is hosted by a third
party; there is no global support to ask such queries, and we
are unaware of a dataset that captures them at the scale our
study demands. In this section, we present novel techniques
to develop such a dataset. We apply them to understand
key sharing (§5) and management (§6), but we believe our
techniques to be broadly applicable.

4.1 Determining who owns a domain
The first technique we present determines whether two do-

main names are owned by the same organization. This is an
important tool in our study because it allows us to identify
cruise-liner certificates (as opposed to certificates with many
domain names from a single organization, as with Google).
Also, reporting on how many organizations share their keys
avoids over-inflating numbers—a single organization’s deci-
sion to use a third-party hosting provider could result in all
of its domains’ keys being shared, and some organizations
own hundreds of domains.

4.1.1 Certificate scans are not enough
Traditionally, studies of the HTTPS ecosystem treat a

given certificate or a given Common Name as the measurable
unit [14, 15, 19, 25, 35], but the mapping between organiza-
tions and certificates/domains is not so clear in practice.
First, a given organization may have many distinct domains,
some of which are easily grouped together by inspecting the
domain names themselves (e.g., Google is the administrative
authority of google.com, google.co.uk, google.de, and so
on) while others are less straightforward (Google is also
the administrative authority for gstatic.com, youtube.com,
and blogspot.com). These domains sometimes appear on
the same certificate in the form of SAN lists, but they can
also appear on separate certificates altogether. In other
words, there may be one organization that maps to mul-
tiple domains, and each of those domains may (separately
or together) map to multiple certificates.

Second, we find that many certificates contain more than
one organization. This, too, is accomplished with SAN lists:
the spirit of a SAN list is that it captures different names of
the same entity, but in practice, some hosting providers will
lump together multiple entities into the same SAN list (the
“cruise-liner” certificates from §2.2).

Given these challenges, we conclude that our certificate

scans dataset alone is not enough to infer which organiza-
tions host and appear on a given certificate. To this end, we
complement this dataset with information from WHOIS.

4.1.2 Some WHOIS email addresses are too much
To determine whether two domains refer to the same or-

ganization, we inspect the email addresses contained within
the domains’ WHOIS records. Our intuition is that, if two
domains share a contact email address, then they are likely
administered by the same organization. However, we find
that some email addresses in WHOIS records must be fil-
tered, for two reasons:

First, many WHOIS records do not contain a uniquely
identifying email address; a common practice is to regis-
ter for a domain name through a privacy-preserving ser-
vice, with the goal of hiding the contact information
of the domain’s owner. For example, we see 14,145
unique domains in our dataset that have the email address
contact@privacyprotect.org in their WHOIS record. rep-
resenting such a service. We therefore need to filter out
such anonymizing email addresses, as domains that share
them should not be linked together. Some domain privacy
services provide a per-customer obfuscated email contact
(e.g., 82af4cc@privacydomain.com); we do not filter these,
as they serve as a pseudonym for a single organization.9

Second, many domain registrars and hosting providers will
place their own email address into the WHOIS record as
one of the technical points of contact. For example, the do-
main registrar for the Tanzanian domain .tz, IT FARM,
places their own email address of support@itfarm.co.tz

into many of the .tz WHOIS records (including that of
google.co.tz). These, too, need to be filtered, as the reg-
istrar’s organization is distinct from their customers’

4.1.3 Domain ownership methodology
Our methodology for identifying whether two domains are

owned by the same organization addresses the above chal-
lenges through four key steps, corresponding to the block
arrows in Figure 1:

1. WHOIS extraction We begin by extracting all email
addresses that appear in the WHOIS record for each do-

9We infer that these pseudonymous email addresses map to orga-
nizations, and not domains, because 87.2% of such email addresses
map to more than one domain.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

F
re

q
u

e
n

c
y

Number of Distinct Certificates per Organization

Figure 2: 49.9% of all organizations in our dataset appear on
more than one certificate. The most frequently appearing organi-
zation, CloudFlare Inc., appears on 65,700 distinct certificates,
into which it inserts itself along with its customers.

main (recall from §3 that WHOIS records may contain
multiple email addresses).

2. Email sanitization We then remove the email ad-
dresses of privacy-preserving WHOIS services. We first
develop a blacklist (based on a regular expression10 and
a list of known services) to remove common patterns of
privacy-preserving emails; these remove 40,745 email ad-
dresses. To further refine this dataset, we manually in-
spected each of the remaining 486 email addresses that
appear in more than 100 WHOIS records11 and identi-
fied additional WHOIS privacy services; this removed an
additional 437 email addresses.12

3. Graph construction Next, we construct a bipar-
tite graph between the 2,197,292 domains with WHOIS
records and 1,402,733 non-anonymizing email addresses.
We then find the connected components in this bipartite
graph; each of these components represents a potential
group of domains owned by the same organization.

4. Community detection Unfortunately, there are cases
where too many domains are linked together due to reg-
istrars or hosting providers inserting their own email ad-
dresses into WHOIS records. We divide up each con-
nected component by repeatedly applying the Louvain
community detection algorithm [3]. Essentially, it finds
tightly grouped clusters of domains within each compo-
nent that are weakly connected to the rest of the com-
ponent. We repeatedly apply the algorithm until either
there is only a single domain/email address in the cluster,
or when the domains of the email addresses are present
in the cluster as well.

This algorithm produces clusters of domains, each cluster
representing a separate organization. Clusters of size one
correspond to organizations that control a single domain.

4.1.4 Domain ownership results
We apply this methodology to our dataset of 2.5M do-

mains and obtain a set of 1,213,996 clusters of domains
10(private|privac|whois|abuse|cctld|^support@|@.*domain.*|

@.*hosting.*|^nic[^A-Za-z]|^[^0-9][0-9]?[^0-9][0-9]?[^0-9]@)
11We chose this threshold of 100 somewhat arbitrarily, though in

our manual inspection, we found this to capture most of the common
anonymizing services.

12While this is a small number of email addresses, when we con-
struct the bipartite graph, they correspond to nodes with many edges
across many components, and so their removal is critical to identifying
organizations.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

F
re

q
u

e
n

c
y

Number of Distinct Organizations per Certificate

Figure 3: Although the vast majority (96.8%) of certificates in
our dataset contain but a single organization (the expected be-
havior), 161,810 have two or more, and some certificates contain
over 300 distinct organizations in their SAN lists.

owned by a single organization.13 We manually inspected
the largest of these and found them to correspond to large
governmental organizations and conglomerates; a few exam-
ples are shown in Table 1. Interestingly, we observe that our
methodology captures both obvious cases of domains con-
trolled by a single organization (e.g., nestle.com and nes-

tle.com.sg) and non-obvious cases (e.g., google.com and
zagat.com; Google recently acquired Zagat).

