
Randomized Routing and Sorting on

Fixed-Connection Networks

F. T. Leighton1,2

Bruce M. Maggs1

Abhiram G. Ranade3

Satish B. Rao1,4

Abstract

This paper presents a general paradigm for the design of packet
routing algorithms for fixed-connection networks. Its basis is a ran-
domized on-line algorithm for scheduling any set of N packets whose
paths have congestion c on any bounded-degree leveled network with
depth L in O(c + L + log N) steps, using constant-size queues. In this
paradigm, the design of a routing algorithm is broken into three parts:
(1) showing that the underlying network can emulate a leveled net-
work, (2) designing a path selection strategy for the leveled network,
and (3) applying the scheduling algorithm. This strategy yields ran-
domized algorithms for routing and sorting in time proportional to the
diameter for meshes, butterflies, shuffle-exchange graphs, multidimen-
sional arrays, and hypercubes. It also leads to the construction of an
area-universal network: an N -node network with area Θ(N) that can
simulate any other network of area O(N) with slowdown O(log N).

This research was supported by the Defense Advanced Research Projects Agency un-
der Contracts N00014–87–K–825 and N00014–89–J–1988, the Office of Naval Research
under Contracts N00014–86–K–0593 and N00014–86–K–0564, the Air Force under Con-
tract OSR–89–0271, and the Army under Contract DAAL–03–86–K-0171. Tom Leighton
is supported by an NSF Presidential Young Investigator Award with a matching funds
provided by IBM.

1Laboratory for Computer Science, MIT, Cambridge, MA.
2Department of Mathematics, MIT, Cambridge, MA.
3Department of Electrical Engineering and Computer Science, University of Califor-

nia, Berkeley, CA.
4Aiken Computation Laboratory, Harvard University, Cambridge, MA.
Second and third authors’ current address: NEC Research Institute, Princeton NJ.

1



1 Introduction

The task of designing an efficient packet routing algorithm is central to the
design of most large-scale general-purpose parallel computers. In fact, even
the basic unit of time in some parallel machines is measured in terms of
how fast the packet router operates. For example, the speed of an algorithm
in the Connection Machine CM-2 is often measured in terms of routing
cycles (roughly the time to route a random permutation) or petit cycles
(the time to perform an atomic step of the routing algorithm). Similarly,
the performance of a machine like the BBN Butterfly [5] is substantially
influenced by the speed and rate of successful delivery of its router.

Packet routing also provides an important bridge between theoretical
computer science and applied computer science; it is through packet routing
that a real machine such as the Connection Machine is able to simulate an
idealized machine such as the CRCW PRAM. More generally, getting the
right data to the right place at the right time is an important, interesting,
and challenging problem. Not surprisingly, it has also been the subject of a
great deal of research.

1.1 Past work on routing

In 1965 Beneš [6] showed that the inputs and outputs of an N -node Beneš
network (two back-to-back butterfly networks) can be connected in any per-
mutation by a set of disjoint paths. Shortly thereafter Waksman [40] devised
a simple sequential algorithm for finding the paths in O(N) time. Given the
paths, it is straightforward to route a set of packets from the inputs to the
outputs an N -node Beneš network in any one-to-one fashion in O(log N)
steps using queues of size 1. A one-to-one routing problem like this is also
called a permutation routing problem. Although the inputs comprise only
O(N/ log N) nodes in an N -node Beneš network, it is possible to route any
permutation of N packets in O(log N) steps by pipelining Θ(log N) such
permutations. Unfortunately, no efficient parallel algorithm for finding the
paths is known.

In 1968 Batcher [4] devised an elegant and practical parallel algorithm for
sorting N packets on an N -node shuffle-exchange network in log2 N steps1

using queues of size 1. The algorithm can be used to route any permuta-
tion of packets by sorting based on destination address. The result extends
to routing many-one problems provided that (as is typically assumed) two

1Throughout this paper log N denotes log
2
N and log2

N denotes (log N)2.

2



packets with the same destination can be combined to form a single packet
should they meet en route to their destination.

No better deterministic algorithm was found until 1983, when Ajtai,
Komlós, and Szemerédi [1] solved a classic open problem by constructing an
O(log N)-depth sorting network. Leighton [16] then used this O(N log N)-
node network to construct a degree 3 N -node network capable of solving
any N -packet routing problem in O(log N) steps using queues of size 1.
Although this result is optimal up to constant factors, the constant factors
are quite large and the algorithm is of no practical use. Hence, the effort to
find fast deterministic algorithms has continued. Recently Upfal discovered
an O(log N)-step algorithm for routing on an expander-based network called
the multibutterfly [37]. The algorithm solves the routing problem directly
without reducing it to sorting, and the constant factors are much smaller
than those of the AKS-based algorithms. In [18], Leighton and Maggs show
that the multibutterfly is fault tolerant and improve the constant factors in
Upfal’s algorithm.

There has also been great success in the development of efficient ran-
domized packet routing algorithms. The study of randomized algorithms
was pioneered by Valiant [38] who showed how to route any permutation
of N packets in O(log N) steps on an N -node hypercube with queues of
size O(log N) at each node. Valiant’s idea was to route each packet to a
randomly-chosen intermediate destination before routing it to its true des-
tination. Although the algorithm is not guaranteed to deliver all of the
packets within O(log N) steps, for any permutation it does so with high
probability. In particular, the probability that the algorithm fails to deliver
the packets within O(log N) steps is at most 1/Nk, for any fixed constant k.
(The value of k can be made arbitrarily large by increasing the constant in
the O(log N) bound.) Throughout this paper, we shall use the phrase with
high probability to mean with probability at least 1 − 1/Nk for any fixed
constant k, where N is the number of packets.

Valiant’s result was improved in a succession of papers by Aleliunas [2],
Upfal [36], Pippenger [26], and Ranade [29]. Aleliunas and Upfal developed
the notion of a delay path and showed how to route on the shuffle-exchange
and butterfly networks (respectively) in O(log N) steps with queues of size
O(log N). Pippenger was the first to eliminate the need for large queues,
and showed how to route on a variant of the butterfly in O(log N) steps
with queues of size O(1). Ranade showed how combining could be used
to extend the Pippenger result to include many-one routing problems, and
tremendously simplified the analysis required to prove such a result. As

3



a consequence, it has finally become possible to simulate a step of an N -
processor CRCW PRAM on an N -node butterfly or hypercube in O(log N)
steps using constant-size queues on each edge.

Concurrent with the development of these hypercube-related packet rout-
ing algorithms has been the development of algorithms for routing in meshes.
The randomized algorithm of Valiant and Brebner can be used to route
any permutation of N packets on a

√
N ×

√
N mesh in O(

√
N) steps us-

ing queues of size O(log N). Kunde [14] showed how to route determin-
istically in (2 + ε)

√
N steps using queues of size O(1/ε). Also, Krizanc,

Rajasekaran, and Tsantilis [13] showed how to randomly route any permu-
tation in 2

√
N + O(log N) steps using constant-size queues. Most recently,

Leighton, Makedon, and Tollis discovered a deterministic algorithm for rout-
ing any permutation in 2

√
N − 2 steps using constant-size queues [19], thus

achieving the optimal time bound in the worst case.

1.2 Our approach to routing

One deficiency with the state-of-the-art in packet routing is that aside from
Valiant’s paradigm of first routing to random destinations, all of the algo-
rithms and their analyses are very specifically tied to the network on which
the routing is to take place. For example, the way that the queue size is
kept constant in the butterfly routing algorithms is quite different from the
way that it is kept constant in the mesh routing algorithms. Moreover, the
butterfly and hypercube algorithms are so specific to those networks that
no O(log N)-step constant-queue-size algorithm was previously known for
the closely related shuffle-exchange network. The lack of a good routing
algorithm for the shuffle-exchange network is one of the reasons that the
butterfly is preferred to the shuffle-exchange network in practice.

Our approach to the problem differs from previous approaches in that
we separate the process of selecting paths for the packets from the process
of timing the movements of the packets along their paths. More precisely,
we break a routing problem into two stages. In Stage 1, we select a path for
each packet from its origin to its destination. In Stage 2, we schedule the
movements of the packets along their paths. The focus of this paper is on
Stage 2. The goal of Stage 2 is to find a schedule that minimizes both the
time for the packets to reach their destinations and the number of packets
that are queued at any node. The schedule must satsify the constraint that
at each time step each edge in the network can transmit at most one packet.

Of course, there must be some correlation between the performance of

4



the scheduling algorithm and the selection of the paths. In particular, the
maximum distance d traveled by any packet is always a lower bound on the
time required to route all packets. We call this distance the dilation of the
set of paths. Similarly, the largest number of packets that must traverse a
single edge during the entire course of the routing is a lower bound. We call
this number the congestion c of the paths. In terms of these parameters,
the goal of Stage 1 is to select paths for the packets that minimize c and d.

For many networks, Stage 1 is easy. We simply use Valiant’s paradigm
of first routing each message to a random destination. It is easily shown
for meshes, butterflies, shuffle-exchange networks, etc., that this approach
yields values of c and d that are within a small constant factor of the diameter
of the network. Moreover, this technique also usually works for many-one
problems provided that the address space is randomly hashed.

Stage 2 has traditionally been the hard part of routing. Curiously, how-
ever, we have found that by ignoring the underlying network and the method
of path selection, Stage 2 actually becomes easier to solve! In [20] for ex-
ample, Leighton, Maggs, and Rao show that for any set of packets whose
paths have congestion c and dilation d, in any network, there is a schedule
of length O(c + d) in which at most one packet traverses each edge at each
time step, and in which the maximum queue size required is O(1). In this
paper, we show that there is an efficient randomized parallel scheduling al-
gorithm for the entire class of bounded-degree leveled networks. In a leveled
network, each edge is directed and connects a level i node to a level i + 1
node, where the level numbers range from 0 to L. We call L the depth of
the network. The algorithm produces a schedule of length O(c + L + log N)
with high probability, and uses constant-size queues.

By applying the approach just described, we can design fast routing
algorithms for the most common fixed-connection networks. The first step
is to convert the network at hand into a leveled network. In particular,
we create a virtual leveled network that can be efficiently simulated by the
existing network, and we figure out how to move packets between the two
networks (i.e., we reduce the problem of routing on the given network to the
problem of routing on a very similar leveled network). Next, we select paths
for the packets so as to minimize the congestion c in the leveled network.
Because the network is leveled, the dilation is automatically at most L, which
in all of our algorithms is at most a constant factor larger than the diameter
of the underlying network. The path selection strategy typically uses some
combination of greedy paths and random intermediate destinations. We
then conclude by applying the O(c + L + log N)-step scheduling algorithm.

5



1.3 The application of routing to sorting

Packet routing and sorting have long been known to be closely linked prob-
lems on fixed-connection networks. In his fundamental paper, Batcher [4]
showed that an algorithm for sorting on a network can usually be converted
into an algorithm for packet routing. Reif and Valiant [32], on the other
hand, described a method for converting a routing algorithm into a ran-
domized sorting algorithm. As a consequence, they derived randomized
sorting algorithms for hypercubes and butterflies that run in O(log N) steps
and use O(log N)-size queues.

In this paper we combine the Reif-Valiant approach with our routing
strategy to devise improved algorithms for sorting on fixed-connection net-
works. For each network considered, the algorithm runs in time proportional
to the diameter of the network, and uses constant-size queues. Such algo-
rithms were previously known only for bounded-dimensional arrays [16, 35].

1.4 Outline of the results

The basis of most of the results in this paper is a proof that a variant of
Ranade’s algorithm can be used to schedule any set of N packets whose
paths have congestion c on a bounded-degree leveled network with depth
L in O(c + L + log N) steps using constant-size queues. The algorithm
is randomized, but requires only Θ(log2 N) bits of randomness to succeed
with high probability. The proof of this result is included in Section 2.
Curiously, the proof is simpler than the previous proof of the same result
applied specifically to routing random paths in butterflies [29], and allows
for improved constant factors.

In Sections 3 through 10 we examine the many applications of the
O(c+L+log N)-step scheduling algorithm for leveled networks. These appli-
cations include routing algorithms for meshes, butterflies, shuffle-exchange
networks, multidimensional arrays and hypercubes, and fat-trees. Section 3
presents the simplest application: routing N packets in O(

√
N) steps on a√

N ×
√

N mesh. Another simple application, described in Section 4, is an
algorithm for routing N packets in O(log N) steps on an N -node butter-
fly. It is not obvious that the scheduling algorithm can be applied to the
shuffle-exchange network because it is not leveled. Nevertheless, in Section 5
we show how to route N -packets in O(log N) steps on an N -node shuffle-
exchange network by identifying a leveled structure in a large portion of the
network. In Section 6 we present an algorithm for routing kN packets on an

6



N -node k-dimensional array with maximum side length M in O(kM) steps.
In Section 7, we show how to adapt the scheduling algorithm to route a set
of messages with load factor λ in O(λ + log M) steps on a fat-tree [21] with
root capacity M .

The fat-tree routing algorithm leads to the construction of an area-
universal network: an N -node network with area Θ(N) that can simulate
any other network of area O(N) with slowdown O(log N). An analogous
result is shown for a class of volume-universal networks.

Our sorting results are included in Sections 8 through 10. In particular,
we describe an O(log N)-step algorithm for sorting on an N -node butterfly or
hypercube in Section 8, an O(log N)-step algorithm for sorting on a shuffle-
exchange network in Section 9, and an O(kM)-step algorithm for sorting
kMk items on a k-dimensional array with side length M in Section 10.

