Round-query tradeoff for Single Element Recovery on affine sets

Benjamin Rossman
Duke University
September 11, 2021

Abstract
Let F be a field and A an affine subset of F^N that does not contain the origin. How many linear queries $F^N \to F$ are required to find a nonzero coordinate of a hidden vector in A? We show that the deterministic r-round query complexity of this problem is between $r(m(A)^{1/r} - 1)$ and $rm(A)^{1/r}$ where

$$m(A) := \min_{y \in F^N : \forall x \in A, \langle x, y \rangle = 1} |\text{Supp}(y)|.$$

(In particular, $m(A) = N$ when $A = \{x \in F^N : \sum_i x_i = 1\}$.) The proof is a direct generalization of the special case for F_2 given in [Ros17].

1 Introduction
Let Γ be a set with a zero element 0 (for example: the set $\{0, 1\}$, any field F, or the nonnegative real numbers $\mathbb{R}_{\geq 0}$). Let N be a positive integer, and let $[N] := \{1, \ldots, N\}$.

For a vector $x = (x_1, \ldots, x_N) \in \Gamma^N$, its support is the set $\{i \in [N] : x_i \neq 0\}$ of nonzero coordinates. We denote by $\vec{0}$ the all-zero vector in Γ^N with empty support.

For a set $D \subseteq \Gamma^N$ and a set Q of functions whose domain includes D, we consider the following Single Element Recovery problem: For an arbitrary hidden vector $x \in D \setminus \{\vec{0}\}$, find an element of Supp(x) (i.e., a nonzero coordinate of x) by making queries $q_1, \ldots, q_k \in Q$ and learning answers $q_1(x), \ldots, q_k(x)$. We consider the query complexity of this problem (i.e., minimum required number of queries) in different settings: randomized vs. deterministic, as well as non-adaptive vs. r-round adaptive.

For various settings of D and Q that have been studied, the following upper bounds are known to hold:

Randomized non-adaptive $O(\log^2 N)$ query algorithm. By the Valiant-Vazirani Isolation Lemma [VV85], there is a joint distribution of $t = O(\log N \cdot \log \frac{1}{\varepsilon})$ random sets $I_1, \ldots, I_t \subseteq [N]$ such that, for every nonempty $S \subseteq [N]$,

$$\Pr_{I_1, \ldots, I_t} \left[\exists j \in \{1, \ldots, t\}, |S \cap I_j| = 1 \right] \geq 1 - \varepsilon.$$

For each $j \in \{1, \ldots, t\}$, the algorithm makes $O(\log N)$ queries that indicate whether Supp(x) $\cap I_j$ is a singleton and, if so, give the unique coordinate in this set.

Deterministic r-round $rN^{1/r}$ query algorithm. The algorithm maintains a nonempty set of coordinates, initially $[N]$ itself, that is known to contain a nonzero coordinate of x. In each round, the algorithm reduces the set to one of $[N^{1/r}]$ subsets in a balanced partition. (When $r = \lfloor \log_2 N \rfloor$, this is the usual binary search using r queries.)
The following table lists settings of \mathcal{D} and \mathcal{Q} where both upper bounds hold. The righthand columns give references for matching lower bounds. Question marks indicate the lower bound is unknown (or the author is unaware of a reference).

<table>
<thead>
<tr>
<th>\mathcal{D}</th>
<th>\mathcal{Q}</th>
<th>rand. non-adaptive $\Omega(\log^2 N)$ l.b.</th>
<th>deterministic r-round $\Omega(r(N^{1/r} - 1))$ l.b.</th>
</tr>
</thead>
<tbody>
<tr>
<td>${x \in {0,1}^N :</td>
<td>x</td>
<td>\text{ is odd}}$</td>
<td>XOR$^{(a)}$</td>
</tr>
<tr>
<td>${0,1}^N$</td>
<td>OR$^{(b)}$</td>
<td>[JST11]</td>
<td>[ACK20]</td>
</tr>
<tr>
<td>${ x \in {0,1}^{2\log N} : x \text{ is the char. vector of an affine subset of } \mathbb{F}_2^N }$</td>
<td>monotone$^{(c)}$</td>
<td>[KRW17]</td>
<td>?</td>
</tr>
<tr>
<td>$\mathbb{R}_{\geq 0}^N$</td>
<td>linear$^{(d)}$</td>
<td>[JST11]</td>
<td>[ACK20]</td>
</tr>
<tr>
<td>${ x \in \mathbb{F}^N : \sum_i x_i \neq 0 }$, any field \mathbb{F}</td>
<td>linear$^{(e)}$</td>
<td>?</td>
<td>this note</td>
</tr>
<tr>
<td>${ x \in (\mathbb{Z}/q\mathbb{Z})^N : \forall i, x_i \in {0,1} \text{ and } \sum_i x_i \neq 0 }$, any $q \geq 2$</td>
<td>linear$^{(f)}$</td>
<td>?</td>
<td>[CS21]</td>
</tr>
</tbody>
</table>