To briefly explore how the resulting organizations are
spread across certificates, Figure 2 plots the number of cer-
tificates on which each organization appears. While just over
50% of organizations appear on a single certificate, some or-
ganizations appear on thousands of certificates. Figure 3
shows the number of unique organizations present per cer-
tificate. The vast majority (96.8%) of certificates have only a
single organization present in them, but we observe 161,810
certificates with multiple organizations. The bump at ∼15–
30 organizations per certificate is largely attributable to
CloudFlare’s use of cruise-liner certificates.

These results provide the first evidence that there is sig-
nificant overlap of organizations across leaf SSL certificates.
We explore this phenomenon in more detail in §5 and §6.

4.2 Determining a site’s hosting providers
The next building block we need is the ability to deter-

mine which organizations host a given certificate. Our cer-
tificate scans dataset includes the 130,320,517 IP addresses
from which we saw certificates being advertised. We seek a
method to convert these IP addresses to organization names
that we can compare to the organizations we infer in §4.2.

For each IP address in our dataset, we first try to locate its
reverse DNS record. We are able to do so for only 69.8% of
them (91,075,112). Often, these reverse DNS names include
not only the organization name but also a unique identifier
for the server we contacted; as we are only interested in link-
ing organizations, we strip off their subdomains (e.g., ec2-
xxx.compute-1.amazonaws.com becomes amazonaws.com).

For the remaining 30.2% of IP addresses (39,245,405), we
look up the Autonomous System Number (ASN) and cor-
responding Organization Name (see §3). We manually ex-
amined the 100 most frequent such Organization Names,
and only kept the 54 that we identified as third-party host-
ing providers; the others were either the domain-owning or-

13Technically speaking, our clusters represent groups of domains
that share the same administrative point of contact. In practice, we
have found these clusters map well to real-world entities.

ganizations themselves (e.g., Yahoo Japan) or ISPs (e.g.,
AT&T). This allows us to map 10,231,246 additional IP ad-
dresses to organization names. There are cases where a sin-
gle hosting provider has multiple AS Organization Names
(e.g., OVH shows up as both OVH Systems and OVH SAS).
We manually inspected the list of the 54 AS Organization
Names and merged them into 46 unique hosting providers.

Some hosting providers appear both in the reverse DNS
list as well as in the AS Organization Name list (e.g.,
SoftLayer shows up as both softlayer.com and Soft-

Layer Technologies Inc.). We unified them to avoid over-
counting third-party hosting providers. To do so, we first
simplified the Organization Name by removing all generic
words (e.g. Peer 1 Network (USA) Inc. becomes Peer 1),
removing all non-alphanumeric characters, and converting
all letters to lowercase (Peer 1 becomes peer1). We then
manually inspected all reverse DNS entries for which the
simplified organization name was a substring of that entry
(e.g. peer1 is a substring of mypeer1.com), and manually re-
moved any false positives (e.g., sungard, the simplification
of Sungard Availability Services LP., is a substring of
sungarden.com, but they do not represent the same organi-
zation). For the remaining pairs of AS organization name
and reverse DNS entry, we infer that they correspond to the
same organization.

All together, we are able to map 101,306,358 IP addresses
(77.7%) to hosting providers represented by either a reverse
DNS domain or an AS organization. Table 2 shows the 20
inferred hosting providers with the most organizations as
customers.

4.3 First- vs. third-party hosting
The techniques from §4.1 give us the organizations stored

in each certificate, in the form of clusters of domain names,
and the techniques from §4.2 give us the name of an or-
ganization that owns an IP address, either in the form of a
domain name (if there is a valid reverse DNS entry) or an AS
Organization Name. Here, we combine these to determine
if a certificate is first- or third-party hosted.

At a high level, a certificate is first-party hosted if the
certificate contains only one organization, and all of the IP
addresses serving that certificate are owned by that same
organization (see §2.3). Conversely, if there is more than
one organization on the certificate (e.g., with cruise-liner
certificates) or if any of the IP addresses from which it is
served are owned by an organization not in the certificate,
then we conclude it is third-party hosted.

When we have the reverse DNS names of the IP addresses
hosting a certificate, comparing the hosting organization and
the certificate organization is straightforward: we simply
check whether the reverse DNS name is included in the clus-
ter of domains from the algorithm in §4.1.

Otherwise, when all we can determine from the hosting
IP address is the AS Organization Name, we determine if
it matches any of the domain names from the certificate
using the same process of matching AS Organization Names
and domains as described in §4.2. For example, a certificate
with a Common Name of ssl12039.cloudflare.com and an
AS Organization Name of CloudFlare Inc. would match
because the simplified name, cloudflare, is a substring of
the Common Name. As in §4.2, we manually checked each
equivalence, and removed spurious results.

#Organizations #Domains Hosting Provider
266,110 277,891 secureserver.net
151,628 175,089 amazonaws.com
113,400 118,460 Unified Layer
78,370 87,078 CloudFlare Inc.
64,370 74,966 Rackspace Ltd.
46,366 50,173 SoftLayer Technologies Inc.
33,676 37,657 your-server.de
31,051 32,324 CyrusOne LLC
26,956 28,875 linode.com
24,345 26,351 SAKURA Internet Inc.
20,742 22,075 OVH SAS
20,045 27,849 Peer 1 Network (USA) Inc.
17,473 18,020 Digital Ocean Inc.
15,643 22,732 ClaraNET LTD
15,530 17,081 Liquid Web Inc.
15,440 22,671 akamaitechnologies.com
14,907 15,997 theplanet.com
14,707 15,766 comcastbusiness.net
13,760 14,281 1&1 Internet AG
13,572 14,978 cloud-ips.com

Table 2: The top 20 hosting providers from our dataset with
the most number of customers’ private keys, and the number of
domains they serve over HTTPS.