1.5 Some comments on the model

All of our algorithms are presented in the packet model of computation. In
this model time is partitioned into synchronous steps. At each time step,
one packet can be transmitted across each edge of the network. The packet
model is the natural abstraction for store and forward routing algorithms
used on machines such as the NCube, NASA MPP, Intel Hypercube, and
Transputer-based machines. It is also robust in the sense that it allows
combining, it corresponds nicely to the various PRAM models, and it does
not make assumptions about packet lengths. Consequently, it is the most
studied model in the literature.

Other models of interest are the circuit switching model [12] and the
cut-through or wormhole model [9]. These models arise in practice and are
also of theoretical interest, although less is known about them. Although
our results have some limited applications in these models, we will primarily
concern ourselves with the packet model in this paper.

2 An O(c+L+log N) scheduling algorithm for lev-

eled networks

In this section we present a randomized algorithm for scheduling the move-
ments of a set of N packets in a leveled network with depth L. By assump-
tion, the paths taken by the packets are given and have congestion c. With
high probability, the algorithm delivers all of the packets to their destina-

7



tions in O(c + L + log N) steps. The algorithm is on-line in the sense that
the schedule is produced as the packets are routed through the network.
(Note: The number of nodes in the network does not appear in the time to
deliver the packets or in the probability of success. There may be more than
N or fewer.)

2.1 Leveled networks

In a leveled network with depth L, the nodes can be arranged in L+1 levels
numbered 0 through L, such that every edge in the network leads from
some node on level i to a node on level i + 1, for 0 ≤ i < L. The nodes
in the network represent processors and the edges represent unidirectional
communication links. The processors are assumed to contain some switching
hardware for sending and receiving packets. We will assume that each node
has in-degree and out-degree at most ∆, where ∆ is a fixed constant.

There are 3 kinds of queues in the network. Each node has an initial
queue in which packets reside before execution begins, and a final queue
into which the packets destined for the node must be delivered. At the head
of each edge is an edge queue for buffering packets in transit. We place
no restriction on the size of the initial and final queues. The edge queues,
however, can each hold at most q packets, where q is a fixed constant. In this
paper we shall assume that q ≥ 2. With minor modifications, however, the
algorithm and the analysis can be adapted for the case q = 1. At the start
of the execution, all of the N packets reside in initial queues. A packet can
originate on any level and can have its destination on any higher-numbered
level.

2.2 The algorithm

The scheduling algorithm is similar to the one in [29] except that instead of
ordering the packets based on destination address, we order them according
to randomly-chosen ranks. In particular, each packet is assigned an integer
rank chosen randomly, independently, and uniformly from the range [1, R],
where R will be specified later. The ranks are used by the algorithm to de-
termine the order in which packets move through each node. The algorithm
maintains two important invariants. First, throughout the execution of the
algorithm, the packets in each edge queue are arranged from head to tail in
order of increasing rank. Second, a packet is routed through a node only
after all the other packets with lower ranks that must pass through the node

8



have done so. Special ghost packets are used to help the algorithm maintain
these invariants.

The algorithm begins with an initialization phase in which the packets
in each initial queue are sorted according to their ranks. Ties in rank are
broken according to destination address. At the tail of each initial queue a
special end-of-stream (EOS) packet is inserted, and is assigned rank R + 1.

After initialization, the algorithm operates as follows. At each step, a
node examines the head of its initial queue and the heads of any edge queues
into the node. If any of these queues are empty, then the node does nothing.
Otherwise, it selects the packet with the smallest rank as a candidate to
be transmitted. Ties are again broken using the destination address. The
selected packet is sent forward only if the queue at the head of the next edge
on its path contained fewer than q packets at the beginning of the step. (We
assume that the nodes at both the head and tail of an edge can determine
how many packets are stored in the edge’s queue in constant time.) Thus,
an edge queue is guaranteed never to hold more than q packets.

To prevent queues from becoming empty, whenever a node selects a
packet for transmission, it sends a ghost packet with the same rank on each
of the other edges out of the node, provided that their edge queues contained
fewer than q packets at the beginning of the step. Because the node sends
packets out in order of strictly increasing rank, the rank of the ghost packet
provides the receiving node with a lower bound on the ranks of the packets
that it will receive on the same edge in the future.

Like other packets, a ghost packet can be selected for transmission if it
is at the head of its queue and has a smaller rank than the ranks of packets
in all of the other queues. A ghost never remains at a node for more than
one step, however. At the end of each step a node destroys any ghosts that
were present in its edge queues at the beginning of the step.

End-of-stream (EOS) packets are also given special treatment. Since an
EOS packet has rank R + 1, it cannot be selected by a node unless there
is an EOS packet at the head of the node’s initial queue and at the head
of each of the queues on all of the node’s incoming edges. Once an EOS
packet has been selected, the node will create a new EOS packet for each of
its outgoing edges and for each edge will attempt to send the corresponding
packet at each step until it succeeds. After sending an EOS packet along an
edge, a node will not send any more packets along that edge.

Figure 1 shows an example in which a ghost packet expedites the delivery
of another packet. For simplicity, initial and final queues are not shown. The
next edge on the path for the packet with rank 35 is the upper edge out of

9



25

35

48
A

B

Figure 1: A ghost with rank 35 expedites the delivery of a packet with rank
25.

node A. By sending a ghost with rank 35 on the lower edge, node A informs
node B that subsequent packets will not have rank smaller than 35. Node
B can then transmit the packet with rank 25 on the next step. Without the
ghost packet, the transmission of the packet with rank 25 would be delayed
until a packet actually arrived at the top queue of node B.

In the manner of [29], we summarize the properties of the routing algo-
rithm in the following lemmas.

Lemma 2.1 After the initialization phase, each queue in the network holds
packets sorted from head to tail in order of increasing rank. Each node sends
out packets in order of increasing rank.

Proof: The proof is by induction on the number of steps executed by the
algorithm.

Lemma 2.2 For each node on level i, there is a t ≤ i such that at the
beginning of time step t, the initial queue and each of the queues on the
edges into the node holds a packet of some type. After step t the node sends
out a packet on each outgoing edge at every step (unless the corresponding
edge queue does not have space) until it transmits an EOS packet on that
edge.

10



Proof: The proof is by induction on the number of steps executed by the
algorithm.

In the following lemma we denote the rank of a packet p by rank(p), and
the level of a node s by level(s).

Lemma 2.3 Suppose a packet p waits at a node s at time t. Then one of
the following is true.

1. At time t another packet p′ with rank(p′) ≤ rank(p) is selected for
transmission by s.

2. At time t, p is selected for transmission from s to an adjacent node s′

at the next level, but the queue on the edge into s′ is filled with packets
p′1, . . . , p

′
q with rank(p′q) ≤ . . . ≤ rank(p′1) ≤ rank(p).

3. At time t some queue on an edge into s is empty and t− level(s) ≤ 0.

In the first case, we say that p′ m-delays p in switch s at time t, and in
the second, p′1 through p′q f-delay p in switch s′ at time t.

Proof: Straightforward.
It is useful to define the lag of a packet p at node s at time t as lag(p, t) =

t − level(s). The lag gives a lower bound on the amount of time the packet
has waited in queues before step t.

2.3 Analysis

Our analysis of the algorithm uses a delay sequence argument similar to the
ones in [2], [29], and [36]. Each delay sequence corresponds to an event in
the probability space. We first show that if some packet is delayed, then a
delay sequence occurs. Then by counting all possible delay sequences, we
show that it is unlikely that any delay sequence occurs with delay greater
than O(c + L + log N).

Definition 2.4 An (L,W,R)-delay sequence consists of 4 components:

1. a path through the network of length L beginning at a node on some
packet’s path. The path, called the delay path, can traverse the edges
of the network in both directions.

2. a sequence s1, . . . , sW of not necessarily distinct nodes in the network
such s1, . . . , sW appear in order along the delay path.

11



3. a sequence p1, . . . , pW of distinct packets, such that for 1 ≤ i ≤ W, the
path for packet pi passes through switch si.

4. a non-increasing sequence r1, . . . , rW of ranks such that r1 − rW ≤ R

The only use of randomness in the algorithm is in the choice of ranks
for the packets. Thus, the probability space consists of RN equally likely
elementary outcomes, one for each possible setting of the ranks. Each delay
sequence corresponds to the event in the probability space in which the
rank chosen for packet pi is ri, for 1 ≤ i ≤ W. Each such event consists
of RN−W elementary outcomes and occurs with probability 1/RW . We call
these events bad events. We say that a delay sequence occurs whenever the
corresponding bad event occurs. The following lemma shows that whenever
the routing takes too long, some delay sequence occurs.

Lemma 2.5 For any w, if some packet is not delivered by step L + w then
a bad event corresponding to a (L + 2w

q , w, R)-delay sequence has occurred.

The informal idea behind the proof is that whenever routing takes too
long, we can identify a sequence of packets p1, . . . , pv, v ≥ w, that are in some
sense responsible. We will show that the first w elements of this sequence,
i.e., p1, . . . , pw are the packets on an (L + 2w/q, w, R) delay sequence that
has occurred.

We first present an incremental construction to identify the packets
p1, p2, . . . , pv. We will use auxiliary sequences p′1, . . . , p

′
v and t0, t1, . . . , tv−1

to facilitate the discussion. The sequence starts with p1 = p′1 being the
last packet delivered and t0 > L + w being the step at which p′1 reached its
destination.

In general, given p′i and ti−1, we show how the sequence can be extended.
If p′i is not a ghost, then we set pi = p′i. If p′i is a ghost, then we follow p′i
back in time until reaching the node in which p′i was created from some pi.
In either case we next follow pi back until time ti when it was forced to
wait in some node si. The next packet in the sequence is identified by using
Lemma 2.3. If pi was m-delayed by p′ in si, we set p′i+1 = p′. Suppose pi

was f-delayed by p̄1, p̄2, . . . , p̄q in s′, where p̄1 has the largest rank and p̄q

has the smallest. Then we set pi+j = p′i+j = p̄j , si+j = s′ and ti+j = ti for
1 ≤ j ≤ q − 1, and p′i+q = p̄q. If some queue in si was empty at ti, or if
ti = 0 we terminate the construction.

The incremental construction extends each sequence by 1 element, or
by q elements, depending upon whether there was a m-delay or a f-delay.

12



We apply the construction until a total of w/q f-delays are encountered, or
the construction terminates. Let j denote the number of incremental steps
used, of which f ≤ w/q involve f-delays, and the remaining j − f involve m
delays.

The key observation is that each time a new packet is added to the delay
sequence, the lag of the packet being followed back in time is reduced by
either one or two.

Lemma 2.6 Consider an incremental step that starts with p′i at time ti−1.

1. Suppose pi was m-delayed. Then

lag(p′i, ti−1) = lag(pi, ti) + 1 = lag(p′i+1, ti) + 1

2. Suppose pi was f-delayed. Then

lag(p′i, ti−1) = lag(pi, ti) + 1 = lag(p′i+q, ti) + 2

Proof: Since there is no waiting between ti−1 and ti+1, we get lag(p′i, ti−1) =
lag(pi, ti+1). But since pi waits at ti, we have lag(pi, ti)+1 = lag(pi, ti+1) =
lag(p′i, ti−1). For m-delays, we know that pi and p′i+1 are in the same node
at ti, and hence must have identical lags. For f-delays, we get lag(pi, ti) =
lag(p′i+q, ti) + 1, since p′i+q is on the next level.

Lemma 2.7 The length v of the sequence p1, . . . , pv is at least w.

Proof: Suppose f = w/q. We know that each f-delay adds q elements to
the sequence, and thus v ≥ q(w/q) = w. Otherwise, we have f < w/q,
and we know that the construction was terminated because at the last step
there was neither an f-delay nor an m-delay, but some queue was found
empty, or tv = 0. We know that lag(p′1, t0) ≥ w + 1, and by Lemma 2.3,
lag(p′v, tv−1) = lag(pv, tv) + 1 ≤ 1. Thus, lag(p′, t0) − lag(p′, tv−1) ≥ w. By
applying Lemma 2.6 j times we get lag(p′1, t0)− lag(p′v, tv−1) = j−f +2f =
j + f . Thus j + f ≥ w. But v ≥ j + f(q − 1) ≥ j + f ≥ w.

Lemma 2.8 Consider the path starting from s1 passing through s2, . . . , sv

in that order such that the segment between si−1 and si consists of the path
of p′i. The total length of the path is at most L + 2w/q.

13



Proof: The path has f forward edges. Since it goes back at most L levels,
its total length is at most L + 2f ≤ L + 2w/q.

We now prove Lemma 2.5.
Proof of Lemma 2.5: The nodes and the packets belonging to the de-
lay sequence are obtained by taking the first w elements of the sequences
p1, . . . , pv and s1, . . . , sv. The sequence of ranks is rank(p1), . . . , rank(pv).
This is in decreasing order by construction. The delay path is obtained from
Lemma 2.8. This has length at most L + 2w/q as required. To complete
the proof we observe that all pi must be real packets, i.e., not EOS or ghost
packets, since they delay other packets as well as wait in queues.

Theorem 2.9 For any constant k1, there is a constant k2 such that the
probability that any packet is not delivered by step L + w, where w = k2c +
o(L + log N) and R ≥ w, is at most 1/Nk1.