The diagram below shows implications between lower bounds from different rows of this table:

(e) \implies (c) \implies (d) \implies (b) \implies (g) \implies (a) $=$ (g)$_{F_2}$ $=$ (h)$_{q=2}$ \implies (h)

Most of these implications follow trivially from containments among the different classes \mathcal{D} and \mathcal{Q}: we get a stronger lower bound whenever we are able to shrink \mathcal{D} or augment \mathcal{Q}. Implication (f) \implies (b) follows from the observation that an OR query $\bigvee_{i \in I} x_i (I \subseteq [N])$ on domain $\{0,1\}^N$ carries less information than the corresponding linear query $\sum_{i \in I} x_i$. Note that the lower bounds in rows (e), (f) and (g) imply all other lower bounds in the above table.

Some comments on specific rows in the table:

Row (a). Any deterministic r-round q-query algorithm in this setting converts to a depth $r + 1$, size 2^{r+q} AC0 formula solving PARITY_N. Lower bounds $\Omega(N^{1/r})$ and $\Omega(r(N^{1/r} - 1))$ in row (a) follow from the AC0 formula lower bounds of [Ros17]. (A weaker $\Omega(N^{1/r})$ bound follows from the much earlier AC0 circuit lower bound of Håstad [Has86].) Ros17 subsequently strengthened the lower bound to $r(N^{1/r} - 1)$ (improving the previous big-Ω constant to the optimal value 1) by a linear-algebraic argument that avoids the random restriction based method of circuit complexity. (A different proof of the same $r(N^{1/r} - 1)$ lower bound appears in [CS21].) The lower bound for row (g) presented in this note is a direct generalization of the argument in [Ros17] from F_2 to arbitrary fields.

Rows (d) and (e). Here we assume that $N = 2^n$ for some integer n, and we identify $\{0,1\}^N$ with subsets of \mathbb{F}_2^n. Elements of \mathcal{D} thus correspond to affine subsets of \mathbb{F}_2^n, and Single Element Recovery may be viewed as the search problem of finding a vector in a hidden affine set. (The lower bound in [Ros21] is presented for the slightly different, but equivalent, search problem of finding a nonzero vector in a hidden non-trivial linear subspace of \mathbb{F}_2^n.)
Row (b). [ACK20] show that $N^{1/r} - 1$ queries are required in at least one round. A straightforward extension of their argument yields a stronger $r(N^{1/r} - 1)$ lower bound on the total number of queries.

Row (f). [ACK20] show that $\frac{1}{2}(N^{1/r} - 1)$ linear queries $\mathbb{R}^n \to \mathbb{R}$ are required in at least one round. It is again a straightforward extension to obtain a stronger $\frac{1}{2}r(N^{1/r} - 1)$ lower bound on the total number of queries. Here the factor $\frac{1}{2}$ arises from splitting each linear query into two nonnegative linear queries; it is unclear if this factor is necessary for domain \mathbb{R}^N. (If so, the implication (f) \Rightarrow (g)$_R$ holds up to a factor 2.) The $r(N^{1/r} - 1)$ lower bound for row (g), proved in this notes, shows that this factor is unnecessary for domain \mathbb{R}^N.