4.4 Summary
In this section, we presented a set of techniques that al-

low us to reason at the level of organization names (e.g.,
amazonaws.com and CloudFlare Inc.) about who has ac-
cess to what keys and who hosts whose content. Though we
lack a ground truth dataset to evaluate our techniques con-
cretely, our manual inspection of their output found them
to be highly accurate.14

Perhaps most frustrating of all, however, is that if con-
scientious users wished to understand with whom they are
actually communicating, they would be faced with the same
dearth of ground truth as us. In other words, because it is
challenging even to determine who owns and who is hosting
a particular domain, the trust relationships between organi-
zations and hosting providers is far from transparent. In the
remainder of this paper, we apply our new techniques to
shed light on these trust relationships, beginning with the
prevalence and ramifications of organizations sharing their
private keys with hosting providers.

5. TRUST
Sharing private keys with a third party involves a great

deal of trust: the nature of today’s PKI is such that, with
a domain’s private key, one can impersonate that domain
with arbitrary data. This has profound impact on the po-
tential security and reliability of the PKI. While there have
been many studies of the trust relationships between orga-
nizations and CAs, this is the first wide-scale study of trust
relationships between organizations and hosting providers
with respect to private cryptographic keys. We investigate
these trust assumptions along several axes, including how
common key sharing is, whether there are several large play-
ers who have aggregated many keys, and how transparent
these trust relationships are.

Recall from §2.3 that we say that “key sharing” has oc-
curred when any of the parties named in a certificate are

14Our code and data, including this classification, is publicly avail-
able at https://securepki.org.

https://securepki.org

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

F
re

q
u

e
n

c
y

Number of Distinct Hosting Providers per Certificate

Figure 4: Frequency distribution of the number of hosting
providers serving a given certificate. 91.2% of all certificates have
a single hosting provider, but 363,043 certificates have more.

not in the same organization that owns the IP addresses
from which the certificate is advertised. Because we can-
not always infer the nature of such sharing—in rare cases, it
may be possible that the website has sole physical access to
servers in another’s network—we can only definitively detect
potential instances of key sharing. Whatever the intent and
means of sharing, the more private keys a hosting provider
has, the more enticing an attack target it becomes.

5.1 How many organizations share keys?
We begin our analysis by investigating how common it is

for organizations to share their private cryptographic keys
with third-party hosting providers. Ideally, this would not
be happening at all.

As an initial view, Figure 4 shows the number of distinct
hosting providers that serve a given certificate (and therefore
have the corresponding private key). Surprisingly, we find
that 8.8% (363,043) of all observed certificates are hosted
by more than one hosting provider—for these certificates,
there is certainly at least one third party with access to
an organization’s private key. In some instances, the keys
are shared among hundreds of third parties. There is a sig-
nificant outlier here that is worth noting: Google operates
a “global cache” that provides content over HTTPS from
servers located in thousands of partner networks through-
out the world [18].

To understand how many of these private keys are hosted
specifically by companies other than the organizations them-
selves, Figure 5 shows the distribution of the number of
third-party hosting providers that serve a given certificate

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 10 10
2

10
3

10
4

10
5

C
D

F

Number of Third-Party Hosting Providers Used

Domains
Organizations

Figure 5: The prevalence of key sharing. Only 23.5% of organi-
zations strictly host their own HTTPS content; the other 76.5%
share their private keys, some with thousands of distinct third-
party hosting providers.

in our dataset. This shows that 76.5% of all identified
organizations share at least one private key with a
third-party hosting provider . A majority, 62.9%, share
with a single third party, but many organizations share one
or more of their keys with tens to thousands. Again, the
outlier here is Google, which hosts HTTPS data as part of
the Google global cache.

We also show in Figure 5 how many specific domains’ pri-
vate keys are hosted by third parties. Interestingly, the keys
for some domains are shared across thousands of distinct
third-party hosting providers. The two lines in Figure 5
track closely (with the number of domains slightly skewed
to the left); this is because the vast majority (89.9%) of
organizations on the web have a single domain name.

These results show that sharing secret keys is not an obscure
act; rather, it is typical behavior. Also, many domains share
their secret keys with multiple hosting providers. To better
understand why key sharing takes place, we next look at how
often sharing happens as a function of website popularity.

Website popularity Figure 6 shows the fraction of
Alexa top-1M domains that share (a) at least one and (b) all
of their private keys with a third-party hosting provider. We
make two important observations from this figure. First, key
sharing is prevalent across the full spectrum of website pop-
ularity, on average. Second, we observe an interesting, non-
linear relationship between popularity and the likelihood of
key sharing; the most popular and least popular websites are
both more likely to share their keys. For example, 22.7% of
the Alexa top-10K share all of their private keys. We ex-
pect this is driven by two distinct factors: popular websites
have incentive to host their content on globally distributed
CDNs for better availability and performance, while unpop-
ular websites are likely to use hosting providers rather than
manage their own servers.

These results indicate that economic incentives are a
main driving force for key sharing on the web. Because
they are able to benefit from economies of scale, CDNs at-
tract popular organizations, and hosting providers attract
those seeking low-cost alternatives to running a web server.

5.2 How many keys do providers have?
A natural ramification of hosting providers exhibiting

economies of scale is that a relatively small number of host-
ing providers are likely to aggregate a disproportionate num-
ber of keys. We next turn to analyzing the extent to which

 0

 0.2

 0.4

 0.6

 0.8

 1

0 200k 400k 600k 800k 1M

F
ra

c
ti

o
n

 o
f

D
o

m
a
in

s
 H

o
s
te

d
o

n
 T

h
ir

d
-p

a
rt

y
 P

ro
v
id

e
rs

Alexa Site Rank (bins of 10,000)

At least one key shared
All keys shared

Figure 6: Key sharing as a function of website popularity. The
most popular and most unpopular websites tend to share their
keys with more third parties. 43.8% of all domains share at least
one private key with a third party; 7.7% share all of their keys.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
u

m
b

e
r

o
f

D
is

ti
n

c
t

C
u

s
to

m
e

rs
 S

e
rv

e
d

Rank-Order Third-Party Hosting Providers

Figure 7: How many organizations’ private keys third-party
hosting providers have aggregated. Some providers have access
to the private keys of thousands of organizations’ private keys.
(The circles highlight the beginning and end of the distribution.)