Proof: By Lemma 2.5, to bound the probability that some packet is delayed
w steps, it suffices to bound the probability that some (L+2w/q, w, R)-delay
sequence occurs. We begin by counting the number of (L+2w/q, w, R)-delay
sequences. The delay path can start on any packet’s path. Since there are
N packets and each follows a path of length at most L, there are at most
N(L + 1) possible starting points. At each node on the path, there are at
most 2∆ choices for the next node on the path. Thus, the number of paths
is at most N(L + 1)(2∆)L+2w/q. The number of ways of locating the nodes
s0, s1, . . . , sw on the path is at most

(L+2w/q+w
w

)

. The number of ways of
choosing the packets p1, p2, . . . , pw such that for 1 ≤ i ≤ w, packet pi passes
through node si is at most (∆c)w. The number of ways of choosing ranks
r1, r2, . . . , rw such that ri ≥ ri+1 for 1 ≤ i < w and 1 ≤ ri ≤ R for 1 ≤ i ≤ w
is at most

(R+w
w

)

. Each of these delay sequences occurs with probability
at most 1/Rw. Hence, the probability that any delay sequence occurs is at
most

(L + 1)N(2∆)L+2w/q
(L+2w/q+w

w

)

(∆c)w
(R+w

w

)

Rw
.

Using the inequality
(a
b

)

≤ 2a to bound
(L+2w/q+w

w

)

and the inequalities
(a
b

)

≤ (ae/b)b and R + w ≤ 2R to bound
(R+w

w

)

, the probability is at most

2log(L+1)+log N+(log ∆+2)(L+2w/q) ·
(

4e∆c

w

)w

.

14



Observing that log(L + 1) ≤ L + 2w/q and factoring (22(log ∆+3)/q)w out of
the first factor, our upper bound becomes

2log N+(log ∆+3)L ·
(

22(log ∆+3)/q+2e∆c

w

)w

.

If c = Ω(L + log N), then for any k1, there is a k2 such that for w = k2c,
the probability is at most 1/Nk1 . If c = o(L+ log N), then for any k1, there
is a κ such that κ = ω(c) and κ = o(L + log N), and for any w ≥ κ, the
probability is at most 1/Nk1 .

2.3.1 Packet combining

For simplicity, we have heretofore ignored the possibility of combining multi-
ple packets with the same destination. In many routing applications, there
is a simple rule that allows two packets with the same destination to be
combined to form a single packet, should they meet at a node. For example,
one of the packets may be discarded, or the data carried by the two packets
may be added together. Combining is used in the emulation of concurrent-
read concurrent-write parallel random-access machines [29] and distributed
random-access machines [23].

If the congestion is to remain a lower bound when combining is allowed,
then its definition must be modified slightly. The new congestion of an edge
is the number of different destinations for which at least one packet’s path
uses the edge. Thus, several packets with the same destination contribute
at most one to the congestion of an edge.

In order to efficiently combine packets, we will use a random hash func-
tion to give all of the packets with the same destination the same rank.
Since ties in rank are broken according to destination, a node will not send
a packet in one of its queues unless it is sure that no other packet for the
same destination will arrive later in another queue. Thus, at most one packet
for each destination traverses an edge.

We assign ranks using the universal hash function [7]

rank(x) =

((

m−1
∑

i=0

aix
i

)

mod P

)

mod R

which maps a destination x ∈ [0, P − 1] to a rank in [0, R − 1] with k-wise
independence. Here P is a prime number greater than the total number of
destinations, and the coefficients ai ∈ ZP are chosen at random. We show

15



below that it suffices to choose R = Ω(c + L + log N). The random coef-
ficients use O(m log P ) random bits. In most applications, only log N -wise
independence is needed and the number of possible different destinations is
at most polynomial in N , so the hash function requires only O(log2 N) bits
of randomness.

In the proof of Theorem 2.9, the ranks of the w packets in a delay
sequence were chosen independently, i.e., with w-wise independence. In
order to use a hash function with m-wise independence, where m may be
much smaller than w, we need the following lemma, which shows that in
any delay sequence there are smaller subsequences of many different sizes.

Lemma 2.10 If an (l, w, R)-delay sequence occurs, then a (2l/α, w/2α, 2R/α)-
delay sequence occurs, for every α ≥ 1.

Proof: Suppose that an (l, w, R)-delay sequence occurs. Divide the packet
sequence p1, . . . , pw into α contiguous subsequences such that each subse-
quence has at least bw/αc ≥ w/2α packets. This also partitions the delay
path into subpaths. Let li denote the length of the ith subpath and let Ri

denote the range of ranks for the ith subsequence, i.e., Ri is the difference
between the largest rank in subsequence i and the largest rank in subse-
quence i − 1. We know that there must be fewer than α/2 segments with
Ri > 2R/α, since

∑

Ri = R. Furthermore there must be fewer than α/2
segments satisfying li > 2l/α, since

∑

li = l. Thus there must exist some
segment for which li ≤ 2l/α and Ri ≤ 2R/α.

Theorem 2.11 For any constant k1, there are constants k2 and k3 such
that if the rank of each packet is assigned in the range 0 through R using a
hash function with k3(log N + log L)-wise independence, the probability that
any packet is not delivered by step L+w, where w = k2c+ o(L+log N) and
R ≥ w, is at most 1/Nk1.

Proof: The proof is similar to that of Theorem 2.9. If some packet is not de-
livered by step L+w then by Lemma 2.5 an (L+2w/q, w, R)-delay sequence
occurs. By Lemma 2.10, for any α > 1 a (2(L+2w/q)/α, w/2α, 2R/α)-delay
sequence also occurs. The hash function will be (w/α)-wise independent.
We will show that for the right choices of w and α, it is unlikely that any
such sequence occurs.

The number of different (2(L + 2w/q)/α, w/2α, 2R/α)-delay sequences
is bounded as follows. A delay path starts at node on some packet’s path.

16



Thus, there at most N(L+1) starting points for the path. At each node on
the path, there are at most 2∆ choices for the next node on the path.
Thus, the total number of ways to choose the path is at most N(L +
1)(2∆)2(L+2w/q)/α. The number of ways of choosing w/2α switches on the

path is at most
(2(L+2w/q)/α+w/2α

w/2α

)

. The number of ways of choosing w/2α

packets that pass through those switches is at most (∆c)w/2α. The number

of ways of choosing the ranks for the packets is at most R ·
(2R/α+w/2α−1

w/2α−1

)

since there are R choices for the rank of the first packet, and the ranks of
the other w/2α − 1 differ from the first by at most 2R/α.

If the ranks of the packets are chosen using a w/2α-wise independent
hash function, then the probability that any particular delay sequence occurs
is at most 1/Rw/2α. Thus, the probability that any delay sequence occurs
is at most

N(L + 1)(2∆)2(L+2w/q)/α
(2(L+2w/q)/α+w/2α

w/2α

)

(∆c)w/2αR ·
(2R/α+w/2α−1

w/2α−1

)

Rw/2α
.

Using the inequality
(a
b

)

≤ 2a to bound
(2(L+2w/q)/α+w/2α

w/2α

)

, and c ≤ N to

bound (∆c)w/2α by 2log ∆+log N (∆c)w/2α−1, and
(a
b

)

≤ (ae/b)b, w ≤ R, and

w/2α − 1 ≥ w/4α to bound
(2R/α+w/2α−1

w/2α−1

)

by (10eR/w)w/2α−1, our upper

bound becomes

22 log N+log(L+1)+2(log ∆+2)L/α+8(log ∆+2)/q+log ∆+1·
(

28(log ∆+2)/q20e∆c

w

)w/2α−1

.

Removing constants so that we can better understand the expression, we
have

2Θ(log N+log L+L/α) ·
(

c

w

)Θ(w/α)

.

If c = Ω(L + log N), then for any constant k1 there are constants k2 and
k3 such that for w ≥ k2c and w/2α ≥ k3(log N + log L), the probability is
at most 1/Nk1 . If c = o(L + log N) then for any k1 there is a κ such that
κ = ω(c) and κ = o(L+log N) and for w ≥ κ, and w/2α = o(log N +log L),
the probability is at most 1/Nk1 .

2.3.2 Variable-length messages

In the preceding discussion we assumed that packets were atomic. However,
the algorithm as well as the analysis extends naturally to the case in which
we have messages each consisting of several packets.

17



Theorem 2.12 Consider a leveled network with depth L. Suppose that ini-
tially the nodes in the network hold a total of N messages, where each mes-
sage is at most m packets long. Let C denote the message congestion, i.e.,
the maximum number of messages that pass through any edge. For any con-
stant k1, there is a constant k2 such that the probability that any message is
not delivered by step L + w, where w = m(k2C + o(L + log N)), is at most
1/Nk1, provided each edge queue is long enough to hold at least m packets.

We can trivially prove the theorem by organizing the operation of the
network into message cycles each consisting of m steps. During a message
cycle, each node in the network can send and receive a single message on each
edge. This is equivalent to a packet routing problem in which packets take
m steps to cross each edge, and hence must complete in k2C + o(L + log N)
message cycles, or m(k2C + o(L + log N)) steps.

We note however that synchronizing the operation of the nodes into mes-
sage cycles as described above is not necessary. In particular, it is possible
to allow two changes:

1. Each node can operate upon the next message as soon as it is done
with the previous, rather than having to wait until the end of the
current message cycle. This will be useful if most of the messages are
small.

2. It is possible to pipeline message transmission. Thus a node can start
forwarding the first packet of the message with the smallest rank as
soon as every incoming queue receives the first packet of its message.
To achieve this, messages must be transmitted in a special format.
Specifically, the rank must be placed in the leading packet in the mes-
sage, followed by the destination address, followed by a type field that
indicates whether the message is real, or a ghost or an EOS, with the
data trailing at the end. If the rank cannot be accomodated in one
packet, then the more significant bits of the rank must be transmitted
before the less significant ones. With the message format as above, it is
possible for each node to send outgoing message packets as soon as the
corresponding packets arrive on all incoming edges. In fact message
combining can also be made to work with pipelining [30, 31].

It is possible to show that Theorem 2.12 still applies. The analysis involves
constructing a delay sequence and a counting argument similar that for
Theorem 2.9.

18



4

3

2

1

0

0 1 2 3 4

column

row

Figure 2: A 5 × 5 mesh.

3 Routing on meshes

In this section we apply the O(c + L + log N) scheduling algorithm to route
N packets on a

√
N ×

√
N mesh in O(

√
N) steps using constant-size queues.

Although O(
√

N)-step routing algorithms for the mesh were known before
[13, 14, 39], they all have more complicated path selection strategies.

In an n × n mesh, each node has a distinct label (x, y), where x is its
column and y is its row, and 0 ≤ x, y ≤ n − 1. Thus, an n × n mesh has
N = n2 nodes. For x < n− 1, node (x, y) is connected to (x + 1, y), and for
y < n−1, node (x, y) is connected to (x, y+1). A 5×5 mesh is illustrated in
Figure 2. Sometimes wraparound edges are included, so that a node labeled
(x, n − 1) is connected to (x, 0) and a node labeled (n − 1, y) is connected
to (0, y).

Theorem 3.1 With high probability, an N -node mesh can route any per-
mutation of N packets in O(

√
N) steps using constant-size queues.

Proof: The algorithm consists of four phases. In the first phase only those
packets that need to route up and to the right are sent. The paths of the
packets are selected greedily with each packet first traveling to the correct
row, and then to the correct column. The level of a node is the sum of its
row and column numbers. This simple strategy guarantees that both the
congestion and the number of levels of the phase are O(

√
N). The packets

19



are scheduled using the O(c+L+log N)-step algorithm from Section 2. The
up–right phase is followed by up–left, down–right, and down–left phases.

4 Routing on butterflies

In this section we apply the scheduling algorithm from Section 2 to route
N packets in O(log N) steps on an N -node butterfly using constant size
queues. We essentially duplicate the result of Ranade [29], but the proof is
simpler.

In a butterfly network, each node has a distinct label 〈l, r〉, where l is
its level and r is its row. In an n-input butterfly, l is an integer between
0 and log n, and r is a log n-bit binary number. The nodes on level 0
and log n are called the inputs and outputs, respectively. Thus, an n-input
butterfly has N = n(log n + 1) nodes. For l < log n, a node labeled 〈l, r〉 is
connected to nodes 〈l+1, r〉 and 〈l+1, r(l)〉, where r(l) denotes r with the lth
bit complemented. An 8-input butterfly network is illustrated in Figure 3.
Sometimes the input and output nodes in each row are identified as the
same node. In this case the number of nodes is N = n log n. The butterfly
has several natural recursive decompositions. For example, removing the
nodes on level 0 (or log n) and their incident edges leaves two n/2-input
subbutterflies.

Theorem 4.1 With high probability, an N -node butterfly can route any
permutation of N packets in O(log N) steps using constant size queues.

Proof: Routing is performed on a logical network consisting of 4 log n + 1
levels. The first log n levels of the logical network are linear arrays. The
packets originate in these arrays, one to a node. Levels log n through 2 log n
form a butterfly network. Levels 2 log n through 3 log n consist of a butterfly
with its levels reversed. The last log n levels are again linear arrays. Each
packet has its destination in one of the arrays spanning levels 3 log n to
4 log n. Packets with the same destination are combined. The butterfly
simulates each step of this logical network in a constant number of steps.
Paths for the packets are selected using Valiant’s paradigm; each packet
travels to a random intermediate destination on level 2 log n before moving
on to its final destination. This strategy ensures that with high probability,
say at least 1 − 1/Nk1 , where k1 is a constant, the congestion is O(log N).
Since the paths are chosen independently of the ranks for the packets, the
scheduling algorithm can treat the paths as if they were fixed. Assuming

20



000

001

010

011

100

101

110

111

0 1 2 3

row

level

Figure 3: An 8-input butterfly network. Each node has a level number
between 0 and 3, and a 3-bit row number. A node on level l in row r is
connected to the nodes on level l + 1 in rows r and r(l), where where r(l)

denotes r with the lth bit complemented.

that the paths have congestion O(log N), by Theorem 2.9 the scheduling
algorithm delivers all of the packets in O(log N) steps, with high probability,
say at least 1−1/Nk2 . Thus, the probability that either the congestion is too
large or that the scheduling algorithm takes too long to deliver the packets
is at most 1/Nk1 + 1/Nk2 .