Rows (g) and (h). When q is prime, we may compare the r-round lower bounds of rows (g) and (h) for the field $\mathbb{F}_q = \mathbb{Z}/q\mathbb{Z}$. For $q = 2$, both (g) and (h) specialize to the $rN^{1/r} - 1$ bound of row (a). However, these bounds are incomparable for primes $q \geq 3$. Quantitatively, the r-round lower bound in row (g) is $rN^{1/r} - 1$ for all fields \mathbb{F}, while row (h) is $\Omega(\frac{r(N^{1/r} - 1)}{q^{1+1/r} \log^2 q})$; for this reason, (h) $\not\Rightarrow$ (g). On the other hand, the domain of (h) is smaller than the domain of (g), as it includes the additional constraint that $x \in \{0, 1\}^N$; for this reason, (g) $\not\Rightarrow$ (h).

Definition 1. If A is an affine subset of \mathbb{F}^N that does not contain the origin, we define $m(A) = 1$ by

$$m(A) := \min_{y \in \mathbb{F}^N : \forall x \in A,\, (x,y)^T = 1} |y|.$$

For example, if A is the codimension-1 affine set $\{x \in \mathbb{F}^N : \sum x_i = 1\}$, then we have $m(A) = N$.

Theorem 2. Let A be an affine subspace of \mathbb{F}^N that does not contain the origin. Then the number of linear queries $\mathbb{F}^N \to \mathbb{F}$ required to solve Single Element Recovery on domain A is at least $r(m(A)^{1/r} - 1)$ and at most $rm(A)^{1/r}$.

2 Round-query tradeoff over any field

Fix an arbitrary field \mathbb{F} and positive integer N. We consider the vector space \mathbb{F}^N. For $x \in \mathbb{F}^N$, let $|x|$ denote the number of nonzero coordinates of x (i.e., the size of support of x, not the sum of coordinates $\sum_i x_i$).

In what follows, U, V, S, T represent linear subspaces of \mathbb{F}^N, while A, B represent affine subsets of \mathbb{F}^N that do not contain the origin. Notation $U <_k V$ expresses that U is a codimension-k subspace of V.

Fix an inner product $\langle\cdot, \cdot\rangle$ on \mathbb{F}^N. Let V^\perp denote the orthogonal complement of a linear subspace V, that is, $V^\perp := \{x \in \mathbb{F}^N : \langle x, v \rangle = 0 \text{ for all } v \in V\}$. Note that $(V^\perp)^\perp = V$ and $U <_k V \Rightarrow V^\perp <_k U^\perp$.

Lemma 3. Let A be an affine subset of \mathbb{F}^N that does not contain the origin. Let $U <_1 V$ be linear subspaces

$$U := \{x_1 - x_2 : x_1, x_2 \in A\} \quad \text{and} \quad V := \{\lambda x : x \in A, \lambda \in \mathbb{F}\}.$$

Then $m(A) = \min_{z \in U \setminus V^\perp} |z|$.

Lemma 4. For all $U <_k V \leq \mathbb{F}^N$, there exists a linear projection $\pi : V \to U$ such that $|\pi(v)| \leq (k + 1)|v|$ for all $v \in V$.

Proof. Let w_1, \ldots, w_k be a basis of V over U, greedily chosen so that $|w_i|$ is maximal among elements $w_i \in V \setminus \text{LinearSpan}(U \cup \{w_1, \ldots, w_{i-1}\})$ for each $i \in \{1, \ldots, k\}$. Consider any $v \in V$. Then $v = u + a_1 w_1 + \cdots + a_k w_k$ for some $u \in U$ and $a_1, \ldots, a_k \in \mathbb{F}$. Let $\pi : V \to U$ be the projection $v \mapsto u$. Then

$$|\pi(v)| = |u| = |v - (a_1 w_1 + \cdots + a_k w_k)| \leq |v| + |a_1 w_1| + \cdots + |a_k w_k|.$$

For each i, we either have $a_i = 0$, in which case $|a_i w_i| = 0$; or $a_i \neq 0$, in which case $v \notin \text{LinearSpan}(U \cup \{w_1, \ldots, w_{i-1}\})$ and therefore $|v| \leq |w_i| = |a_i w_i|$. We conclude that $|\pi(v)| \leq (k + 1)|v|$ as required.