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
u

m
u

la
ti

v
e

 F
ra

c
ti

o
n

 o
f

D
o

m
a

in
s

’
K

e
y

s
 A

c
q

u
ir

e
d

Number of Hosting Providers Compromised

Alexa Top 1k
Alexa Top 1m

All Domains

Figure 8: The distribution of the coverage of distinct domains’
keys across third-party hosting providers. Were an attacker to
compromise 10 hosting providers of its choosing, it would gain
access to keys from over 45% of all domains in our dataset.

keys have been aggregated.
Figure 7 shows, for each hosting provider in our dataset,

the number of organizations for which it has at least one of
their private keys. Each point represents a hosting provider,
sorted in decreasing order of the number of distinct organi-
zations’ HTTPS traffic it serves. These results reveal heavy
aggregation of keys among a relatively small set of hosting
providers; many hosting providers have aggregated tens
of thousands of their customers’ keys.

To explore how much of a potential threat key aggrega-
tion poses to the HTTPS ecosystem, we show in Figure 8
the number of distinct hosting providers an attacker would
have to compromise (x) in order to obtain at least one key
from y fraction of all observed domains. To compute this,
for each value x, we computed the set of x hosting providers
that maximized the coverage of certificates; that is, we are
simulating an attacker with perfect knowledge and ability
to compromise the x hosting providers who will collectively
yield the most keys. We break this down by the Alexa top-
1K, top-1M, and all domains. For example, compromising
a single hosting provider would potentially gain access to
60.2% of the domains’ keys from the Alexa top-1K. Across
all domains, compromising 10 hosting providers would po-
tentially reveal 45.3% of all observed domains’ private keys.
Of course, this analysis makes the simplifying assumption
that a successful attack on a hosting provider reveals all of
its customers’ keys; we do not expect this to be likely for
any but an extremely powerful attacker, but it concretely
highlights the extent to which a small number of providers
have aggregated a large coverage of private keys.

We conclude from this analysis that private keys from leaf
certificates have been widely disseminated across different
third-party hosting providers, and many providers have ag-
gregated many of the most popular websites’ keys. Unfor-
tunately, today’s protocols require hosting providers to have
their customers’ keys in order to serve their HTTPS content.
Mitigating this is an important area of future work (§8).

5.3 How are SAN lists used?
The spirit of SAN lists is to allow an organization to use

a single certificate for their many names (Google’s SAN list,
for example, includes google.co.uk, google.pl, and so on).
However, recall from §2 that some hosting providers lump
different organizations together in the SAN list of a single
“cruise-liner” certificate.

Cruise-liner certificates allow providers to serve many cus-
tomers with a single HTTPS certificate (and IP address),
but they have ramifications on key sharing and manage-
ment. Who on a cruise-liner certificate deserves access to
the certificate’s corresponding private key, given that who-
ever has it can impersonate all others on the certificate?
Who among them has the right to revoke the certificate, if
so doing potentially renders invalid a certificate the others
rely on? Cruise-liner certificates are not covered explicitly
by X.509, but we can infer that, in all likelihood, only the
hosting provider has the private keys and right to revoke.
Thus, to fully understand who has access to (and manage-
ment over) private keys, we explore here the prevalence of
cruise-liner certificates, and how commonly CAs issue them.

Table 3 presents various measures of the prevalence of SAN
lists and who hosts and issues them; we discuss each row in
turn. Only 4.0% of the certificates in our dataset do not have
any SAN list, while 92.8% have a SAN list that comprises a
single organization, which matches the organization in the
Common Name field; these are the expected uses of SAN lists.
The remaining certificates, 3.2% (161,810 in total), contain
a SAN list that comprises one or more distinct organizations
that differ from the organization in the Common Name field.
While this is a relatively small percentage of certificates, it
constitutes a far larger percentage of all domains (11.3%)
and all organizations (10.8%) in our dataset.

The final two rows of Table 3 pertain to who issues and
who uses “cruise-liner” certificates. We find a surprising
number of third-party hosting providers that serve them

...one organization, ...one organization, ...multiple organizations
no SAN list with SAN list (with SAN list)

#Total certificates with... 203,394 4,692,393 161,810
#Domains on certificates with... 124,746 2,265,090 305,904
#Organizations on certificates with... 109,994 1,994,279 255,901
#Third-party services hosting certificates with... 22,346 329,577 15,143
#CAs that issue certificates with... 536 662 266

Table 3: Prevalence of different SAN list policies. The spirit of a SAN list is that it contain multiple domain names belonging to a single
organization. In practice, some hosting providers lump together multiple organizations onto a single certificate.

(15,143) and certificate authorities that issue them (266).
This latter number is particularly worrisome, as it indicates
that there are many CAs that will issue a certificate to those
who are not in reality who the certificate claims to be. This
is facilitated by the use of DV (domain validation) certificates,
whose vetting process includes only being able to demon-
strate the ability to control content hosted on a particular
domain. (In fact, one of the criticisms of cruise-liner certifi-
cates is that they cannot be EV [23].)

These results show that “cruise-liner” certificates—though
arguably a violation of the spirit of X.509 SAN lists—have
become a common means of sharing keys; they are widely
used by hosting providers, and are widely supported by CAs.

5.4 Summary
In this section, we have shown that websites commonly

share their private keys with third-party hosting providers,
that a small set of hosting providers have aggregated a huge
proportion of others’ keys, and that cruise-liner certificates
are a common means of key sharing. These findings collec-
tively reveal an immense amount of trust that websites place
in hosting providers. Our results complement the large body
of work on the aggregation of trust among a small number
of certificate authorities in the web’s PKI. Like with CAs,
users must adopt trust in hosting providers tacitly and often
unknowingly—unlike with CAs, however, the trust relation-
ships between websites and hosting providers is not explic-
itly stated in certificates, and required us to develop new
techniques to detect (§4).

6. CERTIFICATE MANAGEMENT
The previous section showed that key sharing is

widespread in the web’s PKI, and that a small number of
hosting providers have consolidated many organizations’ pri-
vate keys. We now turn our investigation to the effects that
this trust has on certificate management, particularly as it
pertains to revoking and reissuing compromised certificates
(we describe best practices in §6.3). We seek to understand
who tends to be responsible for performing such manage-
ment tasks—the organizations listed in certificates or the
hosting providers serving it—and whether outsourcing leads
to better or worse certificate management practices.