Theorem 4.2 With high probability, an n-input butterfly can route a ran-
dom permutation of n packets from its inputs to its outputs in log n+o(log n)
steps.

Proof: If each input sends a single packet, the congestion will be O(log n/ log log n),
with high probability. Given paths with congestion O(log n/ log log n), by
Theorem 2.9 the delay is O(log n/ log log n)+o(log N), with high probability.

5 Routing on shuffle-exchange graphs

In this section, we present a randomized algorithm for routing any permu-
tation of N packets on an N -node shuffle-exchange graph in O(log N) steps

21



000 111

100

010

101

110

011

001

Figure 4: An 8-node shuffle-exchange graph. Shuffle edges are solid, ex-
change edges dashed.

using constant-size queues. The previous O(log N)-time algorithms [2] re-
quired queues of size Ω(log N).

Figure 4 shows an 8-node shuffle-exchange graph. Each node is labeled
with a unique log N -bit binary string. A node labeled a = alog N−1 · · · a0 is
linked to a node labeled b = blog N−1 · · · b0 by a shuffle edge if rotating a one
position to the left or right yields b, i.e., if either b = a0alog N−1alog N−2 · · · a1

or b = alog N−2alog N−3 · · · a0alog N−1. Two nodes labeled a and b are linked
by an exchange edge if a and b differ in only the least significant (rightmost)
bit, i.e., b = alog N−1 · · · a1a0. In the figure, the shuffle edges are solid, and
the exchange edges are dashed.

The removal of the exchange edges partitions the graph into a set of
connected components called necklaces. Each necklace is a ring of nodes
connected by shuffle edges. If two nodes lie on the same necklace, then their
labels are rotations of each other. Due to cyclic symmetry, the number of
nodes in the necklaces differ. For example, in a 64-node shuffle-exchange
graph, the nodes 010101 and 101010 form a 2-node necklace, while 011011,
110110, and 101101 form a 3-node necklace. For each necklace, the node
with the lexicographically minimum label is chosen to be the necklace’s
representative.

22



5.1 Good and bad nodes

Unlike the mesh and butterfly networks, the shuffle-exchange graph cannot
emulate a leveled network in a transparent fashion. Nevertheless, it is still
possible to apply the O(c + L + log N) scheduling algorithm for leveled
networks to the problem of routing on the shuffle-exchange graph. The key
idea is that a large subset of the shuffle-exchange graph (at least N/5 nodes)
can emulate a leveled network. We call these nodes good nodes. The rest of
the nodes are bad.

A node can be classified as bad for one of three reasons:

1. its label does not contain a substring of log log N consecutive 0’s (we
consider the rightmost and leftmost bits in a label to be consecutive)
(type 1),

2. its label contains at least two disjoint longest substrings of at least
log log N consecutive 0’s (type 2), or

3. its label is 0 · · · 0 (type 3).

Thus, the label of every good node contains a unique longest substring of
0’s with length at least log log N . For simplicity, we assume that log log N
is integral, and that log N À log log N .

Since the length of a substring of consecutive 0’s in a label is not changed
by rotation, a necklace consists either entirely of good nodes or entirely of
bad nodes. Furthermore, each good necklace consists of log N good nodes
since a unique longest substring of consecutive 0’s precludes cyclic symmetry.

In order to route packets among all N nodes of the shuffle-exchange
graph, we associate the bad nodes with good nodes. A type-1 bad node is
associated with a good node by changing the least significant bit of its label
to a 1 and the log log N most significant bits to 0’s. Each bad necklace of
type 2 is associated with a good necklace by changing the two bits following
the leftmost group of 0’s in its representative’s label to 01. Finally, the node
0 · · · 0 is associated with its neighbor 0 · · · 01.

Lemma 5.1 At most 4 log N bad nodes are associated with any good neck-
lace.

Proof: Each type-1 bad node is associated with the representative of a
good necklace since, after the transformation, the longest string of consecu-
tive 0’s begins with the most significant bit. Only type-1 bad nodes whose

23



labels differ from the representative’s label in at most log log N + 1 bits are
associated with it, so at most 2log log N+1 = 2 log N type-1 bad nodes are
associated with any good necklace.

To assess the number of type-2 bad nodes associated with a good neck-
lace, we consider the label of the representative of the good necklace and
notice that only a bad necklace whose representative’s label differs in the
last bit of its leading block of 0’s and possibly the bit after that can be
mapped to the good necklace. Thus, at most two type-2 bad necklaces are
associated with any good necklace.

Finally, no bad nodes of either type 1 or 2 are associated with the neck-
lace of node 0 · · · 01.

Corollary 5.2 At least N/5 of the nodes are good.

Proof: By Lemma 5.1 at most 4 log N bad nodes are associated with any
good necklace. Since every good necklace contains exactly log N nodes, at
least N/5 of the nodes are good.

The remainder of this section provides the details of the routing algo-
rithm. We begin by describing a logical leveled network that the good nodes
can easily emulate with constant overhead. Next, we show that for any rout-
ing problem, choosing random intermediate destinations yields paths with
congestion and dilation O(log N) in this network, with high probability.
Thus, by applying the analysis of Section 2, routing on the logical network
takes O(log N) steps with high probability, and uses constant-sized queues.
We conclude by describing a deterministic algorithm for routing between
good and bad nodes.

5.2 A leveled network

The level of a node is determined by the distance to the representative node
in its necklace. An alternate way to write a node’s label is to place a line
under its least significant bit (which we call the current bit), and then rotate
the label until it matches its representative’s label. For example, 110001 can
also be written 000111. The level of a node is the position of the current
bit, starting with zero and counting from the left. For example, 000111 lies
on level 2. (Note that the representative node lies on level log N − 1.)

The problem with this leveling scheme is that although it induces a
leveling of the shift edges, it does not necessarily induce a leveling of the
exchange edges. An exchange edge may create a new longest substring of

24



0’s by appending two substrings separated by a single 1, and thus connect
two levels that are very far apart.

To overcome this difficulty, we replace the exchange edges with flip
edges. A flip edge links nodes labeled a and b if both are good, a =
alog N−1 · · · aj · · · a0, b = alog N−1 · · · aj1 · · · a0, j > 0, and aj is not in the
longest block of 0’s of a. Note that a flip edge extends a group of 0’s by at
most one. Thus no flip edge can create a new leading group of 0’s, because
if it grew a shorter group to be as long as the leading group, then it would
lead to a bad node of type 2, a contradiction since flip edges occur only be-
tween good nodes by definition. Thus flip edges are leveled. The operation
of the flip edges can be emulated by the shuffle-exchange graph with only
a constant factor of slowdown; each flip edge is composed of an exchange
edge, a shuffle edge, and possibly another exchange edge.

We denote by A the network composed of the good nodes, the shuffle
edges (excluding the shuffle edges from level log N − 1 to 0), and the flip
edges. Note that in network A, from the level 0 node of any necklace it
is possible to reach any other necklace whose longest string of 0’s has the
same or greater length by correcting bits starting from the end of the leading
block of 0’s.

In fact, we wish to be able to get from the level 0 node of a necklace
to any other necklace. Thus we append a mirror image of A to itself so
that from any level 0 node it is possible to reach necklaces with fewer 0’s in
the longest string. The leveling is extended in the natural manner. We call
this network AAr, and note that network A can emulate it with constant
slowdown.

We denote by L the network consisting of the shuffle edges on the good
nodes, again excluding shuffle edges from level log N − 1 to level 0. Our
method of path selection consists of routing from a good node to the level 0
node in its necklace, then routing to a random intermediate necklace, then
routing to the destination necklace, and finally routing to the appropriate
good node. Thus, we route in a leveled network composed of network L,
network AAr, another network AAr, and another network L. We extend
the leveling in the natural manner and note that network A can emulate the
whole thing with constant slowdown.

5.3 Path selection and congestion

For each packet we choose its path by uniformly choosing a random good
necklace for it to route through before it goes to its final destination. So the

25



path for a packet consists of a path through L to the node on level 0 of its
necklace, a path through AAr to its random intermediate necklace, a path
through the second AAr to its destination necklace, and a path through the
second L to the proper node of its destination necklace.

The following lemma shows that if at most O(log N) packets originate
and terminate in each good necklace, then this method yields paths with
congestion O(log N) with high probability.

Lemma 5.3 Suppose that each good necklace sends and receives at most
b log N packets, where b is a fixed constant. Then for any constant k1, there
is a constant k2 such that the probability that more than k2 log N packets use
any edge is at most 1/Nk1.

Proof: We observe that for the paths in the copies of L, we have congestion
at most b log N , since at most b log N packets start or end in any good
necklace. By symmetry we claim that the analysis of the path portions in
both copies of AAr is the same. Finally we recall that in AAr, we route
packets going to intermediate destination necklaces with fewer 0’s straight
across (i.e, without using any flip edges) in network A. Thus, the congestion
of the straight across paths in A is at most b log N . Also, we route packets
going to intermediate necklaces with the same or more 0’s straight across
in network Ar. We will show that any intermediate necklace gets O(log n)
packets with high probability, so the straight across portion of the paths in
Ar will have O(log N) congestion. To finish, we analyze the congestion in
network A due to packets routing to intermediate necklaces with the same
or more 0’s, and claim that the arguments will hold by symmetry for AAr.

Consider a shuffle or flip edge e in the first copy of network A. Suppose
that e traverses levels m and m + 1. Let x be the length of the longest
string of 0’s in the necklace to which e goes. If m < x, then e must be a
shuffle edge and no packet from any other necklace can use e, since we only
map to a necklace via flip edges after its longest string of 0’s. Otherwise
(m ≥ x) we consider the number of packets from other necklaces that can
use e. We know that only packets from at most 2l other necklaces with
l = m − log log N can use e since at most l bits can change by level m + 1
(there are no flip edges in the first lg lg N levels of any necklace). Thus the
number of packets that can use e is at most b · 2l log N since each necklace
starts with at most b log N packets. The probability that a specific packet
uses e is the number of necklaces that can be reached using e, at most
2log N−m = 2log N−log log N−l (i.e., necklaces that match e’s necklace in the

26



first m = l + log log N bits), divided by the total number of good necklaces,
at least N/5 log N , which is just 5/2l.

The probability that more than k2 log N packets use e is at most
(

b · 2l log N

k2 log N

)

(

5

2l

)k2 log N

,

since there are b · 2l log N Bernoulli trials, each succeeding with probability
5/2l. The probability that any of the O(N) edges of this stage has congestion
more than k2 log N is O(N) times this probability. Using the inequality
(a
b

)

≤ (ae/b)b, for any k1 we can bound the product by 1/Nk1 by choosing
k2 large enough.

Because the congestion and number of levels are O(log N), with high
probability, the time to route the packets between the good nodes is also
O(log N), with high probability, and the queue size is constant.

5.4 Packets from bad nodes

In this section we show how to deterministically route the packets from the
bad nodes to their associated good necklaces.

Lemma 5.4 Packets from bad nodes can be routed to the associated good
necklaces deterministically in O(log N) time using constant-size queues.

Proof: Recall that we associate a bad node of type 1 with the necklace
represented by a 1 in the least significant or current bit plus log log N 0’s
in the most significant bits. We route these packets in the shuffle exchange
graph by changing the current bit to a 1 (if it is 0) and changing log log N
bits to the right to 0’s. Thus we map a bad node to a good necklace at its
level log log N node.

For any necklace, the shuffle-exchange graph emulates binary tree whose
leaves are mapped to the necklace. Each edge of the tree is emulated by
either a shuffle edge or an exchange edge followed by a shuffle edge. Each
level of the tree corresponds to one of the log log N+1 bits that were changed.
Therefore, we can route packets from the binary tree leaves to the necklace,
and distribute them along the necklace deterministically. This is easily done
in O(log N) time with constant queues. The routing from the necklace to the
tree is equally trivial. But, we need to ensure that traffic from the separate
binary trees does not interfere too much. This is easy since any bad node
is in at most two binary trees; in at most one as a leaf since any node is

27



mapped to exactly one good node, and in at most one as an internal node
since the number of 0’s between the current bit and the closest 1 to the left
determines a unique level and the rest of the bits determine a unique tree.

To finish, we consider bad nodes of type 2. These are nodes without a
unique longest string of 0’s. Here we extend one of the groups of 0’s by one
0, making sure not to join two groups of 0’s by inserting a 1, thus mimicking
the flip operation. For any good necklace whose representative is 0k1... only
the necklaces represented by 0k−110... and 0k−111... can be mapped to it.
Again, at most two bad necklaces are associated with any good necklace.

For each packet in such a bad necklace we route it through the node con-
necting it to the appropriate good necklace. We perform this movement by
pipelining the packets through the flip edge that connects the two necklaces.
We see that this mapping maps at most one packet from the bad necklace to
a node in the good necklace. Since we are basically routing on linear arrays
of length O(log N), O(log N) steps are sufficient to route the packets from
the two bad necklaces.

This finishes the description of the maps to and from all the bad nodes
except for node 0 · · · 0, which is adjacent to node 0 · · · 01.

5.5 Summary

The main result of this section is summarized in the following theorem.

Theorem 5.5 With high probability, an N -node shuffle-exchange graph can
route any permutation of N packets in O(log N) steps using constant-size
queues.