\qed
Definition 5. For real \(r, m \geq 0 \), let
\[
\beta(r, m) := \lim_{\rho \to r} \rho(m^{1/\rho} - 1) = \begin{cases}
0 & \text{if } r = 0 \text{ and } m \leq 1, \\
\infty & \text{if } r = 0 \text{ and } m > 1, \\
r(m^{1/r} - 1) & \text{if } r > 0.
\end{cases}
\]

As an aside: note that \(\lim_{r \to \infty} \beta(r, m) = \ln(m) \).

Lemma 6. For all real \(r, m, k \geq 0 \),
\[
\beta\left(\frac{r}{m} \ell\right) + \ell - 1 \geq \beta(r + 1, m).
\]
When \(r > 0 \), this holds with equality if and only if \(\ell = m^{1/(r+1)} \).

Proof. Elementary calculus.

Theorem 7 (Lower Bound). Let \(A \) be an affine subspace of \(\mathbb{F}^N \) that does not contain the origin. Then \(r \)-round Single Element Recovery on domain \(A \) requires at least \(\beta(r, m(A)) \) linear queries.

Proof. We prove the theorem by induction on \(r \). In the base case \(r = 0 \), the theorem states that Single Element Recovery on domain \(A \) is solved in zero rounds (with zero queries) if, and only if, \(m(A) = 1 \). This follows from the definition of \(m(A) \).

For the induction step, let \(r \geq 1 \) and assume the theorem holds for fewer than \(r \) rounds. Suppose an optimal deterministic \(r \)-round algorithm makes \(k \) queries in the first round. These queries correspond to a linear function \(\varphi : \mathbb{F}^N \to \mathbb{F}^k \).

For each possible sequence of answers \(b \in \mathbb{F}^k \), we are left with a deterministic \(r-1 \)-round algorithm that solves Single Element Recovery over \(\{ x \in A : \varphi(x) = b \} \), which is a codimension-\(k \) affine subset of \(A \). We show how to adversarially choose an answer sequence \(b \in \mathbb{F}^k \) such that the remaining \(r-1 \)-round algorithms requires at least \(\beta(r-1, m(A)/(k+1)) \) queries. The total number of queries is then at least \(k + \beta(r-1, m(A)/(k+1)) \), which is \(\geq \beta(r, m(A)) \) by Lemma 6.

We proceed to explain how to find a suitable answer sequence \(b \in \mathbb{F}^k \) for linear queries \(\varphi : \mathbb{F}^N \to \mathbb{F}^k \). As in Lemma 3, let \(U <_1 V \) be linear subspaces
\[
U := \{ x_1 - x_2 : x_1, x_2 \in A \} \quad \text{and} \quad V := \{ \lambda x : x \in A, \lambda \in \mathbb{F} \}.
\]
Let
\[
S := \text{Ker}(\varphi) \cap U.
\]
Without loss of generality, we may assume that \(S <_k U \), since otherwise a proper subset of the \(k \) queries would contain the same information about a hidden vector in \(A \).

By duality, we have \(V^\perp <_1 U^\perp <_k S^\perp \). By Lemma 4 there exists a linear projection
\[
\pi : S^\perp \to U^\perp
\]
such that \(|\pi(z)| \leq (k+1)|z| \) for all \(z \in S^\perp \). Let
\[
T := (\pi^{-1}(V^\perp))^\perp.
\]
By duality and the rank-nullity theorem, we have

\[T^\perp = \pi^{-1}(V^\perp), \quad V^\perp \leq_k T^\perp <_k S^\perp, \quad S \leq_k T <_k V, \quad S = T \cap U. \]

Note that \(T \not\subseteq U \), since otherwise \(S = T \) (whereas we have shown \(S <_1 T \)). Fix any \(t \in T \setminus U \). Since \(V = \{ \lambda x : x \in A, \lambda \in \mathbb{F} \} \), there exist \(x_0 \in A \) and \(c \in \mathbb{F} \) such that \(cx_0 = t \); moreover, \(c \neq 0 \) (since \(t \neq 0 \) as \(t \notin U \)). Now let

\[B := \{ s + c^{-1}t : s \in S \}. \]

We claim that

\[B = \{ x \in A : \varphi(x) = \varphi(t) \}. \]