6.1 Determining who manages a certificate
To evaluate certificate management practices at scale, we

must first be able to determine who manages the certificates:
is it the organization(s) on the certificates or the hosting
provider serving the certificate? Determining who is revok-
ing or reissuing a certificate is nontrivial: revocations and
reissues do not express who exactly requested them (after
all, the PKI was designed on the premise that the entity
listed on the certificate is the sole owner of the secret key).
Liang et al. [23] studied three CDNs’ revocation behavior
by signing up as customers, requesting a revocation, and
observing it directly, but we seek to understand the broad
ecosystem, and this manual process does not scale to our
data.

Our insight is that hosting providers who manage their
customers’ certificates are responsible for obtaining many
new certificates, and would therefore, out of convenience,
likely gravitate towards a small set of certificate authorities
when obtaining certificates. We apply this insight in two
steps. First, we generate the distribution, across all issu-

 0

 0.2

 0.4

 0.6

 0.8

 1

0 200k 400k 600k 800k 1M

F
ra

c
ti

o
n

 o
f

D
o

m
a
in

s
 M

a
n

a
g

e
d

b
y
 3

rd
 P

a
rt

y
 H

o
s
ti

n
g

 P
ro

v
id

e
rs

Alexa Site Rank (bins of 10,000)

Figure 9: The prevalence of outsourcing certificate management
as a function of Alexa ranking. More popular websites are more
inclined to host at least one of their certificates on a hosting
provider that manages certificates for its customers.

ing certificates, of the number of leaf certificates they were
used to sign. As has been reported previously [15], there is
a bias towards a small set of CAs, so this distribution is far
from uniform—across the entire population of certificates,
we find that approximately 76% of all leaf certificates are
signed with the keys corresponding to merely 1% of all is-
suing certificates. Therefore, when the population of users
(mostly) obtains their own certificates, we anticipate that
they will follow a similar distribution. However, when a
hosting provider manages certificates on its customers’ be-
half, our insight dictates that the distribution will be skewed
even more heavily towards a small set of issuing certificates.

Thus, in our second step, for each hosting provider h, we
compute the fraction c of h’s certificates that are signed
using its single most commonly appearing issuing certifi-
cate. If this one issuing certificate is responsible for at least
half of all of the leaf certificates h hosts (c ≥ 50%)—an
extremely skewed distribution—then we conclude that the
hosting provider likely manages certificates on behalf of its
customers. Otherwise, we deduce that its customers manage
certificates for themselves.

We find this to work well in practice: domains that
we know do not manage their customers’ certificates have
c’s well below our threshold (amazonaws.com: 24.3%, lin-
ode.com: 19.5%), while those we know to manage their cus-
tomers’ certificates—especially those who host “cruise-liner”
certificates—are typically well above the threshold (cloud-
flare.com: 95.5%, incapsula.com: 65.1%).

One of the limitations of this technique is that it does
not capture the fact that some hosting providers appear to
offer a mix of administration practices. Akamai and Cloud-
Flare [10], for example, manage some of their customers’
certificates, but also allow them to manage their own. Vari-
ous web hosting providers offer, at a higher price, to manage
their customers’ certificates for them.

6.2 Prevalence of outsourcing
Figure 9 shows the fraction of domains, as a function of

Alexa ranking, that have at least one certificate hosted by a
service provider that, according to our technique, manages
certificates on behalf of its customers. These results show
that third-party management is common across all lev-
els of popularity; over 33% of all domains have their HTTPS
certificates managed by another organization. But, sur-
prisingly, popular websites outsource certificate man-
agement more often . We had anticipated that, while

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
 o

f
H

o
s
ti

n
g

 P
ro

v
id

e
rs

Fraction of Heartbleed-vulnerable Certificates Revoked

Self-managed
Outsourced

Figure 10: The distribution of how thoroughly Heartbleed-
vulnerable certificates were revoked, broken down by those hosted
at providers that managed their customers’ certificates (“Out-
sourced”) and those whose customers managed their own certifi-
cates (“Self-managed”).

they may use third-party hosting providers, popular web-
sites would still maintain control over certificate manage-
ment. Because such important websites make use of third-
party management, we strive to answer in this section: are
third-parties managing certificates well?

6.3 Certificate revocation and reissue
Certificates require some degree of manual management.

Occasionally, certificates expire and must be reissued; and
in the event of a key compromise, a responsible administra-
tor revokes the compromised certificate and reissues a new
certificate with a new key. Ideally, revocations and reissues
would take place as soon possible after a vulnerability were
announced. To evaluate whether this held in practice, Zhang
et al. [35] used the Heartbleed [20] vulnerability as a“natural
experiment”: on April 7, 2014, a large population (122,832
certificates, by their count) realized they were vulnerable all
at once, and had to immediately take steps to patch, reissue,
and revoke. They found that administrators were slow and
incomplete when revoking and reissue certificates.

Other studies have shown that, while most administrators
correctly patch their servers, relatively few obtained new
certificates with new keys, and even fewer properly revoked
their certificates [14,34,35].

In this section, we ask a complementary question that, to
our knowledge, has not been investigated in prior studies of
the SSL ecosystem: what impact does outsourcing certificate
management have on the speed and thoroughness of proper
administration?

 0.75

 0.8

 0.85

 0.9

 0.95

 1

04/07 04/11 04/15 04/19 04/23 04/27 05/01 05/05

F
r
a
c
ti

o
n

 o
f

C
e
r
ti

fi
c
a
te

s

N
o

t
R

e
v
o

k
e
d

Date

Self-managed
Combined

Outsourced

Figure 11: Revocation rates of the Heartbleed-vulnerable cer-
tificates in the month after the Heartbleed announcement. Third-
parties managing certificates were slower to revoke, but were ul-
timately more thorough.

6.3.1 Revocation rates
We begin by investigating whether third-party hosting

providers revoke certificates more quickly and thoroughly
than customers who manage their own certificates. To
perform this analysis, we follow the same methodology as
Zhang et al. [35], and use the Hearbleed vulnerability as
a sort of “natural experiment.” Their publicly available
datasets provide the set of certificates that were vulnera-
ble to Heartbleed—and thus should have been revoked and
reissued—as well as the time that the certificates were re-
voked and reissued (if they ever were).