Proof: There are three phases to the algorithm. First, packets originat-
ing at bad nodes are deterministically routed to the good nodes with which
they are associated. By Lemma 5.4 this phase requires O(log N) steps.
Next, packets are routed between the good nodes on the logical network.
Since at most 4 log N bad nodes are associated with each good necklace,
with high probability the congestion of the paths on the logical network is
O(log N), by Lemma 5.3. Thus, this phase requires O(log N) steps, with
high probability. The packets are routed in O(log N) steps using the schedul-
ing algorithm from Section 2. Finally, packets destined for bad nodes are
deterministically routed from the good nodes to bad. By an analysis similar
to that of Lemma 5.4, this phase also requires O(log N) steps.

28



6 Routing on multidimensional arrays

In this section we describe a randomized algorithm for routing kN pack-
ets on an N -node k-dimensional array in O(kM) steps using constant-size
queues, where M is the maximum of the k side lengths of the array. Special
cases include the mesh (k = 2) and the hypercube (M = 2). For arrays of
dimension greater than two, no asymptotically-optimal constant-queue-size
routing algorithms were previously known.

A k-dimensional array with side lengths Mi ≥ 2, for 1 ≤ i ≤ k, has N =
∏k

i=1 Mi nodes and 2kN edges. Each node has a distinct label (w1, . . . , wk),
where 0 ≤ wi ≤ Mi − 1, for 1 ≤ i ≤ k. A node has two edges for each
dimension; for 1 ≤ i ≤ k, (w1, . . . , wk) has an edge to (w1, . . . , wi + 1 mod
Mi, . . . , wk) and to (w1, . . . , wi − 1 mod Mi, . . . , wk). (If Mi = 2, as in the
hypercube, then the node has only one edge in dimension i. In this case,
the total number of edges is only kN .) We assume that at each step, a node
may simultaneously transmit and receive a packet on each of its 2k edges,
even if k is not constant.

In order to apply the scheduling algorithm from Section 2, routing is
performed on a bounded-degree leveled logical network that the array em-
ulates. (Note that the degree of the array itself is not necessarily con-
stant.) The logical network consists of (2k + 1) plateaus labeled 0 through
2k, each consisting of N logical nodes. Each node in the logical network
has a label (w1, . . . , wk), where 0 ≤ wj ≤ Mj for 1 ≤ j ≤ k, that is dis-
tinct from the labels of the other nodes on the same plateau. Each node
in the logical network has at most two incoming edges and two outgo-
ing edges. We begin by describing the edges in plateaus 0 through k. A
node on plateau i has edges only in dimensions i and i + 1. If i > 0 and
wi < Mi − 1, then the node labeled (w1, . . . , wk) has an edge to the node
in the same plateau with label (w1, . . . , wi + 1, . . . , wk). Also, if i < k and
wi+1 < Mi+1 − 1, then the node has an edge to (w1, . . . , wi+1 + 1, . . . , wk)
on the same plateau. The only connections to plateau i + 1 come from
nodes with wi+1 = Mi+1 − 1. For i < k, (w1, . . . , wi, Mi+1 − 1, wi+2, . . . , wk)
is connected to (w1, . . . , wi, 0, wi+2, . . . , wk) on plateau i + 1. Plateau k is
connected to plateau k + 1 by dimension 1 edges. Plateaus k + 1 through
2k are essentially a copy of plateaus 1 through k. The edges on plateau
i, k + 1 ≤ i ≤ 2k are given by the same rules as the edges on on plateau
i − 2k. The level of node (w1, . . . , wk), 0 ≤ i ≤ k, is

∑k
j=1 wj +

∑i
j=1 Mj .

For k ≤ i ≤ 2k, the level is
∑k

j=1 wj +
∑i−k

j=1 Mj +
∑k

j=1 Mj . The network is
leveled because each edge connects a pair of nodes on adjacent levels.

29



Each step of the logical network can be emulated by the array in a
constant number of steps. The array node labeled (w1, . . . , wk) emulates the
2k + 1 logical nodes labeled (w1, . . . , wk), one on each plateau. The array
edge from (w1, . . . , wi, . . . , wk) to (w1, . . . , wi + 1 mod Mi, . . . , wk) emulates
at most four logical edges, one each on plateaus i− 1, i, k + i− 1 and k + i.
Note that even though k may not be a constant, we are assuming that each
node can process k packets in a single step.

Paths for the packets are selected using Valiant’s paradigm. Initially each
node on plateau 0 holds k packets in an initial queue. A packet travels from
its origin on plateau 0 to a random destination on plateau k, then continues
on to its true destination on plateau 2k. Suppose that a packet originating
at (x1, . . . , xk) on plateau 0 is to pass through (r1, . . . , rk) on plateau k on
its way to (y1, . . . , yk) on plateau 2k. In the first half of the path plateau
i is used to make the ith component of the packet’s location match the ith
component of its random destination, for 1 ≤ i ≤ k. The packet enters
plateau i ≥ 1 at node (r1, . . . , ri−1, 0, xi+1, . . . , xk) and traverses dimension
i edges to (r1, . . . , ri, xi+1, . . . , xk). The packet then traverses dimension
i + 1 edges to (r1, . . . , ri, Mi+1 − 1, xi+2, . . . , xk) and crosses over to node
(r1, . . . , ri, 0, xi+2, . . . , xk) on plateau i + 1. In the second half of the path,
plateau k + i is used to make the ith component of the packet’s location
match the ith component of the true destination in a similar fashion. The
following lemma shows that with high probability, the congestion c of the
paths is at most O(kM), where M is the maximum side length.

Lemma 6.1 For any constant k1, there is a constant k2 such that the prob-
ability that c > k2kM is at most 1/Nk1.

Proof: We analyze congestion in the first half of the network only. The
calculation for the second half is identical.

We begin by bounding the probability that a particular edge is congested.
There are two parts to the calculation: counting the number of packets that
can possibly use the edge and bounding the probability that an individual
packet actually does so. First, we count packets that can use the edge.
Consider an edge on plateau i − 1 or i from (w1, . . . , wk) to (w1, . . . , wi +
1 mod Mi, . . . , wk). Since a packet does not use any dimension i+1 through
k edges before it uses a dimension i edge, any packet that uses the edge must
come from an origin whose last k−i components xi+1 through xk match wi+1

through wk. There are at most M1 · · ·Mi such origins, each transmitting k
packets. Next we bound the probability that each of these packets actually

30



uses the edge. A packet uses the edge only if components r1 through ri−1 of
its random destination match w1 through wi−1. The probability that these
components match is 1/M1 · · ·Mi−1.

Since the random destinations are chosen independently, the number
of packets S that pass through the edge has a binomial distribution. The
probability that more than k2kM packets use an edge is at most

Pr[S > k2kM ] ≤
(

kM1 · · ·Mi

k2kM

)

(

1

M1 · · ·Mi−1

)k2kM

.

Using the inequalities Mi ≤ M for 1 ≤ i ≤ k, and
(a
b

)

≤
(

ae
b

)b
, we have

Pr[S > k2kM ] ≤
(

e
k2

)k2kM
.

To bound the probability that any edge is congested, we simply sum the
probabilities that each particular edge is congested, i.e.,

Pr[c > k2kM ] ≤ 4kN

(

e

k2

)k2kM

.

Since kM > log N , for any k1, there is a k2 such that this probability is at
most 1/Nk1 .

Theorem 6.2 For any constant k1, there is a constant k2 such that the
probability that any packet is not delivered by step k2kM is at most 1/Nk1.

Proof: With high probability, the scheduling algorithm from Section 2
delivers all packets in O(c + L + log N) steps. The number of levels L is
O(kM), and by Lemma 6.1 with high probability the congestion c is O(kM).
Also, log N < kM .

7 Construction of area and volume-universal net-

works

In this section we construct a class of networks that are area-universal in
the sense that a network in the class with N nodes has area O(N) and can,
with high probability, simulate in O(log N) steps each step of any network
of area O(N). The networks are based on the fat-trees of Greenberg and
Leiserson [10] and the simulation uses the packet routing algorithm from
Section 2.

31



m = 2

channel

Figure 5: A fat-tree.

Leiserson was the first to display a class of networks that could efficiently
simulate any other network of the same area or volume. In [21] he showed
that a fat-tree of area O(N) can simulate in O(log3 N) bit-steps each bit-
step of any network of area O(N). (In the bit model an edge can transmit a
single bit in each time step. All of the algorithms in this paper are described
in terms of the packet model, in which an edge can transmit a packet of at
least log N bits in one step.) Leiserson’s simulation used an off-line routing
algorithm for fat-trees. On-line routing algorithms were later developed by
Greenberg and Leiserson [10].

A fat-tree network is shown in Figure 5. Its underlying structure is a
complete 4-ary tree. Each edge in the 4-ary tree corresponds to a pair of
oppositely directed groups of edges called channels. The channel directed
from the leaves to the root is called an up channel; the other is called a down
channel. The capacity of a channel C, cap(C), is the number of edges In the
channel. We call the tree “fat” because the capacities of the channels grow
by a factor of 2 at every level. A fat-tree of height m has M = 2m nodes at
the root and M2 = 22m leaves.

It will prove useful to label the nodes at the top and bottom of each
channel. Let the level of a node be its distance from the leaves. Suppose
a channel C connects cap(C)/2 = 2l nodes at level l with cap(C) = 2l+1

nodes at level l + 1. Give the nodes at level l labels 0 through 2l − 1 and
the nodes at level l + 1 labels 0 through 2l+1 − 1. Then node k at level l is
connected to nodes k and k + 2l at level l + 1. The following lemma relates

32



the labels of the nodes on a packet’s path from a leaf to the root.

Lemma 7.1 There is a unique shortest path from any leaf to a node labeled
k at the root, for 0 ≤ k ≤ M −1, and that path passes through a node labeled
k mod 2l at level l, for 0 ≤ l ≤ m.

The simplest way to route packets in a leveled fashion on a fat-tree is to
route every packet all of the way up to the root before routing it down to its
destination. The problem with this strategy is that it may cause unnecessary
congestion at the root. For example, suppose that every leaf wants to send a
single packet to its sibling. If these packets are sent to the root, then M2/2
packets will pass through each channel at the root. On the other hand, if
each packet goes up just one level before turning around, then at most one
packet will pass through any channel in the entire network. Thus, we will
route every packet from its origin to its destination along a path that passes
through as few channels as possible.

For a set Q of packets to be delivered between the leaves of the fat-tree,
we define the load of Q on a channel C, load(Q, C), to be the number of
different destinations of packets in Q for which at least one packet must
pass through C. (A packet must pass through C only if every path from
the packet’s origin to its destination passes through the C.) Note that even
if many packets with the same destination must pass through a channel,
that destination contributes at most one to the load of the channel. The
routing algorithm will combine all packets with the same destination that
attempt to pass through the channel. We define the load factor of Q on
C, λ(Q, C), to be the ratio of the load of Q on C to the capacity of C,
λ(Q, C) = load(Q, C)/cap(C). The load factor λ(Q) on the entire network
is simply the maximum load factor on any channel λ(Q) = maxC λ(Q, C).
The load factor is a lower bound on the the number of steps required to
deliver Q. We shall sometimes write λ to denote λ(Q) when the set of
packets to be delivered is clear from the context.

In a leveled fat-tree a node at the top of an up channel at level l is
connected to itself at the top of the corresponding down channel by a linear
chain of nodes of length 2(m− l). A packet may only make a transition from
an up channel to a down channel by traversing a chain. Thus all shortest
paths between leaves in a leveled fat-tree have length 2m. Note that the
load of a set of packets on a channel of the leveled fat-tree is identical to the
load on the corresponding channel in the fat-tree.

33



The path that a packet for destination x takes through a leveled fat-tree
is determined by the m-universal hash function [7]

path(x) =

((

m−1
∑

i=0

aix
i

)

mod P

)

mod M,

where P is a prime number larger than the number of possible different
destinations, and the ai ∈ ZP are chosen at random off-line. A packet
with destination x follows up channels along the unique shortest path to
the node labeled path(x) at the root until it can reach x without using
any more up channels. It then crosses over to a down channel via a chain,
and follows down channels to x. Note that a packet only passes through
a channel if all paths from its origin to its destination pass through that
channel. Also, all packets with destination x that pass through channel C
pass through node (path(x) mod cap(C)) at the top of C and through node
(path(x) mod (cap(C)/2)) at the bottom of C.

The following lemma shows that we can use the scheduling algorithm
from Section 2 to route packets in a fat-tree.

Lemma 7.2 For any constant c1, there is a constant c2 such that the prob-
ability that the number of steps required to deliver a set Q of N packets with
load factor λ is more than c2(λ + log M) is at most 1/M c1, provided that N
is polynomial in M .

Proof: The paths of the packets are first randomized using the universal
hash function path. With high probability, the resulting congestion is c =
O(λ + log M). Each packet travels a distance of L = 2m = 2 log M . The
packets are then scheduled using the algorithm from Section 2.

Let us now consider the VLSI area requirements [34] of fat-trees. A
fat-tree with root capacity M and Θ(M2) nodes has a layout with area
O(M2 log2 M) that is obtained by embedding the fat-tree in the tree of
meshes [15]. The nodes of the tree of meshes in this layout are separated by
a distance of log M in both the horizontal and vertical directions. Thus, the
Θ(log M) space for the chain associated with each node in the leveled fat-tree
can be allocated without increasing the asymptotic area of the layout. (In
fact, it is possible to attach a chain of size O(log2 M) to each fat-tree node
without increasing the area by more than a constant factor.) The leaves
of the fat-tree are separated in the layout from each other by a distance
of log M in each direction. We can improve the density of nodes without

34



increasing the asymptotic area of the layout by connecting a log M × log M
mesh of nodes to each leaf. The resulting network has Θ(M2 log2 M) nodes
and area Θ(M2 log2 M). The N -node network in this class has root capacity
Θ(

√
N/ log N), Θ(N/ log2 N) leaves, and area Θ(N).