We first prove the containment \(\subseteq \). Consider any element \(s + c^{-1}t \in B \) where \(s \in S \). Since \(c^{-1}t = x_0 \in A \) and \(S \subseteq U = \{ x_1 - x_2 : x_1, x_2 \in A \} \), we have \(s + c^{-1}t = x_0 + x_1 - x_2 \) where \(x_0, x_1, x_2 \in A \). Therefore, \(s + c^{-1}t \in A \). Having shown \(B \subseteq \{ x \in A : \varphi(x) = \varphi(t) \} \), it then follows that these sets are equal, since both are affine sets of dimension \(\text{dim}(A) - k \).

Note that

\[S = \{ w_1 - w_2 : w_1, w_2 \in B \} \quad \text{and} \quad T = \{ \lambda w : w \in B, \lambda \in \mathbb{F} \}. \]

We have

\[
m(B) = \min_{z \in S^\perp \setminus T^\perp} |z| = \min_{z \in \pi^{-1}(V^\perp) \setminus \pi^{-1}(V^\perp)} |z| \geq \min_{z \in \pi^{-1}(V^\perp) \setminus \pi^{-1}(V^\perp)} \frac{|\pi(z)|}{k + 1} = \min_{y \in U^\perp \setminus V^\perp} \frac{|y|}{k + 1} = \frac{m(A)}{k + 1}.
\]

Let \(\varphi(t) \in \mathbb{F}^k \) be the (adversarially chosen) sequence of answers to first-round queries \(\varphi : \mathbb{F}^N \to \mathbb{F}^k \). We are left with an \(r - 1 \) round algorithm that solves Single Element Recovery on domain \(B \). By the induction hypothesis and Lemma 6, the total number of queries over all \(r \) rounds is at least

\[
k + \beta(r - 1, m(B)) \geq k + \beta(r - 1, \frac{m(A)}{k + 1}) \geq \beta(r, m(A)),
\]

which completes the proof. \(\square \)

Theorem 8 (Upper Bound). Let \(A \) be an affine subspace of \(\mathbb{F}^N \) that does not contain the origin. Then for all \(r \geq 1 \), Single Element Recovery on domain \(A \) is solvable in \(r \) rounds using \(rm(A)^{1/r} \) linear queries.

Proof. Fix \(y \in \mathbb{F}^N \) such that \(|y| = m(A) \) and \(\langle x, y \rangle = 1 \) for all \(x \in A \). Let \(I = \{ i \in [N] : y_i \neq 0 \} \) (so, \(|y| = |I| = m(A) \)). Let \(I = I_1 \sqcup \cdots \sqcup I_k \) be partition of \(I \) into \(k \leq [m(A)^{1/r}] \) blocks of size at most \(m(A)^{(r-1)/r} \). For \(j \in \{1, \ldots, k\} \), let \(y^{(j)} \) be the sub-vector of \(y \) with support \(I_j \).

In the first round, the algorithm makes \(k - 1 \) queries that learn the values of \(\langle x, y^{(1)} \rangle, \ldots, \langle x, y^{(k-1)} \rangle \). From the answers, we learn some \(j \in \{1, \ldots, k\} \) and \(\lambda \in \mathbb{F}^\times \) such that \(\langle x, y^{(j)} \rangle = \lambda \). The algorithm then proceeds
to solve Single Element Recovery on the corresponding affine subset B of A. We have $m(B) \leq m(A)^{(r-1)/r}$, as witnessed by the fact that $\langle w, \lambda^{-1} y^{(j)} \rangle = 1$ for all $w \in B$.

If $r = 1$, we are done, since $|y^{(j)}| = m(A)^0 = 1$ and we have used $k - 1 = m(A) - 1$ queries. If $r \geq 2$, then by induction the total number of queries is at most

$$k - 1 + (r - 1)m(B)^{1/(r-1)} \leq \lceil m(A)^{1/r} \rceil - 1 + (r - 1)(m(A)^{(r-1)/r})^{1/(r-1)} \leq m(A)^{1/r} + (r - 1)m(A)^{1/r} = rm(A)^{1/r}.$$

\[\square \]

References