Figure 10 shows the distribution of revocation rates for
self-managed versus third-party-managed certificates. This
result shows that certificates managed by third-party host-
ing providers tend to have better revocation rates. The me-
dian revocation rate after Heartbleed for self-managed cer-
tificates was 8.2%, while outsourced certificates had a me-
dian revocation rate of more than twice that: 18.2%. More-
over, some third-party hosting providers revoked over 93%
of their Heartbleed-vulnerable certificates. This seems to
indicate an overall more conscientious set of administrators
at third-party hosting providers. Next we see if they re-
acted quickly (i.e., by revoking their certificate soon after
the vulnerability was announced).

Figure 11 shows a “survivability” plot, with the fraction
of Heartbleed-vulnerable certificates that had not yet been
revoked in the month after Heartbleed was announced. We
show three lines: the “Combined” line corresponds to all cer-
tificates, independent of hosting provider, and is precisely
the line reported by Zhang et al. [35]. The other lines cor-
respond to the certificates served by hosting providers who
perform management for their customers, and those who do
not.

This figure shows that outsourced management is
slightly slower to react, but is ultimately more thor-
ough . We see that it was not until approximately eight
days after the Heartbleed announcement when third-party-
managed certificates saw a greater revocation rate than self-
managed ones. After that time, self-managed certificates
never caught back up. We believe this interesting behavior
can be attributed to the fact that a single hosting provider
can be responsible for thousands of private keys (§4.2), and
yet there is typically not a large team dedicated to revoking
and reissuing certificates. As a result, the delay of even a
single administrator at a hosting provider that manages cer-

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

04/07 04/11 04/15 04/19 04/23 04/27 05/01 05/05

F
r
a
c
ti

o
n

 o
f

C
e
r
ti

fi
c
a
te

s

N
o

t
R

e
is

s
u

e
d

Date

Self-managed
Combined

Outsourced

Figure 12: Reissue rates of the Heartbleed-vulnerable certifi-
cates in the month after the Heartbleed announcement. Certifi-
cates across all types of management tended to be reissued days
faster than they were revoked. Like with Figure 11, outsourced
management led to slower but more thorough reissue behavior.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1024 2048 4096 8192 16384

C
D

F

Key Length (bits)

Outsourced
Self-managed

(a) Key lengths.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Validity Period (days)

Outsourced
Self-managed

(b) Validity period (NotAfter – NotBefore).

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

C
D

F

Lifetime (days)

Outsourced
Self-managed

(c) Lifetime (First seen – Last seen).

Figure 13: Outsourced and self-managed certificates differ slightly with respect to core certificate features. In general, self-managed
certificates tend to have worse security, in terms of shorter keys and longer validity periods.

tificates can result in delayed revocations of many distinct
organizations’ certificates.

6.3.2 Reissue rates
In addition to revoking compromised certificates, website

administrators must also reissue new certificates (with new
keys) to replace the old ones. Zhang et al. [35] showed that,
across the entire corpus of certificates vulnerable to Heart-
bleed, a mere 27% had reissued within three weeks of Heart-
bleed’s public announcement. Like with revocations, we seek
to understand how these reissue rates differentiate between
self- and third-party-managed certificates.

Figure 12 shows the survivability plot for reissuing (as in
Figure 11). We note that this plot stops significantly sooner
than the revocation plot as it is based upon the dataset from
Zhang et al. [35], which only spans the first two weeks after
the vulnerability was announced.

Similar to post-Heartbleed revocations, third-party man-
agement delayed reissues slightly, but caught up far more
quickly; they reissued extensively one week after Heartbleed,
but did not revoke extensively until 10 days after Heartbleed.
Zhang et al. [35] showed that there is often a delay of several
days between reissue and revocation, but the ∼3 week dif-
ference for third-party certificate management is abnormally
high. While the origins of this additional delay are not eas-
ily identified, delays between reissuing and revoking may be
due to factors such as lack of support for bulk revocations
needed by third-parties.

6.4 Certificate quality
Prior studies of the SSL ecosystem [1,15,19,34] have shown

that many administrators choose their keys poorly. Here,
we expand upon these prior findings by evaluating whether
there is a correlation between centralized management and
the quality of the keys chosen.

Figure 13 compares several different features of self-
managed and outsourced certificates across our entire cor-
pus of leaf certificates (3,275,635 self-managed and 1,781,962
outsourced): (a) Key lengths in self-managed certificates are
nearly identical to those managed by third-party hosting
providers. We observe a slightly greater fraction of 1024-bit
keys among self-managed certificates and a slightly lesser
fraction of 2048-bit keys. Though this difference is slight,
the number of samples we observe (3.3M self-managed and
1.8M outsourced certificates), we believe it to be statistically
significant. (b) Every certificate defines a date at which it
should start (NotBefore) and finish (NotAfter) being con-
sidered valid. A certificate’s validity period—the time be-
tween these dates—is ideally short so that, in the event of
a key compromise, if the administrator fails to revoke the

certificate, it will expire more quickly; conversely, Zhang et
al. [35] demonstrated that many non-revoked Heartbleed-
vulnerable certificates were not set to expire for upwards
of six years after Heartbleed was announced. Outsourced
certificates exhibit the better security practice of shorter va-
lidity periods than their self-managed counterparts. (c) Fi-
nally, the lifetime of a certificate (defined by the number of
days between the first and last certificate scans in which we
saw the certificate) is not directly a measure of security, but
it may reflect administrators who are more active in replac-
ing their compromised or expiring certificates. Here, too,
outsourced certificates exhibit lower lifetimes, and therefore
likely better security practices, than self-managed ones.

In general, these results indicate that revoking and reissu-
ing certificates are not the only acts that third-party hosting
providers tend to do better; they also tend to create better
certificates, as well.

Another measure of certificate quality pertains to the type
of validation the issuing CA used when vetting the subject.
The strongest form of validation, Extended Validation (EV),
is of particular note, because browsers treat them differently,
showing more information about them in address bars and
even taking greater care in checking for revocations of EV
certificates over other forms of validation [25]. We would
therefore expect that there would be a trend towards better
security practices when considering EV certificates. Inter-
estingly, we find that, of all EV certificates in our dataset,
99.1% are hosted by a third party, and 27.6% are managed by
that third party. Moreover, 2.7% of all third-party-managed
certificates are EV, while 3.8% of all self-managed certifi-
cates are. Although EV certificates do not, in and of them-
selves, offer better security, we find it surprising that even
these more extensively vetted certificates are shared with
third parties who manage certificates for their customers.