The following theorem shows that this class of networks is area-universal.

Theorem 7.3 With high probability, an N -node network U of area Θ(N)
can simulate in O(log N) steps each step of any network B of area O(N).

Proof: The nodes of network B are mapped to the nodes of the area-
universal network U off-line using a recursive decomposition technique as in
[21]. In each step, an edge of B is simulated by routing packets between the
nodes that it connects. At each level of the recursion at most O(cap(C) ·
log N) edges connect the nodes mapped below a channel C with the rest
of the network. This property of the mapping ensures that the load factor
of each set of packets used in the simulation of B is at most O(log N). At
the bottom of the decomposition tree, a O(log N) × O(log N) region of the
layout of B is mapped to each leaf of the fat-tree. The O(log N)×O(log N)
mesh connected to the leaf in U simulates this region of B with O(log N)
slowdown using a mesh routing algorithm such as the one in Section 3.

The study of fat-tree routing algorithms that perform combining was
motivated in part by an abstraction of the volume and area-universal net-
works called the distributed random-access machine (DRAM). A host of
conservative algorithms for tree and graph problems for the exclusive-read
exclusive-write (EREW) DRAM are presented in [22]. Recently we dis-
covered conservative concurrent-read concurrent-write (CRCW) algorithms
that require fewer steps for some of these problems [23]. Until now, however,
no efficient fat-tree routing algorithms that perform combining were known.
The O(λ + log N) step routing algorithm presented here fills the void.

Only slight modifications to the area-universal fat-tree are necessary to
make it volume universal [10]. The underlying structure of the volume-
universal fat-tree is a complete 8-ary tree. Instead of doubling at each level,
the channel capacities increase by a factor of 4. The tree has m levels, root
capacity M = 22m, and M3/2 = 23m leaves. The nodes at the top of a
channel at level l are labeled 0 through 4l −1. Node k at level l is connected
to nodes k, k+4l, k+2 ·4l, and k+3 ·4l at level l+1. A layout with volume
O(M3/2 log3/2 M) for the fat-tree can be obtained by embedding it in the
three-dimensional tree of meshes. As before, a chain of size O(log3/2 M)

35



can be attached to each node of the fat-tree without increasing the asymp-
totic layout area and the density of nodes can be improved by connecting a
log1/2 M × log1/2 M × log1/2 M mesh to each leaf.

The simulation scheme in this section can also be used to simulate
shared-bus networks. In a shared-bus network, an edge is allowed to connect
more than two nodes. If several nodes attempt to send packets on the same
edge in the same step, then the packets are combined using some simple
rule to form a single packet. Combining is assumed to require a single step,
regardless of the number of packets combined or the rule used. Because the
fat-tree routing algorithm is capable of combining, it is no more difficult for
the fat-tree to simulate shared-bus networks than to simulate point-to-point
networks (i.e., networks in which each edge connects a pair of nodes). The
simulation is optimal because a point-to-point network may require Ω(log N)
steps to simulate one step of a shared-bus network. Previously, no fat-tree
routing algorithms were capable of combining packets to the same desti-
nation. As a consequence, no scheme for simulating shared-bus networks
was known. A network that can simulate in O(1) steps each step of any
shared-bus network area of equal area was presented in [24]. However, the
connections in that network are not fixed, but instead nodes communicate
via reconfigurable buses.

8 Sorting on butterflies

In this section we present a randomized algorithm for sorting N log N pack-
ets on an N log N -node butterfly network in O(log N) steps using constant-
size queues. The algorithm is based on the Flashsort algorithm of Reif and
Valiant [32]. The main difference is that we use the algorithm for scheduling
packets on leveled networks in place of their scheduling algorithm, which
requires queues of size O(log N). A similar approach has been suggested
previously by Pippenger [26].

8.1 The algorithm

The basic outline of the algorithm is the same as that of Flashsort. The first
step is to randomly select a small set of splitters from among the packets
that are to be sorted. Next the splitters are sorted deterministically. The
splitters partition the packets into intervals. The ith interval consists of
those packets whose keys are larger than the key of the (i − 1)st largest
splitter, and smaller than the key of the ith largest splitter. (We assume

36



without loss of generality that all of the keys are distinct.) Using the splitters
as guides, each interval of packets is routed to a different subbutterfly, where
it is sorted recursively.

We begin by describing a recursive algorithm for sorting N/ logα N pack-
ets in O(log N) time on an N log N -node butterfly, where α is some fixed
constant greater than one. The butterfly is “lightly loaded” by this factor
of logα+1 N to ensure that, with high probability, at the lower levels of the
recursion the number of packets to be sorted by each subbutterfly does not
exceed the number of inputs to that subbutterfly. When the algorithm is
invoked, each packet must reside at a distinct input. As we shall see, this
algorithm can be combined with Leighton’s Columnsort algorithm [16] to
sort all N log N packets in O(log N) time.

The steps taken by a subbutterfly with M inputs are presented in some
detail in Figure 6.

The first step in the algorithm is to count the number of packets entering
the subbutterfly. Since the packets reside in distinct inputs, the total number
of packets can be computed via a parallel prefix computation. The prefix
computation can be performed in O(log M) time deterministically.

Next each packet independently chooses to be a splitter candidate with
probability

√
M/n. As we shall see, with high probability the number of

candidates is between
√

M/2 and 3
√

M/2. This step requires only constant
time.

The candidates are then sorted in O(log M) time using a simple deter-
ministic algorithm based on counting due to Nassimi and Sahni [25].

After the candidates are sorted, every (log N)th one in the sorted or-
der is chosen to be a splitter. This oversampling technique, due to Reif,
ensures that each of the intervals contains approximately the same number
of splitters, with high probability. Note that we oversample by a factor of
log N , where N is the number of inputs in the entire network, independent
of the number of inputs, M , of the subbutterfly on which the algorithm is
invoked. Since with high probability there are at least

√
M/2 log N split-

ters, the subbutterflies at the next level of recursion should have at most
2
√

M log N inputs.
Next the splitters are distributed throughout the M -input subbutterfly

so that they can direct each interval of packets to the appropriate smaller
subbutterfly. We distribute a copy of the median splitter to each node in level
0 of the M -input subbutterfly. Then we divide the splitters into upper and
lower halves. We distribute a copy of the median splitter from the upper half
to each node in the upper half of level 1. Similarly, we distribute a copy of the

37



1. Count the number of packets entering the M -input subbutterfly. Let
the number of packets be denoted by n.

2. Randomly and independently, make each packet a candidate with
probability

√
M/n.

3. Sort the candidates deterministically.

4. Select every log Nth candidate to be a splitter.

5. Distribute the splitters for splitter-directed routing.

6. Route each packet to a random row of the M -input subbutterfly.

7. Route each interval to a smaller subbutterfly via splitter-directed rout-
ing.

8. Distribute the packets in each interval to distinct inputs of the corre-
sponding smaller subbutterflies.

9. Sort the intervals recursively.

Figure 6: The steps performed by an M -input subbutterfly in the recursive
algorithm for sorting N/ logα N packets in O(log N) time on an N log N -
node butterfly using constant-size queues.

38



median splitter from the lower half to each node in the lower half of level 1.
The process continues in this fashion until all of the splitters are used up. At
this point, every node in the first Θ(log(

√
M/ log N)) levels of the butterfly

has a copy of a splitter. This step can be performed deterministically in
O(log M) time.

After the splitters are positioned, each packet is routed to a random row
of the M -input subbutterfly. The packets are scheduled using the algorithm
for routing on leveled networks.

Each interval of packets is then routed to a different smaller subbutterfly.
This step is called splitter-directed routing [32]. The paths of the packets
are determined as follows. At level 0, each packet compares itself to the
median splitter. If it is larger, it moves to the upper half of the second level,
otherwise it moves to the lower half. The process is repeated at the level 1,
with each packet being directed to the appropriate quarter of level 2, and
so on. The packets are scheduled using the algorithm for routing on leveled
networks. When all of the packets have been routed along in the butterfly
as deeply as the splitters are assigned, each subbutterfly at that level picks
new splitters and proceeds recursively.

The last step before the recursive call is to position the packets in each
smaller subbutterfly in distinct inputs. On an M -input butterfly where at
most c packets enter each input, M packets can be distributed to distinct
inputs deterministically in O(c + log M) time.

The recursion continues until either the number of inputs, M , is smaller

than 2
√

log N , or the number of packets, n, is smaller than
√

M . In the
first case, the sort is completed using Batcher’s odd-even merge sort. An
M -input butterfly can sort M packets in O(log2 M) time using odd-even

merge sort. For M = 2
√

log N , the time is O(log N). In the second case, the
packets can be sorted deterministically in O(log M) time using Nassimi and
Sahni’s sorting algorithm, as in step four.

We can now make a rough estimate of the running time of this algorithm.
Steps 1 and 2 are performed deterministically in O(log M) time. Assuming
that there are O(

√
M) candidates, Steps 3, 4, and 5 also require O(log M)

time. As we shall see, the expected time for Steps 6, 7 and 8 is O(log M).
Although these steps sometimes take longer than expected, let us assume
for now that they do not. In this case, the running time is given by the
recurrence

T (M) ≤
{

T (2
√

M log N) + O(log M) M > 2
√

log N

O(log N) M ≤ 2
√

log N

39



which has solution T (N) = O(log N).

8.2 Analysis

The analysis of the algorithm is broken into three parts, each corresponding
to a different use of randomization in the algorithm. We first examine the
use of randomization in selecting the splitters. We show that, with high
probability, the number of splitters chosen by each butterfly is within a con-
stant factor of the expectation and the number of packets in each interval
is smaller than the number of inputs of the subbutterfly to which it is as-
signed. Next, we bound the probability that the congestion is large at any
particular switch in Steps 6 and 7. Finally, we show that if the packets are
scheduled using the randomized algorithm for leveled networks, then it is
unlikely that a delay of more than O(log N) will accumulate over the course
of the algorithm.

8.3 Bounding the load

The first step in the analysis is to show that, with high probability, the num-
ber of splitter candidates chosen by each butterfly is within a constant factor
of the expectation. We say that an M -input butterfly is well-partitioned if
the number of splitter candidates chosen is between

√
M/2 and 3

√
M/2.

The 3
√

M/2 upper bound ensures that the candidates can be sorted deter-
ministically by the butterfly in O(log M) time and the

√
M/2 lower bound

implies that the subbutterflies at the next level of recursion will have at
most 2

√
M log N inputs. If all of the butterflies are well-partitioned, then

the algorithm terminates after O(log log N) levels of recursion. (The choice
of 1/2 and 3/2 as the coefficients of

√
M are not particularly important.

Other constants would serve equally well.)

Lemma 8.1 For any fixed constant k1 there is a constant k2 such that
the probability that any butterfly with at least k2 log2 N inputs is not well-
partitioned is at most 1/Nk1.

Proof: We begin by considering a single M -input butterfly that is to sort
n packets. Since each packet chooses independently to be a candidate, the
number of candidates has a binomial distribution. Let S be the number of
successes in r independent Bernoulli trials where each trial has probability p
of success. Then we have Pr[S = s] =

(r
s

)

ps(1− p)r−s. We estimate the area

40



under the tails of this binomial distribution using a Chernoff-type bound [8].
Following Angluin and Valiant [3] we have

Pr[S ≤ γ1rp] ≤ e−(1−γ1)2rp/2

Pr[S ≥ γ2rp] ≤ e−(1−γ2)2rp/3

for 0 ≤ γ1 ≤ 1 and 1 ≤ γ2 ≤ 2. In our application r = n, p =
√

M/n,
γ1 = 1/2, and γ2 = 3/2. For any fixed constant k3, there is a constant k2

such that the right-hand sides of the two inequalities sum to at most 1/Nk3

for M ≥ k2 log2 N .
To bound the probability that any butterfly is not well-partitioned, we

sum the probabilities for all of the individual butterflies. Over the course
of the algorithm, the algorithm is invoked on at most N log N individual
butterflies. Thus, the sum is at most log N/Nk3−1. For any k1, there is a k3

such that this sum is at most 1/Nk1 .

The next lemma shows that, with high probability, the number of packets
in each interval is at most a constant factor times its expectation. We say
that an M -input butterfly that is assigned n packets to sort is δ-split if every
interval has size at most δn log N/

√
M . As we shall see, if every butterfly

is O(1)-split and there are O(log log N) levels of recursion, then by lightly
loading the butterfly we can ensure that no butterfly is assigned too many
packets to sort.

Lemma 8.2 For any fixed constant k1 there is a constant k2 such that the
probability that every butterfly is k2-split is at least 1 − 1/Nk1.

Proof: We begin by examining a single packet in a single M -input butterfly
that is to sort n-packets. To show that a packet lies in an interval of size at
most k2n log N/

√
M it is sufficient to show that both following and preceding

it in the sorted order at least log N of the next k2n log N/2
√

M packets are
candidates.

First we consider the packets that follow in the sorted order. The number
of candidates in a sequence of k2n log N/2

√
M packets has a binomial dis-

tribution. For r = k2n log N/2
√

M , p =
√

M/n, rp = k2 log N/2, γ1 = 2/k2,
and k2 > 2, we have Pr[S ≤ log N ] ≤ e−k2(1−2/k2)2 log N/4. For any k3 we can
make the right-hand side smaller than 1/Nk3 by choosing k2 large enough.