6.5 Summary
This section presented a technique for determining who

manages a given certificate—the domain owner or a third-
party hosting provider—and applied it to a dataset of vul-
nerable certificates to measure the effect that outsourcing
has on certificate management. Surprisingly, while sharing
private keys with a third party is a clear violation of the se-
mantics and security properties of online authentication, in
practice, overall certificate management improves with out-
sourcing. The results from this section and §5 paint a com-
plicated picture of the web’s PKI: the economics of hosting
an online secure service can lead to centralization that is
both dangerous and, in some ways, helpful. One important
area of future work is to find a way to reconcile good central-
ized management with poor centralized trust aggregation.

7. RELATED WORK
HTTPS ecosystem Much work has gone into under-
standing and improving the SSL certificate ecosystem, in-
cluding measurements of CAs, certificates they issued, and
client root stores [15,16,19,28,33], techniques for improving
the transparency and accountability of CAs [21], measure-
ments of the cost of HTTPS security [13], and alternate ar-
chitectures to the current CA-based systems [2,11,31]. Our
work complements these, as most are focused on understand-
ing the centralization of the set of CAs and the properties of
client root stores. In contrast, we primarily focus on the leaf
certificates, and how the sharing of private keys for these
certificates can lead to a similar centralization of trust.

Certificate reissues/revocations Several closely re-
lated papers [14, 25, 34, 35] have explored the patterns of
reissuing and revoking certificates, using either the Heart-
bleed vulnerability or the Debian random number generator
bug as a way to get visibility into system administrators’ be-
havior. Essentially, these papers use the fact that they can
measure whether a server was vulnerable to infer whether
the administrator should have patched and reissued/revoked
their certificate. Our work extends these results, using tech-
niques like the distribution of issuer CAs to get visibility
into hosting companies’ behavior and policies (i.e., do host-
ing companies manage certificates, or do the customers?).

CDNs and HTTPS More recent work by Liang et
al. has closely examined how CDNs manage SSL certificates
when distributing HTTPS content for customers [23]. They
observe the distinction between custom and shared certifi-
cates, many instances of mismanagement, CAs neglecting
to revoke certificates, and private key sharing. Our work
extends the work by Liang et al. by developing more thor-
ough methodologies for measuring when keys are shared (by
collapsing domains into organizations) and for determining
whether the hosting provider or the customers are actu-
ally managing the certificates. Taken together, these results
point to many places in the SSL ecosystem that are in need
of improvement.

Finally, a recent technique by CloudFlare [9] offers the
opportunity for organizations to use hosting providers with-
out having to share their private keys (though the CDN still
has all of the session keys). While this approach has not yet
been widely deployed, it is an interesting first step towards
reducing much of the centralization of trust that we observe.

8. CONCLUSION
In this paper, we presented the first large-scale study of

key sharing within the HTTPS ecosystem. Surprisingly, al-
though key sharing has profound security implications, we
had to develop several novel techniques to infer who owns
which domain names, which organization hosts a domain,
and who hosts a certificate. We applied these techniques to
Internet-wide scans of SSL certificates and identified an im-
mense amount of trust being aggregated among a small set
of hosting providers. In particular, we found that 76.5% of
all organizations on the web that we identified share at least
one private key with a third-party hosting provider, and
that a collection of ten hosting providers have private keys
to 45.3% of all domains we observed in our scans. We also
compared how well third-party hosting providers manage
their customers’ certificates as compared to self-managed

certificates, and found that third parties are slower to re-
act to large-scale vulnerabilities but eventually react more
thoroughly.

Our findings complement a wide body of work that has
studied trust and management in the web’s PKI. While cen-
tralization of trust has long been known for CA certificates,
our results paint the first complete picture of its prevalence
for leaf certificates, as well.

Collectively, our results reveal some of the widespread
ramifications of deploying today’s PKI on third-party host-
ing providers like CDNs. However, the web has come largely
to rely on HTTPS and third-party hosting. Future work is
necessary to handle this reality without requiring such im-
mense trust in hosting providers. One improvement would
be to make the centralization of private key material more
transparent; we were forced to combine a large number of
data sources in order to determine who has access to what
key material. Looking forward, we posit that new techniques
could be developed to enable third-party hosting while mit-
igating their access to their customers’ keys. The recent
Keyless SSL [9] protocol is a first step in this direction, al-
lowing operators to retain control of their private keys while
allowing third-party hosting providers to accept connections
on their behalf. An important open question is whether it
is possible eliminate CDNs’ need to have session keys, as
well, while still being able to assist in preventing various
attacks [17].

Our analysis code and data, including our classifications
of domains into organizations (§4), are publicly available at
https://securepki.org

Acknowledgments
We thank the anonymous reviewers for their helpful com-
ments. We also thank Suqi Liu and his co-authors [24] for
sharing their dataset of parsed .com WHOIS records. This
research was supported by NSF grants CNS-1409249, CNS-
1421444, CNS-1563320, and CNS-1564143, and by the NSA
as part of a Science of Security lablet.

9. REFERENCES
[1] D. Akhawe, B. Amann, M. Vallentin, and R. Sommer.

Here’s My Cert, So Trust Me, Maybe?: Understanding TLS
Errors on the Web. WWW, 2013.

[2] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, and
K. R.B. Butler. Forced Perspectives: Evaluating an SSL
Trust Enhancement at Scale. IMC, 2014.

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E.
Lefebre. Fast unfolding of community hierarchies in large
networks. Journal of Statistical Mechanics: Theory and
Experiment, 10(10), 2008.

[4] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley,
and W. Polk. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile.
RFC 5280, IETF, 2008.
http://www.ietf.org/rfc/rfc5280.txt.

[5] K. Chen, D. Choffnes, R. Potharaju, Y. Chen, F.
Bustamante, D. Pei, and Y. Zhao. Where the Sidewalk
Ends: Extending the Internet as Graph Using Traceroutes
from P2P Users. IEEE ToC, 4(63), 2014.

[6] T. Chung, Y. Liu, D. Choffnes, D. Levin, B. M. Maggs, A.
Mislove, and C. Wilson. Measuring and Applying Invalid
SSL Certificates: The Silent Majority. IMC, 2016.

[7] CAIDA Routeviews Prefix to AS Mappings Dataset.
http://www.caida.org/data/routing/
routeviews-prefix2as.xml.

https://securepki.org
http://www.ietf.org/rfc/rfc5280.txt
http://www.caida.org/data/routing/routeviews-prefix2as.xml
http://www.caida.org/data/routing/routeviews-prefix2as.xml

[8] CAIDA AS Organizations Dataset.
http://www.caida.org/data/as-organizations/.

[9] CloudFlare Keyless SSL. https://blog.cloudflare.com/
keyless-ssl-the-nitty-gritty-technical-details/.

[10] CloudFlare support: How do I upload a custom SSL
certificate? https://support.cloudflare.com/hc/en-
us/articles/200170466-How-do-I-upload-a-custom-
SSL-certificate-Business-or-Enterprise-only-.

[11] Convergence. http://convergence.io.
[12] L. Daigle. WHOIS Protocol Specification. RFC 3912,

IETF, 2004. http://www.ietf.org/rfc/rfc3912.txt.
[13] N. David, F. Alessandro, L. Ilias, G. Yan, M. Marco, M.

Maurizio, P. Konstantina, and S. Peter. The cost of the S
in HTTPS. CoNEXT, 2014.

[14] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M.
Bailey, F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer,
and V. Paxson. The Matter of Heartbleed. IMC, 2014.

[15] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman.
Analysis of the HTTPS Certificate Ecosystem. IMC, 2013.

[16] EFF SSL Observatory. https://www.eff.org/observatory.

[17] D. Gillman, Y. Lin, B. Maggs, and R. K. Sitaraman.
Protecting Websites from Attack with Secure Delivery
Networks. Computer, 48(4), IEEE, 2015.

[18] Google Global Cache.
https://peering.google.com/#/infrastructure.

[19] R. Holz, L. Braun, N. Kammenhuber, and G. Carle. The
SSL Landscape – A Thorough Analysis of the X.509 PKI
Using Active and Passive Measurements. IMC, 2011.

[20] Heartbleed Bug. http://heartbleed.com.
[21] B. Laurie, A. Langley, and E. Kasper. Certificate

Transparency. RFC 6962, IETF, 2013.
http://www.ietf.org/rfc/rfc6962.txt.

[22] G. Lord. Secure CDN: new certificate options now available.
Akamai blog, 2015. https://community.akamai.com/
community/whatsnew/blog/2016/02/05/new-secure-cdn-
offerings-now-available.

[23] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu.
When HTTPS meets CDN: A Case of Authentication in
Delegated Service. IEEE S&P, 2014.

[24] S. Liu, I. Foster, S. Savage, G. M. Voelker, and L. K. Saul.
Who is. com? Learning to Parse WHOIS Records. IMC,
2015.

[25] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. M.
Maggs, A. Mislove, A. Schulman, and C. Wilson. An
End-to-End Measurement of Certificate Revocation in the
Web’s PKI. IMC, 2015.

[26] List of Autonomous Systems.
http://www.cidr-report.org/as2.0/autnums.html.

[27] OS X Yosemite: List of available trusted root certificates.
https://support.apple.com/en-us/HT202858.

[28] H. Perl, S. Fahl, and M. Smith. You Won’t Be Needing
These Any More: On Removing Unused Certificates from
Trust Stores. FC, 2014.

[29] Rapid7 Reverse DNS Scans.
https://scans.io/study/sonar.rdns.

[30] Rapid7 SSL Certificate Scans.
https://scans.io/study/sonar.ssl.

[31] The DNS-Based Authentication of Named Entities (DANE)
Transport Layer Security (TLS) Protocol: TLSA. RFC
6698, IETF, 2012. https://tools.ietf.org/html/rfc6698.

[32] B. VanderSloot, J. Amann, M. Bernhard, Z. Durumeric, M.
Bailey, and J. A. Halderman. Towards a Complete View of
the Certificate Ecosystem. IMC, 2016.

[33] N. Vallina-Rodriguez, J. Amann, C. Kreibich, N. Weaver,
and V. Paxson. A Tangled Mass: The Android Root
Certificate Stores. CoNEXT, 2014.

[34] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S.
Savage. When Private Keys Are Public: Results from the
2008 Debian OpenSSL Vulnerability. IMC, 2009.

[35] L. Zhang, D. Choffnes, T. Dumitraş, D. Levin, A. Mislove,
A. Schulman, and C. Wilson. Analysis of SSL certificate
reissues and revocations in the wake of Heartbleed. IMC,
2014.

http://www.caida.org/data/as-organizations/
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
https://support.cloudflare.com/hc/en-us/articles/200170466-How-do-I-upload-a-custom-SSL-certificate-Business-or-Enterprise-only-
https://support.cloudflare.com/hc/en-us/articles/200170466-How-do-I-upload-a-custom-SSL-certificate-Business-or-Enterprise-only-
https://support.cloudflare.com/hc/en-us/articles/200170466-How-do-I-upload-a-custom-SSL-certificate-Business-or-Enterprise-only-
http://convergence.io
http://www.ietf.org/rfc/rfc3912.txt
https://www.eff.org/observatory
https://peering.google.com/#/infrastructure
http://heartbleed.com
http://www.ietf.org/rfc/rfc6962.txt
https://community.akamai.com/community/whatsnew/blog/2016/02/05/new-secure-cdn-offerings-now-available
https://community.akamai.com/community/whatsnew/blog/2016/02/05/new-secure-cdn-offerings-now-available
https://community.akamai.com/community/whatsnew/blog/2016/02/05/new-secure-cdn-offerings-now-available
http://www.cidr-report.org/as2.0/autnums.html
https://support.apple.com/en-us/HT202858
https://scans.io/study/sonar.rdns
https://scans.io/study/sonar.ssl
https://tools.ietf.org/html/rfc6698

	Introduction
	Background
	SSL certificates
	Hosting providers
	What we mean by ``key sharing''
	Why study private key sharing?

	Datasets
	Methodology
	Determining who owns a domain
	Certificate scans are not enough
	Some WHOIS email addresses are too much
	Domain ownership methodology
	Domain ownership results

	Determining a site's hosting providers
	First- vs. third-party hosting
	Summary

	Trust
	How many organizations share keys?
	How many keys do providers have?
	How are SAN lists used?
	Summary

	Certificate Management
	Determining who manages a certificate
	Prevalence of outsourcing
	Certificate revocation and reissue
	Revocation rates
	Reissue rates

	Certificate quality
	Summary

	Related Work
	Conclusion
	References