The calculation for the packets that precede in the sorted order are
identical. The probability that fewer log N of the preceding k2n log N/2

√
M

packets are candidates is at most 1/Nk3 . Thus, the probability that an

41



individual packet lies in an interval of size greater than k2n log N/2
√

M is
at most 2/Nk3 .

To bound the probability that any interval in the butterfly is too large
we sum the probabilities that each individual packet lies in an interval that
is too large. Since there are at most N log N packets, this sum is at most
2 log N/Nk3−1.

To bound the probability that any butterfly is not k2-split, we sum the
probabilities that each individual butterfly is not. Over the course of the
algorithm, the algorithm is invoked on at most N log N butterflies. The sum
of the probabilities is at most 2 log2 N/Nk3−2. For any constant k1, we can
make this sum at most 1/Nk1 by making k3 large enough.

The remainder of the analysis is conditioned on the event that every sub-
butterfly is well-partitioned and O(1)-split, which occurs with high probabil-
ity. Two technical points bear mentioning. First, Lemma 8.1 requires that
the number of inputs to every subbutterfly be at least k2 log2 N , where k2 is
some constant. Since the recursion terminates when the number of inputs

is 2
√

log N , N must be large enough that 2
√

log N > k2 log2 N . Second, both
Lemmas 8.1 and 8.2 hold independent of the number of packets to be sorted
by each subbutterfly. Thus, as the following lemmas show, we can adjust
the load on the butterfly in order to ensure that each M -input subbutterfly
receives at most M packets to sort.

Lemma 8.3 If every subbutterfly is well-partitioned then the number of lev-
els of recursion is O(log log N).

Proof: At each level of recursion the number of inputs drops from M to at

most 2
√

M/ log N , until the number of inputs reaches 2
√

log N .

Lemma 8.4 If every subbutterfly is well-partitioned and O(1)-split then
there is an α > 0 such that if the number of packets to be sorted is N/ logα N ,
then the number of packets are assigned to any M -input butterfly is at most
M .

Proof: Since the ratio of packets to inputs is 1/ logα N at the top level of the
recursion, and increases by at most a constant factor at each of O(log log N)
levels, it is possible to choose α such that at the bottom level it will be at
most one.

42



8.4 Bounding the congestion at each switch

The second step in the analysis is to bound the probability that too many
packets pass through any switch in Steps 6 and 7. The following lemma
provides a bound on the probability that the congestion, c, in an M -input
butterfly exceeds log M in either of of these steps.

Lemma 8.5 There is a fixed constant β1 such that for s > log M ,

Pr[c ≥ s] ≤
(

β1

s

)s

.

Proof: For the sake of brevity, we examine Step 7 only. A similar (and
simpler) analysis holds for Step 6.

We begin by counting the number of packets that can possibly use a
switch. Let L denote the depth of an M -input butterfly, i.e., L = log M .
From a switch at level l, 0 ≤ l ≤ L, 2L−l rows can be reached. The splitters
partition these rows into subbutterflies. By Lemma 8.4, the number of
packets that enter each of these subbutterflies is at most the number of
inputs, with high probability. Thus, at most 2L−l packets can pass through
the switch.

Next we determine the probability that a packet that can pass through
the switch actually does so. A switch at level l can be reached from 2l

different inputs. Since each packet begins in a random input, the probability
that it can reach the switch is 2l−L.

The number of packets, S, that pass through a particular switch at level l
has a binomial distribution. The number of trials is r = 2L−l and the proba-

bility of success is p = 2l−L. Thus, Pr[S = s] =
(2L−l

s

)

(

2l−L
)s (

1 − 2l−L
)2L−l−s

and Pr[S ≥ s] ≤
(2L−l

s

)

(

2l−L
)s

. Using the inequality
(a
b

)

≤ (ae/b)b, we have

Pr[S ≥ s] ≤ (e/s)s.
We bound the congestion in the entire butterfly by summing the indi-

vidual probabilities over all 2O(L) switches in the butterfly. We have

Pr[c ≥ s] ≤ 2O(L)
(

e

s

)s

.

For s ≥ L, we have Pr[c ≥ s] ≤ (β1/s)s for some constant β1.

43



8.5 Bounding the cumulative delay

Since a subbutterfly does not begin to execute its algorithm until the larger
butterfly at the previous level of recursion is finished, delay in excess of
the time allotted to each butterfly accumulates over the course of the al-
gorithm. An M -input butterfly is allotted O(log M) time to perform its
steps. However, Steps 6, 7, and 8 are not guaranteed to terminate in time
O(log M). It is tempting to try to prove that these steps terminate quickly
with high probability. This approach fails because at the lower levels of the
recursion the problem size is so small that nothing can be ascertained with
high probability. Instead we must argue that although delay may occur at
any particular step, it is unlikely that a lot of delay will accumulate over a
sequence of steps.

The delay from Step 8 is relatively easy to analyze. This step requires
O(c+L) time; the delay depends only on the congestion. Lemma 8.5 bounds
the probability that the congestion is large.

There are two possible causes of delay in Steps 6 and 7. A poor set
of random rows for the packets can cause congestion at some node, which
guarantees that some packet will arrive at its destination late. On the other
hand, even if the congestion is small, a poor choice for the random ranks
used by the scheduling algorithm may delay a packet. The following pair
of lemmas bounds the probability that the delay from these steps is large.
The first is a restatement of the Theorem 2.9 in a slightly different form. It
bounds the probability that a packet will be delayed when the congestion
is small. The second puts this bound together with the bound that the
congestion is large from Lemma 8.5.

Lemma 8.6 For a bounded-degree leveled network with L levels and a set of
N = 2O(L) packets whose paths have congestion c, there are fixed constants
β2 > 1 and β3 > 1 such that the probability that any packet arrives at its
destination after time β2L + w, w > 0, is at most (β3c/w)w.

Proof: The proof of Theorem 2.9 shows that the probability that any packet
arrives at its destination after step L + w′ is at most

2k1L+log N ·
(

k2c

w′

)w′

,

where k1 and k2 are constants. Suppose that w′ > k1L + log N . Then this

probability is at most
(

2k2c
w′

)w′

, which is less than
(

2k2c
w′−(k1L+log N)

)w′−(k1L+log N)
.

44



Now let w = w′ − (k1L + log N). Then the probability that any packet ar-
rives at its destination after step L + w′ = β2L + w (for some β2) is at most
(

β3c
w

)w
, where β3 = 2k2.

Lemma 8.7 There is a constant β4 > 1 such that the probability that
Steps 6 and 7 require more than (β2 + 1)L + w time steps, w > 0, is at
most 2(1/β4)

w.

Proof: For the sake of brevity, we examine Step 7 only. A similar analysis
holds for Step 6.

We break the analysis into two cases according to whether the congestion
is small or large. Let T be the time at which the last packet arrives. Then

Pr[T ≥ (β2 + 1)L + w] ≤ Pr[T ≥ (β2 + 1)L + w|c < (L + w)/β3β4] + Pr[c ≥ (L + w)/β3β4].

We use Lemma 8.6 to bound the first term on the right. Plugging in (L +
w)/β3β4 for c yields Pr[T ≥ (β2 + 1)L + w|c < (L + w)/β3β4] ≤ (1/β4)

w.
We use Lemma 8.5 to bound the second term on the right. Plugging in
(L+w)/β3β4 for c yields Pr[c ≥ (L+w)/β3β4] ≤ (β1β3β4/(L+w))(L+w)/β3β4 .
Since L ≥

√
log N , and β1, β3, and β4 are constants, Pr[c ≥ (L+w)/β3β4] ≤

(1/β4)
w, for sufficiently large N .

The following lemma bounds the combined delay of Steps 6, 7, 8.

Lemma 8.8 There are constants β5 and β6 > 1 such that the probability
that Steps 6, 7, and 8 together require time β5L + w, w > 0, is at most
(1/β6)

w.

Proof: Step 8 can be performed deterministically in time O(c + L). From
Lemma 8.5 we have Pr[c ≥ s] ≤ (β1/s)s, for s > L. For our purposes, a
weaker bound on this probability suffices. Since β1 is a constant, there is a
constant k1 such that (1/k1)

s ≤ (β1/s)s for sufficiently large L. Combining
this bound with that of Lemma 8.7 yields the desired result.

To complete our analysis of the algorithm, we need to bound the prob-
ability that more than O(log N) delay accrues during the sort.

Lemma 8.9 For any fixed constant k1, there is a constant k2 such that the
probability that the cumulative delay is more than k2 log N is at most 1/Nk1.

45



Proof: The cumulative delay at the bottom level of the recursion is the sum
of the delay at each of the butterflies on the branch of the recursion tree
from the top level to the leaf. Let Di be the delay beyond β5L at the ith
level of the recursion. Then Pr[Di = w] ≤ (1/β6)

w by Lemma 8.8. Notice
that there is no dependence on i in this expression. Let D be the cumulative
delay on a branch of the recursion from the top level to a leaf. Then D =
∑O(log log N)

i=0 Di. Generating functions help us here. The generating function
for Di is

GDi
(z) =

∞
∑

w=0

Pr[Di = w]zw,

where zw can be thought of as a place holder. Since the delay at each level
of the recusion is independent of the delays at other levels, we can sum the
delay by multiplying the generating functions. Thus, the generating function

for the cumulative delay is GD(z) =
∏O(log log N)

i=0 GDi
(z). The coefficient

of zw in GD(z) is at most
(w+O(log log N)

w

)

(1/β6)
w. For w = O(log log N),

this coefficient is at most (O(1)/β6)
w. For any k3, there is a k2 such that

∑

∞

w=k2 log N (O(1)/β6)
w is at most 1/Nk3 .

To bound the probability that the cumulative delay exceeds k2 log N on
any branch of the recursion, we sum the individual probabilities for all of
the branches. There are at most N branches. Thus, the sum is at most
1/Nk3−1. For any k1, there is a k3 such that this sum is at most 1/Nk1 .

8.6 Putting it all together

Theorem 8.10 With high probability, an N log N -node butterfly can sort
N log N packets in O(log N) steps using constant-size queues.

Proof: The algorithm for sorting N log N packets on an N log N -node but-
terfly uses the algorithm for sorting N/ logα N packets as a subroutine.
First each packet independently chooses to be a splitter with probability
1/ logα+1 N . With high probability, this leaves Θ(N/ logα N) candidates.
The candidates are sorted using the subroutine. Then every log Nth can-
didate is selected to be a splitter, leaving Θ(N/ logα+1 N) splitters. The
splitters are distributed throughout the butterfly, and splitter-directed rout-
ing is used to route intervals of size O(logα+2 N) to subbutterflies with
Θ(logα+1 N) inputs. Now each interval of O(logα+2 N) packets resides in a
group of Θ(logα+1 N) butterfly rows. Each of these rows contains O(log N)
packets. The packets in each row can be sorted in O(log N) time using an

46



odd-even transposition sort [17, Section 1.6.1]. With a fixed number of row
sorts and permutations, all of the packets in each interval can be sorted in
O(log N) time using Columnsort.

9 Sorting on shuffle-exchange graphs

The butterfly sorting result from Section 8 does not directly extend to the
shuffle-exchange graph because the shuffle-exchange graph does not have the
nice recursive structure possessed by the butterfly. However we can use the
following theorem to sort on the shuffle-exchange graph. A similar theorem
was proven independently by Raghunathan and Saran [28].

Theorem 9.1 There is an embedding of M/ log M distinct M log M -node
butterfly graphs in an N = M2-node shuffle-exchange graph with load l = 2,
congestion c = O(1), and dilation d = 3.

Proof: We assume that M = 2k. Thus each row of each butterfly can be
represented by a k-bit string, and each node of the shuffle-exchange can be
represented by a 2k-bit string.

To map M/ log M butterflies to the shuffle-exchange graph, we use the
following lemma [15, Lemma 1-1].

Lemma 9.2 The set of k = log M -bit strings has at least M/2 log M dis-
joint subsets each containing log M distinct strings that are cyclic shifts of
each other (for sufficiently large k).

For each of these subsets we pick the lexicographically minimum string
to represent the subset. We associate the M/ log M butterflies in a two to
one fashion with the M/2 log M representative strings. Suppose butterfly i
is associated with string wi. We map a node 〈l, r〉 in butterfly i to a shuffle-
exchange node by shuffling the bits of wi with the bits of r’s representation,
and choosing the current bit to be rl. That is, node 〈l, r〉 in butterfly i is
mapped to shuffle-exchange node r1w

i
1 . . . rlw

i
l . . . rkw

i
k.

From a shuffle-exchange node we can recover the representative string wi

by picking out every other bit and shifting to the lexicographically minimum
string. We find the row string by picking out the other bits and shifting by
the same amount. The position in the row is clearly the number of shifts we
used to get to wi and the row number.

47



To finish, we observe that each edge in any of the butterflies is mapped
to a path of length at most three in the shuffle-exchange graph since we
either shift twice to reach 〈l + 1, r〉’s image, or we exchange the current bit
and shift twice to reach 〈l + 1, r1 . . . rl . . . rk〉’s image.

Thus we can embed
√

N/ log
√

N (
√

N log
√

N)-node butterflies in an
N -node shuffle-exchange with load 2, congestion O(1), and dilation 3.

This technique can be extended to prove that for any constant 0 < ε < 1,
N ε distinct N1−ε-node butterfly graphs can be embedded in an N -node
shuffle-exchange with constant load, congestion, and dilation.

The following theorem shows that we can use Theorem 9.1 to sort on
the shuffle-exhange graph in O(log N) steps.

Theorem 9.3 With high probability, an N -node shuffle-exchange graph can
sort N packets in O(log N) steps using constant-size queues.

Proof: The N packets can be sorted using the Columnsort algorithm of [16].
Using Theorem 9.1, M/ log M M log M -node butterflies are embedded in the
shuffle-exchange graph with constant load, congestion, and dilation, where
N = M2. Each of the butterflies can sort M log M packets in O(log M) =
O(log N) time using the butterfly sorting algorithm of Section 8. Columnsort
sorts all N packets using a constant number of butterfly sorting steps and
global permutation routing steps on the shuffle-exchange graph, each of
which takes O(log N) time, with high probability.

10 Sorting on multidimensional arrays

In this section we describe an algorithm for sorting kN packets on an N -
node k-dimensional array with maximum side length M in O(kM) steps.
The algorithm closely follows the algorithm of Section 8 for sorting on the
butterfly network. For the sake of brevity, we omit many of the details.

Theorem 10.1 With high probability, an N -node k-dimensional array with
maximum side length M can sort kN packets in O(kM) steps using constant-
size queues.

Sketch of proof: The algorithm is essentially the same as the algorithm for
sorting on the butterfly. For simplicity, we assume that M = M1 = · · · =
Mk.

48



As before, there is a recursive subroutine for sorting kN/2Θ(log k) packets.
We describe the action of the subroutine on a κ-dimensional subcube. (A
κ-dimensional subcube of an array is a subgraph of the array consisting of
Mκ nodes whose labels (w1, . . . , wk) share the same value in some set of
k − κ coordinates. For example, given a set i1, i2, . . . ik−κ coordinates and
a set v1, v2, . . . , vk−κ of values, there is a subcube consisting of those nodes
(w1, . . . , wk) such that wij = vj for 1 ≤ j ≤ k − κ.) The array is lightly

loaded by the factor of 2Θ(log k) to ensure that at each level of the recursion,
the number of packets entering any κ-dimensional subcube is at most Mκ.

The first step is to choose a set of splitters. A set of Θ(Mκ/2) packets
are randomly chosen to be splitter candidates and then sorted by comparing
every candidate with every other candidate, which can be done in O(κM)
steps. Next, every log Nth candidate is selected to be a splitter.

The subcube routes packets on a leveled logical routing network as de-
scribed in Section 6. The splitters are placed on the plateaus of the logical
network, M i of them on plateau i. Since there are only Θ(Mκ/2) splitters,
only the first βκ plateaus get any, where β is some fixed constant less than
one. On plateau 1, the jth splitter is assigned to all of the nodes labeled
(j, w2, . . . , wκ), where 0 ≤ wi ≤ M − 1 for 2 ≤ i ≤ κ. A packet routes
across dimension 1 edges on plateau 1 until until it reaches a splitter that
is larger than itself. It then routes across dimension 2 edges to plateau 2.
Because dimension 1 edges do not appear in any later plateaus, each of the
M intervals is routed to a disjoint k− 1 dimensional subgraph of the logical
network. On each of these subgraphs, M splitters are positioned on plateau
2, and so on.

The subroutine calls itself recursively on subcubes with κ − βκ dimen-
sions. The recursion terminates when the number of packets entering a sub-
cube is less than kM , in which case they are sorted sequentially in O(kM)
time. There are O(log k) levels to the recursion. As before, we can estimate
the time required by the algorithm by assuming that the time spent on a
κ-dimensional subcube is equal to the expectation, O(κM). The time is
given by the recurrence

T (κ) ≤
{

T (κ(1 − 1/β)) + O(κM) Mκ > kM
O(kM) Mκ ≤ kM

which has solution T (k) = O(kM). To rigorously bound the time we would
have to argue that delay does accumulate across the levels of the recursion.

The algorithm for sorting kN packets calls the subroutine once. First,
kN/2Θ(log k) packets are randomly chosen to be candidates and sorted using

49



the subroutine. Next, every log Nth candidate is selected to be a split-
ter. The splitters partition the packets into intervals of size 2Θ(log k) log N .
Since k ≤ log N , each interval has at most logΘ(1) N packets. Since the
1-dimensional subcubes can each sort kM packets in O(kM) steps using
bubblesort, and kM > log N , Columnsort can be applied to sort all of the
packets in O(kM) steps.

11 Remarks

The scheduling algorithm from Section 2 can be used as a subroutine in algo-
rithms for emulating shared-memory machines on bounded-degree networks.
A shared-memory machine with a large address space can be emulated by
randomly hashing the memory locations to the nodes of a butterfly as in
[11] and [29]. The hashing ensures that the congestion of the packets imple-
menting each memory access step is small. The algorithm from Section 2 is
used to schedule the movements of these packets.

Given a set of N packets whose paths have congestion c on a leveled
network with depth L, a setting of ranks that ensures delivery in time O(c+
L + log N) can be found can be found off-line deterministically in time
2O(c+L+log N). The proof uses the Raghavan–Spencer technique [27, 33] to
sequentially find a setting of the ranks so that no bad event corresponding
to a delay sequence occurs.

One application is in preparing simulations by volume and area-universal
networks off-line so that no random bits are needed. As before, the first step
is to map the processors of the network to be simulated, B, to the proces-
sors of the area-universal network, U , from Section 7 using the recursive
decomposition strategy from [21]. Network U has N processors, and B has
area O(N). To simulate each step of B, network U must route a set of
n = O(N/ log N) messages with load factor λ = O(log N). The second
step is to find paths for the messages. Since these messages link the same
processors at every step of B, it is sufficient to find paths once off-line.
They can be reused over and over during the simulation. Given a set of
n messages with load factor λ, it is possible to find a set of paths with
congestion c = O(λ + log M) and dilation d = O(log M) in a fat-tree with
root capacity M off-line deterministically in time polynomial in n and M .
The final step is to find a set of ranks for the messages. These ranks can
also be reused at each step of the simulation. Network U has root capacity
M = Θ(

√
N/ log N). Thus, both the paths and the ranks for the packets

50



can be determined off-line deterministically in time polynomial in N so that
the time to simulate each step of B is O(log N).

By making minor modifications to the definition of a delay sequence,
it is possible to prove that not only does the late arrival of some packet
imply that a bad event occurs, but also if a bad event occurs then some
packet is delayed. More precisely, some packet arrives at step L + w where
w = m + qf if and only if a bad event corresponding to a delay sequence of
length l ≤ L + 2f with m + qf packets occurs.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log n parallel steps.
Combinatorica, 3:1–19, 1983.

[2] R. Aleliunas. Randomized parallel communication. In Proceedings of
the ACM SIGACT–SIGOPS Symposium on Principles of Distributed
Computing, pages 60–72, August 1982.

[3] D. Angluin and L. G. Valiant. Fast probabilistic algorithms for hamilto-
nian circuits and matchings. Journal of Computer and System Sciences,
18(2):155–193, April 1979.

[4] K. Batcher. Sorting networks and their applications. In Proceedings
of the AFIPS Spring Joint Computing Conference, volume 32, pages
307–314, 1968.

[5] ButterflyTM Parallel Processor Overview. BBN Report No. 6148, Ver-
sion 1, BBN Advanced Computers, Inc., Cambridge, MA, March 1986.

[6] V. E. Beneš. Mathematical Theory of Connecting Networks and Tele-
phone Traffic. Academic Press, New York, 1965.

[7] J. L. Carter and M. N. Wegman. Universal classes of hash functions.
Journal of Computer and System Sciences, 18(2):143–154, April 1979.

[8] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. American Mathematical Society,
23:493–507, 1952.

[9] W. Dally and C. Seitz. Deadlock free message routing in multipro-
cessor interconnection networks. IEEE Transactions on Computers,
C–36(5):547–553, May 1987.

51



[10] R. I. Greenberg and C. E. Leiserson. Randomized routing on fat-trees.
In Silvio Micali, editor, Randomness and Computation.Volume 5 of Ad-
vances in Computing Research, pages 345–374. JAI Press, Greenwich,
CT, 1989.

[11] A. R. Karlin and E. Upfal. Parallel hashing — an efficient implemen-
tation of shared memory. In Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, pages 160–168, May 1986.

[12] R. R. Koch. Increasing the size of a network by a constant factor can
increase performance by more than a constant factor. In Proceedings
of the 29th Annual Symposium on Foundations of Computer Science,
pages 221–230. IEEE Computer Society Press, October 1988.

[13] D. Krizanc, S. Rajasekaran, and Th. Tsantilis. Optimal routing al-
gorithms for mesh-connected processor arrays. In J. Reif, editor,
Aegean Workshop on Computing: VLSI Algorithms and Architectures.
Volume 319 of Lecture Notes in Computer Science, pages 411–422.
Springer–Verlag, New York, NY, June 1988.

[14] M. Kunde. Routing and sorting on mesh-connected arrays. In J. Reif,
editor, Aegean Workshop on Computing: VLSI Algorithms and Ar-
chitectures. Volume 319 of Lecture Notes in Computer Science, pages
423–433. Springer–Verlag, New York, NY, June 1988.

[15] F. T. Leighton. Complexity Issues in VLSI. MIT Press, Cambridge,
MA, 1983.

[16] F. T. Leighton. Tight bounds on the complexity of parallel sorting.
IEEE Transactions on Computers, C–34(4):344–354, April 1985.

[17] F. T. Leighton. Introduction to Parallel Algorithms and Architectures:
Arrays • Trees • Hypercubes. Morgan Kaufmann, San Mateo, CA, 1992.

[18] F. T. Leighton and B. M. Maggs. Fast algorithms for routing around
faults in multibutterflies and randomly-wired splitter networks. IEEE
Transactions on Computers, 41(5):578–587, May 1992.

[19] F. T. Leighton, F. Makedon, and I. Tollis. A 2N − 2 step algorithm for
routing in an N×N mesh. In Proceedings of the 1989 ACM Symposium
on Parallel Algorithms and Architectures, pages 328–335, June 1989.

52



[20] T. Leighton, B. Maggs, and S. Rao. Universal packet routing algo-
rithms. In Proceedings of the 29th Annual Symposium on Foundations
of Computer Science, pages 256–271, October 1988.

[21] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE Transactions on Computers, C–34(10):892–901,
October 1985.

[22] C. E. Leiserson and B. M. Maggs. Communication-efficient parallel
graph algorithms for distributed random-access machines. Algorith-
mica, 3(1):53–77, 1988.

[23] B. M. Maggs. Locality in Parallel Computation. PhD thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, September 1989.

[24] R. Miller, V. K. Prasanna-Kumar, D. Reisis, and Q. F. Stout. Meshes
with reconfigurable buses. In J. Allen and F. T. Leighton, editors,
Advanced Research in VLSI: Proceedings of the Fifth MIT Conference,
pages 163–178, Cambridge, MA, April 1988. MIT Press.

[25] D. Nassimi and S. Sahni. Parallel permutation and sorting algorithms
and a new generalized connection network. Journal of the ACM,
29(3):642–667, July 1982.

[26] N. Pippenger. Parallel communication with limited buffers. In Pro-
ceedings of the 25th Annual Symposium on Foundations of Computer
Science, pages 127–136, October 1984.

[27] P. Raghavan. Probabilistic construction of deterministic algorithms:
approximate packing integer programs. Journal of Computer and Sys-
tem Sciences, 37(4):130–143, October 1988.

[28] A. Raghunathan and H. Saran. Is the shuffle-exchange better than the
butterfly? Unpublished manuscript.

[29] A. G. Ranade. How to emulate shared memory. In Proceedings of the
28th Annual Symposium on Foundations of Computer Science, pages
185–194. IEEE Computer Society Press, October 1987.

[30] A. G. Ranade. Fluent Parallel Computation. PhD thesis, Yale Univer-
sity, New Haven, CT, 1988.

53



[31] A. G. Ranade, S. N. Bhatt, and S. L. Johnsson. The fluent abstract
machine. In J. Allen and F. T. Leighton, editors, Advanced Research
in VLSI: Proceedings of the Fifth MIT Conference, pages 71–94, Cam-
bridge, MA, April 1988. MIT Press.

[32] J. H. Reif and L. G. Valiant. A logarithmic time sort for linear size
networks. Journal of the ACM, 34(1):60–76, January 1987.

[33] J. Spencer. Ten Lectures on the Probabilistic Method. SIAM, Philadel-
phia, PA, 1987.

[34] C. D. Thompson. A Complexity Theory for VLSI. PhD thesis, Depart-
ment of Computer Science, Carnegie-Mellon University, Pittsburgh,
PA, 1980.

[35] C. D. Thompson and H. T. Kung. Sorting on a mesh-connected parallel
computer. Communications of the ACM, 20(4):263–271, 1977.

[36] E. Upfal. Efficient schemes for parallel communication. In Proceedings
of the ACM SIGACT–SIGOPS Symposium on Principles of Distributed
Computing, pages 55–59, August 1982.

[37] E. Upfal. An O(log N) deterministic packet routing scheme. In Pro-
ceedings of the 21st Annual ACM Symposium on Theory of Computing,
pages 241–250, May 1989.

[38] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal
on Computing, 11(2):350–361, May 1982.

[39] L. G. Valiant and G. J. Brebner. Universal schemes for parallel com-
munication. In Proceedings of the 13th Annual ACM Symposium on
Theory of Computing, pages 263–277, May 1981.

[40] A. Waksman. A permutation network. Journal of the ACM, 15(1):159–
163, January 1968.

54


